JP2009117864A - Iii族窒化物半導体基板 - Google Patents

Iii族窒化物半導体基板 Download PDF

Info

Publication number
JP2009117864A
JP2009117864A JP2009021752A JP2009021752A JP2009117864A JP 2009117864 A JP2009117864 A JP 2009117864A JP 2009021752 A JP2009021752 A JP 2009021752A JP 2009021752 A JP2009021752 A JP 2009021752A JP 2009117864 A JP2009117864 A JP 2009117864A
Authority
JP
Japan
Prior art keywords
group iii
iii nitride
nitride semiconductor
concentration
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009021752A
Other languages
English (en)
Inventor
Takuji Okahisa
拓司 岡久
Hideaki Nakahata
英章 中幡
Seiji Nakahata
成二 中畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009021752A priority Critical patent/JP2009117864A/ja
Publication of JP2009117864A publication Critical patent/JP2009117864A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

【課題】比抵抗が制御された低転位密度のIII族窒化物半導体基板を提供する。
【解決手段】本III族窒化物半導体基板11a,11b,11c,11dは、不純物元素として、C、Mg、Fe、Be、Zn、VおよびSbからなる群から選ばれる少なくとも1種類の元素を1×1017cm-3以上の濃度で含有し、基板の主面内における不純物元素の最小濃度に対する最大濃度の比で表わされる不純物元素の濃度の面内分布が1以上3以下であり、比抵抗が1×104Ω・cm以上で、厚さが70μm以上である。
【選択図】図1

Description

本発明は、比抵抗が制御された低転位密度のIII族窒化物半導体基板に関する。
近年、光デバイス、電子デバイスなどの各種半導体デバイスの基板に適した比抵抗が制御され転位密度が低く安定した電気特性および/または光特性を有するIII族窒化物半導体基板の開発が求められている。
III族窒化物半導体基板の転位密度を著しく低減する方法として、下地基板上にIII族窒化物半導体の結晶を成長させる際に、ファセット面を形成させファセット面を維持することにより、結晶内の転位をピット中央部の転位集中領域に集中させて、転位集中領域以外の領域(低転位領域という、以下同じ)の転位密度を低減する方法が提案されている(たとえば、特許文献1を参照)。
しかし、特許文献1の方法により得られるGaN基板には、転位集中領域と低転位領域とが混在していた。また、低転位領域においても、GaNのファセット面を成長面として成長した領域(ファセット面成長領域)は比抵抗の低い領域(低比抵抗領域)となり、GaNのC面を成長面として成長した領域(C面成長領域)は比抵抗の高い領域(高比抵抗領域)となるため、低比抵抗領域と高比抵抗領域とが混在していた。このため、特許文献1の方法により得られたGaN基板の転位密度および比抵抗の面内分布が大きかった。
また、III族窒化物半導体の結晶を成長させる際に、C(炭素)を高濃度に添加して、高い比抵抗のIII族窒化物半導体層を形成すること(たとえば、特許文献2を参照)、結晶欠陥の少ないp型III族窒化物半導体を成長させること(たとえば、特許文献3)が提案されている。また、結晶欠陥の少ないIII族窒化物半導体を成長させるため、基板上に予めCを高濃度に添加したバッファ層を形成することが提案されている(たとえば、特許文献4)。
しかし、上記特許文献2から特許文献4のいずれの場合においても、比抵抗の制御が困難であり、比抵抗の面内分布が大きくなるという問題を有していた。また、特許文献2から特許文献4のいずれのIII族窒化物半導体層またはIII族窒化物半導体層基板も、上記特許文献1の方法により得られるGaN基板の転位密度程度まで、その転位密度を低減することができず、電気特性および/または光学特性の安定性に欠けるという問題も有していた。
特開2001−102307号公報 特開2000−068498号公報 特開平10−112438号公報 特開平11−026383号公報
本発明は、比抵抗が制御された低転位密度のIII族窒化物半導体基板を提供することを目的とする。
本発明は、不純物元素として、C、Mg、Fe、Be、Zn、VおよびSbからなる群から選ばれる少なくとも1種類の元素を1×1017cm-3以上の濃度で含有し、基板の主面内における不純物元素の最小濃度に対する最大濃度の比で表わされる不純物元素の濃度の面内分布が1以上3以下であり、比抵抗が1×104Ω・cm以上で、厚さが70μm以上であるIII族窒化物半導体基板である。
また、本発明は、不純物元素として、O、Si、S、Ge、SeおよびTeからなる群から選ばれる少なくとも1種類の元素を1×1017cm-3以上の濃度で含有し、基板の主面内における不純物元素の最小濃度に対する最大濃度の比で表わされる不純物元素の濃度の面内分布が1以上3以下であり、比抵抗が1Ω・cm以下で、厚さが70μm以上であるIII族窒化物半導体基板である。
本発明にかかるIII族窒化物半導体基板において、その平均転位密度を1×107cm-2以下とし転位密度1×108cm-2を超える転位集中領域の面密度を1cm-2以下とすること、III族窒化物をGaNとすること、その主面が(0001)面、(1−100)面および(11−20)面のうちいずれか1つの面に対して、−5°以上5°以下の角度を有すること、X線回折におけるロッキングカーブの半値幅を10arcsec以上500arcsec以下とすること、キャリア濃度を1×1015cm-3以下または1×1017cm-3以上1×1020cm-3以下とすること、450nmの光の吸収係数を50cm-1以上または10cm-1以下とすることができる。
上記のように、本発明によれば、比抵抗が制御された低転位密度のIII族窒化物半導体基板を提供することができる。
本発明にかかる一のIII族窒化物半導体基板の製造方法を示す模式断面図である。ここで、(a)はIII族窒化物半導体層の成長工程を、(b)はIII族窒化物半導体層の加工工程を示す。 本発明にかかる他のIII族窒化物半導体基板の製造方法を示す模式断面図である。ここで、(a)はIII族窒化物半導体層の成長工程を、(b)はIII族窒化物半導体層の加工工程を示す。 本発明にかかるさらに他のIII族窒化物半導体基板の製造方法を示す模式断面図である。ここで、(a)はIII族窒化物半導体層の成長工程を、(b)はIII族窒化物半導体層の加工工程を示す。 本発明にかかるさらに他のIII族窒化物半導体基板の製造方法を示す模式断面図である。ここで、(a)はIII族窒化物半導体層の成長工程を、(b)はIII族窒化物半導体層の加工工程を示す。 本発明にかかるさらに他のIII族窒化物半導体基板の製造方法を示す模式断面図である。ここで、(a)はIII族窒化物半導体層の成長工程を、(b)はIII族窒化物半導体層の加工工程を示す。 従来のファセット成長法によるIII族窒化物半導体基板の製造方法を示す模式断面図である。ここで、(a)はマスク層の形成工程を、(b)はIII族窒化物半導体層の成長工程を、(c)はIII族窒化物半導体層の加工工程を示す。
(実施形態1)
本発明にかかる一のIII族窒化物半導体基板は、不純物元素としてC、Mg、Fe、Be、Zn、VおよびSbからなる群から選ばれる少なくとも1種類の不純物元素を1×1017cm-3以上の濃度で含有し、基板の主面内における不純物元素の最小濃度に対する最大濃度の比で表わされる不純物元素の濃度の面内分布が1以上3以下であり、比抵抗が1×104Ω・cm以上で、厚さが70μm以上であるIII族窒化物半導体基板である。
III族窒化物半導体基板に、不純物元素としてC、Mg、Fe、Be、Zn、VおよびSbのうち少なくとも1つの元素が1×1017cm-3以上含まれることにより、基板の主面内における不純物元素の面内分布(最小濃度に対する最大濃度の比)が1以上3以下に低減されるとともに、これらの元素による深いアクセプター準位が形成されるため、基板の比抵抗を1×104Ω・cm以上の高比抵抗に制御することができる。
本実施形態におけるIII族窒化物半導体基板は、その平均転位密度が1×107cm-2以下で、転位密度1×108cm-2を超える転位集中領域の面密度が1cm-2以下であることが好ましい。転位密度の面内分布を均一にすることにより、半導体デバイスの基板として安定した電気特性および/または光特性が得られる。本発明者は、本実施形態においてIII族窒化物半導体基板に添加されたC、Mg、Fe、Be、Zn、VおよびSbのうち少なくとも1つの元素は、結晶成長の際に、転位の発生を抑制し、また、転位の集中を緩和する特性を有する効果を見いだし、III族窒化物半導体の成長の際に、C、Mg、Fe、Be、Zn、VおよびSbのうち少なくとも1つの元素を1×1017cm-3以上添加することにより、平均転位密度が1×107cm-2以下で、転位密度1×108cm-2を超える転位集中領域の面密度が1cm-2以下であるIII族窒化物半導体基板を得ることができた。
また、本実施形態におけるIII族窒化物半導体基板は、GaN基板であることが好ましい。1×104Ω・cm以上に制御された厚さ70μm以上のGaN基板は、半導体デバイスの基板として広汎に利用することができる。
また、本実施形態におけるIII族窒化物半導体基板は、その主面が(0001)面、(1−100)面および(11−20)面のうちいずれか1つの面に対して、−5°以上5°以下の角度を有することが好ましい。このような主面を有するIII族窒化物半導体基板上には、結晶性のよいIII族窒化物半導体層を形成することができ、電気特性および/または光特性が安定した半導体デバイスを得ることができる。
また、本実施形態におけるIII族窒化物半導体基板は、X線回折におけるロッキングカーブの半値幅が、10arcsec以上500arcsec以下であることが好ましい。このように結晶性がよいIII族窒化物半導体基板上には、結晶性のよいIII族窒化物半導体層を形成することができ、電気特性および/または光特性が安定した半導体デバイスを得ることができる。本実施形態においては、III族窒化物半導体基板にC、Mg、Fe、Be、Zn、VおよびSbのうち少なくとも1つの元素を1×1017cm-3以上添加することにより、X線回折におけるロッキングカーブの半値幅が、10arcsec以上500arcsec以下の結晶性のよいIII族窒化物半導体基板が得られる。
また、本実施形態におけるIII族窒化物半導体基板は、そのキャリア濃度が1×1015cm-3以下であることが好ましい。本実施形態においては、III族窒化物半導体基板にC、Mg、Fe、Be、Zn、VおよびSbのうち少なくとも1つの元素を1×1017cm-3以上添加することにより、キャリア濃度が1×1015cm-3以下のIII族窒化物半導体基板が得られ、その比抵抗を1×104Ω・cm以上に制御することが容易になる。
また、本実施形態におけるIII族窒化物半導体基板は、波長450nmの光の吸収係数が50cm-1以上であることが好ましい。本実施形態においては、III族窒化物半導体基板にC、Mg、Fe、Be、Zn、VおよびSbのうち少なくとも1つの元素を1×1017cm-3以上添加することにより、その比抵抗が1×104Ω・cm以上に制御された、波長450nmの光の吸収係数が50cm-1以上のIII族窒化物半導体基板が得られる。
(実施形態2)
本発明にかかる他のIII族窒化物半導体基板は、不純物元素としてO、Si、S、Ge、SeおよびTeからなる群から選ばれる少なくとも1種類の不純物元素を1×1017cm-3以上の濃度で含有し、基板の主面内における不純物元素の最小濃度に対する最大濃度の比で表わされる不純物元素の濃度の面内分布が1以上3以下であり、比抵抗が1Ω・cm以下で、厚さが70μm以上であるIII族窒化物半導体基板である。
III族窒化物半導体基板に、不純物元素としてO、Si、S、Ge、SeおよびTeのうち少なくとも1つの元素が1×1017cm-3以上含まれることにより、基板の主面内における不純物元素の面内分布(最小濃度に対する最大濃度の比)が1以上3以下に低減されるととともに、これらの元素による浅いドナー準位が形成されるため、基板の比抵抗を1Ω・cm以下の低比抵抗に制御することができる。
本実施形態におけるIII族窒化物半導体基板は、実施形態1のIII族窒化物半導体基板と同様に、その平均転位密度が1×107cm-2以下であり、転位密度1×108cm-2を超える転位集中領域の面密度が1cm-2以下であること、GaN基板であること、その主面が(0001)面、(1−100)面および(11−20)面のうちいずれか1つの面に対して、−5°以上5°以下の角度を有すること、X線回折におけるロッキングカーブ半値幅が、10arcsec以上500arcsec以下であることが好ましい。
また、本実施形態におけるIII族窒化物半導体基板は、そのキャリア濃度が1×1017cm-3以上1×1020cm-3以下であることが好ましい。本実施形態においては、III族窒化物半導体基板にO、Si、S、Ge、SeおよびTeのうち少なくとも1つの元素を1×1017cm-3以上添加することにより、キャリア濃度が1×1017cm-3以上1×1020cm-3以下のIII族窒化物半導体基板が得られ、その比抵抗を1Ω・cm以下に制御することが容易になる。
また、本実施形態におけるIII族窒化物半導体基板は、波長450nmの光の吸収係数が10cm-1以下であることが好ましい。本実施形態においては、III族窒化物半導体基板にO、Si、S、Ge、SeおよびTeのうち少なくとも1つの元素を1×1017cm-3以上添加することにより、その比抵抗が1Ω・cm以下に制御された、波長450nmの光の吸収係数が50cm-1以上のIII族窒化物半導体基板が得られる。
(実施形態3)
本発明にかかる一のIII族窒化物半導体基板の製造方法は、図1を参照して、図1(a)に示すように下地基板1上に第1のIII族窒化物半導体層11をエピタキシャル成長させる成長工程と、図1(b)に示すように第1のIII族窒化物半導体層11を裁断および/または表面研磨してIII族窒化物半導体基板11a,11b,11c,11dを形成する加工工程とを含み、上記成長工程において、第1のIII族窒化物半導体層11に、不純物元素としてC、Mg、Fe、Be、Zn、VおよびSbから少なくとも1種類の元素を1×1017cm-3以上添加することを特徴とする。
第1のIII族窒化物半導体層11をエピタキシャル成長させる際に、不純物元素としてC、Mg、Fe、Be、Zn、VおよびSbから少なくとも1つの元素を1×1017cm-3以上添加することにより、比抵抗が1×104Ω・cm以上に制御された高比抵抗のIII族窒化物半導体層11およびIII族窒化物半導体基板11a,11b,11c,11dが得られる。また、上記不純物元素により、第1のIII族窒化物半導体層の成長において、転位の発生が抑制され、また、転位の集中が緩和されるため、転位密度の低い(たとえば、平均転位密度が1×107cm-2以下で、転位密度1×108cm-2を超える転位集中領域の面密度が1cm-2以下)III族窒化物半導体基板となる。
ここで、III族窒化物半導体層の成長方法は、下地基板上にIII族窒化物半導体層をエピタキシャル成長することができるものであれば特に制限はなく、HVPE(ハイドライド気相エピタキシ)法、MOCVD(有機金属気相成長)法、MBE(分子線エピタキシ)法などの各種気相成長法を用いることができる。厚いIII族窒化物半導体基板(たとえば、厚さ70μm以上)をより効率的に得る観点からは、成長速度の大きいHVPE法がより好ましい。
本実施形態のIII族窒化物半導体基板の製造方法において用いられる下地基板は、III族窒化物半導体層をエピタキシャル成長させることができるものであれば特に制限はないが、GaAs基板、サファイア基板、Si基板、SiC基板(特に、六方晶系SiC基板)が好ましく用いられる。これらの基板は、III族窒化物半導体との結晶格子の不整合が小さいからである。
また、下地基板として、ファセット成長法により得られたIII族窒化物基板を用いることが、III族窒化物半導体層の転位密度を低減する観点からより好ましい。III族窒化物半導体層の転位密度が低減される理由について以下に詳細に説明する。
ここで、図6を参照して、ファセット成長法によるIII族窒化物半導体基板の製造方法およびその方法により得られたIII族窒化物基板31a,31b,31c,31dの特徴を説明する。まず、図6(a)に示すように、開口部を有するマスク層2を下地基板1上の少なくとも一部に形成し、図6(b)に示すように、上記マスク層2を介して下地基板1上にIII族窒化物半導体層31をエピタキシャル成長させる。ここで、下地基板1としては、サファイア基板、Si基板、SiC基板などが、マスク層としてはSiO2層などが用いられる。エピタキシャル成長させる方法としては、HVPE法などが用いられる。
III族窒化物半導体層のファセット成長法とは、図6(b)を参照して、III族窒化物半導体層の平均的な成長方向に垂直な面(平均成長面31h)以外の面であるファセット面31fを形成し、これを維持したままIII族窒化物半導体層を成長させる方法である。このファセット面31fにおける結晶成長により、III族窒化物半導体層内の転位が複数のファセット面31fにより形成されるピット31pの中央部に集中して、転位集中領域31tが形成される。このようにして、III族窒化物半導体層内の転位は転位集中領域31tに集められる結果、転位集中領域以外の領域(低転位領域31u)の転位密度が著しく低減する。
次に、図6(c)を参照して、エピタキシャル成長したIII族窒化物半導体層31を所定の厚さに裁断および表面研磨を行なってIII族窒化物半導体基板31a,31b,31c,31dを製造する。ここで、III族窒化物半導体層31中に形成された転位集中領域31tおよび低転位領域31uが、III族窒化物半導体基板31a、31b,31c,31dにも残存する。また、不純物元素の取り込み量の差により、低転位領域31uにおいても、ファセット面31fを成長面として成長した領域(ファセット面成長領域)は比抵抗の低い領域(低比抵抗領域)となり、平均成長面31hを成長面として成長した領域(平均成長面成長領域)は比抵抗の高い領域(高比抵抗領域)となるため、低比抵抗領域と高比抵抗領域とが混在していた。このため、ファセット成長法により得られるIII族窒化物半導体基板の比抵抗を制御することが困難であった。
したがって、比抵抗が制御されたIII族窒化物半導体基板を製造するためには、不純物元素の取り込み量に差が生じない単一面を成長表面として、III族窒化物半導体を成長させることが望ましい。すなわち、成長工程においては、III族窒化物半導体層の平均成長表面が平坦な単一面を維持したまま、III族窒化物半導体層を成長させることが好ましい。本実施形態においては、第1のIII族窒化物半導体層をエピタキシャル成長させる際に、第1のIII族窒化物半導体層に不純物元素としてC、Mg、Fe、Be、Zn、VおよびSbから少なくとも1つの元素を1×1017cm-3以上添加することにより、III族窒化物半導体層の平均成長表面が平坦な単一面を維持したまま、III族窒化物半導体層を成長させることが可能となり、第1のIII族窒化物半導体層のエピタキシャル成長において、基板の主面内における比抵抗の面内分布の低減、転位の発生の抑制および/または転位の集中の緩和が生じたものと考えられる。
ここで、本発明者は、ファセット成長法で得られるIII族窒化物半導体基板が転位集中領域31tを除き転位密度が低くなる点、および、III族窒化物半導体層を成長させる際に、不純物元素としてC、Mg、Fe、Be、Zn、VおよびSbから少なくとも1つの元素を1×1017cm-3以上添加することにより、III族窒化物半導体層の成長において、転位の発生が抑制され、また、転位の集中が緩和される点に注目することにより、ファセット成長法で得られたIII族窒化物半導体基板を下地基板として用いて、III族窒化物半導体層に不純物元素としてC、Mg、Fe、Be、Zn、VおよびSbから少なくとも1つの元素を1×1017cm-3以上添加しながらIII族窒化物半導体層を成長させることにより、高比抵抗に制御された低転位密度のIII族窒化物半導体基板の製造を可能にした。
すなわち、下地基板としてのファセット成長法で得られたIII族窒化物半導体基板上に、従来の一般的な条件でIII族窒化物半導体層をエピタキシャル成長させても、III族窒化物半導体層は、ファセット成長で得られたIII族窒化物半導体基板中の転位集中領域における転位を引き継ぐため、III族窒化物半導体層の転位密度の低下を図ることが困難であった。
これに対して、下地基板としてのファセット成長法で得られたIII族窒化物半導体基板上に、転位の発生を抑制し転位の集中を緩和する特性を有する不純物元素を1×1017cm-3以上添加しながらIII族窒化物半導体層を成長させることにより、高比抵抗に制御された低転位密度のIII族窒化物半導体基板の製造が可能となった。
また、本実施形態のIII族窒化物半導体基板の製造方法において用いられる下地基板が六方晶系の結晶である場合には、下地基板の主面は、(0001)面、(1−100)面および(11−20)面のうちいずれか1つの面に対して、−5°以上5°以下の角度を有することが好ましい。その主面がこのような面である場合には、転位密度が低く結晶性のよいIII族窒化物半導体層およびIII窒化物半導体基板が得られやすい。
また、本実施形態のIII族窒化物半導体基板の製造方法において、不純物元素の原料としては、特に制限はないが、結晶成長が容易な観点から、メタン(CH4)、塩化マグネシウム(MgCl2など)、塩化鉄(FeCl2など)、塩化ベリリウム(BeCl2など)、塩化亜鉛(ZnCl2など)、塩化バナジウム(VCl2など)および塩化アンチモン(SbClなど)から少なくとも1つの原料を用いることが好ましい。また、マグネシウム、鉄、ベリリウム、亜鉛、バナジウムおよびアンチモンなどについては、これらの元素の金属と塩化水素ガスとを反応させ、生成したガスを原料として用いることもできる。
(実施形態4)
本発明にかかる他のIII族窒化物半導体基板の製造方法は、図2を参照して、開口部を有するマスク層2を下地基板1上の少なくとも一部に形成した後、実施形態3と同様の成長工程(図2(a))および加工工程(図2(b))を行なうものである。開口部を有するマスク層2を介して、下地基板1上に第1のIII族窒化物半導体層11を成長させることにより、いわゆるラテラル成長を行なわせるものであるため、第1のIII族窒化物半導体層11の転位密度をさらに低減することができる。なお、開口部を有するマスク層は、SiO2層、Sixy層などが用いられ、スパッタ法、熱CVD法などにより形成される。
(実施形態5)
本発明にかかるさらに他のIII族窒化物半導体基板の製造方法は、図3を参照して、図3(a)に示すように、実施形態3または実施形態4において下地基板1上に成長させた第1のIII族窒化物半導体層11上に、第2のIII族窒化物半導体層12をエピタキシャル成長させる成長工程と、図3(b)に示すように、第2のIII族窒化物半導体層12を裁断および/または表面研磨してIII族窒化物半導体基板12a,12b,12cを形成する加工工程とを含み、上記成長工程において、第2のIII族窒化物半導体層12に、不純物元素としてO、Si、S、Ge、SeおよびTeからなる群から選ばれる少なくとも1種類の元素を1×1017cm-3以上添加することを特徴とする。
第2のIII族窒化物半導体層12をエピタキシャル成長させる際に、不純物元素としてO、Si、S、Ge、SeおよびTeから少なくとも1つの元素を1×1017cm-3以上添加することにより、比抵抗が1Ω・cm以下に制御された低比抵抗の第2のIII族窒化物半導体層12およびIII族窒化物半導体基板12a,12b,12cが得られる。また、この第2のIII族窒化物半導体層12およびIII族窒化物半導体基板12a,12b,12cは、転位密度が低い第1のIII族窒化物半導体層11上にエピタキシャル成長したものであるため、その転位密度が低くなる(たとえば、平均転位密度が1×107cm-2以下で、転位密度1×108cm-2を超える転位集中領域の面密度が1cm-2以下とできる)。
また、本実施形態のIII族窒化物半導体基板の製造方法において、不純物元素の原料としては、特に制限はないが、結晶成長が容易な観点から、酸素(O2)、水(H2O)、ジクロロシラン(SiH2Cl2)、テトラクロロシラン(SiCl4)、硫化水素(H2S)、塩化ゲルマニウム(GeCl4)、塩化セレン(SeCl4)および塩化テルル(TeCl4)から少なくとも1つの原料を用いることが好ましい。また、ゲルマニウム、セレンおよびテルルなどについては、これらの元素の金属と塩化水素ガスとを反応させ、生成したガスを原料として用いることもできる。
(実施形態6)
本発明にかかるさらに他のIII族窒化物半導体基板の製造方法は、図4を参照して、図4(a)に示すように、実施形態3から実施形態5のいずれかのIII族窒化物半導体基板の製造方法により得られたIII族窒化物半導体基板10上に、第3のIII族窒化物半導体層21をエピタキシャル成長させる成長工程と、図4(b)に示すように、第3のIII族窒化物半導体層21を裁断および/または表面研磨してIII族窒化物半導体基板21a,21b,21c,21dを形成する加工工程とを含み、上記成長工程において、第3のIII族窒化物半導体層21に、不純物元素としてC、Mg、Fe、Be、Zn、VおよびSbからなる群から選ばれる少なくとも1種類の元素を1×1017cm-3以上添加することを特徴とする。
第3のIII族窒化物半導体層21をエピタキシャル成長させる際に、不純物元素としてC、Mg、Fe、Be、Zn、VおよびSbから少なくとも1つの元素を1×1017cm-3以上添加することにより、比抵抗が1×104Ω・cm以上に制御された高比抵抗の第3のIII族窒化物半導体層21およびIII族窒化物半導体基板21a,21b,21c,21dが得られる。また、この第3のIII族窒化物半導体層21およびIII族窒化物半導体基板21a,21b,21c,21dは、転位密度が低いIII族窒化物半導体基板10上にエピタキシャル成長したものであり、また転位の発生を抑制し転位の集中を緩和する特性を有する不純物元素が1×1017cm-3以上添加されているため、その転位密度がさらに低くなる。
(実施形態7)
本発明にかかるさらに他のIII族窒化物半導体基板の製造方法は、図5を参照して、図5(a)に示すように、実施形態3から実施形態5のいずれかのIII族窒化物半導体基板の製造方法により得られたIII族窒化物半導体基板10上に、第4のIII族窒化物半導体層22をエピタキシャル成長させる成長工程と、図5(b)に示すように、第4のIII族窒化物半導体層22を裁断および/または表面研磨してIII族窒化物半導体基板22a,22b,22c,22dを形成する加工工程とを含み、上記成長工程において、第4のIII族窒化物半導体層22に、不純物元素としてO、Si、S、Ge、SeおよびTeからなる群から選ばれる少なくとも1種類の元素を1×1017cm-3以上添加することを特徴とする。
第4のIII族窒化物半導体層22をエピタキシャル成長させる際に、不純物元素としてO、Si、S、Ge、SeおよびTeから少なくとも1つの元素を1×1017cm-3以上添加することにより、比抵抗が1Ω・cm以下に制御された低比抵抗の第4のIII族窒化物半導体層22およびIII族窒化物半導体基板22a,22b,22c,22dが得られる。また、この第4のIII族窒化物半導体層22およびIII族窒化物半導体基板22a,22b,22c,22dは、転位密度が低いIII族窒化物半導体基板10上にエピタキシャル成長したものであるため、その転位密度が低くなる。
(実施例1)
図1(a)を参照して、下地基板1としてHVPE法におけるファセット成長法(特許文献1に記載の方法)により成長させたGaN基板(基板の主面は、(0001)面に対して{1−100}面方向に1°の角度を有する)を用いて、HVPE法により第1のIII族窒化物半導体層11として厚さ2000μmの高比抵抗のGaN層を成長させた。Ga源として、800℃でHClガスを金属ガリウムに接触させて得られたGaClガスを用い、N源として、NH3ガスを用いた。また、不純物元素であるCを添加するための不純物元素原料として、メタンガスを用いた。また、キャリアガスとして、H2ガスを用いた。
ここで、GaN層のHVPE法によるエピタキシャル成長条件は、成長温度(下地基板における温度)は1050℃、全圧100kPa(1.0気圧)、NH3分圧20kPa(0.2気圧)、GaCl分圧0.5kPa(5×10-3気圧)、不純物元素原料の分圧0.0001kPa(1×10-6気圧)〜1.0kPa(1×10-2気圧)の範囲で、成長時間を10時間とした。
次に、図1(b)を参照して、得られたGaN層を裁断し、さらに表面研磨を行い、厚さ300μmの高比抵抗のGaN基板を得た。
得られたGaN基板の不純物元素Cの含有量をSIMS(2次イオン質量分析法)で測定したところ、Cの最小濃度が1×1018cm-3で、Cの濃度の面内分布(最大濃度/最小濃度)が1.5であった。GaN基板の比抵抗を測定したところ、1×107Ω・cm以上に制御されていた。GaN基板の平均転位密度をTEM(透過型電子顕微鏡)を用いて測定したところ、1×106cm-2であった。GaN基板の転位集中領域(転位密度1×108cm-2を超える領域、以下同じ)の面密度をCL(カソードルミネッセンス)を用いて測定したところ、1cm-2以下であった。GaN基板のX線回折におけるロッキングカーブの半値幅は、60arcsecであった。GaN基板のキャリア濃度をC(電荷)−V(電圧)測定により評価したところ、1×1015cm-3以下で測定不能であった。GaN基板の波長450nmにおける光の吸収係数を分光光度計を用いて測定したところ、50cm-1以上であった。結果を表1にまとめた。
(実施例2)
不純物元素原料として、塩化マグネシウム(MgCl2)を用いた以外は、実施例1と同様にして、高比抵抗のGaN基板を得た。得られたGaN基板の不純物元素Mgの最小濃度は1×1018cm-3、Mgの濃度の面内分布(最大濃度/最小濃度)は2.5、比抵抗は1×105Ω・cm以上、平均転位密度は1×106cm-2、転位集中領域の面密度は1cm-2以下、X線回折におけるロッキングカーブの半値幅は80arcsec、キャリア濃度は1×1015cm-3以下および波長450nmにおける光の吸収係数は50cm-1以上であった。結果を表1にまとめた。
(実施例3)
不純物元素原料として、鉄と塩化水素ガスとを反応させて生成した塩化鉄(FeCl2)ガスを用いた以外は、実施例1と同様にして、高比抵抗のGaN基板を得た。得られたGaN基板の不純物元素Feの最小濃度は1×1018cm-3、Mgの濃度の面内分布(最大濃度/最小濃度)は2.0、比抵抗は1×107Ω・cm以上、平均転位密度は1×106cm-2、転位集中領域の面密度は1cm-2以下、X線回折におけるロッキングカーブの半値幅は80arcsec、キャリア濃度は1×1015cm-3以下および波長450nmにおける光の吸収係数は50cm-1以上であった。結果を表1にまとめた。
(実施例4)
図2(a)を参照して、下地基板1としてHVPE法におけるファセット成長法(特許文献1に記載の方法)により成長させたGaN基板(基板の主面は、(0001)面に対して{1100}面方向に1°の角度を有する)を用い、下地基板1であるGaN基板の少なくとも一部に、開口部を有するマスク層2として、大きさ2μm×2μmの開口部が最密構造になるように均一分布した厚さ0.1μmのSiO2層を形成した後は、実施例1と同様にして、高比抵抗のGaN基板を得た。ここで、上記マスク層2は、スパッタ法により、厚さ0.1μmのSiO2層を形成した後、フォトリソグラフィにより大きさ2μm×2μmの開口部を最密に均一に分布するように形成することにより得られる。得られたGaN基板の不純物元素Cの最小濃度は1×1018cm-3、Cの濃度の面内分布(最大濃度/最小濃度)は1.5、比抵抗は1×107Ω・cm以上、平均転位密度は1×105cm-2、転位集中領域の面密度は1cm-2以下、X線回折におけるロッキングカーブの半値幅は50arcsec、キャリア濃度は1×1015cm-3以下および波長450nmにおける光の吸収係数は50cm-1以上であった。結果を表1にまとめた。
(実施例5)
下地基板1としてサファイア基板(基板の主面は、(0001)面に対して{1100}面方向に1°の角度を有する)を用いた以外は、実施例4と同様にして、高比抵抗のGaN基板を得た。得られたGaN基板の不純物元素Cの最小濃度は1×1018cm-3、Cの濃度の面内分布(最大濃度/最小濃度)は1.5、比抵抗は1×107Ω・cm以上、平均転位密度は1×107cm-2、転位集中領域の面密度は1cm-2以下、X線回折におけるロッキングカーブの半値幅は100arcsec、キャリア濃度は1×1015cm-3以下および波長450nmにおける光の吸収係数は50cm-1以上であった。結果を表1にまとめた。
(実施例6)
下地基板1としてGaAs基板(基板の主面は、(111)A面に対して{1−100}面方向に1°の角度を有する)を用いた以外は、実施例4と同様にして、高比抵抗のGaN基板を得た。得られたGaN基板の不純物元素Cの最小濃度は1×1018cm-3、Cの濃度の面内分布(最大濃度/最小濃度)は1.5、比抵抗は1×107Ω・cm以上、平均転位密度は2×107cm-2、転位集中領域の面密度は1cm-2以下、X線回折におけるロッキングカーブの半値幅は110arcsec、キャリア濃度は1×1015cm-3以下および波長450nmにおける光の吸収係数は50cm-1以上であった。結果を表1にまとめた。
(実施例7)
下地基板1として6H−SiC基板(基板の主面は、(0001)面に対して{1−100}面方向に1°の角度を有する)を用いた以外は、実施例4と同様にして、高比抵抗のGaN基板を得た。得られたGaN基板の不純物元素Cの最小濃度は1×1018cm-3、Cの濃度の面内分布(最大濃度/最小濃度)は1.5、比抵抗は1×107Ω・cm以上、平均転位密度は4×107cm-2、転位集中領域の面密度は1cm-2以下、X線回折におけるロッキングカーブの半値幅は130arcsec、キャリア濃度は1×1015cm-3以下および波長450nmにおける光の吸収係数は50cm-1以上であった。結果を表1にまとめた。
(比較例1)
実施例1において下地基板1として用いたHVPE法におけるファセット成長法(特許文献1に記載の方法)により成長させたGaN基板(基板の主面は、(0001)面に対して{1−100}面方向に1°の角度を有する)の不純物元素の最小濃度は1×1016cm-3、不純物元素の濃度の面内分布(最大濃度/最小濃度)は30、比抵抗は0.01Ω・cm、平均転位密度は1×106cm-2、転位集中領域の面密度は500cm-2、X線回折におけるロッキングカーブの半値幅は60arcsec、キャリア濃度は1×1018cm-3以下および波長450nmにおける光の吸収係数は30cm-1以下であった。結果を表1にまとめた。
Figure 2009117864
表1から明らかなように、下地基板上にIII族窒化物半導体層をエピタキシャル成長させる際に、上記III族窒化物半導体層に、不純物元素としてC、Mg、Fe、Be、Zn、VおよびSbから少なくとも1種類の元素を1×1017cm-3以上添加することにより、比抵抗が1×104Ω・cm(好ましくは1×107Ω・cm)以上に制御され、平均転位密度が1×107cm-2以下であり、転位密度1×108cm-2を超える転位集中領域の面密度が1cm-2以下であり、X線回折におけるロッキングカーブの半値幅が10arcsec以上500arcsec以下であり、キャリア濃度が1×1015cm-3以下であるGaN基板が得られた。
(実施例8)
下地基板1として実施例1で製作した高比抵抗のGaN基板(基板の主面は、(0001)面に一致(0°の角度)する)を用い、不純物元素原料として、酸素(O2)ガスを用い、不純物元素原料の分圧を0.001kPa(1×10-5気圧)とした以外は、実施例1と同様にして、低比抵抗のGaN基板を得た。
得られたGaN基板の不純物元素Oの最小濃度は1×1018cm-3、Oの濃度の面内分布(最大濃度/最小濃度)は1.5、比抵抗は0.01Ω・cm、平均転位密度は1×106cm-2、転位集中領域の面密度は1cm-2以下、X線回折におけるロッキングカーブの半値幅は60arcsec、キャリア濃度は1×1018cm-3および波長450nmにおける光の吸収係数は5cm-1以下であった。結果を表2にまとめた。
(実施例9)
不純物元素原料として、テトラクロロシラン(SiCl4)ガスを用いた以外は、実施例8と同様にして、低比抵抗のGaN基板を得た。得られたGaN基板の不純物元素Siの最小濃度は1×1018cm-3、Siの濃度の面内分布(最大濃度/最小濃度)は2.5、比抵抗は0.01Ω・cm、平均転位密度は1×106cm-2、転位集中領域の面密度は1cm-2以下、X線回折におけるロッキングカーブの半値幅は60arcsec、キャリア濃度は1×1018cm-3および波長450nmにおける光の吸収係数は5cm-1以下であった。結果を表2にまとめた。
(実施例10)
不純物元素原料として、硫化水素(H2S)ガスを用いた以外は、実施例8と同様にして、低比抵抗のGaN基板を得た。得られたGaN基板の不純物元素Sの最小濃度は1×1018cm-3、S濃度の面内分布(最大濃度/最小濃度)は2.0、比抵抗は0.02Ω・cm、平均転位密度は1×107cm-2、転位集中領域の面密度は1cm-2以下、X線回折におけるロッキングカーブの半値幅は60arcsec、キャリア濃度は7×1017cm-3および波長450nmにおける光の吸収係数は10cm-1以下であった。結果を表2にまとめた。
Figure 2009117864
表2から明らかなように、下地基板上にIII族窒化物半導体層をエピタキシャル成長させる際に、上記III族窒化物半導体層に、不純物元素としてO、Si、S、Ge、SeおよびTeから少なくとも1種類の元素を1×1017cm-3以上添加することにより、比抵抗が1Ω・cm以下に制御され、平均転位密度が1×107cm-2以下であり、転位密度1×108cm-2を超える転位集中領域の面密度が1cm-2以下であり、X線回折におけるロッキングカーブの半値幅が10arcsec以上500arcsec以下であり、キャリア濃度が1×1017cm-3以上1×1020cm-3以下であるGaN基板が得られた。
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。
1 下地基板、2 マスク層、10,11a,11b,11c,11d,12a,12b,12c,21a,21b,21c,21d,22a,22b,22c,22d,31a,31b,31c,31d III族窒化物半導体基板、11 第1のIII族窒化物半導体層、12 第2のIII族窒化物半導体層、21 第3のIII族窒化物半導体層、22 第4のIII族窒化物半導体層、31 III族窒化物半導体層、31f ファセット面、31h 平均成長面、31p ピット、31t 転位集中領域、31u 低転位領域。

Claims (10)

  1. 不純物元素として、C、Mg、Fe、Be、Zn、VおよびSbからなる群から選ばれる少なくとも1種類の元素を1×1017cm-3以上の濃度で含有し、基板の主面内における前記不純物元素の最小濃度に対する最大濃度の比で表わされる前記不純物元素の濃度の面内分布が1以上3以下であり、
    比抵抗が1×104Ω・cm以上で、厚さが70μm以上であるIII族窒化物半導体基板。
  2. 不純物元素として、O、Si、S、Ge、SeおよびTeからなる群から選ばれる少なくとも1種類の元素を1×1017cm-3以上の濃度で含有し、基板の主面内における前記不純物元素の最小濃度に対する最大濃度の比で表わされる前記不純物元素の濃度の面内分布が1以上3以下であり、
    比抵抗が1Ω・cm以下で、厚さが70μm以上であるIII族窒化物半導体基板。
  3. 平均転位密度が1×107cm-2以下であり、転位密度1×108cm-2を超える転位集中領域の面密度が1cm-2以下であることを特徴とする請求項1または請求項2に記載のIII族窒化物半導体基板。
  4. III族窒化物がGaNである請求項1または請求項2に記載のIII族窒化物半導体基板。
  5. 前記III族窒化物半導体基板の主面が、(0001)面、(1−100)面および(11−20)面のうちいずれか1つの面に対して、−5°以上5°以下の角度を有する請求項1または請求項2に記載のIII族窒化物半導体基板。
  6. X線回折におけるロッキングカーブの半値幅が、10arcsec以上500arcsec以下である請求項1または請求項2に記載のIII族窒化物半導体基板。
  7. キャリア濃度が1×1015cm-3以下である請求項1に記載のIII族窒化物半導体基板。
  8. キャリア濃度が1×1017cm-3以上1×1020cm-3以下である請求項2に記載のIII族窒化物半導体基板。
  9. 波長450nmの光の吸収係数が50cm-1以上である請求項1に記載のIII族窒化物半導体基板。
  10. 波長450nmの光の吸収係数が10cm-1以下である請求項2に記載のIII族窒化物半導体基板。
JP2009021752A 2009-02-02 2009-02-02 Iii族窒化物半導体基板 Pending JP2009117864A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009021752A JP2009117864A (ja) 2009-02-02 2009-02-02 Iii族窒化物半導体基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009021752A JP2009117864A (ja) 2009-02-02 2009-02-02 Iii族窒化物半導体基板

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005004142A Division JP2006193348A (ja) 2005-01-11 2005-01-11 Iii族窒化物半導体基板およびその製造方法

Publications (1)

Publication Number Publication Date
JP2009117864A true JP2009117864A (ja) 2009-05-28

Family

ID=40784562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009021752A Pending JP2009117864A (ja) 2009-02-02 2009-02-02 Iii族窒化物半導体基板

Country Status (1)

Country Link
JP (1) JP2009117864A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112186495A (zh) * 2019-07-03 2021-01-05 松下知识产权经营株式会社 Iii族氮化物系半导体激光元件

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148357A (ja) * 1999-09-08 2001-05-29 Sharp Corp Iii−n系化合物半導体装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148357A (ja) * 1999-09-08 2001-05-29 Sharp Corp Iii−n系化合物半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112186495A (zh) * 2019-07-03 2021-01-05 松下知识产权经营株式会社 Iii族氮化物系半导体激光元件

Similar Documents

Publication Publication Date Title
US8421190B2 (en) Group III nitride semiconductor substrate and manufacturing method thereof
US8362503B2 (en) Thick nitride semiconductor structures with interlayer structures
US7825432B2 (en) Nitride semiconductor structures with interlayer structures
US7662488B2 (en) Nitride-based semiconductor substrate and method of making the same
JP4529846B2 (ja) Iii−v族窒化物系半導体基板及びその製造方法
WO2012042961A1 (ja) GaN結晶の成長方法およびGaN結晶基板
US9899213B2 (en) Group III nitride semiconductor, and method for producing same
JP6016375B2 (ja) Iii/v族半導体材料を形成する方法及びそのような方法を用いて形成された半導体構造体
TW201349558A (zh) 用以產生含鎵三族氮化物半導體之方法
JP4535935B2 (ja) 窒化物半導体薄膜およびその製造方法
JP2009117864A (ja) Iii族窒化物半導体基板
JP2023096845A (ja) 窒化物半導体膜を作製するためのテンプレート及びその製造方法
WO2020203541A1 (ja) GaN基板ウエハおよびGaN基板ウエハの製造方法
WO2020045172A1 (ja) エピタキシャル基板
WO2024135744A1 (ja) GaN基板
WO2020241760A1 (ja) GaN基板ウエハおよびその製造方法
KR101155061B1 (ko) 질화물 반도체 기판 및 이의 제조방법
JP5313976B2 (ja) 窒化物半導体薄膜およびその成長方法
JP2006179802A (ja) 化合物半導体
JP2012171816A (ja) 窒化物半導体薄膜およびその成長方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120807