JP2009115032A - Exhaust gas purifying apparatus for internal combustion engine - Google Patents

Exhaust gas purifying apparatus for internal combustion engine Download PDF

Info

Publication number
JP2009115032A
JP2009115032A JP2007290828A JP2007290828A JP2009115032A JP 2009115032 A JP2009115032 A JP 2009115032A JP 2007290828 A JP2007290828 A JP 2007290828A JP 2007290828 A JP2007290828 A JP 2007290828A JP 2009115032 A JP2009115032 A JP 2009115032A
Authority
JP
Japan
Prior art keywords
addition amount
reducing agent
nox
urea water
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007290828A
Other languages
Japanese (ja)
Inventor
Tatsuya Fujita
達也 藤田
Masatoshi Maruyama
昌利 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2007290828A priority Critical patent/JP2009115032A/en
Priority to DE102008043355A priority patent/DE102008043355A1/en
Priority to US12/265,388 priority patent/US20090120073A1/en
Publication of JP2009115032A publication Critical patent/JP2009115032A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/18Ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0408Methods of control or diagnosing using a feed-back loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas purifying apparatus for internal combustion engine which can accurately detect NOx quantity in the downstream side of an NOx-purifying catalyst and can fairly calculate an NOx purification rate or the like, by extension. <P>SOLUTION: An exhaust pipe 22 is provided with an oxidation catalyst 41, an SCR catalyst 42 and an ammonia slip catalyst 43 in sequence from its upstream side. In the exhaust pipe 22, the urea water-adding valve 44 is provided between the oxidation catalyst 41 and the SCR catalyst 42. A NOx sensor 47 which detects the NOx quantity in the exhaust gas is provided downstream of the SCR catalyst 42 regarding the exhaust after passing through the SCR catalyst. An ECU 50 controls the urea water-adding valve 44 to add the urea water to the exhaust gas while changing the urea water adding amount so as to be different from each other. While the urea water is added, the ECU successively obtains an output of the NOx sensor 47 in each adding amount, and computes an adding amount command value in which the sensor output becomes minimum. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置に係り、特に尿素水溶液等のアンモニア系還元剤を用いた選択還元(SCR:Selective Catalytic Reduction)型の排気浄化システムに好適に採用される排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly, to an exhaust gas purification apparatus that is suitably employed in a selective reduction (SCR: Selective Catalytic Reduction) type exhaust gas purification system using an ammonia-based reducing agent such as an aqueous urea solution.

近年、自動車等に適用される内燃機関(特にディーゼルエンジン)において、排気中のNOx(窒素酸化物)を高い浄化率で浄化する排気浄化装置として尿素SCRシステムの開発が進められており、一部実用化に至っている。尿素SCRシステムとしては次の構成が知られている。   In recent years, in an internal combustion engine (particularly a diesel engine) applied to automobiles and the like, a urea SCR system has been developed as an exhaust purification device that purifies NOx (nitrogen oxide) in exhaust gas with a high purification rate. It has been put to practical use. The following configuration is known as a urea SCR system.

すなわち、尿素SCRシステムでは、エンジン本体に接続された排気管に選択還元型のNOx浄化触媒(SCR触媒)が設けられるとともに、その上流側に、還元剤としての尿素水(尿素水溶液)を排気管内に添加する尿素水添加弁が設けられている。かかるシステムにおいては、尿素水添加弁により排気管内に尿素水が添加されることで、排気と共に尿素水がNOx浄化触媒に供給され、該NOx浄化触媒上でのNOxの還元反応によって排気が浄化される。NOxの還元に際しては、尿素水が排気熱で加水分解されることによりアンモニア(NH3)が生成され、NOx浄化触媒ではアンモニアによりNOxが選択的に還元されることで排気浄化が行われることとなる。   That is, in the urea SCR system, a selective reduction type NOx purification catalyst (SCR catalyst) is provided in an exhaust pipe connected to the engine body, and urea water (urea aqueous solution) as a reducing agent is disposed upstream of the exhaust pipe in the exhaust pipe. A urea water addition valve to be added to is provided. In such a system, urea water is added to the exhaust pipe by the urea water addition valve, whereby urea water is supplied to the NOx purification catalyst together with the exhaust gas, and the exhaust gas is purified by a NOx reduction reaction on the NOx purification catalyst. The During the reduction of NOx, ammonia (NH3) is generated by hydrolyzing urea water with exhaust heat, and the NOx purification catalyst performs exhaust gas purification by selectively reducing NOx with ammonia. .

また、NOx浄化触媒の下流側にはNOxセンサが設けられており、このNOxセンサにより、触媒下流側のNOx濃度が検出される。そして、都度のNOxセンサ出力に基づいてNOx浄化率の算出等が行われる。例えば、特許文献1の排気浄化装置では、NOx浄化触媒の前後にそれぞれNOxセンサが設けられており、これら各NOxセンサの出力に基づいてNOx浄化率が算出される。また、エンジンの定常運転中において還元剤の供給状態と非供給状態とが切替操作されるとともに、還元剤の供給時と非供給時とのNOx浄化率の差が算出され、そのNOx浄化率の差に基づいてNOx浄化触媒のアンモニア吸着量や還元剤添加量が算出される。
特開2003−314256号公報
Further, a NOx sensor is provided on the downstream side of the NOx purification catalyst, and the NOx concentration on the downstream side of the catalyst is detected by this NOx sensor. Then, the NOx purification rate is calculated based on each NOx sensor output. For example, in the exhaust purification device of Patent Document 1, the NOx sensors are provided before and after the NOx purification catalyst, and the NOx purification rate is calculated based on the outputs of these NOx sensors. Further, during the steady operation of the engine, the supply state and non-supply state of the reducing agent are switched, and the difference in the NOx purification rate between when the reducing agent is supplied and when it is not supplied is calculated. Based on the difference, the ammonia adsorption amount and the reducing agent addition amount of the NOx purification catalyst are calculated.
JP 2003-314256 A

しかしながら、NOxセンサは、一般に固体電解質体と一対の電極とを用いたセンサ素子を有する構造となっており、NOxだけでなくアンモニア(NH3)にも検出感度を有する。そのため、NOx浄化触媒にて余剰となったアンモニアが触媒下流側に排出されると(いわゆる、アンモニアスリップが生じると)、NOxセンサではアンモニア反応分の出力が生じる。かかる場合、NOxセンサ出力を用いてNOx浄化率等を算出する際に、NOx浄化率等が誤って算出されるおそれが生じる。こうしてNOx浄化率の算出精度が低下すると、そのNOx浄化率を基に算出されるアンモニア吸着量や還元剤添加量も不正確なものになり、ひいてはNOx浄化触媒におけるNOx浄化率の低下やアンモニアスリップ量の増加等が懸念されることとなる。   However, the NOx sensor generally has a structure having a sensor element using a solid electrolyte body and a pair of electrodes, and has detection sensitivity not only for NOx but also for ammonia (NH3). Therefore, when the ammonia surplus in the NOx purification catalyst is discharged to the downstream side of the catalyst (so-called ammonia slip occurs), the NOx sensor generates an output corresponding to the ammonia reaction. In such a case, when the NOx purification rate or the like is calculated using the NOx sensor output, the NOx purification rate or the like may be erroneously calculated. If the calculation accuracy of the NOx purification rate decreases in this way, the ammonia adsorption amount and the reducing agent addition amount calculated based on the NOx purification rate also become inaccurate. As a result, the NOx purification rate in the NOx purification catalyst decreases and ammonia slip There is concern about an increase in the amount.

本発明は、NOx浄化触媒の下流側におけるNOx量を正しく検出し、ひいてはNOx浄化率等を適正に算出したりすることができる内燃機関の排気浄化装置を提供することを主たる目的とするものである。   The main object of the present invention is to provide an exhaust purification device for an internal combustion engine that can correctly detect the amount of NOx on the downstream side of the NOx purification catalyst and thereby appropriately calculate the NOx purification rate and the like. is there.

以下、上記課題を解決するための手段、及びその作用効果について説明する。   Hereinafter, means for solving the above-described problems and the effects thereof will be described.

本発明の排気浄化装置では、内燃機関の排気通路においてNOx浄化触媒(例えば、アンモニア選択還元触媒)の排気上流側に還元剤添加手段により還元剤(例えば、尿素水溶液等のアンモニア系還元剤)が添加され、NOx浄化触媒では還元剤とNOxとの反応によるNOx浄化が行われる。そして、NOx浄化触媒の排気下流側にてNOxセンサによりNOx量が検出され、その検出値に基づいてNOx浄化率の算出等が実行される。   In the exhaust purification apparatus of the present invention, a reducing agent (for example, an ammonia-based reducing agent such as an aqueous urea solution) is provided by a reducing agent adding means on the exhaust upstream side of the NOx purification catalyst (for example, ammonia selective reduction catalyst) in the exhaust passage of the internal combustion engine. In addition, the NOx purification catalyst performs NOx purification by the reaction between the reducing agent and NOx. Then, the NOx amount is detected by the NOx sensor on the exhaust downstream side of the NOx purification catalyst, and the NOx purification rate is calculated based on the detected value.

また、請求項1に記載の発明では特に、各々異なる添加量に変更しつつ還元剤添加手段により還元剤を添加させ、その還元剤添加時において都度の添加量ごとにNOxセンサのセンサ出力を取得するとともに、該取得したセンサ出力のうち同センサ出力が最小値となる還元剤添加量により添加量指令値を算出する。   Further, in the invention described in claim 1, in particular, the reducing agent is added by the reducing agent addition means while changing to different addition amounts, and the sensor output of the NOx sensor is acquired for each addition amount when the reducing agent is added. At the same time, the addition amount command value is calculated from the reducing agent addition amount that makes the sensor output the minimum value among the acquired sensor outputs.

要するに、NOxセンサでは、排気中のNOx以外に、NOx浄化触媒にて余剰となった還元剤が同様に検出される。ここで、還元剤としての尿素水溶液を徐々に増加させることを想定すると、還元剤の増量に伴いNOx浄化触媒の下流側におけるNOx濃度が次第に減り、さらに還元剤を増量することによりアンモニア濃度(アンモニアスリップ量)が増加する。この場合、図4に示すように、NOxセンサ出力は還元剤添加量(尿素水添加量)に対して下に凸の特性となり、同特性においてNOxセンサ出力が最小値となる還元剤添加量は、NOx浄化触媒の下流側におけるNOx濃度とアンモニア濃度とが共に少なく、NOx浄化率が最大となる還元剤添加量に相当する。   In short, in the NOx sensor, in addition to the NOx in the exhaust, the reducing agent surplus in the NOx purification catalyst is similarly detected. Here, assuming that the urea aqueous solution as the reducing agent is gradually increased, the NOx concentration on the downstream side of the NOx purification catalyst gradually decreases with the increase of the reducing agent, and further the ammonia concentration (ammonia concentration by increasing the reducing agent). (Slip amount) increases. In this case, as shown in FIG. 4, the NOx sensor output has a downward convex characteristic with respect to the reducing agent addition amount (urea water addition amount), and the reducing agent addition amount at which the NOx sensor output becomes the minimum value in the same characteristic is Further, both the NOx concentration and the ammonia concentration on the downstream side of the NOx purification catalyst are small, which corresponds to a reducing agent addition amount that maximizes the NOx purification rate.

この点、請求項1の上記構成によれば、
・各々異なる複数の添加量に変更しつつ還元剤を添加すること、
・還元剤添加時において都度の添加量ごとにNOxセンサ出力を取得するとともに、該取得したセンサ出力のうち同センサ出力が最小値となる還元剤添加量により添加量指令値を算出すること、
により、還元剤の余剰量(アンモニアスリップ量)が少なく、かつNOx浄化率が最大となる還元剤添加量を添加量指令値として見出すことができる。その結果、NOx浄化触媒の下流側におけるNOx量を正しく検出することができ、ひいてはNOx浄化率等を適正に算出したりすることができるようになる。
In this regard, according to the above configuration of claim 1,
・ Adding a reducing agent while changing to a plurality of different addition amounts,
Obtaining a NOx sensor output for each addition amount at the time of addition of the reducing agent, and calculating an addition amount command value based on a reducing agent addition amount at which the sensor output is a minimum value among the obtained sensor outputs;
Thus, the reducing agent addition amount that minimizes the excess amount of the reducing agent (ammonia slip amount) and maximizes the NOx purification rate can be found as the addition amount command value. As a result, the NOx amount on the downstream side of the NOx purification catalyst can be correctly detected, and the NOx purification rate and the like can be calculated appropriately.

ここで、請求項2に記載したように、都度の添加量指令値を基準として増量側又は減量側の少なくともいずれかに還元剤添加量を変更するとよい。かかる構成によれば、都度の添加量指令値が最適値であるかどうか、すなわち、NOxセンサ出力が最小値となる添加量となっているかどうかを適宜把握できる。   Here, as described in claim 2, the reducing agent addition amount may be changed to at least one of the increase side or the decrease side with reference to each addition amount command value. According to such a configuration, it is possible to appropriately grasp whether or not the addition amount command value for each time is an optimum value, that is, whether or not the addition amount at which the NOx sensor output becomes the minimum value.

請求項3に記載の発明では、あらかじめ定めた変更幅で還元剤添加量を変更して少なくとも3段階の還元剤添加を実行するととも、その少なくとも3段階の還元剤添加のうち中間量の還元剤添加時における前記センサ出力が最小値となる場合に、前記変更幅を小さくした上で再度、還元剤添加量の変更に伴う還元剤添加を実行する。   According to the third aspect of the present invention, at least three stages of reducing agent addition are executed by changing the reducing agent addition amount within a predetermined range, and an intermediate amount of the reducing agent is added among the at least three stages of reducing agent addition. When the sensor output at the time of addition becomes the minimum value, the reducing agent addition is executed again after changing the reducing agent addition amount after reducing the change width.

要するに、還元剤添加量を変更して少なくとも3段階の還元剤添加を実行した場合に、そのうちの中間量の還元剤添加時におけるNOxセンサ出力が最小値となることは、添加量変更時の最小添加量と最大添加量との間に、添加量指令値の最適値(すなわち、NOxセンサ出力が最小値となる還元剤添加量)が存在していることを意味する。かかる場合、上記のように変更幅を小さくした上で再度、還元剤添加量の変更に伴う還元剤添加を実行することにより、添加量指令値の最適値を精度よく求めることができる。   In short, when the reducing agent addition amount is changed and at least three levels of reducing agent addition are executed, the NOx sensor output at the time of adding an intermediate amount of the reducing agent is the minimum value when the addition amount is changed. It means that the optimum value of the addition amount command value (that is, the reducing agent addition amount at which the NOx sensor output becomes the minimum value) exists between the addition amount and the maximum addition amount. In such a case, the optimum value of the addition amount command value can be obtained with high accuracy by executing the reducing agent addition accompanying the change of the reducing agent addition amount again after reducing the change width as described above.

請求項4に記載の発明では、還元剤添加量の変更前の前記センサ出力と変更後の前記センサ出力とに基づいて、前記センサ出力が最小値となる還元剤添加量が減量側にあるか増量側にあるかを予測し、その予測結果に基づいて還元剤添加量を増量又は減量させることとしている。例えば、還元剤添加量の増減変更に伴いNOxセンサ出力が変更前に対して増加した場合には増減方向を反転させる。又は、同じく還元剤添加量の増減変更に伴いNOxセンサ出力が変更前に対して減少した場合には同じ増減方向にて還元剤添加量を変更する。   In the invention according to claim 4, based on the sensor output before the change of the reducing agent addition amount and the sensor output after the change, is the reducing agent addition amount at which the sensor output becomes the minimum value on the reduction side? Whether the amount is on the increase side is predicted, and the reducing agent addition amount is increased or decreased based on the prediction result. For example, when the NOx sensor output increases with respect to the change in the reducing agent addition amount, the increase / decrease direction is reversed. Alternatively, if the NOx sensor output decreases with respect to the change in the reducing agent addition amount, the reducing agent addition amount is changed in the same increase / decrease direction.

請求項4によれば、センサ出力が最小値となる還元剤添加量のある側(減量側、増量側のいずれか)にのみ、還元剤添加量の増減変更を行わせることが可能となる。したがって、還元剤添加量の増減処理を簡易化できる。   According to the fourth aspect, it is possible to cause the reducing agent addition amount to be increased or decreased only on the side with the reducing agent addition amount at which the sensor output becomes the minimum value (either the reduction side or the increase side). Therefore, the increase / decrease process of the reducing agent addition amount can be simplified.

また、請求項5に記載したように、NOxセンサの出力値に基づいて還元剤添加量の変更幅を設定するとよい。例えば、センサ出力値が大きいほど、還元剤添加量の変更幅を大きくする。センサ出力値が比較的大きい場合には、還元剤添加量の変更に対するセンサ出力値の変化率が比較的大きく、センサ出力値が比較的小さい場合には、還元剤添加量の変更に対するセンサ出力値の変化率が比較的小さい(図4参照)。それゆえに、NOxセンサ出力の最小値を見出すには、上記のようにNOxセンサの出力値に基づいて還元剤添加量の変更幅を設定することが望ましい。   Further, as described in claim 5, it is preferable to set a range of change of the reducing agent addition amount based on the output value of the NOx sensor. For example, the change width of the reducing agent addition amount is increased as the sensor output value is increased. When the sensor output value is relatively large, the rate of change of the sensor output value with respect to the change of the reducing agent addition amount is relatively large, and when the sensor output value is relatively small, the sensor output value with respect to the change of the reducing agent addition amount Is relatively small (see FIG. 4). Therefore, in order to find the minimum value of the NOx sensor output, it is desirable to set the change amount of the reducing agent addition amount based on the output value of the NOx sensor as described above.

請求項6に記載したように、還元剤添加量の変更に伴い取得された前記センサ出力の最小値と最大値との差が所定値以内であれば、添加量指令値を新たに算出しないことが望ましい。つまり、NOxセンサ出力が最小値となる近傍では、還元剤添加量を増減変化させてもNOxセンサ出力はほとんど変化しないことがある(図4参照)。この場合、添加量指令値を算出(更新)する必要はなく、不要な添加量指令値の算出(更新)をやめさせることができる。   As described in claim 6, if the difference between the minimum value and the maximum value of the sensor output acquired with the change of the reducing agent addition amount is within a predetermined value, the addition amount command value is not newly calculated. Is desirable. That is, in the vicinity where the NOx sensor output becomes the minimum value, the NOx sensor output may hardly change even if the reducing agent addition amount is increased or decreased (see FIG. 4). In this case, it is not necessary to calculate (update) the addition amount command value, and it is possible to stop calculating (updating) the unnecessary addition amount command value.

請求項7に記載の発明では、還元剤添加量を増減させる場合において、添加量の減量を行う期間を、添加量の増量を行う期間よりも長くしている。つまり、還元剤添加量を増量する場合と減量する場合とを比較すると、センサ出力の応答速度が相違し、後者の方が応答速度が遅い。これは、NOx浄化触媒における還元剤の消費速度の方が、同触媒における還元剤の吸着速度(アンモニア吸着速度)よりも小さいことに起因している。この点、請求項7の構成によれば、還元剤添加量を増量させる場合、及び減量させる場合の何れであっても、その添加量変更に伴うNOxセンサ出力の値を適正に得ることができる。また、増量時と減量時とで期間の長さに差を設けたことにより、何れの場合にも必要最小限の期間を設定できる。   According to the seventh aspect of the present invention, when increasing or decreasing the reducing agent addition amount, the period during which the addition amount is reduced is longer than the period during which the addition amount is increased. That is, when the amount of reducing agent added is increased and when it is decreased, the response speed of the sensor output is different, and the latter is slower. This is because the reducing agent consumption rate in the NOx purification catalyst is smaller than the reducing agent adsorption rate (ammonia adsorption rate) in the catalyst. In this regard, according to the configuration of the seventh aspect, it is possible to appropriately obtain the value of the NOx sensor output accompanying the change in the addition amount regardless of whether the reduction agent addition amount is increased or decreased. . In addition, by providing a difference in the length of the period between the increase and the decrease, the minimum necessary period can be set in any case.

NOxセンサ出力が最小値となる添加量指令値は、逐次変化するものでなく、内燃機関の運転状態が一定であれば定常的な値となる。それゆえに、請求項8に記載したように、指令値算出手段により算出した添加量指令値を学習値としてバックアップ用のメモリに記憶するとともに、前記学習値を随時(必要に応じて)更新することが望ましい。これにより、NOxセンサ出力が最小値となる添加量指令値を、必要最小限の頻度で算出すればよいこととなる。例えば、制御装置(ECU)への電源投入ごとに1回のみ添加量指令値の算出を実行する。   The addition amount command value at which the NOx sensor output becomes the minimum value does not change sequentially, and becomes a steady value if the operating state of the internal combustion engine is constant. Therefore, as described in claim 8, the addition amount command value calculated by the command value calculation means is stored in the backup memory as a learning value, and the learning value is updated at any time (if necessary). Is desirable. Thereby, the addition amount command value at which the NOx sensor output becomes the minimum value may be calculated with the minimum necessary frequency. For example, the addition amount command value is calculated only once every time power is supplied to the control device (ECU).

還元剤添加量に対するNOxセンサ出力の特性は、内燃機関の運転状態によって変わると考えられる。それゆえに、請求項9に記載したように、指令値算出手段により算出した添加量指令値を、添加量制御手段による添加量制御時における内燃機関の運転状態に対応づけて前記メモリに記憶することが望ましい。これにより、内燃機関の運転状態が変化したとしても、その都度最適な添加量指令値を設定することができる。   It is considered that the characteristics of the NOx sensor output with respect to the reducing agent addition amount vary depending on the operating state of the internal combustion engine. Therefore, as described in claim 9, the addition amount command value calculated by the command value calculation means is stored in the memory in association with the operating state of the internal combustion engine during the addition amount control by the addition amount control means. Is desirable. Thereby, even if the operating state of the internal combustion engine changes, an optimum addition amount command value can be set each time.

請求項10に記載の発明では、NOx浄化触媒の下流側に設けられる還元剤浄化用の酸化触媒(例えば、アンモニアスリップ触媒)と、同酸化触媒が活性状態にあるかどうかを判定する活性判定手段とを備える。そして、前記活性判定手段により酸化触媒が非活性状態である旨判定された場合に、前記指令値算出手段による添加量指令値の算出を実行する。   In the invention according to claim 10, an oxidation catalyst for reducing agent purification (for example, ammonia slip catalyst) provided on the downstream side of the NOx purification catalyst, and an activity determination means for determining whether or not the oxidation catalyst is in an active state. With. When the activation determination unit determines that the oxidation catalyst is in an inactive state, the command value calculation unit calculates the addition amount command value.

要するに、NOx浄化触媒の下流側の酸化触媒が非活性であると、仮にNOx浄化触媒の下流側に還元剤が排出された場合に、その還元剤が適正に浄化できないことが考えられる。この点、上記のように酸化触媒の非活性時に、指令値算出手段による添加量指令値の算出を実行することにより、NOx浄化触媒の下流側への還元剤の排出を抑え、ひいては還元剤の大気排出を抑制できる。   In short, if the oxidation catalyst on the downstream side of the NOx purification catalyst is inactive, if the reducing agent is discharged to the downstream side of the NOx purification catalyst, the reducing agent cannot be properly purified. In this respect, when the oxidation catalyst is inactive as described above, the command value calculation means calculates the addition amount command value, thereby suppressing the discharge of the reducing agent to the downstream side of the NOx purification catalyst, and thus reducing the reducing agent. Air emissions can be suppressed.

以下、本発明を具体化した一実施形態を図面に基づいて説明する。本実施形態では、車両用の多気筒ディーゼルエンジンを制御対象としてエンジン制御システムを構築するものとしており、当該制御システムにおいては電子制御ユニット(以下、ECUという)を中枢としてエンジンの各種制御が実施される。また本実施形態では、燃料噴射システムとしてコモンレール式燃料噴射システムを採用するとともに、排気浄化システムとして尿素SCRシステムを採用することとしている。先ずは、本システムの全体概略を図1を用いて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings. In this embodiment, an engine control system is constructed with a multi-cylinder diesel engine for a vehicle as a control target. In the control system, various controls of the engine are performed with an electronic control unit (hereinafter referred to as ECU) as a center. The In this embodiment, a common rail fuel injection system is adopted as the fuel injection system, and a urea SCR system is adopted as the exhaust purification system. First, an overall outline of the present system will be described with reference to FIG.

エンジン10は、レシプロエンジン構造を有するエンジン本体11を有しており、その基本構造として、シリンダ内を往復動するピストン12や、吸気側及び排気側の各ポートに設けられて各々個別に開閉動作する吸気弁13、排気弁14を備えている。ピストン12の往復動に伴いクランク軸15が回転する。また、シリンダヘッドには気筒ごとに燃料噴射弁16が設けられている。燃料噴射弁16によって燃焼室17内に燃料が直接噴射され、その噴射燃料が燃焼室17内で燃焼に供される。   The engine 10 has an engine body 11 having a reciprocating engine structure. As a basic structure, the engine 10 is provided in a piston 12 reciprocating in a cylinder, and each port on the intake side and the exhaust side, and is individually opened and closed. An intake valve 13 and an exhaust valve 14 are provided. As the piston 12 reciprocates, the crankshaft 15 rotates. The cylinder head is provided with a fuel injection valve 16 for each cylinder. Fuel is directly injected into the combustion chamber 17 by the fuel injection valve 16, and the injected fuel is used for combustion in the combustion chamber 17.

クランク軸15には、同クランク軸15の回転を検出するためのクランク角センサ18が設けられている。また、シリンダブロックには、エンジン冷却水の温度を検出するための水温センサ19が設けられている。   The crankshaft 15 is provided with a crank angle sensor 18 for detecting the rotation of the crankshaft 15. Further, the cylinder block is provided with a water temperature sensor 19 for detecting the temperature of the engine cooling water.

燃料供給系の構成について簡単に説明する(ただし周知のため、図示による説明は省略)。燃料供給系の構成として高圧ポンプとコモンレール(蓄圧配管)とが設けられており、高圧ポンプにより燃料タンク内の燃料が高圧化され、コモンレールに対して圧送される。コモンレール内には数10〜200MPa程度の高圧燃料が貯留され、この高圧燃料が各気筒の燃料噴射弁16に供給される。なお、コモンレール内の燃料圧力は都度のエンジン運転状態等に応じて適宜調整される。   The configuration of the fuel supply system will be briefly described (however, since it is well-known, description by illustration is omitted). A high-pressure pump and a common rail (pressure accumulation pipe) are provided as a configuration of the fuel supply system, and the fuel in the fuel tank is increased in pressure by the high-pressure pump and is pumped to the common rail. A high pressure fuel of about several tens to 200 MPa is stored in the common rail, and this high pressure fuel is supplied to the fuel injection valve 16 of each cylinder. Note that the fuel pressure in the common rail is appropriately adjusted according to the engine operating condition and the like.

エンジン本体11の吸気ポートには吸気管(マニホールド部分を含む)21が接続され、排気ポートには排気管(マニホールド部分を含む)22が接続されている。吸気管21には、電気駆動式のスロットルバルブを有するスロットルアクチュエータ23が設けられている。また、吸気管21内の吸気通路と排気管22内の排気通路とはEGR通路24により接続されており、そのEGR通路24にはEGR弁25とEGRクーラ26とが設けられている。なお、吸気管21の最上流部にはエアクリーナ27が設けられている。   An intake pipe (including a manifold portion) 21 is connected to the intake port of the engine body 11, and an exhaust pipe (including a manifold portion) 22 is connected to the exhaust port. The intake pipe 21 is provided with a throttle actuator 23 having an electrically driven throttle valve. The intake passage in the intake pipe 21 and the exhaust passage in the exhaust pipe 22 are connected by an EGR passage 24, and an EGR valve 25 and an EGR cooler 26 are provided in the EGR passage 24. An air cleaner 27 is provided at the most upstream portion of the intake pipe 21.

また、本システムには、過給装置としてターボチャージャ30が設けられている。ターボチャージャ30は、吸気管21に設けられた吸気コンプレッサ31と、排気管22に設けられた排気タービン32とを有しており、排気管22を流れる排気によって排気タービン32が回転し、その回転力がシャフト33を介して吸気コンプレッサ31に伝達される。そして、吸気コンプレッサ31により、吸気管21内を流れる吸入空気が圧縮されて過給が行われる。ターボチャージャ30にて過給された空気は、インタークーラ34によって冷却された後、吸気管21の下流側に給送される。   Further, in this system, a turbocharger 30 is provided as a supercharging device. The turbocharger 30 includes an intake compressor 31 provided in the intake pipe 21 and an exhaust turbine 32 provided in the exhaust pipe 22, and the exhaust turbine 32 rotates by the exhaust gas flowing through the exhaust pipe 22. The force is transmitted to the intake compressor 31 via the shaft 33. Then, the intake air flowing through the intake pipe 21 is compressed by the intake compressor 31 and supercharging is performed. The air supercharged by the turbocharger 30 is cooled by the intercooler 34 and then fed to the downstream side of the intake pipe 21.

なお、吸気管21には、吸気量センサ(エアフロメータ)、吸気圧センサ、吸気温センサ等のセンサ類が設けられるが、便宜上説明を省略する。   The intake pipe 21 is provided with sensors such as an intake air amount sensor (air flow meter), an intake air pressure sensor, an intake air temperature sensor, etc., but description thereof is omitted for convenience.

次に、排気系に設けられる排気浄化システムについて説明する。排気管22には、上流側から順に、酸化触媒41、SCR触媒(アンモニア選択還元触媒)42、アンモニアスリップ触媒43が配設されている。SCR触媒42がNOx浄化触媒に相当する。また、排気管22において酸化触媒41とSCR触媒42との間には、還元剤としての尿素水(尿素水溶液)を排気管22内に添加供給するための尿素水添加弁44が設けられている。尿素水添加弁44は、既存の燃料噴射弁(電磁駆動式のインジェクタ)とほぼ同様の構成を有しており、電気的な制御指令に伴う開弁動作により尿素水添加弁44の先端噴孔部から尿素水が噴射される。なお、尿素水添加弁44に対しては、尿素水ポンプの圧送動作によって尿素水タンク内の尿素水が逐次供給されるようになっている(図示は省略)。   Next, an exhaust purification system provided in the exhaust system will be described. In the exhaust pipe 22, an oxidation catalyst 41, an SCR catalyst (ammonia selective reduction catalyst) 42, and an ammonia slip catalyst 43 are disposed in order from the upstream side. The SCR catalyst 42 corresponds to a NOx purification catalyst. Further, a urea water addition valve 44 for adding and supplying urea water (urea aqueous solution) as a reducing agent into the exhaust pipe 22 is provided between the oxidation catalyst 41 and the SCR catalyst 42 in the exhaust pipe 22. . The urea water addition valve 44 has substantially the same configuration as an existing fuel injection valve (electromagnetically driven injector), and the tip injection hole of the urea water addition valve 44 is opened by a valve opening operation associated with an electrical control command. The urea water is injected from the part. Note that the urea water in the urea water tank is sequentially supplied to the urea water addition valve 44 by a pressure feeding operation of the urea water pump (not shown).

上記構成の排気浄化システムでは、エンジン運転時において、尿素水添加弁44により排気管22内に尿素水が添加供給されると、排気管22内において排気と共に尿素水がSCR触媒42に供給され、SCR触媒42においてNOxの還元反応が行われることによってその排気が浄化される。   In the exhaust purification system having the above configuration, when urea water is added and supplied into the exhaust pipe 22 by the urea water addition valve 44 during engine operation, urea water is supplied to the SCR catalyst 42 together with the exhaust gas in the exhaust pipe 22. The exhaust gas is purified by performing a reduction reaction of NOx in the SCR catalyst 42.

詳しくは、尿素水添加弁44から噴射された尿素水は排気熱で加水分解され、その際、
(NH2)2CO+H2O→2NH3+CO2 …(式1)
のような反応によりアンモニア(NH3)が生成される。そして、SCR触媒42を排気が通過する際、アンモニアによって排気中のNOxが選択的に還元浄化される。その際、以下に示すような還元反応が行われることによって、NOxが還元浄化されることになる。
4NO+4NH3+O2→4N2+6H2O …(式2)
6NO2+8NH3→7N2+12H2O …(式3)
NO+NO2+2NH3→2N2+3H2O …(式4)
このようにアンモニアによるNOxの還元浄化が行われる際、アンモニアがNOxと反応しきれずに余剰となると、その余剰アンモニアが排気に混じって排気下流側に放出される。かかる場合、余剰アンモニアは、SCR触媒下流側のアンモニアスリップ触媒43(例えば酸化触媒)により除去されるようになっている。
Specifically, the urea water injected from the urea water addition valve 44 is hydrolyzed by exhaust heat,
(NH2) 2CO + H2O → 2NH3 + CO2 (Formula 1)
Ammonia (NH3) is generated by the reaction as described above. When the exhaust gas passes through the SCR catalyst 42, NOx in the exhaust gas is selectively reduced and purified by ammonia. At that time, NOx is reduced and purified by the following reduction reaction.
4NO + 4NH3 + O2 → 4N2 + 6H2O (Formula 2)
6NO2 + 8NH3 → 7N2 + 12H2O (Formula 3)
NO + NO2 + 2NH3 → 2N2 + 3H2O (Formula 4)
In this way, when the reduction and purification of NOx by ammonia is performed, if ammonia does not react with NOx and becomes surplus, the surplus ammonia is mixed with the exhaust and released downstream of the exhaust. In such a case, surplus ammonia is removed by an ammonia slip catalyst 43 (for example, an oxidation catalyst) on the downstream side of the SCR catalyst.

また、排気管22において酸化触媒41とSCR触媒42との間には、酸素濃度センサ45と排気温センサ46とが設けられており、これらの各センサの出力を基に排気中の酸素濃度や排気温度が検出される。また、SCR触媒42の下流側には、SCR触媒通過後の排気を検出対象として同排気中のNOx量(NOx濃度)を検出するNOxセンサ47が設けられており、このNOxセンサ47の出力を基にSCR触媒42のNOx浄化率が検出されるようになっている。   Further, an oxygen concentration sensor 45 and an exhaust temperature sensor 46 are provided between the oxidation catalyst 41 and the SCR catalyst 42 in the exhaust pipe 22, and based on the output of each of these sensors, the oxygen concentration in the exhaust gas and The exhaust temperature is detected. Further, on the downstream side of the SCR catalyst 42, there is provided a NOx sensor 47 for detecting the NOx amount (NOx concentration) in the exhaust with the exhaust after passing through the SCR catalyst as a detection target. Based on this, the NOx purification rate of the SCR catalyst 42 is detected.

なお、図1では省略しているが、排気管22にはDPF(ディーゼルパティキュレートフィルタ)が設置されており、このDPFによって排気中のPM(パティキュレートマター)が捕集されるようになっている。   Although omitted in FIG. 1, a DPF (diesel particulate filter) is installed in the exhaust pipe 22, and PM (particulate matter) in the exhaust is collected by the DPF. Yes.

ECU50は、CPU、ROM、RAM等からなる周知のマイクロコンピュータ(図示略)を備えて構成されており、このECU50には、上述した各種センサの検出信号や、その他コモンレール内の燃料圧力(レール圧)を検出するためのレール圧センサ、ドライバによるアクセル操作量(アクセル開度)を検出するためのアクセルセンサなどから検出信号が逐次入力される。そして、ECU50は、エンジン回転速度やアクセル操作量等のエンジン運転情報に基づいて、燃料噴射制御や燃料圧力制御(レール圧制御)等を実行する。これにより、燃料噴射弁16の燃料噴射動作や高圧ポンプによる燃料圧送動作が制御される。その他、ECU50は、都度のエンジン運転状態に基づいてスロットルアクチュエータ23やEGR弁25等の制御を適宜実行する。   The ECU 50 includes a known microcomputer (not shown) including a CPU, a ROM, a RAM, and the like. The ECU 50 includes detection signals from the various sensors described above and fuel pressure (rail pressure in the common rail). Detection signals are sequentially input from a rail pressure sensor for detecting), an accelerator sensor for detecting an accelerator operation amount (accelerator opening) by a driver, and the like. Then, the ECU 50 executes fuel injection control, fuel pressure control (rail pressure control), and the like based on engine operation information such as engine rotation speed and accelerator operation amount. As a result, the fuel injection operation of the fuel injection valve 16 and the fuel pumping operation by the high-pressure pump are controlled. In addition, the ECU 50 appropriately executes control of the throttle actuator 23, the EGR valve 25, and the like based on each engine operating state.

ECU50には、バックアップ用のメモリとしてEEPROM51が設けられている。EEPROM51には、各種の学習値やダイアグデータ(故障診断データ)等が適宜記憶され、継続的に保存される。なお、バックアップ用のメモリとして、ECU50への電源遮断後にも給電状態が維持されるスタンバイRAMを用いることも可能である。   The ECU 50 is provided with an EEPROM 51 as a backup memory. In the EEPROM 51, various learning values, diagnosis data (failure diagnosis data), and the like are appropriately stored and continuously stored. Note that a standby RAM in which the power supply state is maintained even after the power supply to the ECU 50 is cut off can be used as the backup memory.

また、ECU50は、NOxセンサ47の出力に基づいて、SCR触媒42の下流側におけるNOx量を算出したり、NOx浄化率を算出したりする。また、NOx浄化率に基づいて尿素水添加量を制御する。ちなみに、NOx浄化率X1は、エンジンからのNOx排出量Y1とSCR触媒42の下流側におけるNOx量Y2とに基づいて算出される(X1=(Y1−Y2)/Y1)。このとき、NOx排出量Y1は、都度のエンジン運転状態(エンジン回転速度、燃料噴射量)に基づいてマップや数式により算出される。また、SCR触媒42の下流側におけるNOx量Y2はNOxセンサ出力により算出される。   Further, the ECU 50 calculates the NOx amount on the downstream side of the SCR catalyst 42 or the NOx purification rate based on the output of the NOx sensor 47. Further, the urea water addition amount is controlled based on the NOx purification rate. Incidentally, the NOx purification rate X1 is calculated based on the NOx emission amount Y1 from the engine and the NOx amount Y2 on the downstream side of the SCR catalyst 42 (X1 = (Y1-Y2) / Y1). At this time, the NOx emission amount Y1 is calculated by a map or a mathematical formula based on the respective engine operating state (engine speed, fuel injection amount). Further, the NOx amount Y2 on the downstream side of the SCR catalyst 42 is calculated from the NOx sensor output.

尿素水添加弁44による尿素水添加に関して具体的には、ECU50からは尿素水添加弁44に対して所定周期の開弁指令パルスが出力され、そのパルス出力に伴い尿素水添加弁44の駆動部(ソレノイド部)に駆動電流が流れる。そして、その通電に伴い尿素水添加弁44が開弁され、尿素水が添加(噴射)される。このとき、開弁指令パルスの出力周期(又は出力周波数)を可変に調整することで尿素水添加量が増減されるようになっており、その概要を図2に示す。(a)に示すベース添加量に対して尿素水添加量を減量する場合、(b)に示すように開弁指令パルスの出力周期を大きくする。また、尿素水添加量を増量する場合、(c)に示すように開弁指令パルスの出力周期を小さくする。なお、尿素水添加量を減量する場合には、尿素水添加弁44の開弁駆動を一時的に停止させるようにしてもよい。   Specifically, regarding the urea water addition by the urea water addition valve 44, the ECU 50 outputs a valve opening command pulse of a predetermined cycle to the urea water addition valve 44, and the drive unit of the urea water addition valve 44 is accompanied by the pulse output. A drive current flows through the (solenoid part). Then, with the energization, the urea water addition valve 44 is opened and urea water is added (injected). At this time, the urea water addition amount is increased or decreased by variably adjusting the output period (or output frequency) of the valve opening command pulse, and an outline thereof is shown in FIG. When reducing the urea water addition amount with respect to the base addition amount shown in (a), the output period of the valve opening command pulse is increased as shown in (b). When increasing the urea water addition amount, the output period of the valve opening command pulse is reduced as shown in (c). In addition, when decreasing the urea water addition amount, the valve opening drive of the urea water addition valve 44 may be temporarily stopped.

次に、NOxセンサ47の構成を図3を用いて説明する。図3は、NOxセンサ47を構成するセンサ素子60の断面構造を示す断面図である。センサ素子60は、ポンプセル、センサセル及びモニタセルからなる、いわゆる3セル構造を有するものであり、それら各セルが積層配置されて構成されている。なお、モニタセルは、ポンプセル同様、ガス中の酸素排出の機能を具備するため、補助ポンプセル又は第2ポンプセルと称される場合もある。   Next, the configuration of the NOx sensor 47 will be described with reference to FIG. FIG. 3 is a cross-sectional view showing a cross-sectional structure of the sensor element 60 constituting the NOx sensor 47. The sensor element 60 has a so-called three-cell structure including a pump cell, a sensor cell, and a monitor cell, and each cell is laminated and configured. Since the monitor cell has a function of discharging oxygen in the gas like the pump cell, the monitor cell may be referred to as an auxiliary pump cell or a second pump cell.

センサ素子60において、ジルコニア等の酸素イオン導電性材料からなる固体電解質体61,62はシート状をなし、アルミナ等の絶縁材料からなるスペーサ63を介して図の上下に所定間隔を隔てて積層されている。このうち、図の上側の固体電解質体61には排気導入口61aが形成されており、この排気導入口61aを介して当該センサ素子周囲の排気が第1チャンバ64内に導入される。第1チャンバ64は、絞り部65を介して第2チャンバ66に連通している。固体電解質体61の図の上面には、排気を所定の拡散抵抗で出し入れするための多孔質拡散層67が設けられるとともに、大気通路68を区画形成するための絶縁層69が設けられている。   In the sensor element 60, solid electrolyte bodies 61 and 62 made of an oxygen ion conductive material such as zirconia are formed in a sheet shape, and are stacked at a predetermined interval in the upper and lower directions of the figure via spacers 63 made of an insulating material such as alumina. ing. Among these, an exhaust inlet 61a is formed in the solid electrolyte body 61 on the upper side of the figure, and exhaust around the sensor element is introduced into the first chamber 64 through the exhaust inlet 61a. The first chamber 64 communicates with the second chamber 66 through the throttle portion 65. On the upper surface of the solid electrolyte body 61 in the figure, a porous diffusion layer 67 for taking in and out the exhaust gas with a predetermined diffusion resistance is provided, and an insulating layer 69 for forming an air passage 68 is provided.

また、固体電解質体62の図の下面にはアルミナ等よりなる絶縁層71が設けられ、この絶縁層71により大気通路72が形成されている。   Further, an insulating layer 71 made of alumina or the like is provided on the lower surface of the solid electrolyte body 62 in the figure, and an atmospheric passage 72 is formed by the insulating layer 71.

図の下側の固体電解質体62には、第1チャンバ64に対面するようにしてポンプセル81が設けられており、ポンプセル81は、第1チャンバ64内に導入された排気中の酸素を出し入れして同チャンバ64内の残留酸素濃度を所定濃度に調整する。ポンプセル81は、固体電解質体62を挟んで設けられる上下一対の電極82,83を有し、そのうち特に第1チャンバ64側の電極82はNOx不活性電極(NOxを分解し難い電極)となっている。ポンプセル81は、電極82,83間に電圧が印加された状態で、第1チャンバ64内に存在する酸素を分解して電極83より大気通路72側に排出する。   The solid electrolyte body 62 on the lower side of the figure is provided with a pump cell 81 so as to face the first chamber 64, and the pump cell 81 takes in and out oxygen in the exhaust gas introduced into the first chamber 64. The residual oxygen concentration in the chamber 64 is adjusted to a predetermined concentration. The pump cell 81 has a pair of upper and lower electrodes 82 and 83 provided with the solid electrolyte body 62 sandwiched therebetween, and in particular, the electrode 82 on the first chamber 64 side is a NOx inactive electrode (an electrode that is difficult to decompose NOx). Yes. The pump cell 81 decomposes oxygen present in the first chamber 64 in a state where a voltage is applied between the electrodes 82 and 83 and discharges it from the electrode 83 to the atmosphere passage 72 side.

また、図の上側の固体電解質体61には、第2チャンバ66に対面するようにしてモニタセル84及びセンサセル85が設けられている。モニタセル84は、上述したポンプセル81により余剰酸素が排出された後に、第2チャンバ66内の残留酸素濃度に応じて起電力、又は電圧印加に伴い電流出力を発生する。センサセル85は、第2チャンバ66内のガスからNOx濃度を検出する。   Further, a monitor cell 84 and a sensor cell 85 are provided in the upper solid electrolyte body 61 in the drawing so as to face the second chamber 66. After the surplus oxygen is discharged by the pump cell 81 described above, the monitor cell 84 generates a current output in accordance with the electromotive force or voltage application according to the residual oxygen concentration in the second chamber 66. The sensor cell 85 detects the NOx concentration from the gas in the second chamber 66.

モニタセル84及びセンサセル85は、互いに近接した位置に並べて配置されるとともに、第2チャンバ66側に電極86,87を有し、大気通路68側に共通電極88を有する構成となっている。すなわち、モニタセル84は、固体電解質体61とそれを挟んで対向配置された電極86及び共通電極88とにより構成され、センサセル85は、同じく固体電解質体61とそれを挟んで対向配置された電極87及び共通電極88とにより構成されている。モニタセル84の電極86(第2チャンバ66側の電極)はNOxに不活性なAu−Pt等の貴金属からなるのに対し、センサセル85の電極87(第2チャンバ66側の電極)はNOxに活性な白金Pt、ロジウムRh等の貴金属からなる。なお、便宜上図面ではモニタセル84及びセンサセル85を排気の流れ方向に対して前後に並べて示すが、実際には、これら各セル84,85は排気の流れ方向に対して同等位置になるよう配置されるようになっている。   The monitor cell 84 and the sensor cell 85 are arranged side by side at positions close to each other, have electrodes 86 and 87 on the second chamber 66 side, and have a common electrode 88 on the atmosphere passage 68 side. That is, the monitor cell 84 is constituted by the solid electrolyte body 61, the electrode 86 and the common electrode 88 arranged to face each other, and the sensor cell 85 is similarly arranged to face the solid electrolyte body 61 and the electrode 87 arranged to sandwich it. And a common electrode 88. The electrode 86 (electrode on the second chamber 66 side) of the monitor cell 84 is made of a noble metal such as Au—Pt that is inactive to NOx, whereas the electrode 87 (electrode on the second chamber 66 side) of the sensor cell 85 is active for NOx. It consists of noble metals such as platinum Pt and rhodium Rh. For convenience, in the drawing, the monitor cell 84 and the sensor cell 85 are shown side by side with respect to the flow direction of the exhaust gas. However, in actuality, these cells 84 and 85 are arranged at the same position with respect to the flow direction of the exhaust gas. It is like that.

また、絶縁層71には、センサ全体を加熱するためのヒータ(発熱体)73が埋設されている。ヒータ73はポンプセル81、モニタセル84及びセンサセル85を含めたセンサ素子全体を活性状態にすべく、バッテリ電源等からの給電により熱エネルギを発生する。   Further, a heater (heating element) 73 for heating the entire sensor is embedded in the insulating layer 71. The heater 73 generates heat energy by supplying power from a battery power source or the like so as to activate the entire sensor element including the pump cell 81, the monitor cell 84, and the sensor cell 85.

上記構成のセンサ素子60(NOxセンサ47)では、排気は多孔質拡散層67及び排気導入口61aを通って第1チャンバ64に導入される。そして、この排気がポンプセル81近傍を通過する際、ポンプセル電極82,83間にポンプセル印加電圧が印加されることで分解反応が起こり、第1チャンバ64内の酸素濃度に応じてポンプセル81を介して酸素が出し入れされる。なおこのとき、第1チャンバ64側の電極82がNOx不活性電極であるため、ポンプセル81では排気中のNOxは分解されず、酸素のみが分解されて電極83から大気通路72に排出される。こうしたポンプセル81の働きにより、第1チャンバ64内が所定の低酸素濃度の状態に保持される。   In the sensor element 60 (NOx sensor 47) configured as described above, the exhaust is introduced into the first chamber 64 through the porous diffusion layer 67 and the exhaust introduction port 61a. Then, when this exhaust gas passes in the vicinity of the pump cell 81, a decomposition reaction occurs by applying a pump cell applied voltage between the pump cell electrodes 82 and 83, and the exhaust cell passes through the pump cell 81 according to the oxygen concentration in the first chamber 64. Oxygen is taken in and out. At this time, since the electrode 82 on the first chamber 64 side is a NOx inert electrode, NOx in the exhaust gas is not decomposed in the pump cell 81, but only oxygen is decomposed and discharged from the electrode 83 to the atmospheric passage 72. By the action of the pump cell 81, the inside of the first chamber 64 is maintained in a predetermined low oxygen concentration state.

ポンプセル81近傍を通過したガスは第2チャンバ66に流れ込み、モニタセル84では、ガス中の残留酸素濃度に応じた出力が発生する。モニタセル84の出力は、モニタセル電極86,88間に所定のモニタセル印加電圧が印加されることでモニタセル電流として検出される。また、センサセル電極87,88間に所定のセンサセル印加電圧が印加されることでガス中のNOxが還元分解され、その際発生する酸素が電極88から大気通路68に排出される。このとき、センサセル85に流れた電流(センサセル電流)により、排気中に含まれるNOx濃度が検出される。   The gas that has passed in the vicinity of the pump cell 81 flows into the second chamber 66, and the monitor cell 84 generates an output corresponding to the residual oxygen concentration in the gas. The output of the monitor cell 84 is detected as a monitor cell current when a predetermined monitor cell application voltage is applied between the monitor cell electrodes 86 and 88. Further, when a predetermined sensor cell applied voltage is applied between the sensor cell electrodes 87 and 88, NOx in the gas is reduced and decomposed, and oxygen generated at that time is discharged from the electrode 88 to the atmospheric passage 68. At this time, the concentration of NOx contained in the exhaust gas is detected by the current (sensor cell current) flowing through the sensor cell 85.

ところで、尿素水添加弁44による尿素水添加(噴射)に際しては、NOxセンサ47の出力に基づいてSCR触媒42のNOx浄化率が算出される。ただしかかる場合において、上記構成のNOxセンサ47は、排気中のNOxだけでなく、アンモニア(NH3)にも反応するため、SCR触媒42の下流側においてアンモニアスリップにより余剰アンモニアが存在すると、アンモニア検出によるセンサ出力が生じる。したがって、NOx浄化率が誤って算出されてしまい、ひいては尿素水添加量を最適に制御することができなくなるといった不都合が生じる。   Incidentally, when urea water is added (injected) by the urea water addition valve 44, the NOx purification rate of the SCR catalyst 42 is calculated based on the output of the NOx sensor 47. However, in such a case, the NOx sensor 47 configured as described above reacts not only with NOx in the exhaust gas but also with ammonia (NH3). Therefore, if there is surplus ammonia due to ammonia slip on the downstream side of the SCR catalyst 42, it will be based on ammonia detection. Sensor output is generated. As a result, the NOx purification rate is erroneously calculated, and as a result, the urea water addition amount cannot be optimally controlled.

すなわち、SCR触媒42においてアンモニアが余剰となり、その余剰アンモニアが触媒下流側に排出される場合、NOxセンサ47では、アンモニアを含むガスが第1チャンバ64→第2チャンバ66の順に流れ、センサセル85にてアンモニアの化学反応が生じる。詳しくは、センサセル85では次式による酸化反応が生じ、その酸化反応に伴いNOxセンサ出力が増加する。
4NH3+5O2→4NO+6H2O …(式5)
図4には、尿素水添加量に対する触媒下流側のNOx濃度、NH3濃度、NOxセンサ出力の対応関係を示している。
That is, when the ammonia is surplus in the SCR catalyst 42 and the surplus ammonia is discharged downstream of the catalyst, the NOx sensor 47 causes the gas containing ammonia to flow in the order of the first chamber 64 → the second chamber 66 and enter the sensor cell 85. A chemical reaction of ammonia occurs. Specifically, the sensor cell 85 undergoes an oxidation reaction according to the following equation, and the NOx sensor output increases with the oxidation reaction.
4NH3 + 5O2 → 4NO + 6H2O (Formula 5)
FIG. 4 shows a correspondence relationship between the NOx concentration on the downstream side of the catalyst, the NH3 concentration, and the NOx sensor output with respect to the urea water addition amount.

SCR触媒42が活性化している温度域にて尿素水添加量を徐々に増加させていく場合を想定すると、NOxはSCR触媒42にて浄化されるため減少するが、アンモニア排出量はNOx浄化率が飽和したあたりから過剰となり尿素水添加量の増加に伴い増加する(図4(a)(b)参照)。このとき、上述したようにNOxセンサ47はNOxだけでなくアンモニアにも反応するため、NOxセンサ47の出力はNOxが多いほど大きく、かつアンモニアが多いほど大きくなる。すなわち、NOxセンサ出力は、横軸の尿素水添加量に対して下に凸の形状を示す特性となる(図4(c)参照)。   Assuming that the urea water addition amount is gradually increased in the temperature range where the SCR catalyst 42 is activated, NOx is reduced because it is purified by the SCR catalyst 42, but the ammonia emission amount is the NOx purification rate. Becomes excessive from the point at which it becomes saturated, and increases with an increase in the amount of urea water added (see FIGS. 4A and 4B). At this time, as described above, since the NOx sensor 47 reacts not only to NOx but also to ammonia, the output of the NOx sensor 47 increases as NOx increases and increases as ammonia increases. That is, the NOx sensor output has a characteristic that shows a downwardly convex shape with respect to the urea water addition amount on the horizontal axis (see FIG. 4C).

ここで、図4(c)に示すNOxセンサ出力では、同出力が最小となる尿素水添加量があり、例えば尿素水添加量を図の「A1」とすれば、NOxセンサ出力が最小値となる。この場合、尿素水添加量<A1の領域では、尿素水添加量が多いほどNOx浄化率が高くなることでNOxセンサ出力が小さくなる。また、尿素水添加量>A1の領域では、尿素水添加量が少ないほど、アンモニアスリップが少なくなることでNOxセンサ出力が小さくなる。以上により、NOxセンサ出力が最小値となる尿素水添加量は、アンモニアスリップ量が少なく、かつNOx浄化率が最大となる尿素水添加量となる。これを鑑みると、NOxセンサ出力が最小値となるように尿素水添加量を制御することにより、NOx浄化率が高く、かつアンモニアスリップが最小となるような尿素水添加制御が可能となる。   Here, in the NOx sensor output shown in FIG. 4C, there is a urea water addition amount at which the output is minimized. For example, if the urea water addition amount is “A1” in the figure, the NOx sensor output becomes the minimum value. Become. In this case, in the region where the urea water addition amount <A1, the NOx sensor output decreases as the NOx purification rate increases as the urea water addition amount increases. Further, in the region of urea water addition amount> A1, the smaller the urea water addition amount, the smaller the ammonia slip and the smaller the NOx sensor output. As described above, the urea water addition amount at which the NOx sensor output becomes the minimum value is the urea water addition amount at which the ammonia slip amount is small and the NOx purification rate is maximized. In view of this, by controlling the urea water addition amount so that the NOx sensor output becomes the minimum value, it is possible to perform the urea water addition control so that the NOx purification rate is high and the ammonia slip is minimized.

なお、図4(c)に示す特性において、尿素水添加量の変化に対するNOxセンサ出力の変化勾配(特性上の傾き)は、NOxセンサ出力の最小値付近で小さく、同最小値から離れると大きくなっている。センサによっては、NOxセンサ出力の最小値付近でほぼフラットな領域が存在することもある。   In the characteristic shown in FIG. 4C, the change gradient (the characteristic gradient) of the NOx sensor output with respect to the change in the urea water addition amount is small near the minimum value of the NOx sensor output, and becomes large when moving away from the minimum value. It has become. Depending on the sensor, there may be a substantially flat region near the minimum value of the NOx sensor output.

本実施形態では、尿素水添加量を増減させて尿素水の添加を実施し、都度の添加量ごとにNOxセンサ出力を取得するとともに、該取得したセンサ出力のうち同センサ出力が最小値となる尿素水添加量により添加量指令値を算出する。そして、その算出された添加量指令値を目標値として尿素水添加量を制御する。   In this embodiment, the urea water addition amount is increased or decreased to add the urea water, and the NOx sensor output is acquired for each addition amount, and the sensor output becomes the minimum value among the acquired sensor outputs. An addition amount command value is calculated from the urea water addition amount. Then, the urea water addition amount is controlled using the calculated addition amount command value as a target value.

次に、尿素水添加量の制御手順を図5のフローチャートを参照しながら説明する。図5処理は、ECU50によって所定の時間周期又はクランク角度周期で繰り返し実行される。   Next, the control procedure of the urea water addition amount will be described with reference to the flowchart of FIG. The processing in FIG. 5 is repeatedly executed by the ECU 50 at a predetermined time period or crank angle period.

図5において、まずステップS101では、SCR触媒42が活性状態にあるか否かを判定する。具体的には、例えば排気温度が所定値(例えば150℃)よりも高いか否かを判定する。そして、SCR触媒42が活性状態にあることを条件に、後続のステップS102に進む。   In FIG. 5, first, in step S101, it is determined whether or not the SCR catalyst 42 is in an active state. Specifically, for example, it is determined whether the exhaust temperature is higher than a predetermined value (for example, 150 ° C.). Then, the process proceeds to the subsequent step S102 on condition that the SCR catalyst 42 is in an active state.

ステップS102〜S104では、尿素水添加量の増減処理を実行するかどうかを判断するための実行条件を判定する。具体的には、ステップS102では、エンジン回転速度NEについて前回値と今回値との差である変化量ΔNEが所定値以下であるか否かを判定する。また、ステップS103では、燃料噴射量Qについて前回値と今回値との差である変化量ΔQが所定値以下であるか否かを判定する。さらに、ステップS104では、その時のNOx浄化率が所定値よりも小さいか否かを判定する。ここで、ステップS102,S103では、エンジン運転状態が定常状態にあるか否かが判定される。また、ステップS104では、都度のNOx浄化率に基づいて、添加量指令値の更新の要否が判定される。   In steps S102 to S104, an execution condition for determining whether or not to perform the increase / decrease process of the urea water addition amount is determined. Specifically, in step S102, it is determined whether or not the change amount ΔNE that is the difference between the previous value and the current value for the engine speed NE is equal to or less than a predetermined value. In step S103, it is determined whether or not the change amount ΔQ, which is the difference between the previous value and the current value, of the fuel injection amount Q is equal to or less than a predetermined value. Further, in step S104, it is determined whether or not the NOx purification rate at that time is smaller than a predetermined value. Here, in steps S102 and S103, it is determined whether or not the engine operating state is in a steady state. In step S104, it is determined whether or not the addition amount command value needs to be updated based on the NOx purification rate each time.

そして、ステップS102〜S104の何れかがNOであれば、ステップS105に進み、ステップS102〜S104が全てYESであれば、ステップS106に進む。ステップS105では、都度の添加量指令値に基づく尿素水添加を実行する。これは通常の尿素水添加処理に相当する。このとき、それまでに算出されている添加量指令値を用いて尿素水添加が実行される。   If any of steps S102 to S104 is NO, the process proceeds to step S105, and if all of steps S102 to S104 are YES, the process proceeds to step S106. In step S105, urea water addition based on each addition amount command value is executed. This corresponds to a normal urea water addition process. At this time, urea water addition is performed using the addition amount command value calculated so far.

一方、ステップS106では、添加量指令値の更新を実行すべく尿素水添加量の増減処理を実行する。添加量増減処理について図6により詳述する。かかる増減処理では、尿素水添加量が添加量指令値→添加量増量値→添加量減量値の順に変更され、その都度のNOxセンサ出力が取得される。以下、説明の便宜上、添加量指令値による尿素水添加の期間を「第1期間」、添加量増量値による尿素水添加の期間を「第2期間」、添加量減量値による尿素水添加の期間を「第3期間」と称する。   On the other hand, in step S106, the urea water addition amount increasing / decreasing process is executed to update the addition amount command value. The addition amount increasing / decreasing process will be described in detail with reference to FIG. In such an increase / decrease process, the urea water addition amount is changed in the order of the addition amount command value → the addition amount increase value → the addition amount decrease value, and the NOx sensor output is acquired each time. Hereinafter, for convenience of explanation, the urea water addition period based on the addition amount command value is “first period”, the urea water addition period based on the addition amount increase value is “second period”, and the urea water addition period based on the addition amount decrease value. Is referred to as a “third period”.

図6において、ステップS201では、今現在、第1期間(添加量指令値による尿素水添加の期間)であるか否かを判定する。そして、第1期間であれば、ステップS202で添加量指令値による尿素水添加を実行し、続くステップS203でその時のNOxセンサ出力V1を記憶する。   In FIG. 6, in step S <b> 201, it is determined whether it is currently the first period (period of urea water addition based on the addition amount command value). And if it is the 1st period, urea water addition by an addition amount command value will be performed at Step S202, and NOx sensor output V1 at that time will be memorized at subsequent Step S203.

また、第1期間でなければステップS204に進み、今現在、第2期間(添加量増量値による尿素水添加の期間)であるか否かを判定する。そして、第2期間であれば、ステップS205に進み、添加量指令値を所定の増減幅(変更幅)αだけ増量側に変更するとともに、その添加量増量値(添加量指令値+α)にて尿素水添加を実行する。続いてステップS206では、添加量増量時のNOxセンサ出力V2を記憶する。   If it is not the first period, the process proceeds to step S204, and it is determined whether or not it is currently the second period (a period of urea water addition based on the added amount increase value). If it is the second period, the process proceeds to step S205, where the addition amount command value is changed to the increase side by a predetermined increase / decrease width (change width) α, and at the addition amount increase value (addition amount command value + α). Perform urea water addition. Subsequently, in step S206, the NOx sensor output V2 when the addition amount is increased is stored.

また、第2期間でなければ、今現在が第3期間(添加量減量値による尿素水添加の期間)であるとみなせる。この場合、ステップS207に進み、添加量指令値を増減幅αだけ減量側に変更するとともに、その添加量減量値(添加量指令値−α)にて尿素水添加を実行する。続いてステップS208では、添加量減量時のNOxセンサ出力V3を記憶する。   If the period is not the second period, the present period can be regarded as the third period (the period of urea solution addition based on the added amount reduction value). In this case, the process proceeds to step S207, and the addition amount command value is changed to the decrease side by the increase / decrease width α, and urea water addition is executed with the addition amount decrease value (addition amount command value−α). Subsequently, in step S208, the NOx sensor output V3 when the addition amount is reduced is stored.

図5の説明に戻り、ステップS107では、添加量増減処理が完了しているか否かを判定する。このとき、図6の処理において、添加量指令値、添加量増量値、及び添加量減量値によるそれぞれ尿素水添加が実行され、かつそれら各尿素水添加時のNOxセンサ出力V1〜V3の取得(記憶)が完了していれば、ステップS108に進み、それ以外はそのまま本処理を一旦終了する。   Returning to the description of FIG. 5, in step S107, it is determined whether or not the addition amount increasing / decreasing process has been completed. At this time, in the processing of FIG. 6, urea water addition is executed by the addition amount command value, the addition amount increase value, and the addition amount decrease value, respectively, and the NOx sensor outputs V1 to V3 at the time of each urea solution addition ( If (memory) has been completed, the process proceeds to step S108, and otherwise the process is temporarily terminated.

ステップS108では、上述したNOxセンサ出力V1〜V3の中から、最小値となるセンサ出力最小値Vminを算出する。続くステップS109では、同じくNOxセンサ出力V1〜V3の中から、最大値となるセンサ出力最大値Vmaxを算出する。   In step S108, a sensor output minimum value Vmin that is a minimum value is calculated from the NOx sensor outputs V1 to V3 described above. In the subsequent step S109, the sensor output maximum value Vmax that is the maximum value is calculated from the NOx sensor outputs V1 to V3.

その後、ステップS110では、センサ出力最大値Vmaxとセンサ出力最小値Vminとの差(Vmax−Vmin)が所定値よりも大きいか否かを判定する。このとき、Vmax−Vmin≦所定値であれば、添加量指令値の更新は不要であるとして、そのまま(すなわち、添加量指令値の更新を行うことなく)本処理を終了する。また、Vmax−Vmin>所定値であれば、後続のステップS111に進む。   Thereafter, in step S110, it is determined whether or not the difference (Vmax−Vmin) between the sensor output maximum value Vmax and the sensor output minimum value Vmin is greater than a predetermined value. At this time, if Vmax−Vmin ≦ predetermined value, it is determined that there is no need to update the addition amount command value, and this processing is ended as it is (that is, without updating the addition amount command value). If Vmax−Vmin> predetermined value, the process proceeds to subsequent step S111.

ステップS111では、NOxセンサ出力V1〜V3のうち、NOxセンサ出力V1、すなわち増減していない元の添加量指令値(中間値)による尿素水添加時のNOxセンサ出力が最小値Vminであったか否かを判定する。そして、ステップS111がNOであればステップS112に進み、YESであればステップS113に進む。   In step S111, it is determined whether or not the NOx sensor output V1 among the NOx sensor outputs V1 to V3, that is, the NOx sensor output at the time of urea water addition based on the original addition amount command value (intermediate value) that has not increased or decreased is the minimum value Vmin. Determine. If step S111 is NO, the process proceeds to step S112, and if YES, the process proceeds to step S113.

ステップS112では、センサ出力最小値Vminに対応する尿素水添加量を、添加量指令値としてEEPROM51に記憶する。このとき、上述した添加量増量値(添加量指令値+α)、又は添加量減量値(添加量指令値−α)のいずれかが新たな添加量指令値として記憶される。その新たな添加量指令値が学習値に相当する。これにより、添加量指令値の更新(学習)が完了する。   In step S112, the urea water addition amount corresponding to the sensor output minimum value Vmin is stored in the EEPROM 51 as the addition amount command value. At this time, either the addition amount increase value (addition amount command value + α) or the addition amount decrease value (addition amount command value−α) described above is stored as a new addition amount command value. The new addition amount command value corresponds to the learning value. Thereby, the update (learning) of the addition amount command value is completed.

また、ステップS113では、添加量指令値に対する増減幅を小さくして、添加量増減処理(図6の処理)を再度実行する旨を指令する。そして、添加量増減処理が再実行されると、その結果に基づいて添加量指令値の更新等が行われる(ステップS108〜S112)。   Further, in step S113, an increase / decrease range with respect to the addition amount command value is reduced, and an instruction is given to execute the addition amount increase / decrease process (the process of FIG. 6) again. When the addition amount increase / decrease process is re-executed, the addition amount command value is updated based on the result (steps S108 to S112).

なお、ステップS111が所定回繰り返しYESであった場合に、添加量指令値に対する増減幅を小さくして、添加量増減処理(図6の処理)を再度実行する旨を指令する構成であってもよい。すなわち、尿素水添加量の増減処理及びNOxセンサ出力の最小値検索を繰り返し実行した際に、元の添加量指令値による尿素水添加時のNOxセンサ出力が最小値Vminとなること(添加量指令値が同一となること)が所定回繰り返された場合に、添加量指令値に対する増減幅を小さくして、添加量増減処理(図6の処理)を再度実行する旨を指令する。   Even when the step S111 is repeated YES a predetermined number of times, the increase / decrease range with respect to the addition amount command value is reduced, and the addition amount increase / decrease process (the process of FIG. 6) is commanded again. Good. That is, when the increase / decrease process of the urea water addition amount and the minimum value search of the NOx sensor output are repeatedly executed, the NOx sensor output at the time of urea water addition based on the original addition amount command value becomes the minimum value Vmin (addition amount command). When the same value is repeated a predetermined number of times, the amount of increase / decrease with respect to the addition amount command value is reduced, and the addition amount increase / decrease process (the process of FIG. 6) is commanded again.

ここで、NOxセンサ出力が最小値となる添加量指令値は逐次変化するものでなく、エンジン運転状態が一定であれば定常的な値となる。それゆえに、添加量指令値(学習値)は、同一の運転状態で繰り返し算出される必要はなく、必要最小限の頻度で算出されればよい。例えば、制御装置(ECU)への電源投入ごとに1回のみ添加量指令値が算出されるとよい。   Here, the addition amount command value at which the NOx sensor output becomes the minimum value does not change sequentially, and becomes a steady value if the engine operating state is constant. Therefore, the addition amount command value (learning value) does not need to be repeatedly calculated in the same operation state, and may be calculated with a minimum frequency. For example, the addition amount command value may be calculated only once every time power is supplied to the control device (ECU).

また、尿素水添加量に対するNOxセンサ出力の特性は、エンジン運転状態によって変わる。より具体的には、エンジン運転状態の変化に伴い排気量が変化したり、排気温度が変化したりすると、NOxセンサ出力の特性が変化する。例えば、図7に示すように、排気量が多くなると、センサ出力特性がL1からL2に変化する(排気温度が低くなった場合も同様である)。それゆえに、上記図5により算出される添加量指令値を、添加量増減時のエンジン運転状態に対応づけて学習することが望ましい。例えば、エンジン負荷(アクセル操作量)やエンジン回転速度を運転状態パラメータとし、それら各パラメータに対応づけて添加量指令値を学習するとよい。   Further, the characteristics of the NOx sensor output with respect to the urea water addition amount vary depending on the engine operating state. More specifically, the characteristics of the NOx sensor output change when the exhaust amount changes or the exhaust temperature changes with a change in the engine operating state. For example, as shown in FIG. 7, when the exhaust amount increases, the sensor output characteristic changes from L1 to L2 (the same applies when the exhaust temperature decreases). Therefore, it is desirable to learn the addition amount command value calculated from FIG. 5 in association with the engine operating state when the addition amount increases or decreases. For example, the engine load (accelerator operation amount) and the engine rotation speed may be used as operating state parameters, and the addition amount command value may be learned in association with these parameters.

エンジン負荷や回転速度に対応付けて添加量指令値を学習する以外に、排気量や排気温度等の排気状態に対応付けて添加量指令値を学習することも可能である。   In addition to learning the addition amount command value in association with the engine load and the rotation speed, it is also possible to learn the addition amount command value in association with the exhaust state such as the exhaust amount and the exhaust temperature.

次に、添加量増減とそれによるセンサ出力最小値の検索の手順をより具体的に説明する。図8は、添加量増減時におけるNOxセンサ出力の推移を示すタイムチャートであり、図9,図10は、NOxセンサ出力の特性を模式的に示す図である。   Next, the procedure for searching for the increase / decrease of the addition amount and the sensor output minimum value based thereon will be described more specifically. FIG. 8 is a time chart showing the transition of the NOx sensor output when the addition amount is increased or decreased, and FIGS. 9 and 10 are diagrams schematically showing the characteristics of the NOx sensor output.

図8では、尿素水添加量がそれぞれ異なる3つの添加期間として、第1期間T1(添加量指令値による尿素水添加の期間)、第2期間T2(添加量増量値による尿素水添加の期間)、第3期間(添加量減量値による尿素水添加の期間)が示されている。図9,図10は、上述した図4(c)に相当するものであるが、同図9,図10では、説明の便宜上、尿素水添加量に対するNOxセンサ出力の特性をV字状に示し、NOxセンサ出力の大小関係を分かりやすくしている。図9,図10中、丸数字の1,2,3は尿素水添加量が変更される順序を示し、それぞれ添加量指令値による尿素水添加、添加量増量値による尿素水添加、添加量減量値による尿素水添加に相当する。   In FIG. 8, as three addition periods with different urea water addition amounts, a first period T1 (a urea solution addition period based on an addition amount command value) and a second period T2 (a urea solution addition period based on an addition amount increase value) The third period (period of urea water addition based on the added amount reduction value) is shown. FIGS. 9 and 10 correspond to FIG. 4C described above. In FIGS. 9 and 10, for convenience of explanation, the characteristics of the NOx sensor output with respect to the urea water addition amount are shown in a V shape. This makes it easy to understand the magnitude relationship of the NOx sensor output. 9 and 10, the numbers 1, 2, and 3 indicate the order in which the urea water addition amount is changed. The urea water addition by the addition amount command value, the urea water addition by the addition amount increase value, and the addition amount decrease, respectively. This corresponds to urea water addition depending on the value.

上記のように尿素水添加量を増減する場合、NOxセンサ出力の特性上(図4(c)参照)、センサ出力最小値相当の尿素水添加量に対して、都度の添加量指令値が大きいか小さいか、どれだけ離れているか等に応じて、添加量増減時のNOxセンサ出力の変化態様が変わることとなる。   When the urea water addition amount is increased or decreased as described above, the addition amount command value for each time is larger than the urea water addition amount corresponding to the sensor output minimum value due to the characteristics of the NOx sensor output (see FIG. 4C). The change mode of the NOx sensor output at the time of increase / decrease of the addition amount changes depending on how small or small it is.

例えば、図9(a)の場合には、都度の添加量指令値、添加量増量値、添加量減量値がいずれも、センサ出力最小値相当の尿素水添加量よりも大きくなっており、かかる場合には、添加量減量値による尿素水添加時のNOxセンサ出力V3が最小値となる。したがって、NOxセンサ出力V3に相当する尿素水添加量(添加量減量値)により添加量指令値が更新される。   For example, in the case of FIG. 9A, the addition amount command value, the addition amount increase value, and the addition amount decrease value each time are larger than the urea water addition amount corresponding to the sensor output minimum value. In this case, the NOx sensor output V3 at the time of urea water addition by the addition amount reduction value becomes the minimum value. Therefore, the addition amount command value is updated with the urea water addition amount (addition amount reduction value) corresponding to the NOx sensor output V3.

図9(a)の場合におけるタイムチャートが図8(a)である。図8(a)では、尿素水添加弁44の開弁指令パルスの出力周期が変更されることで、尿素水添加量の増減変更がなされている。そして、尿素水添加量の増減変更に伴い、NOxセンサ出力としてV1,V2,V3が取得され、そのうちNOxセンサ出力V3が最小値Vminとして求められる。   The time chart in the case of FIG. 9A is FIG. In FIG. 8A, the urea water addition amount is increased or decreased by changing the output cycle of the valve opening command pulse of the urea water addition valve 44. As the urea water addition amount increases or decreases, V1, V2, and V3 are acquired as NOx sensor outputs, and the NOx sensor output V3 is obtained as the minimum value Vmin.

図8(a)において、尿素水添加量を増減させる場合には、添加量の減量を行う期間T3が、添加量の増量を行う期間T2よりも長くなっている。つまり、尿素水添加量を増量する場合と減量する場合とを比較すると、NOxセンサ出力の応答速度が相違し、後者の方が応答速度が遅い。これは、SCR触媒42におけるアンモニアの消費速度の方が、同触媒42におけるアンモニア吸着速度よりも小さいことに起因している。上記のように尿素水増量時と減量時とで期間の長さに差をつけることで、添加量増減時の何れであっても、センサ出力値を適正に得ることができる。また、何れの場合にも必要最小限の期間を設定できる。   In FIG. 8A, when the urea water addition amount is increased or decreased, the period T3 during which the addition amount is reduced is longer than the period T2 during which the addition amount is increased. That is, when the amount of urea water addition is increased and when it is decreased, the response speed of the NOx sensor output is different, and the latter is slower. This is due to the fact that the consumption rate of ammonia in the SCR catalyst 42 is smaller than the ammonia adsorption rate in the catalyst 42. As described above, the sensor output value can be appropriately obtained at any time when the addition amount is increased or decreased by making a difference in the length of the period between when the urea water is increased and when the amount is decreased. In any case, the minimum necessary period can be set.

また、図8(a)、図9(a)のようにNOxセンサ出力V3が最小値Vminとして求められた後、引き続き同様の添加量増減処理が行われて最小値Vminの検索が行われる場合について説明する。かかる場合には、図8(b)及び図9(b)に示すように、前回算出された添加量指令値(図9(a)のV3)を添加量指令値の今回値として尿素水添加を実行し、NOxセンサ出力V1’を取得した後、添加量増量値による尿素水添加と、添加量減量値による尿素水添加とを実行する。そして、NOxセンサ出力V2’,V3’を取得する。このとき、NOxセンサ出力V1’〜V3’のうち、NOxセンサ出力V1’が最小値となり、添加量指令値は更新されずそのままとなる。なお、例えば図8(b)では、「V2’−V1’」が変化幅(Vmax−Vmin)に相当し、その変化幅が所定値以下であれば、添加量指令値の更新が行われないようになっている。   Further, when the NOx sensor output V3 is obtained as the minimum value Vmin as shown in FIG. 8A and FIG. 9A, the same addition amount increase / decrease process is continuously performed to search for the minimum value Vmin. Will be described. In such a case, as shown in FIGS. 8B and 9B, urea water addition is performed using the previously calculated addition amount command value (V3 in FIG. 9A) as the current value of the addition amount command value. After the NOx sensor output V1 ′ is acquired, urea water addition by the addition amount increase value and urea water addition by the addition amount decrease value are executed. Then, NOx sensor outputs V2 'and V3' are acquired. At this time, the NOx sensor output V1 'becomes the minimum value among the NOx sensor outputs V1' to V3 ', and the addition amount command value remains unchanged. For example, in FIG. 8B, “V2′−V1 ′” corresponds to the change width (Vmax−Vmin), and if the change width is equal to or less than a predetermined value, the addition amount command value is not updated. It is like that.

ちなみに、図9(a)(b)の添加量増減処理が引き続き行われる場合、図9(b)に示す添加量増減時には、図9(a)に示す処理結果から、増量側ではNOxセンサ出力が増大すること(V2’>V1’となること)があらかじめ分かっている。ゆえに、減量側へのみ尿素水添加量の変更を行う構成としてもよい。   Incidentally, when the addition amount increase / decrease process of FIGS. 9 (a) and 9 (b) is continued, when the addition amount increase / decrease shown in FIG. 9 (b), the NOx sensor output is increased on the increase side from the processing result shown in FIG. 9 (a). It is known beforehand that V will increase (V2 ′> V1 ′). Therefore, it is good also as a structure which changes the urea water addition amount only to the amount reduction side.

次に、都度の添加量指令値に対する添加量増減処理を行った後、増減幅を小さくして再度の添加量増減処理を実行する場合について、図10(a)(b)を用いて説明する。   Next, the case where the addition amount increase / decrease process is performed for each addition amount command value and then the increase / decrease range is reduced and the addition amount increase / decrease process is executed again will be described with reference to FIGS. .

図10(a)では、都度の添加量指令値、添加量増量値、添加量減量値のそれぞれによる3段階の尿素水添加に伴い、図示のごとくNOxセンサ出力V1〜V3が取得される。このとき、NOxセンサ出力V1〜V3のうち、NOxセンサ出力V1、すなわち増減していない元の添加量指令値(中間値)による尿素水添加時のNOxセンサ出力が最小値Vminとなっている。かかる場合、尿素水増減時の最大添加量(添加量増量値)と最小添加量(添加量減量値)との間に、一層望ましい添加量指令値の適正値(すなわち、NOxセンサ出力がより小さくなる尿素水添加量)が存在している可能性がある。したがって、図10(b)に示すように、添加量指令値に対する増減幅を小さくして、再度の添加量増減処理が実行される。   In FIG. 10 (a), NOx sensor outputs V1 to V3 are acquired as shown in the figure as the urea solution is added in three stages according to the respective addition amount command value, addition amount increase value, and addition amount decrease value. At this time, among the NOx sensor outputs V1 to V3, the NOx sensor output V1, that is, the NOx sensor output at the time of urea water addition by the original addition amount command value (intermediate value) that has not increased or decreased is the minimum value Vmin. In such a case, a more desirable appropriate value of the addition amount command value (that is, the NOx sensor output is smaller) between the maximum addition amount (addition amount increase value) and the minimum addition amount (addition amount decrease value) when urea water is increased or decreased. The amount of urea water added) may be present. Therefore, as shown in FIG. 10B, the increase / decrease process with respect to the addition amount command value is reduced and the addition amount increase / decrease process is executed again.

そして、図10(b)では、新たに取得されたNOxセンサ出力V1’〜V3’のうち、添加量減量値による尿素水添加時のNOxセンサ出力V3’が最小値となることから、そのセンサ出力V3’に相当する尿素水添加量(添加量減量値)により添加量指令値が更新される。   In FIG. 10B, among the newly acquired NOx sensor outputs V1 ′ to V3 ′, the NOx sensor output V3 ′ at the time of urea water addition by the addition amount reduction value becomes the minimum value. The addition amount command value is updated by the urea water addition amount (addition amount reduction value) corresponding to the output V3 ′.

以上詳述した本実施形態によれば、以下の優れた効果が得られる。   According to the embodiment described in detail above, the following excellent effects can be obtained.

各々異なる尿素水添加量に変更しつつ尿素水の添加を実施し、都度の添加量ごとにNOxセンサ出力を取得するとともにそれらのうちセンサ出力が最小値となる尿素水添加量により添加量指令値を算出する構成としたため、アンモニアスリップ量が少なく、かつNOx浄化率が最大となる尿素水添加量を添加量指令値として見出すことができる。その結果、SCR触媒42の下流側におけるNOx量を正しく検出することができ、ひいてはNOx浄化率等を適正に算出したりすることができるようになる。   The urea water addition is performed while changing to different urea water addition amounts, and the NOx sensor output is acquired for each addition amount, and the addition amount command value is determined by the urea water addition amount at which the sensor output is the minimum value among them. Since the ammonia slip amount is small and the NOx purification rate is maximized, the urea water addition amount can be found as the addition amount command value. As a result, the NOx amount on the downstream side of the SCR catalyst 42 can be correctly detected, and the NOx purification rate and the like can be calculated appropriately.

また、エンジン運転時において、上記のごとく算出した添加量指令値を目標値として尿素水添加弁44による尿素水添加を実行する構成としたため、エンジン運転中においてNOx浄化率を最大とする状態が維持できる。しかも、SCR触媒42の下流側へのアンモニアの排出を極力少なくした状態を継続できる。すなわち、NOx浄化率の確保とアンモニアスリップの低減との双方を実現することができる。   Further, since the urea water addition by the urea water addition valve 44 is executed with the addition amount command value calculated as described above as a target value during engine operation, the state where the NOx purification rate is maximized during engine operation is maintained. it can. Moreover, it is possible to continue the state in which ammonia is discharged to the downstream side of the SCR catalyst 42 as much as possible. That is, both of the NOx purification rate and the reduction of ammonia slip can be realized.

添加量指令値を所定の増減幅で増減させて3段階の尿素水添加を実行するととも、その3段階の尿素水添加のうち中間量の尿素水添加時のNOxセンサ出力が最小値となる場合に、増減幅を小さくした上で再度、尿素水添加量の変更等を行う構成としたため、添加量指令値の最適値を精度よく求めることができる。   When the addition amount command value is increased / decreased by a predetermined increase / decrease range and the urea solution addition in three stages is executed, and the NOx sensor output at the time of adding an intermediate amount of urea solution among the additions of the urea solution in the three stages becomes the minimum value In addition, since the increase / decrease range is reduced and the urea water addition amount is changed again, the optimum value of the addition amount command value can be obtained with high accuracy.

NOx浄化率が比較的低い場合にのみ、添加量指令値の更新を実行する構成とした。そのため、NOx浄化率が適正レベルにあり、添加量指令値の更新が不要となっている場合に、不要な添加量指令値の算出(更新)をやめさせることができる。   The addition amount command value is updated only when the NOx purification rate is relatively low. Therefore, when the NOx purification rate is at an appropriate level and it is not necessary to update the addition amount command value, calculation (update) of the unnecessary addition amount command value can be stopped.

尿素水増減時におけるセンサ出力最大値Vmaxとセンサ出力最小値Vminとの差(Vmax−Vmin)が所定値よりも小さい場合に、添加量指令値を新たに算出しない構成としたため、不要な添加量指令値の算出(更新)をやめさせることができる。   Since the addition amount command value is not newly calculated when the difference (Vmax−Vmin) between the sensor output maximum value Vmax and the sensor output minimum value Vmin when the urea water increases / decreases is smaller than a predetermined value, an unnecessary addition amount Command value calculation (update) can be stopped.

NOxセンサ出力が最小値となる添加量指令値を、学習値としてEEPROM51(バックアップ用のメモリ)に記憶する構成としたため、NOxセンサ出力の特性を定常的に把握しつつ、尿素水添加の制御に好適に反映させることができる。また、NOxセンサ出力が最小値となる添加量指令値を必要最小限の頻度で算出すればよいこととなり、添加量指令値の算出にかかる演算負荷を軽減できる。   Since the addition amount command value at which the NOx sensor output becomes the minimum value is stored in the EEPROM 51 (backup memory) as a learning value, it is possible to control the urea water addition while constantly grasping the characteristics of the NOx sensor output. It can be suitably reflected. Further, it is only necessary to calculate the addition amount command value at which the NOx sensor output becomes the minimum value with the necessary minimum frequency, and the calculation load for calculating the addition amount command value can be reduced.

また、エンジン運転状態(排気の状態を含む)に対応付けて添加量指令値をEEPROM51に記憶する構成とすることにより、尿素水添加弁44による尿素水添加に際し、エンジン運転状態が変化してもその都度最適な添加量指令値を設定することができる。   Further, by configuring the addition amount command value in the EEPROM 51 in association with the engine operating state (including the exhaust state), even when the engine operating state changes during the urea water addition by the urea water addition valve 44. The optimum addition amount command value can be set each time.

本発明は上記実施形態の記載内容に限定されず、例えば次のように実施されてもよい。   The present invention is not limited to the description of the above embodiment, and may be implemented as follows, for example.

・上記実施形態では、尿素水添加量を増減変化させる際、変更幅を一定とし、かつ都度の添加量指令値を中心値としその添加量指令値を跨ぐようにして、尿素水添加量を添加量増量値→添加量減量値の順に変化させる構成としたが、これを変更してもよい。例えば、図11(a)に示すように、増量側(減量側でも可)の一方向に、尿素水添加量を変化させるようにしてもよい。図11(a)では、丸数字1〜4に示すように、尿素水添加量を一定量ずつ増量させ、都度のNOxセンサ出力を取得する構成としている。又は、図11(b)に示すように、変更幅を変化させつつ、尿素水添加量を増量(減量でも可)させるようにしてもよい。図11(b)では、丸数字1→2→3に示す添加量変更時に変更幅を大きくし、その後の丸数字3→4→5に示す添加量変更時に変更幅を小さくしている。   -In the above embodiment, when the urea water addition amount is increased or decreased, the change amount is constant, and the addition amount command value is set as the center value, and the urea water addition amount is added across the addition amount command value. Although it was set as the structure changed in order of an amount increase value-> addition amount decrease value, this may be changed. For example, as shown in FIG. 11A, the urea water addition amount may be changed in one direction on the increase side (or on the decrease side). In FIG. 11A, as indicated by the circled numbers 1 to 4, the urea water addition amount is increased by a certain amount to obtain the NOx sensor output every time. Or as shown in FIG.11 (b), you may make it increase urea water addition amount (it is also possible to reduce it), changing a change width. In FIG. 11 (b), the change width is increased when the addition amount is changed as indicated by the circle numbers 1 → 2 → 3, and the change width is reduced when the addition amount is changed as indicated by the subsequent circle numbers 3 → 4 → 5.

・NOxセンサの出力値に基づいて尿素水添加量の変更幅を可変に設定するようにしてもよい。例えば、NOxセンサ出力値が大きいほど、尿素水添加量の変更幅を大きくする。図4からも分かるように、NOxセンサ出力が比較的大きい場合には、尿素水添加量の変更に対するNOxセンサ出力の変化勾配(変化率)が比較的大きく、NOxセンサ出力が比較的小さい場合には、尿素水添加量の変更に対するNOxセンサ出力の変化勾配(変化率)が比較的小さい。それゆえに、上記のようにNOxセンサの出力値に基づいて尿素水添加量の変更幅を設定することにより、NOxセンサ出力の最小値を適正に見出すことが可能となる。   -The change width of the urea water addition amount may be variably set based on the output value of the NOx sensor. For example, the greater the NOx sensor output value, the greater the change amount of the urea water addition amount. As can be seen from FIG. 4, when the NOx sensor output is relatively large, the change gradient (change rate) of the NOx sensor output with respect to the change in the urea water addition amount is relatively large, and the NOx sensor output is relatively small. The change gradient (change rate) of the NOx sensor output with respect to the change of the urea water addition amount is relatively small. Therefore, it is possible to appropriately find the minimum value of the NOx sensor output by setting the change width of the urea water addition amount based on the output value of the NOx sensor as described above.

・尿素水添加量の変更前のNOxセンサ出力と変更後のNOxセンサ出力とに基づいて、NOxセンサ出力が最小値となる尿素水添加量が減量側にあるか増量側にあるかを予測し、その予測結果に基づいて尿素水添加量を増量又は減量させる構成としてもよい。例えば、尿素水添加量の増減変更に伴いNOxセンサ出力が変更前に対して増加した場合には増減方向を反転させる。又は、同じく尿素水添加量の増減変更に伴いNOxセンサ出力が変更前に対して減少した場合には同じ増減方向にて尿素水添加量を変更する。本構成によれば、センサ出力が最小値となる尿素水添加量がある側(減量側、増量側のいずれか)にのみ、尿素水添加量の増減変更を行わせることが可能となる。したがって、尿素水添加量の増減処理を簡易化できる。   -Based on the NOx sensor output before the change of the urea water addition amount and the NOx sensor output after the change, predict whether the urea water addition amount at which the NOx sensor output becomes the minimum value is on the decrease side or the increase side The urea water addition amount may be increased or decreased based on the prediction result. For example, the increase / decrease direction is reversed when the NOx sensor output increases with respect to the increase / decrease in the urea water addition amount. Alternatively, when the NOx sensor output decreases with the increase / decrease change of the urea water addition amount, the urea water addition amount is changed in the same increase / decrease direction. According to this configuration, the urea water addition amount can be increased or decreased only on the side where the urea water addition amount at which the sensor output becomes the minimum value is present (either the reduction side or the increase side). Therefore, the increase / decrease process of the urea water addition amount can be simplified.

・SCR触媒42の下流側に設けられたアンモニアスリップ触媒43が活性状態にあるかどうかを判定し、アンモニアスリップ触媒43が非活性状態である旨判定された場合に、尿素水添加量の増減変更、及び添加量指令値の更新を実行するとよい。具体的には、ECU50は、アンモニアスリップ触媒43の温度(実測値、又は推定値)、又はエンジン始動後の経過時間等に基づいて同触媒43の活性状態を判定し、非活性状態にあれば、尿素水添加量の増減処理等を実行する。かかる構成によれば、アンモニアスリップ触媒43が非活性状態にある場合に、SCR触媒42の下流側へのアンモニアの排出を抑え、ひいてはアンモニアの大気排出を抑制できる。   -It is determined whether or not the ammonia slip catalyst 43 provided downstream of the SCR catalyst 42 is in an active state, and when it is determined that the ammonia slip catalyst 43 is in an inactive state, the urea water addition amount is increased or decreased And updating the addition amount command value. Specifically, the ECU 50 determines the active state of the ammonia slip catalyst 43 based on the temperature (actually measured value or estimated value) of the ammonia slip catalyst 43, the elapsed time after engine start, and the like. Then, increase / decrease processing of the added amount of urea water is executed. According to such a configuration, when the ammonia slip catalyst 43 is in an inactive state, it is possible to suppress the discharge of ammonia to the downstream side of the SCR catalyst 42 and thus suppress the discharge of ammonia to the atmosphere.

・上記実施形態では、尿素水添加弁44への開弁指令パルスの出力周期を調整することで尿素水添加量を制御する構成としたが、これに代えて、尿素水添加弁44への開弁指令パルスのパルス長(通電時間)を調整することで尿素水添加量を制御する構成するとしてもよい。   In the above embodiment, the urea water addition amount is controlled by adjusting the output period of the valve opening command pulse to the urea water addition valve 44. However, instead of this, the opening to the urea water addition valve 44 is controlled. The urea water addition amount may be controlled by adjusting the pulse length (energization time) of the valve command pulse.

・NOxセンサとして、図3に示す構造以外のセンサ素子を用いたものを適用することも可能である。例えば、ポンプセルとセンサセルとを有し、モニタセル(第2ポンプセル)を有していない構成(2セル構成)としてもよい。又は、ポンプセルにおいて酸素ポンピング(くみ出し、くみ入れ)を大気室(図3の大気通路72)との間で行う構成に代えて、同酸素ポンピングを、センサ素子周囲との間で行う構成としてもよい。   A NOx sensor using a sensor element other than the structure shown in FIG. 3 can be applied. For example, it is good also as a structure (2 cell structure) which has a pump cell and a sensor cell and does not have a monitor cell (2nd pump cell). Alternatively, the oxygen pumping may be performed between the sensor element and the surroundings of the sensor element in place of the configuration in which oxygen pumping (pumping and filling) is performed with the atmosphere chamber (atmosphere passage 72 in FIG. 3) in the pump cell. .

・還元剤添加手段として、尿素水添加弁44(電磁駆動式のインジェクタに相当)以外の構成を採用することも可能である。例えば、還元剤添加手段として、還元剤としての尿素水と加圧エアとをノズル先端部から同時に噴出させる尿素水添加ノズルを採用することが可能である。   As the reducing agent addition means, it is possible to adopt a configuration other than the urea water addition valve 44 (corresponding to an electromagnetically driven injector). For example, a urea water addition nozzle that simultaneously ejects urea water as a reducing agent and pressurized air from the nozzle tip can be employed as the reducing agent addition means.

発明の実施の形態におけるエンジン制御システムの概略を示す構成図。The block diagram which shows the outline of the engine control system in embodiment of invention. 開弁指令パルスの出力形態を説明するためのタイムチャート。The time chart for demonstrating the output form of a valve opening command pulse. NOxセンサを構成するセンサ素子の断面構造を示す断面図。Sectional drawing which shows the cross-section of the sensor element which comprises a NOx sensor. 尿素水添加量に対する触媒下流側のNOx濃度、NH3濃度、NOxセンサ出力の対応関係を示す図。The figure which shows the correspondence of NOx density | concentration of the downstream of a catalyst with respect to urea water addition amount, NH3 density | concentration, and NOx sensor output. 尿素水添加量の制御手順を示すフローチャート。The flowchart which shows the control procedure of urea water addition amount. 添加量増減処理を示すフローチャート。The flowchart which shows addition amount increase / decrease processing. NOxセンサ出力の特性を示す図。The figure which shows the characteristic of NOx sensor output. 添加量増減時におけるNOxセンサ出力の推移を示すタイムチャート。The time chart which shows transition of the NOx sensor output at the time of addition amount increase / decrease. NOxセンサ出力の特性を模式的に示す図。The figure which shows the characteristic of NOx sensor output typically. NOxセンサ出力の特性を模式的に示す図。The figure which shows the characteristic of NOx sensor output typically. NOxセンサ出力の特性を模式的に示す図。The figure which shows the characteristic of NOx sensor output typically.

符号の説明Explanation of symbols

10…エンジン、22…排気管、42…SCR触媒(NOx浄化触媒)、43…アンモニアスリップ触媒(酸化触媒)、44…尿素水添加弁(還元剤添加手段)、47…NOxセンサ、50…ECU(添加量制御手段、指令値算出手段、学習手段、活性判定手段)、51…EEPROM、60…センサ素子、61,62…固体電解質体、81…ポンプセル、84…モニタセル、85…センサセル。   DESCRIPTION OF SYMBOLS 10 ... Engine, 22 ... Exhaust pipe, 42 ... SCR catalyst (NOx purification catalyst), 43 ... Ammonia slip catalyst (oxidation catalyst), 44 ... Urea water addition valve (reducing agent addition means), 47 ... NOx sensor, 50 ... ECU (Addition amount control means, command value calculation means, learning means, activity determination means), 51 ... EEPROM, 60 ... sensor element, 61,62 ... solid electrolyte body, 81 ... pump cell, 84 ... monitor cell, 85 ... sensor cell.

Claims (11)

内燃機関の排気通路に設けられるNOx浄化触媒と、同NOx浄化触媒の排気上流側に還元剤を添加する還元剤添加手段と、前記NOx浄化触媒の排気下流側のNOx量を検出するNOxセンサとを備え、都度の添加量指令値を目標値として、前記還元剤添加手段による還元剤添加を実行する内燃機関の排気浄化装置であり、
各々異なる添加量に変更しつつ前記還元剤添加手段により還元剤を添加させる添加量制御手段と、
前記添加量制御手段による還元剤添加時において都度の添加量ごとに前記NOxセンサのセンサ出力を取得するとともに、該取得したセンサ出力のうち同センサ出力が最小値となる還元剤添加量により前記添加量指令値を算出する指令値算出手段と、
を備えることを特徴とする内燃機関の排気浄化装置。
A NOx purification catalyst provided in the exhaust passage of the internal combustion engine, a reducing agent addition means for adding a reducing agent to the exhaust upstream side of the NOx purification catalyst, a NOx sensor for detecting the NOx amount on the exhaust downstream side of the NOx purification catalyst, An exhaust gas purification apparatus for an internal combustion engine that executes addition of a reducing agent by the reducing agent addition means, with each addition amount command value as a target value,
An addition amount control means for adding a reducing agent by the reducing agent addition means while changing to different addition amounts,
The sensor output of the NOx sensor is acquired for each addition amount at the time of addition of the reducing agent by the addition amount control means, and the addition is performed according to the reducing agent addition amount at which the sensor output becomes a minimum value among the obtained sensor outputs. Command value calculating means for calculating a quantity command value;
An exhaust emission control device for an internal combustion engine, comprising:
前記添加量制御手段は、都度の添加量指令値を基準として増量側又は減量側の少なくともいずれかに還元剤添加量を変更する請求項1に記載の内燃機関の排気浄化装置。   2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the addition amount control means changes the reducing agent addition amount to at least one of an increase side and a decrease side on the basis of each addition amount command value. 前記添加量制御手段は、あらかじめ定めた変更幅で還元剤添加量を変更して少なくとも3段階の還元剤添加を実行するととも、その少なくとも3段階の還元剤添加のうち中間量の還元剤添加時における前記センサ出力が最小値となる場合に、前記変更幅を小さくした上で再度、還元剤添加量の変更に伴う還元剤添加を実行する請求項1又は2に記載の内燃機関の排気浄化装置。   The addition amount control means executes at least three stages of reducing agent addition by changing the reducing agent addition amount within a predetermined change range, and at the time of adding an intermediate amount of the reducing agent among the at least three stages of reducing agent addition. 3. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein when the sensor output in the engine reaches a minimum value, the reducing agent addition is performed again with the change of the reducing agent addition amount after reducing the change width. . 還元剤添加量の変更前の前記センサ出力と変更後の前記センサ出力とに基づいて、前記センサ出力が最小値となる還元剤添加量が減量側にあるか増量側にあるかを予測する手段を備え、
前記添加量制御手段は、前記予測手段による予測結果に基づいて還元剤添加量を増量又は減量させる請求項1乃至3のいずれか1つに記載の内燃機関の排気浄化装置。
Based on the sensor output before the change of the reducing agent addition amount and the sensor output after the change, a means for predicting whether the reducing agent addition amount at which the sensor output becomes the minimum value is on the decrease side or the increase side With
The exhaust purification device for an internal combustion engine according to any one of claims 1 to 3, wherein the addition amount control means increases or decreases the amount of addition of the reducing agent based on a prediction result by the prediction means.
前記添加量制御手段は、前記NOxセンサの出力値に基づいて還元剤添加量の変更幅を設定する請求項1乃至4のいずれかに記載の内燃機関の排気浄化装置。   The exhaust purification device for an internal combustion engine according to any one of claims 1 to 4, wherein the addition amount control means sets a range of change of the reducing agent addition amount based on an output value of the NOx sensor. 前記指令値算出手段は、前記添加量制御手段による還元剤添加量の変更に伴い取得された前記センサ出力の最小値と最大値との差が所定値以内であれば、添加量指令値を新たに算出しない請求項1乃至5のいずれかに記載の内燃機関の排気浄化装置。   If the difference between the minimum value and the maximum value of the sensor output acquired with the change of the reducing agent addition amount by the addition amount control means is within a predetermined value, the command value calculation means newly sets the addition amount command value. The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 5, wherein the exhaust gas purification device is not calculated. 前記添加量制御手段により還元剤添加量を増減させる場合に、添加量の減量を行う期間を、添加量の増量を行う期間よりも長くする請求項1乃至6のいずれかに記載の内燃機関の排気浄化装置。   The internal combustion engine according to any one of claims 1 to 6, wherein when the reducing agent addition amount is increased or decreased by the addition amount control means, a period during which the addition amount is reduced is longer than a period during which the addition amount is increased. Exhaust purification device. 前記指令値算出手段により算出した添加量指令値を学習値としてバックアップ用のメモリに記憶するとともに、前記学習値を随時更新する学習手段を備える請求項1乃至7のいずれか1つに記載の内燃機関の排気浄化装置。   The internal combustion engine according to any one of claims 1 to 7, further comprising learning means for storing the addition amount command value calculated by the command value calculation means as a learning value in a backup memory and updating the learning value as needed. Engine exhaust purification system. 前記学習手段は、前記指令値算出手段により算出した添加量指令値を、前記添加量制御手段による添加量制御時における内燃機関の運転状態に対応づけて前記メモリに記憶する請求項8に記載の内燃機関の排気浄化装置。   9. The learning unit according to claim 8, wherein the learning unit stores the addition amount command value calculated by the command value calculation unit in the memory in association with an operation state of the internal combustion engine at the time of addition amount control by the addition amount control unit. An exhaust purification device for an internal combustion engine. 前記NOx浄化触媒の下流側に設けられる還元剤浄化用の酸化触媒と、同酸化触媒が活性状態にあるかどうかを判定する活性判定手段とを備える内燃機関の排気浄化装置であり、
前記活性判定手段により酸化触媒が非活性状態である旨判定された場合に、前記指令値算出手段による添加量指令値の算出を実行する請求項1乃至9のいずれか1つに記載の内燃機関の排気浄化装置。
An exhaust gas purification apparatus for an internal combustion engine comprising an oxidation catalyst for purifying a reducing agent provided on the downstream side of the NOx purification catalyst, and an activity determination means for determining whether or not the oxidation catalyst is in an active state;
The internal combustion engine according to any one of claims 1 to 9, wherein when the activation determination unit determines that the oxidation catalyst is in an inactive state, the addition amount command value is calculated by the command value calculation unit. Exhaust purification equipment.
前記NOxセンサは、固体電解質体と、同固体電解質体上に設けられるNOx検出電極とを有するセンサ素子を備えるものである請求項1乃至10のいずれか1つに記載の内燃機関の排気浄化装置。   The exhaust purification apparatus for an internal combustion engine according to any one of claims 1 to 10, wherein the NOx sensor includes a sensor element having a solid electrolyte body and a NOx detection electrode provided on the solid electrolyte body. .
JP2007290828A 2007-11-08 2007-11-08 Exhaust gas purifying apparatus for internal combustion engine Withdrawn JP2009115032A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007290828A JP2009115032A (en) 2007-11-08 2007-11-08 Exhaust gas purifying apparatus for internal combustion engine
DE102008043355A DE102008043355A1 (en) 2007-11-08 2008-10-31 Exhaust gas purification device for an internal combustion engine
US12/265,388 US20090120073A1 (en) 2007-11-08 2008-11-05 Exhaust gas purifying apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007290828A JP2009115032A (en) 2007-11-08 2007-11-08 Exhaust gas purifying apparatus for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009115032A true JP2009115032A (en) 2009-05-28

Family

ID=40530768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007290828A Withdrawn JP2009115032A (en) 2007-11-08 2007-11-08 Exhaust gas purifying apparatus for internal combustion engine

Country Status (3)

Country Link
US (1) US20090120073A1 (en)
JP (1) JP2009115032A (en)
DE (1) DE102008043355A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094572A (en) * 2009-10-30 2011-05-12 Mitsubishi Heavy Ind Ltd Nox cleaning device for internal combustion engine
JP2013213466A (en) * 2012-04-03 2013-10-17 Honda Motor Co Ltd Exhaust purification system for vehicle
JP2013238206A (en) * 2012-05-17 2013-11-28 Toyota Motor Corp Exhaust emission control apparatus for internal combustion engine
WO2014087763A1 (en) 2012-12-03 2014-06-12 トヨタ自動車株式会社 System for determining deterioration of exhaust purification device
JP2015071994A (en) * 2013-10-04 2015-04-16 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2015135117A (en) * 2015-03-06 2015-07-27 ボルボ ラストバグナー アーベー Method for controlling reductant agent storage level in exhaust gas post-treatment device
JP2016075266A (en) * 2014-10-09 2016-05-12 いすゞ自動車株式会社 Purification liquid injection system of internal combustion engine, internal combustion engine, and purification liquid injection metho of internal combustion engine
CN109469540A (en) * 2017-09-08 2019-03-15 通用汽车环球科技运作有限责任公司 Selective catalytic reduction stable state NH_3 leakage detection under positive disturbance
JP2022500583A (en) * 2018-09-20 2022-01-04 ドイツ アクチェンゲゼルシャフト Dynamic detection method of excess ammonia by software algorithm without ammonia sensor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010003826A1 (en) * 2008-07-10 2010-01-14 Robert Bosch Gmbh Sensor element and method for determining gas components in gas mixtures and use thereof
DE102009006016A1 (en) * 2009-01-23 2010-07-29 Plasma Treat Gmbh Method and device for the detection of ionizable gases, in particular organic molecules, preferably hydrocarbons
DE102009022882A1 (en) 2009-05-27 2010-12-02 Bayerische Motoren Werke Aktiengesellschaft A sensor for detecting the amount of a reducing agent and the amount of a pollutant in an exhaust gas
CN101696649B (en) * 2009-09-30 2011-02-09 无锡威孚力达催化净化器有限责任公司 Urea solution spray electronic controller of selectively catalytic reduction system
CN102052130A (en) * 2011-01-11 2011-05-11 无锡市凯龙汽车设备制造有限公司 Tail gas processing system of diesel engine based on nitrogen oxide sensor
DE102011003670A1 (en) * 2011-02-04 2012-08-09 Bosch Emission Systems Gmbh & Co. Kg Method for operating exhaust system of internal combustion engine, involves adjusting amount of reducing agent supplied into exhaust gas stream based on gradient of time profile of value indicating nitrogen oxides contents in gas stream
EP2584198A3 (en) * 2011-10-21 2016-03-30 Continental Automotive GmbH Delivery pump for a fluid
US9255550B2 (en) * 2013-03-08 2016-02-09 GM Global Technology Operations LLC Emission system and method of selectively directing exhaust gas and air within an internal combustion engine
FR3010733B1 (en) * 2013-09-19 2017-12-29 Continental Automotive France METHOD FOR CONTROLLING AN INJECTOR ARRANGED IN AN EXHAUST LINE OF A MOTOR VEHICLE

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4114389B2 (en) 2002-04-22 2008-07-09 三菱ふそうトラック・バス株式会社 Exhaust purification device
JP4407705B2 (en) * 2007-02-26 2010-02-03 株式会社デンソー Exhaust purification agent addition amount control device and exhaust purification system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094572A (en) * 2009-10-30 2011-05-12 Mitsubishi Heavy Ind Ltd Nox cleaning device for internal combustion engine
JP2013213466A (en) * 2012-04-03 2013-10-17 Honda Motor Co Ltd Exhaust purification system for vehicle
JP2013238206A (en) * 2012-05-17 2013-11-28 Toyota Motor Corp Exhaust emission control apparatus for internal combustion engine
WO2014087763A1 (en) 2012-12-03 2014-06-12 トヨタ自動車株式会社 System for determining deterioration of exhaust purification device
US9366168B2 (en) 2012-12-03 2016-06-14 Toyota Jidosha Kabushiki Kaisha Deterioration determination system of exhaust emission control device
JP2015071994A (en) * 2013-10-04 2015-04-16 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2016075266A (en) * 2014-10-09 2016-05-12 いすゞ自動車株式会社 Purification liquid injection system of internal combustion engine, internal combustion engine, and purification liquid injection metho of internal combustion engine
JP2015135117A (en) * 2015-03-06 2015-07-27 ボルボ ラストバグナー アーベー Method for controlling reductant agent storage level in exhaust gas post-treatment device
CN109469540A (en) * 2017-09-08 2019-03-15 通用汽车环球科技运作有限责任公司 Selective catalytic reduction stable state NH_3 leakage detection under positive disturbance
JP2022500583A (en) * 2018-09-20 2022-01-04 ドイツ アクチェンゲゼルシャフト Dynamic detection method of excess ammonia by software algorithm without ammonia sensor
JP7432291B2 (en) 2018-09-20 2024-02-16 ドイツ アクチェンゲゼルシャフト Dynamic detection method of excess ammonia using software algorithm without ammonia sensor

Also Published As

Publication number Publication date
DE102008043355A1 (en) 2009-05-14
US20090120073A1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
JP2009115032A (en) Exhaust gas purifying apparatus for internal combustion engine
US9528424B2 (en) Malfunction diagnosis device for exhaust gas purification device of internal combustion engine
JP4558816B2 (en) Exhaust gas purification device for internal combustion engine
US8176730B2 (en) Exhaust gas purification device of internal combustion engine
US8915062B2 (en) Method and apparatus for monitoring a reductant injection system in an exhaust aftertreatment system
JP4658267B2 (en) Exhaust gas purification device for internal combustion engine
US8656703B2 (en) Exhaust purification device for engine
US20140260190A1 (en) Exhaust Aftertreatment Control System And Method For Maximizing Fuel Efficiency While Reducing Emissions
US8512531B2 (en) Gas concentration detection apparatus
US8359830B2 (en) Exhaust purification device of an internal combustion engine
JP2009281294A (en) Exhaust emission control device for internal combustion engine
CN107076045A (en) The control device and control method of explosive motor
CN103244294A (en) Emission control system for internal combustion engine
JP2010065581A (en) Exhaust emission control system of internal combustion engine
US9903833B2 (en) Control device and control method for internal combustion engine
JP2009007968A (en) Additive amount control device of exhaust emission control agent, and exhaust emission control system
JP2009007967A (en) Additive amount control device of exhaust emission control agent, and exhaust emission control system
US9951670B2 (en) Exhaust gas purification apparatus of internal combustion engine
JP4419150B2 (en) NOx catalyst abnormality diagnosis device and abnormality diagnosis method
JP4459987B2 (en) Exhaust purification agent addition amount control device and exhaust purification system
JP2009288082A (en) Warming up controller of gas concentration sensor
JP2017067717A (en) Gas sensor control device, reference point learning method and reference point diagnosing method
JP2009180150A (en) Abnormality determination device of nox sensor used for exhaust emission control system
JP4873329B2 (en) NOx sensor activity determination device, abnormality diagnosis device, and output correction device
JP5559960B2 (en) NOx sensor and its degradation suppression recovery control device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110201