JP2011094572A - Nox cleaning device for internal combustion engine - Google Patents

Nox cleaning device for internal combustion engine Download PDF

Info

Publication number
JP2011094572A
JP2011094572A JP2009251132A JP2009251132A JP2011094572A JP 2011094572 A JP2011094572 A JP 2011094572A JP 2009251132 A JP2009251132 A JP 2009251132A JP 2009251132 A JP2009251132 A JP 2009251132A JP 2011094572 A JP2011094572 A JP 2011094572A
Authority
JP
Japan
Prior art keywords
scr catalyst
temperature
reducing agent
catalyst
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009251132A
Other languages
Japanese (ja)
Other versions
JP5404320B2 (en
Inventor
Masato Mihashi
真人 三橋
Reiko Domeki
礼子 百目木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009251132A priority Critical patent/JP5404320B2/en
Publication of JP2011094572A publication Critical patent/JP2011094572A/en
Application granted granted Critical
Publication of JP5404320B2 publication Critical patent/JP5404320B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device highly accurately calculating an SCR catalyst temperature and appropriately controlling input and input timing of a reducing agent, to secure denitrification rate efficiency, reduce slip of NH3, and reduce an operation cost of a diesel engine along with saving of urea aqueous solution. <P>SOLUTION: The NOx cleaning device for an internal combustion engine is disposed to an exhaust pipe 2 of the engine 1, calculates an internal temperature of the SCR catalyst 11 from exhaust gas temperatures of an inlet and an outlet of the SCR catalyst 11, and estimates an amount of adsorption of the reducing agent to the SCR catalyst based on the internal temperature of the SCR catalyst 11. Therefore, a reducing agent amount to be sprayed in exhaust gas is highly accurately calculated to spray the reducing agent into the exhaust gas by a urea aqueous solution spray device 6 and thereby to reduce slip quantities of the NH3 and NOx. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関、特にディーゼルエンジンの排気浄化装置及び排気浄化方法に係り、尿素水又はアンモニア(NH3)を還元剤として添加して、窒素酸化物(NOx)を還元除去する選択還元型SCR触媒のNOx浄化技術に関する。   The present invention relates to an exhaust gas purification device and an exhaust gas purification method for an internal combustion engine, particularly a diesel engine, and a selective reduction type SCR in which urea water or ammonia (NH3) is added as a reducing agent to reduce and remove nitrogen oxides (NOx). The present invention relates to NOx purification technology for catalysts.

内燃機関、特にディーゼルエンジン(以後エンジンと表記する)の排ガス中に含まれる大気汚染物質の一つである窒素酸化物(以後NOxと表記する)を浄化するための排ガス浄化装置として、エンジンの排気通路に選択還元型SCR触媒(以後SCR触媒と表記する)を配設して、還元剤としてのアンモニア(以後NH3と表記する)をSCR触媒に添加することにより、排ガス中のNOxを選択的に浄化するようにした排ガス浄化装置が開発されている。   Engine exhaust as an exhaust gas purification device for purifying nitrogen oxides (hereinafter referred to as NOx), which is one of air pollutants contained in exhaust gas of internal combustion engines, particularly diesel engines (hereinafter referred to as engines). A selective reduction SCR catalyst (hereinafter referred to as SCR catalyst) is disposed in the passage, and ammonia as a reducing agent (hereinafter referred to as NH3) is added to the SCR catalyst, thereby selectively reducing NOx in the exhaust gas. An exhaust gas purification device that purifies the gas has been developed.

このような、排ガス浄化装置では、SCR触媒の上流側に噴霧ノズルにより尿素水を排ガス中に噴霧し、この尿素水が排ガスの熱により加水分解して生じたNH3がSCR触媒に供給される。SCR触媒に供給されたNH3は一旦SCR触媒に吸着され、該NH3と排ガス中のNOxとの脱硝反応がSCR触媒によって促進されることによりNOxの浄化(脱硝)が行われる。   In such an exhaust gas purification device, urea water is sprayed into the exhaust gas by the spray nozzle upstream of the SCR catalyst, and NH3 generated by hydrolysis of the urea water by the heat of the exhaust gas is supplied to the SCR catalyst. The NH3 supplied to the SCR catalyst is once adsorbed by the SCR catalyst, and NOx purification (denitration) is performed by promoting the denitration reaction between the NH3 and NOx in the exhaust gas by the SCR catalyst.

ところで、一般的にNOx浄化装置におけるNOx浄化率はSCR触媒の性能に依存するところが大きく、NH3を還元剤として高効率でNOxを浄化するためにはある程度の高温が必要とされる。
NH3を還元剤とするSCR触媒は、SCR触媒へのNH3吸着量が多いほどNOx浄化率が高いため、低温域でのSCR触媒の高浄化率を得るにはNH3吸着量を高く制御する必要がある。
一方、SCR触媒へのNH3吸着量には限界があり、吸着限界値はSCR触媒温度が低いとNH3吸着量は多く、SCR触媒温度が高いとNH3吸着量は少なくなる。
その先行技術文献として、特許第3951774号公報(特許文献1)が提案されている。
By the way, in general, the NOx purification rate in the NOx purification device largely depends on the performance of the SCR catalyst, and a certain high temperature is required to purify NOx with NH3 as a reducing agent with high efficiency.
Since the SCR catalyst using NH3 as the reducing agent has a higher NOx purification rate as the amount of NH3 adsorbed on the SCR catalyst increases, it is necessary to control the amount of NH3 adsorbed higher in order to obtain a higher purification rate of the SCR catalyst in a low temperature range. is there.
On the other hand, there is a limit to the amount of NH3 adsorbed on the SCR catalyst. As the adsorption limit value, the NH3 adsorption amount is large when the SCR catalyst temperature is low, and the NH3 adsorption amount is small when the SCR catalyst temperature is high.
As the prior art document, Japanese Patent No. 3951774 (Patent Document 1) has been proposed.

特許第3951774号公報Japanese Patent No. 3951774

特許文献1によると、NOx排出量導出手段で検出された又は、推定されたNOx排出量と、SCR触媒による実NOx浄化率とに基づき、SCR触媒に吸着されたNH3の消費量を導出して、吸着量導出手段により求めたNH3の添加量とNH3の消費量に応じてSCR触媒に吸着されたNH3の実吸着量を導出し、この実吸着量に応じて還元剤供給手段を制御するものである。
これらの制御を行う場合、触媒温度をより精度よく検出して、脱硝率の向上とNH3のスリップ(NH3の供給量が多くて、触媒への吸着限界を超えると、SCR触媒に吸着されずに、NH3が大気中に放出される現象)防止を行う必要がある。
ところが、温度センサにてSCR触媒の一部の温度しか測定していないため、SCR触媒全体の温度とはなっていない場合がある。
また、排ガス温度を使用する場合もあるが、汎用エンジン等では、使用される運転特性として、自動車やプラントよりも過渡運転状況が多い。つまり、負荷変動が大きく、断続運転を行うため、エンジン停止時間の長・短によっては必ずしもSCR触媒温度の代表値となっていないことが多い。
さらに、SCR触媒の熱容量の関係により、即ち、前回の停止時から今回の再始動時までの時間が比較的短い場合等では、排ガス温度よりもSCR触媒温度の方が高くなっている場合もあり、正確な吸着量を推定することが困難な場合がある。
According to Patent Document 1, the consumption amount of NH3 adsorbed on the SCR catalyst is derived based on the NOx emission amount detected or estimated by the NOx emission amount deriving means and the actual NOx purification rate by the SCR catalyst. Deriving the actual adsorption amount of NH3 adsorbed on the SCR catalyst according to the added amount of NH3 and the consumption amount of NH3 obtained by the adsorption amount deriving means, and controlling the reducing agent supply means according to the actual adsorption amount It is.
When these controls are performed, the catalyst temperature is detected more accurately, the denitration rate is improved, and NH3 slip (when the supply amount of NH3 is large and exceeds the adsorption limit on the catalyst, it is not adsorbed on the SCR catalyst. , A phenomenon in which NH3 is released into the atmosphere) needs to be prevented.
However, since only a part of the temperature of the SCR catalyst is measured by the temperature sensor, the temperature of the entire SCR catalyst may not be obtained.
Moreover, although exhaust gas temperature may be used, in general-purpose engines, etc., there are more transient operating situations than automobiles and plants as operating characteristics used. That is, since the load fluctuation is large and intermittent operation is performed, the representative value of the SCR catalyst temperature is often not always obtained depending on the length of the engine stop time.
Furthermore, due to the heat capacity of the SCR catalyst, that is, when the time from the previous stop to the current restart is relatively short, the SCR catalyst temperature may be higher than the exhaust gas temperature. In some cases, it is difficult to estimate an accurate adsorption amount.

本発明はこのような問題点を解決するためになされたもので、SCR触媒温度を精度よく算出して、還元剤の投入量とタイミングを適切に制御して、脱硝率の確保とNH3のスリップ低減及び、還元剤の節約に伴うディーゼルエンジンの運転コストを低減させる装置を提供することを目的とする。   The present invention has been made to solve such problems. The SCR catalyst temperature is accurately calculated, and the amount and timing of reducing agent input are appropriately controlled to ensure the denitration rate and NH3 slip. It is an object of the present invention to provide an apparatus for reducing the operating cost of a diesel engine accompanying reduction and saving of a reducing agent.

本発明はかかる目的を達成するもので、エンジンの排気系に設けられ、還元剤であるNH3を吸着して排ガス中のNOxを選択還元するSCR触媒と、該SCR触媒に前記還元剤を供給する還元剤供給手段と、前記SCR触媒の入口と出口の前記排ガスの温度を測定する温度測定手段と、該温度測定手段にて検出した前記入口と出口との排ガス温度差に基づいて前記SCR触媒内部温度を推定するSCR触媒温度推定部及び前記SCR触媒内部温度に基づいて前記SCR触媒への前記NH3の吸着量を算出して、該吸着量に基づいて前記還元剤の供給量を算出する還元剤供給量制御部を有した制御手段とを備えたエンジンのNOx浄化装置において、前記エンジン始動時又は冷時に、前記還元剤供給量制御部にて前記還元剤供給量を算出する前記SCR触媒温度(初期値)として、前記温度測定手段の測定結果に基づいた前記SCR触媒の前記入口と前記出口との排ガス温度平均値と、前記SCR触媒温度推定部にて推定した前記SCR触媒内部温度とを比較して、排ガス温度平均値が前記SCR触媒内部温度に対して高いか又は、同等の場合は前記排ガス温度平均値を、前記SCR触媒内部温度の方が高い場合は前記SCR触媒の温度を初期値として前記還元剤供給量を算出して前記還元剤を前記還元剤供給手段から前記SCR触媒に供給するように制御することを特徴とする。   The present invention achieves such an object, and is provided in an engine exhaust system to adsorb NH3 as a reducing agent to selectively reduce NOx in exhaust gas, and to supply the reducing agent to the SCR catalyst. Reducing agent supply means, temperature measuring means for measuring the temperature of the exhaust gas at the inlet and outlet of the SCR catalyst, and the inside of the SCR catalyst based on the exhaust gas temperature difference between the inlet and outlet detected by the temperature measuring means A reducing agent that calculates the amount of NH3 adsorbed to the SCR catalyst based on the internal temperature of the SCR catalyst and an SCR catalyst temperature estimating unit that estimates temperature, and calculates the supply amount of the reducing agent based on the amount of adsorption In a NOx purification device for an engine having a control means having a supply amount control unit, the reducing agent supply amount control unit calculates the reducing agent supply amount when the engine is started or cold. As the SCR catalyst temperature (initial value), the exhaust gas temperature average value at the inlet and the outlet of the SCR catalyst based on the measurement result of the temperature measuring means, and the SCR catalyst estimated by the SCR catalyst temperature estimation unit When the exhaust gas temperature average value is higher than or equivalent to the internal temperature of the SCR catalyst, the exhaust gas temperature average value is compared with the internal temperature, and when the internal temperature of the SCR catalyst is higher, the SCR catalyst The reducing agent supply amount is calculated with the initial temperature as the initial value, and the reducing agent is controlled to be supplied from the reducing agent supply means to the SCR catalyst.

このような構成により、SCR触媒は触媒へのアンモンニア(還元剤)吸着量が多いほどNOx浄化率が高い性質を有しているが、一方、SCR触媒の温度によってNH3吸着量が変化するので、NOx触媒の内部温度を精度よく測定して、還元剤の排ガス中への供給量をコントロールすることにより、還元剤のスリップ(還元剤が反応しないで、アンモニアのままで大気に放出される)量を極力減少させて排ガスの浄化向上が可能とすることができる。   With such a configuration, the SCR catalyst has a property that the NOx purification rate is higher as the amount of ammonia (reducing agent) adsorbed on the catalyst is larger. On the other hand, the NH3 adsorption amount changes depending on the temperature of the SCR catalyst. By measuring the internal temperature of the NOx catalyst accurately and controlling the amount of reducing agent supplied into the exhaust gas, the amount of reducing agent slip (the reducing agent does not react and is released into the atmosphere as ammonia) As a result, it is possible to improve the purification of exhaust gas.

また、本発明において好ましくは、前記SCR触媒温度推定部は前記エンジン停止後も前記SCR触媒温度の推定を継続し、前記SCR触媒温度推定部による前記SCR触媒推定温度と、前記温度測定手段にて検出された前記SCR触媒入口が前記排ガス温度以下となった場合には前記SCR触媒温度の推定を終了し、前記SCR触媒推定温度が前記SCR触媒入口排ガス温度より高い状態で、前記エンジンが再始動した場合には前記触媒温度推定を前記再始動時の前記触媒温度推定値を前記初期値として前記還元剤供給量を算出して前記還元剤を前記還元剤供給手段から前記SCR触媒に供給するように制御するとよい。   Preferably, in the present invention, the SCR catalyst temperature estimation unit continues to estimate the SCR catalyst temperature even after the engine is stopped, and the SCR catalyst temperature estimation unit by the SCR catalyst temperature estimation unit and the temperature measurement unit When the detected SCR catalyst inlet becomes lower than the exhaust gas temperature, the estimation of the SCR catalyst temperature is finished, and the engine is restarted in a state where the estimated SCR catalyst temperature is higher than the SCR catalyst inlet exhaust gas temperature. If the catalyst temperature is estimated, the reducing agent supply amount is calculated using the estimated catalyst temperature value at the time of restarting as the initial value, and the reducing agent is supplied from the reducing agent supply means to the SCR catalyst. It is good to control.

汎用エンジン等では機関本体の稼動状態が多種多様であるため、エンジンの温度が下がらないうちに再起動する場合や、エンジンの停止が長くエンジンが冷えた状態(冷時)で再起動する場合等の使用例が多く、再起動したときにより正確なSCR触媒へのNH3吸着量を推定することにより、再始動時の排ガス浄化効率向上が可能とすることができる。   In general-purpose engines, etc., the engine main body has a wide variety of operating conditions. For example, when the engine is restarted before the temperature drops, or when the engine is stopped for a long time and the engine is cold (when cold), etc. There are many usage examples, and it is possible to improve the exhaust gas purification efficiency at the time of restarting by estimating the NH3 adsorption amount to the SCR catalyst more accurately when restarting.

また、本発明において好ましくは、前記SCR触媒温度推定部は前記SCR触媒入口と、前記SCR触媒出口の排ガス温度を計測して、夫々の排ガス温度、前記触媒の熱容量及び伝熱特性に基づいて前記SCR触媒内部温度を推定するとよい。   Preferably, in the present invention, the SCR catalyst temperature estimation unit measures exhaust gas temperatures at the SCR catalyst inlet and the SCR catalyst outlet, and determines the exhaust gas temperature based on the exhaust gas temperature, the heat capacity and heat transfer characteristics of the catalyst. The SCR catalyst internal temperature may be estimated.

このような構成により、SCR触媒入口及び出口の排ガス温度を計測して、SCR触媒内部推定温度を推定しているので、SCR触媒全体の平均温度とすることができるので、脱硝反応やSCR触媒へのNH3吸脱着反応の平均値を求めることが可能となるため、SCR触媒へのより精度の高いNH3吸着量を推定することができ、排ガスの浄化向上が可能とすることができる。   With such a configuration, the exhaust gas temperature at the inlet and outlet of the SCR catalyst is measured and the estimated internal temperature of the SCR catalyst is estimated. Therefore, the average temperature of the entire SCR catalyst can be obtained. Therefore, it is possible to estimate the NH3 adsorption amount with higher accuracy on the SCR catalyst and to improve the purification of exhaust gas.

また、本発明において好ましくは、前記エンジンが冷時状態始動時の前記SCR触媒温度を温度センサにて直接測定し、その測定値を前記初期値とするとよい。   In the present invention, preferably, the temperature of the SCR catalyst when the engine is in a cold state start is directly measured by a temperature sensor, and the measured value is set as the initial value.

エンジン始動時の触媒温度の初期値を温度センサにて直接測定しているので、エンジンが始動して触媒温度が効率的に還元反応できる温度状態になるまでの間について、精度よく触媒温度が計測できる。この為、SCR触媒の還元剤吸着量とその還元浄化処理を更に、適切に実行することが可能となる。
従って、適切なNOx還元剤の噴霧量とすることで、NH3のスリップを防止すると共に、還元剤の無駄を省き、エンジンの運転コストを低減できる。
Since the initial value of the catalyst temperature at the time of engine start is directly measured by the temperature sensor, the catalyst temperature is accurately measured from when the engine is started until the catalyst temperature reaches a state where the catalyst temperature can be efficiently reduced. it can. For this reason, it becomes possible to more appropriately execute the reducing agent adsorption amount of the SCR catalyst and its reduction and purification process.
Therefore, by setting the spray amount of the appropriate NOx reducing agent, NH3 slip can be prevented, the reducing agent can be eliminated, and the operating cost of the engine can be reduced.

また、本発明において好ましくは、エンジンの排気系に設けられ、NH3を吸着して排ガス中のNOxを選択還元し、周方向に複数に分割された領域を有する円柱形状のSCR触媒と、該SCR触媒の上流側で、還元剤である前記NH3又は尿素水を噴出する複数の噴霧ノズルを前記SCR触媒の周方向へ等間隔に配設して前記還元剤を前記SCR触媒に供給する還元剤供給手段と、前記SCR触媒の排ガス入口と出口に配設された温度センサとが前記SCR触媒を挟んで且つ、対向した状態で夫々配置された温度測定手段と、該温度測定手段にて測定された温度に基づいて前記SCR触媒内部温度を対向した前記温度センサ毎に温度分布を推定する触媒温度推定部と、前記SCR触媒内部温度に基づいて前記SCR触媒への前記NH3の吸着量を算出して、該吸着量に基づいて還元剤の供給量を前記複数の噴霧ノズル毎に算出する還元剤供給量制御部を有した制御手段とを備えたエンジンのNOx浄化装置において、前記還元剤供給量制御部は前記触媒温度推定部によって検出された前記温度分布の温度の高さにより前記各噴霧ノズルからの前記還元剤噴出量を制御したことを特徴とする。   Preferably, in the present invention, a cylindrical SCR catalyst that is provided in an exhaust system of the engine, adsorbs NH3, selectively reduces NOx in the exhaust gas, and has a region divided into a plurality in the circumferential direction, and the SCR Reducing agent supply for supplying the reducing agent to the SCR catalyst by arranging a plurality of spray nozzles for ejecting the NH3 or urea water as the reducing agent at equal intervals in the circumferential direction of the SCR catalyst on the upstream side of the catalyst. And temperature sensors disposed at the exhaust gas inlet and outlet of the SCR catalyst, with the SCR catalyst sandwiched therebetween and in a state of being opposed to each other, and the temperature measuring means A catalyst temperature estimator for estimating a temperature distribution for each of the temperature sensors facing the internal temperature of the SCR catalyst based on the temperature; and an absorption of the NH3 to the SCR catalyst based on the internal temperature of the SCR catalyst. In the engine NOx purification device comprising: a control means having a reducing agent supply amount control unit that calculates an amount and calculates a reducing agent supply amount for each of the plurality of spray nozzles based on the adsorption amount; The reducing agent supply amount control unit controls the amount of the reducing agent ejected from each spray nozzle according to the temperature of the temperature distribution detected by the catalyst temperature estimation unit.

このような構成により、複数に分割した触媒の円周方向毎に還元剤を触媒の温度分布毎
に噴霧量を調整できるため、効率的な脱硝が可能となり、尿素水の使用量を少なくすることができると共に、NH3のスリップ量も低減できる。
また、配管の曲がり等による排ガスの偏流により、SCR触媒を流れる排ガス量が部分
的に偏り、NOxの還元率が分布により異なってくるが、このような場合にも効果的に対応できる。
更に、複数のノズルを使用するため、ノズルの故障が発生しても、極端な脱硝性能の低
下を防止することが可能となる。
With such a configuration, the spray amount of the reducing agent can be adjusted for each catalyst temperature distribution in each circumferential direction of the catalyst divided into a plurality of parts, so that efficient denitration is possible and the amount of urea water used is reduced. And the slip amount of NH3 can be reduced.
In addition, the amount of exhaust gas flowing through the SCR catalyst is partially biased due to the drift of exhaust gas due to bending of the piping and the like, and the reduction rate of NOx varies depending on the distribution, but such a case can be effectively dealt with.
Furthermore, since a plurality of nozzles are used, even if a nozzle failure occurs, it is possible to prevent an extreme decrease in the denitration performance.

また、本発明において、前記複数の各噴霧ノズルは前記複数に分割された領域のSCR触媒夫々に対向して配置され、前記夫々の噴霧ノズルから噴出される前記還元剤の前記SCR触媒への噴霧領域は前記全噴霧ノズルで前記SCR触媒の排ガス入口側の全域に噴霧されると共に、前記各噴霧ノズルは少なくとも前記SCR触媒の中心部を前記各噴霧ノズル夫々が重複して前記還元剤が噴霧されるように形成されているとよい。   In the present invention, each of the plurality of spray nozzles is disposed to face each of the SCR catalysts in the plurality of divided regions, and the reducing agent sprayed from the spray nozzles is sprayed onto the SCR catalyst. The area is sprayed over the entire area of the SCR catalyst on the exhaust gas inlet side by the spray nozzles, and the spray nozzles are sprayed with the reducing agent by overlapping the spray nozzles at least in the center of the SCR catalyst. It is good to be formed.

このような構成により、一般にNOx触媒中心部は最も温度が高いため、どのノズルからも還元剤が中心部に噴霧されるようにして、触媒の排気系上流側前面の中央部に多くの還元剤が噴霧されるようにしてNOxの還元浄化を効率的に促進できる。
更に、ノズルが複数となるので大型エンジン用に小型エンジン用ノズルを複数使用することで、大口径のノズルが不要となるため、部品の共通化が可能となりコスト低減効果が得られる。
With such a configuration, the NOx catalyst center is generally the hottest, so that the reducing agent is sprayed from any nozzle to the center so that a large amount of reducing agent is present at the center of the upstream side of the exhaust system of the catalyst. NOx reduction and purification can be efficiently promoted by spraying NO.
Furthermore, since a plurality of nozzles are used, a plurality of small engine nozzles are used for a large engine, so that a large-diameter nozzle is not required, so that parts can be shared and a cost reduction effect can be obtained.

また、本発明において、前記複数の各噴霧ノズルは前記複数に分割された領域のSCR触媒の夫々の前記温度センサ毎に分布された前記温度分布の分布域に対し、複数個の前記噴霧ノズルを配置するとよい。   In the present invention, each of the plurality of spray nozzles may include a plurality of the spray nozzles with respect to a distribution region of the temperature distribution distributed for each of the temperature sensors of the SCR catalyst in the plurality of divided regions. It is good to arrange.

このような構成により、分割されたSCR触媒夫々に対応した数だけ還元剤噴霧ノズルを設ける必要がなく、触媒の排気系上流側前面を覆う噴射領域にすることで、NOxの還元浄化を効率的に促進できると共に、噴霧ノズルの数を減少してコスト低減も可能となる。   With such a configuration, it is not necessary to provide as many reducing agent spray nozzles as the number corresponding to each of the divided SCR catalysts, and the NOx reduction purification can be performed efficiently by providing an injection region that covers the front side of the exhaust system upstream of the catalyst. And the cost can be reduced by reducing the number of spray nozzles.

また、本発明において、エンジンの排気系に設けられ、還元剤であるNH3を吸着して排ガス中のNOxを選択還元するSCR触媒と、該SCR触媒の前記排気系下流側に前記SCR触媒と間隔を置いて配置され、排ガス中のNOx及びNH3を浄化するNH3スリップ触媒と、前記SCR触媒に前記還元剤を供給する還元剤供給手段と、前記SCR触媒の入口と出口の前記排ガスの温度を測定する温度測定手段と、前記温度測定手段にて検出した前記入口と前記出口との排ガス温度差に基づいて前記SCR触媒内部温度を推定するSCR触媒温度推定部、尿素水噴霧量に対して前記SCR触媒内部温度と前記エンジン負荷によるNOx浄化率に基づいて前記SCR触媒から前記NH3のスリップ量を算出するNH3スリップ量算出部、前記NOx浄化率に基づいて前記SCR触媒でのNOxスリップ量を算出するNOxスリップ量算出部、前記NOxスリップ量の還元に必要な還元剤量を算出する還元剤量算出部、前記温度測定手段による前記出口の排ガス温度の検出温度に基づいて前記NH3スリップ触媒が活性状態になっているかを判断するNH3スリップ触媒活性判断部を有した制御手段とを備えたエンジンのNOx浄化装置において、NH3スリップ触媒活性判断部によってNH3スリップ触媒が活性状態になっていると判断した場合、前記SCR触媒内部温度に基づいて該SCR触媒からのNH3スリップ量とNOxスリップ量を算出して、前記NOxスリップ量を前記NH3スリップ触媒にて浄化するのに必要な前記還元剤量を求める前記SCR触媒の内部温度値として、前記温度測定手段の測定結果に基づいた前記SCR触媒の前記入口と前記出口との排ガス温度平均値と、前記SCR触媒温度推定部にて推定した前記SCR触媒内部温度とを比較して、温度の高い方を前記SCR触媒内部温度として前記還元剤量算出部で算出して前記還元剤供給手段に出力するようにしたことを特徴とする。   In the present invention, an SCR catalyst that is provided in the exhaust system of the engine, adsorbs NH3 as a reducing agent, and selectively reduces NOx in the exhaust gas, and the SCR catalyst is spaced from the SCR catalyst downstream of the SCR catalyst. And an NH3 slip catalyst for purifying NOx and NH3 in the exhaust gas, a reducing agent supply means for supplying the reducing agent to the SCR catalyst, and the temperature of the exhaust gas at the inlet and outlet of the SCR catalyst An SCR catalyst temperature estimating unit for estimating an internal temperature of the SCR catalyst based on an exhaust gas temperature difference between the inlet and the outlet detected by the temperature measuring unit, and the SCR for the urea water spray amount An NH3 slip amount calculation unit for calculating the NH3 slip amount from the SCR catalyst based on the catalyst internal temperature and the NOx purification rate by the engine load, A NOx slip amount calculating unit that calculates a NOx slip amount in the SCR catalyst based on an Ox purification rate, a reducing agent amount calculating unit that calculates a reducing agent amount necessary for reducing the NOx slip amount, and the temperature measuring unit In a NOx purifying apparatus for an engine having a control means having an NH3 slip catalyst activity judgment unit for judging whether the NH3 slip catalyst is in an activated state based on a detection temperature of an exhaust gas temperature at an outlet, the NH3 slip catalyst activity When the determination unit determines that the NH3 slip catalyst is in an active state, the NH3 slip amount and the NOx slip amount from the SCR catalyst are calculated based on the internal temperature of the SCR catalyst, and the NOx slip amount is calculated as the NH3 slip amount. The internal temperature value of the SCR catalyst for determining the amount of the reducing agent necessary for purification with a slip catalyst; Comparing the exhaust gas temperature average value of the inlet and outlet of the SCR catalyst based on the measurement result of the temperature measuring means with the internal temperature of the SCR catalyst estimated by the SCR catalyst temperature estimating unit, The higher temperature is calculated as the internal temperature of the SCR catalyst by the reducing agent amount calculation unit and output to the reducing agent supply means.

このような構成により、排ガス規制をクリアするため酸化触媒(以後NH3スリップ触媒と表記する。)を装着する必要のある場合には、SCR触媒にて意図的にNH3をスリップさせることにより、NH3スリップ触媒でのNOx浄化に必要なNH3量を供給することにより、NH3スリップ触媒でのNOx浄化を最大限に活用して、浄化率の向上が可能となる。
またNH3スリップ触媒のNOx浄化機能を活用することによりSCR触媒のサイズを縮小でき、コストの軽減につながる。
With such a configuration, when it is necessary to attach an oxidation catalyst (hereinafter referred to as NH3 slip catalyst) to clear exhaust gas regulations, NH3 slip is intentionally slipped by the SCR catalyst. By supplying the amount of NH3 required for NOx purification by the catalyst, it is possible to maximize the NOx purification by the NH3 slip catalyst and improve the purification rate.
Further, by utilizing the NOx purification function of the NH3 slip catalyst, the size of the SCR catalyst can be reduced, leading to cost reduction.

本発明によれば、このような構成により、SCR触媒は触媒へのNH3(還元剤)吸着量が多いほどNOx浄化率が高い性質を有しているが、温度によってNH3の吸着量が変化するので、SCR触媒の内部温度を精度よく測定して、還元剤の排ガス中への噴出量をコントロールすることにより、還元剤のスリップ量を極力減少させて排ガス中の脱硝効果を向上させることが可能となる。
更に、排ガス規制をクリアするためNH3スリップ触媒を装着する必要のある場合には、SCR触媒にて意図的にNH3をスリップさせることにより、NH3スリップ触媒でのNOx浄化に必要なNH3量を適切に供給することにより、NH3スリップ触媒でのNOx浄化を最大限に活用して、浄化率の向上が可能となる。
またNH3スリップ触媒のNOx浄化機能(脱硝)を活用することによりSCR触媒のサイズを縮小でき、部品の共通化が図れると共に仕様変更にも容易に対応可能となり、実質コストの低減になる。
According to the present invention, with such a configuration, the SCR catalyst has a higher NOx purification rate as the amount of adsorption of NH3 (reducing agent) on the catalyst increases, but the amount of adsorption of NH3 varies depending on the temperature. Therefore, by accurately measuring the internal temperature of the SCR catalyst and controlling the amount of reducing agent injected into the exhaust gas, it is possible to reduce the reducing agent slip amount as much as possible to improve the denitration effect in the exhaust gas. It becomes.
Furthermore, when it is necessary to install an NH3 slip catalyst to satisfy the exhaust gas regulations, the NH3 amount necessary for NOx purification with the NH3 slip catalyst is appropriately adjusted by intentionally slipping NH3 with the SCR catalyst. By supplying the maximum amount of NOx purification using the NH3 slip catalyst, the purification rate can be improved.
In addition, by utilizing the NOx purification function (denitration) of the NH3 slip catalyst, the size of the SCR catalyst can be reduced, the parts can be shared, the specification can be easily changed, and the actual cost can be reduced.

本発明の第1実施形態に係るエンジンのNOx浄化装置の概略構造図を示す。1 shows a schematic structural diagram of an engine NOx purification device according to a first embodiment of the present invention. FIG. 本発明の第1実施形態の排ガス浄化に係る制御フロー図を示す。The control flow figure concerning exhaust gas purification of a 1st embodiment of the present invention is shown. 本発明の第1実施形態に係る排ガス温度と、SCR触媒温度の時間経過による温度上昇の関係図を示す。The relationship diagram of the temperature rise by the passage of time of exhaust gas temperature concerning the 1st embodiment of the present invention and SCR catalyst temperature is shown. 本発明の第1実施形態に係るSCR触媒内部温度と、アンモニア吸着の許容量との関係図を示す。The relationship figure of the SCR catalyst internal temperature which concerns on 1st Embodiment of this invention, and the allowable amount of ammonia adsorption | suction is shown. 本発明の第3実施形態に係る(A)はSCR触媒浄化装置の概略構造図、(B)はSCR触媒に噴霧される還元剤の噴霧パターン図、(C)はSCR触媒の分割領域形状図を示す。(A) which concerns on 3rd Embodiment of this invention is a schematic structure figure of a SCR catalyst purification apparatus, (B) is a spray pattern figure of the reducing agent sprayed on a SCR catalyst, (C) is a division area shape figure of a SCR catalyst Indicates. 本発明の第4実施形態に係るSCR触媒浄化装置の概略構造図を示す。The schematic structure figure of the SCR catalyst purification device concerning a 4th embodiment of the present invention is shown. 本発明の第4実施形態の排ガス浄化に係る制御フロー図を示す。The control flow figure concerning exhaust gas purification of a 4th embodiment of the present invention is shown. 本発明のSCR触媒内部温度とエンジン運転状態からSCR触媒の浄化率を推定するマップの一例を示す。An example of the map which estimates the purification | cleaning rate of an SCR catalyst from the SCR catalyst internal temperature and engine operating state of this invention is shown. 本発明の第4実施形態に係るNH3スリップ触媒へのNOx流入量とNH3スリップ触媒の温度からNH3要求量を推定するマップの一例を示す。An example of the map which estimates NH3 request | requirement amount from the NOx inflow amount to the NH3 slip catalyst which concerns on 4th Embodiment of this invention, and the temperature of NH3 slip catalyst is shown.

以下、本発明を図に示した実施例を用いて詳細に説明する。
但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings.
However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this example are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.

(第1実施形態)
図1乃至図4に基づいて、本発明の第一実施形態に係るエンジンのNOx浄化装置について説明する。
図1において、NOx浄化装置10はエンジン1から排出された排ガスのNOx浄化のため還元剤供給量制御部を有した制御手段であるコントローラ5と、コントローラ5の制御によって還元剤を噴霧する還元剤供給手段である尿素水噴霧装置6と、SCR触媒11及び排気ガス等の温度を検出する温度測定手段である入口側温度センサ12及び出口側温度センサ13等から構成されている。
(First embodiment)
The engine NOx purification device according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
In FIG. 1, a NOx purification device 10 includes a controller 5 that is a control means having a reducing agent supply amount control unit for NOx purification of exhaust gas discharged from the engine 1, and a reducing agent that sprays the reducing agent under the control of the controller 5. The apparatus comprises a urea water spray device 6 as supply means, an inlet side temperature sensor 12 and outlet side temperature sensor 13 as temperature measurement means for detecting the temperature of the SCR catalyst 11 and exhaust gas, and the like.

エアクリーナ(図示省略)からエンジン1の燃焼室に吸気を導くインレットマニホールド3には吸気の空気量と、吸気温度(吸気密度を算出する)を測定する吸気流量センサ31が装着されている。
前記燃焼室で燃焼した排ガスはエキゾーストマニホールド4を介して排気管2に導かれて大気に放出される。
排気管2内には、排気通路24の上流側から排ガス中のNOx濃度を検出するNOxセンサ、HC,CO,NOなどを酸化するDOC触媒7(酸化触媒)、詳細を後述するコントローラ5の制御によって還元剤を噴霧する噴霧ノズル62、SCR触媒11に入る排ガスの温度を検知する温度測定手段である入口側温度センサ12、排ガス中のNOxを浄化する触媒を付着させたハニカム状のSCR触媒11、SCR触媒11を通過した排ガスの温度を検知する出口側温度センサ13及び、SCR触媒11で処理できなかったNOx及びNH3を処理するNH3スリップ触媒8が配置されている。
また、SCR触媒11の温度を直接測る温度センサ22がSCR触媒11に取付けられている。
An intake flow rate sensor 31 for measuring an intake air amount and an intake air temperature (calculating intake air density) is attached to an inlet manifold 3 that guides intake air from an air cleaner (not shown) to a combustion chamber of the engine 1.
The exhaust gas combusted in the combustion chamber is led to the exhaust pipe 2 through the exhaust manifold 4 and released to the atmosphere.
In the exhaust pipe 2, a NOx sensor for detecting NOx concentration in the exhaust gas from the upstream side of the exhaust passage 24, a DOC catalyst 7 (oxidation catalyst) for oxidizing HC, CO, NO, etc. The honeycomb-shaped SCR catalyst 11 to which the spray nozzle 62 for spraying the reducing agent, the inlet side temperature sensor 12 as temperature measuring means for detecting the temperature of the exhaust gas entering the SCR catalyst 11, and the catalyst for purifying NOx in the exhaust gas are attached. An outlet side temperature sensor 13 that detects the temperature of exhaust gas that has passed through the SCR catalyst 11 and an NH3 slip catalyst 8 that processes NOx and NH3 that could not be processed by the SCR catalyst 11 are disposed.
A temperature sensor 22 that directly measures the temperature of the SCR catalyst 11 is attached to the SCR catalyst 11.

SCR触媒11はハニカム構造の触媒担体に触媒成分を付着させたもので、排気管2内に収納されている。NOxの選択還元触媒としてはバナジウム系、ゼオライト系などが知られている。SCR触媒11は排ガス中のNOxを選択還元するもので、SCR触媒11にNH3が吸着している状態において、SCR触媒11の温度が約200℃を上回る領域では高効率でNOxを還元処理する特性を有している。
そのため、SCR触媒11の温度を精度よく検知することにより、還元剤(NH3)のスリップ防止及びNOxの浄化処理向上に良い効果を得ることができる。
The SCR catalyst 11 is a honeycomb-structured catalyst carrier with a catalyst component attached, and is housed in the exhaust pipe 2. Vanadium-based and zeolite-based catalysts are known as selective reduction catalysts for NOx. The SCR catalyst 11 selectively reduces NOx in the exhaust gas. When the NH3 is adsorbed on the SCR catalyst 11, the NOx is reduced with high efficiency in the region where the temperature of the SCR catalyst 11 exceeds about 200 ° C. have.
Therefore, by detecting the temperature of the SCR catalyst 11 with high accuracy, it is possible to obtain a good effect for preventing the reducing agent (NH3) from slipping and improving the NOx purification process.

コントローラ5について説明する。
SCR触媒内部温度と排ガス温度の関係は図3に示すように、エンジン1始動時はSCR触媒温度が排ガス温度に対して低い。排ガス温度はエンジン1の運転と同時に温度が上昇するが、SCR触媒の内部温度は伝熱の遅れがあるため、温度上昇の割合が低く(温度上昇が遅い)運転開始から約800秒経過しないと略同じ温度にならない。
そのため、精度の高いSCR触媒の内部温度を求めるSCR触媒温度推定部55はSCR触媒11入口の排ガス温度を検知する入口側温度センサ12と、SCR触媒11の出口側の排ガス温度を検知する出口側温度センサ13の検知温度の差に基づいて以下の伝熱式にて求められる。
<伝熱式>
ハニカム構造の固体と排ガスの伝熱関係は以下の通りとなる。
即ち、[排ガス側の温度変化]=−[対流項]+[SCR触媒と排ガス間の熱移動]となり、計算式では

Figure 2011094572
となる。ガス熱量の単位体積あたりの変化に対し、SCR触媒から流出した排ガスに残った温度(熱)と、排ガスからSCR触媒に移動した熱として表される。
一方、排ガス側から移動した伝熱によるSCR触媒の温度変化
即ち、[SCR触媒側の温度変化]=[SCR触媒と排ガス間の熱移動]
となり計算式では
Figure 2011094572
となり、SCR触媒の温度上昇分が算出される。
但し、(1)及び(2)の記号は
Figure 2011094572
である。 The controller 5 will be described.
As shown in FIG. 3, the relationship between the internal temperature of the SCR catalyst and the exhaust gas temperature is such that the SCR catalyst temperature is lower than the exhaust gas temperature when the engine 1 is started. The exhaust gas temperature rises simultaneously with the operation of the engine 1, but the internal temperature of the SCR catalyst has a delay in heat transfer, so the rate of temperature rise is low (slow temperature rise) and about 800 seconds have not passed since the start of operation. It is not the same temperature.
Therefore, the SCR catalyst temperature estimation unit 55 for obtaining a highly accurate internal temperature of the SCR catalyst includes an inlet side temperature sensor 12 that detects the exhaust gas temperature at the inlet of the SCR catalyst 11 and an outlet side that detects the exhaust gas temperature at the outlet side of the SCR catalyst 11. Based on the difference in temperature detected by the temperature sensor 13, the following heat transfer equation is used.
<Heat transfer type>
The heat transfer relationship between the honeycomb structure solid and the exhaust gas is as follows.
That is, [temperature change on exhaust gas side] =-[convection term] + [heat transfer between SCR catalyst and exhaust gas]
Figure 2011094572
It becomes. It is expressed as the temperature (heat) remaining in the exhaust gas flowing out of the SCR catalyst and the heat transferred from the exhaust gas to the SCR catalyst with respect to the change per unit volume of the gas calorific value.
On the other hand, the temperature change of the SCR catalyst due to heat transfer from the exhaust gas side, that is, [temperature change on the SCR catalyst side] = [heat transfer between the SCR catalyst and exhaust gas]
In the calculation formula
Figure 2011094572
Thus, the temperature increase of the SCR catalyst is calculated.
However, the symbols (1) and (2)
Figure 2011094572
It is.

排ガス平均温度算出部54はSCR触媒11入口の排ガス温度を検知する温度測定手段である入口側温度センサ12と、SCR触媒11の出口側の排ガス温度を検知する出口側温度センサ13に基づいて算出される。
排ガス平均温度=(入口の排ガス温度+出口側の排ガス温度)/2・・・・・(3)
エンジン1が始動したばかりで、SCR触媒11が十分に温まっていない等の場合に触媒温度推定部55にて推定した温度と比較して、温度の高い方の値を触媒吸着量推定用の初期値として使用する。
The exhaust gas average temperature calculation unit 54 calculates based on the inlet side temperature sensor 12 which is a temperature measuring means for detecting the exhaust gas temperature at the inlet of the SCR catalyst 11 and the outlet side temperature sensor 13 which detects the exhaust gas temperature on the outlet side of the SCR catalyst 11. Is done.
Exhaust gas average temperature = (exhaust exhaust gas temperature + outlet exhaust gas temperature) / 2 (3)
Compared with the temperature estimated by the catalyst temperature estimation unit 55 when the engine 1 is just started and the SCR catalyst 11 is not sufficiently warmed, the higher temperature value is used as an initial value for estimating the catalyst adsorption amount. Use as a value.

目標吸着量算出部56はエンジン1の特性に基づいて決定されるもので、排気ガス規制値をクリアするためにエンジンの負荷状況(稼働状況)に応じて必要還元剤量を実験値にて作成したマップから読取る。   The target adsorption amount calculation unit 56 is determined on the basis of the characteristics of the engine 1, and in order to clear the exhaust gas regulation value, a necessary amount of reducing agent is created as an experimental value according to the engine load status (operation status). Read from the map.

実吸着量演算部57はSCR触媒温度推定部55にて推定した温度に基づいて、SCR触媒11へ実際に吸着する還元剤(NH3)量を算出する。
これは、SCR触媒11の特性によるもので、SCR触媒11の温度により還元剤(NH3)の吸着量を測定してデータ化したマップから算出する。
尚、図4に示すように、SCR触媒11の温度と、SCR触媒11のNH3吸着許容量はSCR触媒11の温度の高さに反比例する。
The actual adsorption amount calculation unit 57 calculates the amount of reducing agent (NH 3) actually adsorbed on the SCR catalyst 11 based on the temperature estimated by the SCR catalyst temperature estimation unit 55.
This is due to the characteristics of the SCR catalyst 11 and is calculated from a map obtained by measuring the adsorption amount of the reducing agent (NH 3) based on the temperature of the SCR catalyst 11.
As shown in FIG. 4, the temperature of the SCR catalyst 11 and the NH 3 adsorption allowable amount of the SCR catalyst 11 are inversely proportional to the temperature of the SCR catalyst 11.

変換係数58は目標吸着量算出部56にて求めた必要還元剤量と、SCR触媒11に実際に吸着する還元剤(NH3)量とを比較して、その差を求め、排気ガス規制値をクリアするように補正するための補正値を算出して出力する。   The conversion coefficient 58 compares the required reducing agent amount obtained by the target adsorption amount calculation unit 56 with the reducing agent (NH 3) amount actually adsorbed on the SCR catalyst 11, finds the difference therebetween, and sets the exhaust gas regulation value. A correction value for correcting to be cleared is calculated and output.

排気ガス算出部51はインレットマニホールド3を流れる吸気流量とその吸気温度(空気密度を算出する)をセンサ31から取入れると共に、燃料流量計(図示省略)からエンジン1の燃焼室に圧送される燃料の流量に基づいて、NOx排出量を算出する。
NOx排出量算出部52は、該排ガス算出手段51で算出した排ガス量と、NOxセンサ19からのNOx濃度(%)とからNOx排出量を算出する。
尿素水噴霧量目標算出部53はNOx排出量算出部52にて算出したNOx排出量に基づいて、必要な還元剤である尿素水量を算出する。
The exhaust gas calculation unit 51 takes in the intake air flow rate flowing through the inlet manifold 3 and the intake air temperature (calculates the air density) from the sensor 31, and fuel pumped from the fuel flow meter (not shown) to the combustion chamber of the engine 1. Based on the flow rate of NOx, the NOx emission amount is calculated.
The NOx emission amount calculation unit 52 calculates the NOx emission amount from the exhaust gas amount calculated by the exhaust gas calculation means 51 and the NOx concentration (%) from the NOx sensor 19.
The urea water spray amount target calculation unit 53 calculates the amount of urea water that is a necessary reducing agent based on the NOx discharge amount calculated by the NOx discharge amount calculation unit 52.

変換係数58では目標吸着量算出部56にて算出した目標吸着量と、実吸着量演算部57にて算出した実吸着量との差を求め、目標吸着量に対し、実吸着量が多い場合には尿素水の噴霧量を上述の差に基づいて減少させる値に補正する。
また、目標吸着量に対し、実吸着量が少ない場合には尿素水の噴霧量を上述の差に基づいて増大させる値に補正する。
補正された吸着量の補正値と、尿素水噴霧量目標算出部53にて算出した目標値とを出力部59にて差を求め、尿素水噴霧量目標値が吸着量補正値より多い場合にはその差分尿素水の噴霧量を減少させる値を還元剤供給手段である尿素水噴霧装置6に制御信号を出力する。
また、尿素水噴霧量目標値が吸着量補正値より少ない場合には変換係数58にて補正した補正値を尿素水噴霧装置6に制御信号を出力する。(還元剤供給量制御部)
これは、NH3がSCR触媒11からスリップするのを防止すると共に、尿素水使用量の減少を図り、エンジン1の運転コストの低減となる。
In the conversion coefficient 58, the difference between the target adsorption amount calculated by the target adsorption amount calculation unit 56 and the actual adsorption amount calculated by the actual adsorption amount calculation unit 57 is obtained, and the actual adsorption amount is larger than the target adsorption amount. Is corrected to a value that decreases the spray amount of urea water based on the above-described difference.
Further, when the actual adsorption amount is smaller than the target adsorption amount, the urea water spray amount is corrected to a value that increases based on the above-described difference.
When the output unit 59 obtains a difference between the corrected correction value of the adsorption amount and the target value calculated by the urea water spray amount target calculation unit 53, and the urea water spray amount target value is larger than the adsorption amount correction value. Outputs a control signal to the urea water spraying device 6 which is a reducing agent supply means for reducing the difference urea water spray amount.
When the urea water spray amount target value is smaller than the adsorption amount correction value, a control signal is output to the urea water spray device 6 with the correction value corrected by the conversion coefficient 58. (Reducing agent supply control unit)
This prevents NH3 from slipping from the SCR catalyst 11, reduces the amount of urea water used, and reduces the operating cost of the engine 1.

尿素水噴霧装置6にはコントローラ5からの出力信号に基づいて尿素水の噴霧量およびタイミング等を制御する尿素水噴霧制御装置61と、排気管2のSCR触媒11の上流側に配設された噴霧ノズル62と、尿素水タンク63からの尿素水と、該尿素水を噴霧化するためのエアタンク64からのエアとを尿素水噴霧制御装置61からの出力信号に基づいて開閉バルブの開閉を制御して、エアと尿素水とを混合させた状態で噴霧ノズル62に圧送すると共に、尿素水の噴出量調整を行うドージングモジュール65とで構成されている。   The urea water spray device 6 is disposed on the upstream side of the SCR catalyst 11 in the exhaust pipe 2 and a urea water spray control device 61 that controls the spray amount and timing of urea water based on the output signal from the controller 5. Based on the output signal from the urea water spray control device 61, the opening and closing of the opening / closing valve is controlled for the spray nozzle 62, the urea water from the urea water tank 63, and the air from the air tank 64 for atomizing the urea water. The dosing module 65 is configured to feed the spray nozzle 62 in a mixed state of air and urea water and adjust the amount of urea water ejected.

以下、このように構成された本発明に係るエンジンのNOx浄化装置に関する第一実施形態の制御内容について説明する。
コントローラ5が実行する制御を図2に沿って説明する。
Hereinafter, the control content of 1st embodiment regarding the NOx purification apparatus of the engine which concerns on this invention comprised in this way is demonstrated.
Control executed by the controller 5 will be described with reference to FIG.

エンジン1が大気温度に等しくなっている状態(冷時)において、エンジン1が始動される。ステップS1において、SCR触媒11の温度を直接測定して、これをSCR触媒11の初期値とする。これはエンジン1が始動したばかりで、図3に示すとおりSCR触媒11の温度はすぐには上昇しない。   When the engine 1 is equal to the atmospheric temperature (when cold), the engine 1 is started. In step S <b> 1, the temperature of the SCR catalyst 11 is directly measured and used as the initial value of the SCR catalyst 11. This is because the engine 1 has just started, and the temperature of the SCR catalyst 11 does not rise immediately as shown in FIG.

ステップS2において、SCR触媒11の内部温度を推定計算する。計算方法は上述の計算式(1)及び(2)に基づいて行われる。
ステップS3においてSCR触媒11の入口側の入口側温度センサ12及び出口側の出口側温度センサ13の平均値を算出する。計算式(3)による。この平均値は排ガスの熱がどれくらいSCR触媒11に伝熱されたかにより、SCR触媒11の温度を推定するのに用いる。
ステップS4においてステップS2の触媒内部推定温度と、ステップS3の平均値とを比較する。
In step S2, the internal temperature of the SCR catalyst 11 is estimated and calculated. The calculation method is performed based on the above-described calculation formulas (1) and (2).
In step S3, average values of the inlet side temperature sensor 12 on the inlet side and the outlet side temperature sensor 13 on the outlet side of the SCR catalyst 11 are calculated. According to the calculation formula (3). This average value is used to estimate the temperature of the SCR catalyst 11 depending on how much heat of the exhaust gas is transferred to the SCR catalyst 11.
In step S4, the estimated catalyst internal temperature in step S2 is compared with the average value in step S3.

平均値の方が高いか、又は同じ場合はYesとしてステップS5に進む。触媒内部推定温度の方が高い(No)場合はステップS6に進む。
即ち、SCR触媒11の内部温度が高い方が、NOxの還元浄化作用の効率が高いので、推定値若しくは平均値の高い方の値に基づいて尿素水量を決めるようになっている。
If the average value is higher or the same, the process proceeds to step S5 as Yes. If the estimated catalyst internal temperature is higher (No), the process proceeds to step S6.
That is, the higher the internal temperature of the SCR catalyst 11, the higher the efficiency of NOx reduction and purification. Therefore, the amount of urea water is determined based on the estimated value or the higher average value.

ステップS7において、エンジン1が運転中の場合(No)は、ステップS2に戻り、SCR触媒11の内部温度の推定計算を繰返し、SCR触媒11の内部温度に基づいて適切な尿素水量とその効率的なNOx浄化作用を得るための制御を行う。
エンジン1が停止の場合(Yes)は、ステップS8に進む。ステップS8において、SCR触媒11の内部温度の推定計算を継続する。
これは特に発電機又は産業用機械が取付けられたエンジン1の場合、作業機側の運転状況が多様で、エンジン1の運転間隔が長かったり、短かったりまた、負荷変動が大きかったりする場合が多い事情による。
そのどのような場合でも、常に(エンジンが温かい状態の場合)SCR触媒11の内部温度を検知して、適正なNOx浄化と、NH3のスリップ削減を行うことができるようにしている。
In step S7, when the engine 1 is in operation (No), the process returns to step S2, and the estimation calculation of the internal temperature of the SCR catalyst 11 is repeated. Based on the internal temperature of the SCR catalyst 11, an appropriate amount of urea water and its efficiency Control for obtaining a clean NOx purification action.
When the engine 1 is stopped (Yes), the process proceeds to step S8. In step S8, the estimation calculation of the internal temperature of the SCR catalyst 11 is continued.
In particular, in the case of the engine 1 to which a generator or an industrial machine is attached, the operation state on the work machine side is various, the operation interval of the engine 1 is long or short, and the load fluctuation is often large. It depends on the circumstances.
In any case, the internal temperature of the SCR catalyst 11 is always detected (when the engine is warm) so that proper NOx purification and NH3 slip reduction can be performed.

ステップS9において、触媒推定温度が触媒入口排ガス温度以下になった場合には、Yesとして触媒温度の推定計算を終了する。
これは、エンジン1が冷時状態になったことを示し、再始動の際は、排ガス温度を初期値として使用するので、触媒温度の推定計算を終了するものである。
一方、触媒推定温度が触媒入口排ガス温度より高い場合にはNoとして、ステップS11に進む。この状態は、触媒温度が未だ冷えずに温かい状態を示すもので、ステップS11ではエンジン1を始動するかを判断している。始動しない場合はNoとして、ステップS8に戻り、触媒推定温度が触媒入口排ガス温度以下になるまで繰返す。
エンジン1を始動する場合にはYesとしてステップS12に進み、触媒の内部温度推定値を初期値としてステップS2に戻り、制御を繰返す。
In step S9, when the estimated catalyst temperature becomes equal to or lower than the catalyst inlet exhaust gas temperature, the estimated calculation of the catalyst temperature is terminated as Yes.
This indicates that the engine 1 is in a cold state, and the exhaust gas temperature is used as an initial value when restarting, so that the estimation calculation of the catalyst temperature ends.
On the other hand, if the estimated catalyst temperature is higher than the catalyst inlet exhaust gas temperature, the process proceeds to step S11 as No. This state indicates a state where the catalyst temperature is not yet cooled and is warm. In step S11, it is determined whether the engine 1 is to be started. If the engine does not start, No is returned, and the process returns to step S8 and is repeated until the estimated catalyst temperature becomes equal to or lower than the catalyst inlet exhaust gas temperature.
When the engine 1 is to be started, the process proceeds to step S12 as Yes, returns to step S2 with the estimated internal temperature of the catalyst as an initial value, and repeats the control.

第一実施形態では、触媒全体の温度を推測して、触媒への還元剤吸着量を精度よく推定して、エンジン1の始動初期における、NOx還元剤の噴霧量、NH3のスリップ量削減を可能としている。
また、汎用エンジン特有の運転状況において、特に運転ON―OFFの繰返し時においても、適切なNOx還元剤の噴霧量とすることで、還元剤(尿素水)の無駄を省き、エンジン1の運転コストを低減できる。
In the first embodiment, the temperature of the entire catalyst is estimated, the amount of reducing agent adsorbed on the catalyst is accurately estimated, and the NOx reducing agent spray amount and NH3 slip amount can be reduced at the initial start of the engine 1. It is said.
In addition, in the operating conditions peculiar to general-purpose engines, especially when the operation is repeatedly turned on and off, by setting an appropriate spray amount of the NOx reducing agent, reducing agent (urea water) is not wasted, and the operating cost of the engine 1 is reduced. Can be reduced.

第二実施形態の制御内容について説明する。
第一実施形態の制御フロー図(図2)においては、ステップS1で「排ガス温度測定を行い、その値を触媒温度推定ロジックの初期値とする」としているが、第二実施形態では、前記ステップS1において、「触媒温度を直接測定して、その値を触媒温度推定ロジックの初期値とする」。前記ステップS1以外はすべて同じなので、制御フロー及びその説明は省略する。
The control contents of the second embodiment will be described.
In the control flow diagram (FIG. 2) of the first embodiment, “measurement of exhaust gas temperature is performed and the value is set as the initial value of the catalyst temperature estimation logic” in step S1, but in the second embodiment, the above step is performed. In S1, “the catalyst temperature is directly measured and the value is set as the initial value of the catalyst temperature estimation logic”. Since all the steps except step S1 are the same, the control flow and description thereof are omitted.

第二実施形態においては、第一実施形態で記述したとおり、排ガス温度はエンジン1の運転と同時に温度が上昇するが、触媒の内部温度は伝熱の遅れがあるため、温度上昇の割合が低く(温度上昇が遅い)運転開始から約800秒経過しないと略同じ温度にならない。
従って、エンジン1始動時の触媒温度の初期値を温度センサ22にて直接測定しているので、エンジン1が始動して触媒温度が効率的に還元反応できる温度になるまでの間、精度よく触媒温度が計測できるので、SCR触媒の還元剤吸着量とその還元浄化処理を更に、適切に実行することが可能となる。
このようにすることによって、NOx還元剤の噴霧量を適切な量とすることで、還元剤(尿素水)の無駄を省きNH3のスリップ量を抑制できると共に、エンジン1の運転コストを低減できる。
In the second embodiment, as described in the first embodiment, the exhaust gas temperature rises simultaneously with the operation of the engine 1, but the internal temperature of the catalyst has a delay in heat transfer, so the rate of temperature rise is low. (Temperature rise is slow) If about 800 seconds have not passed since the start of operation, the temperature will not reach substantially the same.
Therefore, since the initial value of the catalyst temperature at the time of starting the engine 1 is directly measured by the temperature sensor 22, the catalyst is accurately obtained until the engine 1 is started and the catalyst temperature reaches a temperature at which the catalyst can be efficiently reduced. Since the temperature can be measured, the reducing agent adsorption amount of the SCR catalyst and its reduction and purification process can be further appropriately executed.
By doing in this way, by making the spray amount of NOx reducing agent into an appropriate amount, waste of the reducing agent (urea water) can be omitted, and the slip amount of NH 3 can be suppressed, and the operating cost of the engine 1 can be reduced.

第三実施形態について図5の(A)、(B)及び(C)に基づいて説明する。
図(A)はSCR触媒浄化装置のSCR触媒部分の概略構造図を示し、排気管2の排気通路に図(C)に示すように、円周方向に略均等に四分割されたSCR触媒70(70a、70b、70c及び70d)が配置されている。排気通路のSCR触媒70の入口側には4個の入口側温度センサ71(71a、71b、71c及び71d)が前記四分割の分割部分に沿って4個配設されている。また排気通路のSCR触媒70の出口側には入口側の温度センサ71とSCR触媒70を挟んで対向した位置に4個の出口側温度センサ71(71e、71f、71g及び71h)が配設されている。
A third embodiment will be described based on FIGS. 5A, 5B, and 5C.
FIG. (A) shows a schematic structural diagram of the SCR catalyst portion of the SCR catalyst purification device. As shown in FIG. (C), the SCR catalyst 70 divided into four substantially equally in the circumferential direction in the exhaust passage of the exhaust pipe 2. (70a, 70b, 70c and 70d) are arranged. Four inlet side temperature sensors 71 (71a, 71b, 71c and 71d) are arranged along the four divided portions on the inlet side of the SCR catalyst 70 in the exhaust passage. Further, four outlet side temperature sensors 71 (71e, 71f, 71g and 71h) are disposed on the outlet side of the SCR catalyst 70 in the exhaust passage at positions facing the inlet side temperature sensor 71 and the SCR catalyst 70. ing.

また、排気通路の入口側温度センサ71の上流側には尿素水の噴出量調整を行うドージングモジュール73から圧送されるエアと尿素水との混合剤を排気通路の排ガス中に噴霧する四個の噴霧ノズル72(72a,72b、72c及び、72d)が配設されている。
四個の噴霧ノズル72は円周方向に略均等に四分割されたSCR触媒70(70a、70b、70c及び70d)夫々の排ガス入口側面の中心位置近傍で、円周方向へ略均等に配置されている。
更に、噴霧ノズル72(72a,72b、72c及び、72d)夫々の配置及び噴霧パターンは図(B)に示すように、SCR触媒70の中心部に全ての噴霧ノズル72がオーバラップして尿素水を吹付け可能に配設されている。
Further, on the upstream side of the inlet side temperature sensor 71 of the exhaust passage, four mixture agents of air and urea water that are pumped from the dosing module 73 that adjusts the amount of urea water jetted are sprayed into the exhaust gas of the exhaust passage. Spray nozzles 72 (72a, 72b, 72c and 72d) are disposed.
The four spray nozzles 72 are arranged substantially equally in the circumferential direction in the vicinity of the center position of the exhaust gas inlet side of each of the SCR catalysts 70 (70a, 70b, 70c and 70d) divided into four substantially equally in the circumferential direction. ing.
Further, the arrangement and spray pattern of each of the spray nozzles 72 (72a, 72b, 72c and 72d) are as shown in FIG. It is arrange | positioned so that spraying is possible.

SCR触媒70は上述の通り、円周方向に四分割されているのは、排気管2の曲がり等により排ガスに偏流が生じ、排ガスがSCR触媒70の全体を均等に通過しない。
従って、円周方向に四分割されたSCR触媒70の70a、70b、70c及び70d毎に内部温度を温度センサ71の71a、71b、71c及び71dにて測定し、測定した夫々の温度に基づいて夫々の触媒毎に還元剤(NH3)の噴霧量をコントローラ80(図1参照)にて個別に決定する。決定された夫々の噴霧量は噴霧ノズル72の72a,72b、72c及び、72dから触媒70の70a、70b、70c及び70dに個別に噴霧される。
制御の方法は例えば、
・脱硝率:低&NH3のスリップ率:低の場合⇒該当噴霧ノズルの噴霧量増加
・脱硝率:低&NH3のスリップ率:高の場合⇒該当噴霧ノズルの噴霧量減少
・脱硝率:高&NH3のスリップ率:低の場合⇒該当噴霧ノズルの噴霧量保持又は増加
(増加量は脱硝率が理論増加量に達するまで)
・脱硝率:高&NH3のスリップ率:高の場合⇒該当噴霧ノズルの噴霧量減少
等を行う。
As described above, the SCR catalyst 70 is divided into four parts in the circumferential direction. As a result, the exhaust gas drifts due to the bending of the exhaust pipe 2 and the exhaust gas does not pass through the entire SCR catalyst 70 evenly.
Therefore, the internal temperature is measured by the temperature sensor 71 71a, 71b, 71c and 71d for each of the SCR catalyst 70a, 70b, 70c and 70d divided into four in the circumferential direction, and based on the measured temperatures. The spray amount of the reducing agent (NH 3) is individually determined for each catalyst by the controller 80 (see FIG. 1). The determined spray amounts are sprayed individually from the spray nozzles 72a, 72b, 72c and 72d to the catalysts 70a, 70b, 70c and 70d.
The control method is, for example,
・ Denitration rate: Low & NH3 slip rate: Low ⇒ Increase in spray amount of applicable spray nozzle ・ Denitration rate: Low & NH3 slip rate: High ⇒ Decrease in spray amount of applicable spray nozzle ・ Denitration rate: High & NH3 slip Rate: Low ⇒ Maintain or increase the spray amount of the spray nozzle
(Increase amount until denitration rate reaches theoretical increase amount)
・ Denitration rate: High & NH3 slip rate: High ⇒ Reduce the spray amount of the spray nozzle.

また、SCR触媒70の各分割された触媒70a、70b、70c及び70dの内部温度推定手段81は次の式にて算出される。
触媒温度推定部81(図1参照)はSCR触媒70入口の排ガス温度を検知する温度センサ71a、71b、71c及び71dと、SCR触媒70の出口側の排ガス温度を検知する温度センサ71e、71f、71g及び71hに基づいて以下の伝熱式にて求められる。
<伝熱式>
夫々の触媒70a、70b、70c及び70d毎にハニカム構造の固体と排ガスの伝熱関係は以下の通りとなる。
即ち、[排ガス側の温度変化]=−[対流項]+[SCR触媒と排ガス間の熱移動]となり、計算式では

Figure 2011094572
となる。ガス熱量各夫々の単位体積あたりの変化に対し、SCR触媒から流出した排ガスに残った温度(熱)と、排ガスからSCR触媒に移動した熱として表される。
一方、排ガス側から移動した伝熱によるSCR触媒の温度変化
即ち、[SCR触媒側の温度変化]=[SCR触媒と排ガス間の熱移動]
+[隣り合う触媒からの熱移動]
となり、計算式では
Figure 2011094572
となり、SCR触媒の温度上昇分が算出される。
尚、上述の但し以外の記号は第一実施形態の伝熱式(段落〔0025〕)で使用した記号と同じなので、本欄では省略する。
また、制御方法についても、夫々分割された触媒毎に、第一実施形態で説明した内容と同じなので、説明を省略する。 Further, the internal temperature estimating means 81 of each of the divided catalysts 70a, 70b, 70c and 70d of the SCR catalyst 70 is calculated by the following equation.
The catalyst temperature estimation unit 81 (see FIG. 1) includes temperature sensors 71a, 71b, 71c and 71d that detect the exhaust gas temperature at the inlet of the SCR catalyst 70, and temperature sensors 71e, 71f that detect the exhaust gas temperature at the outlet side of the SCR catalyst 70, It calculates | requires with the following heat-transfer types based on 71g and 71h.
<Heat transfer type>
For each of the catalysts 70a, 70b, 70c and 70d, the heat transfer relationship between the honeycomb structured solid and the exhaust gas is as follows.
That is, [temperature change on exhaust gas side] =-[convection term] + [heat transfer between SCR catalyst and exhaust gas]
Figure 2011094572
It becomes. It is expressed as the temperature (heat) remaining in the exhaust gas flowing out from the SCR catalyst and the heat transferred from the exhaust gas to the SCR catalyst with respect to the change per unit volume of each gas calorific value.
On the other hand, the temperature change of the SCR catalyst due to heat transfer from the exhaust gas side, that is, [temperature change on the SCR catalyst side] = [heat transfer between the SCR catalyst and exhaust gas]
+ [Heat transfer from adjacent catalyst]
And in the calculation formula
Figure 2011094572
Thus, the temperature increase of the SCR catalyst is calculated.
Since symbols other than those described above are the same as those used in the heat transfer type of the first embodiment (paragraph [0025]), they are omitted in this section.
Also, the control method is the same as that described in the first embodiment for each divided catalyst, and thus the description thereof is omitted.

第三実施形態においては、SCR触媒70の円周方向に触媒を四分割(70a、70b、70c及び70d)にして、各分割された触媒毎に噴霧量を調整できるため、効率的な脱硝が可能となり、特に、排気管2の曲がり等による排ガスの偏流に対応できるため、効率的な脱硝が可能となると共に、尿素水の使用量を少なくでき、NH3のスリップ量も低減できる。
更に、一般に触媒中心部は排ガスの通過量が多く、従って触媒の温度も高くなるので、各噴霧ノズルからの還元剤を中心部にオーバラップして吸着させて、中心部への還元剤を多くすることにより、脱硝作用の効率化を図ったものである。
また、各噴霧ノズル72a,72b、72c及び、72d複数で噴霧するため、ノズル径を小さくすることが可能となり、大きなエンジン用にも共通(噴霧ノズル個数を増大)して使用でき、コスト低減が可能となる。
また、分割された触媒に対応して複数の噴霧ノズルを備えているため、噴霧ノズルのどれかが故障しても、極端な脱硝性能の低下を防止できる。
In the third embodiment, the catalyst is divided into four parts (70a, 70b, 70c and 70d) in the circumferential direction of the SCR catalyst 70, and the spray amount can be adjusted for each of the divided catalysts. In particular, since it is possible to cope with the drift of exhaust gas due to bending of the exhaust pipe 2, etc., it is possible to efficiently denitrate, to reduce the amount of urea water used, and to reduce the slip amount of NH3.
Furthermore, generally, the catalyst has a large amount of exhaust gas passing through the center, and thus the temperature of the catalyst also increases, so that the reducing agent from each spray nozzle overlaps and adsorbs to the center to increase the amount of reducing agent in the center. By doing so, the efficiency of the denitration action is improved.
In addition, since spray is performed by a plurality of spray nozzles 72a, 72b, 72c and 72d, the nozzle diameter can be reduced, and it can be used in common for large engines (increase the number of spray nozzles), thereby reducing costs. It becomes possible.
In addition, since a plurality of spray nozzles are provided corresponding to the divided catalysts, even if any of the spray nozzles fails, it is possible to prevent an extreme decrease in the denitration performance.

尚、本第三実施形態では、SCR触媒を円周方向に均等に四分割した例を示したが、排ガスの偏流により周方向に均等割りに分割する必要もなく、排ガスの通過する部分には多くの還元剤が付着するようにすれば、本実施形態と同様の効果を容易に得られる。
更に、本第三実施形態では、分割された触媒毎に対応した噴霧ノズル72を配置したが、
温度センサ71による触媒70の測定温度に基づいて、触媒70の周方向に分割した温度分布を算出する。算出された温度分布に対応した数の噴霧ノズル72を配設して、温度分布毎の温度により触媒へ還元剤噴霧量をコントローラ80にて算出して、噴霧ノズル72から各温度分布毎に還元剤を個別に噴霧しても、第三実施形態と同様の効果を得ることができる。
In the third embodiment, an example in which the SCR catalyst is equally divided into four in the circumferential direction is shown. However, it is not necessary to divide the SCR catalyst equally in the circumferential direction due to the drift of the exhaust gas, If many reducing agents adhere, the same effect as this embodiment can be obtained easily.
Furthermore, in the third embodiment, the spray nozzle 72 corresponding to each divided catalyst is arranged.
Based on the measured temperature of the catalyst 70 by the temperature sensor 71, a temperature distribution divided in the circumferential direction of the catalyst 70 is calculated. The number of spray nozzles 72 corresponding to the calculated temperature distribution is arranged, the reducing agent spray amount to the catalyst is calculated by the controller 80 according to the temperature for each temperature distribution, and the spray nozzle 72 reduces the temperature distribution for each temperature distribution. Even if the agent is sprayed individually, the same effect as in the third embodiment can be obtained.

第四実施形態について図6乃至図9に基づいて説明する。図6は排気管81に装着されているSCR触媒82の下流側にNH3スリップ触媒83(以後NH3スリップ触媒と記述する)を配置した場合について説明する。
尚、第1実施形態と同じ部品は同じ符号を使用する。
排出ガス規制の内容により、特に、ディーゼルエンジン搭載のトラック・バス等においては、SCR触媒82の下流側にNH3スリップ触媒83を配置して、排ガス中のNOxおよびNH3を効率よく浄化している。
図6において、80はNOx浄化装置を示し、エンジン1から排出された排ガスは排気管81に導かれる。排気管81には排気系上流側からHC,CO,NOなどを酸化するDOC触媒7(酸化触媒)、噴霧ノズル84、SCR触媒82、SCR触媒82に間隔を置いてNH3スリップ触媒83が配置されている。SCR触媒82の排気系上流側には噴霧ノズル84の下流側でSCR触媒82の排ガス入口に入口側温度センサ84が配置され、SCR触媒82の排ガス出口側に出口側温度センサ86が配置されている。
SCR触媒82はハニカム構造の分割された触媒担体に触媒成分を付着させたもので、排気管2内に収納されている。NOxの選択還元触媒としてはバナジウム系、ゼオライト系などが知られている。SCR触媒11は排ガス中のNOxを選択還元するもので、SCR触媒11にNH3が吸着している状態において、SCR触媒11の温度が約200℃を上回る領域では高効率でNOxを還元処理する特性を有している。
又、酸化触媒(DOC)としてPt(白金)系、Pt−Pd(白金・パラジウム)系を用いている。
A fourth embodiment will be described with reference to FIGS. FIG. 6 illustrates a case where an NH3 slip catalyst 83 (hereinafter referred to as NH3 slip catalyst) is disposed on the downstream side of the SCR catalyst 82 mounted on the exhaust pipe 81.
In addition, the same code | symbol is used for the same components as 1st Embodiment.
Depending on the contents of exhaust gas regulations, particularly in trucks and buses equipped with diesel engines, an NH3 slip catalyst 83 is disposed downstream of the SCR catalyst 82 to efficiently purify NOx and NH3 in the exhaust gas.
In FIG. 6, reference numeral 80 denotes a NOx purification device, and the exhaust gas discharged from the engine 1 is guided to the exhaust pipe 81. An NH3 slip catalyst 83 is disposed in the exhaust pipe 81 at intervals from the DOC catalyst 7 (oxidation catalyst) that oxidizes HC, CO, NO, etc., the spray nozzle 84, the SCR catalyst 82, and the SCR catalyst 82 from the upstream side of the exhaust system. ing. On the upstream side of the exhaust system of the SCR catalyst 82, an inlet side temperature sensor 84 is disposed on the exhaust gas inlet of the SCR catalyst 82 downstream of the spray nozzle 84, and an outlet side temperature sensor 86 is disposed on the exhaust gas outlet side of the SCR catalyst 82. Yes.
The SCR catalyst 82 is obtained by adhering a catalyst component to a divided catalyst carrier having a honeycomb structure, and is accommodated in the exhaust pipe 2. Vanadium-based and zeolite-based catalysts are known as selective reduction catalysts for NOx. The SCR catalyst 11 selectively reduces NOx in the exhaust gas. When the NH3 is adsorbed on the SCR catalyst 11, the NOx is reduced with high efficiency in the region where the temperature of the SCR catalyst 11 exceeds about 200 ° C. have.
Moreover, Pt (platinum) type | system | group and Pt-Pd (platinum * palladium) type | system | group are used as an oxidation catalyst (DOC).

SCR触媒82の内部温度推定値は、上述の第一実施形態と同じ要領にて行うので、説明は省略する。
NH3スリップ触媒83はSCRでNOx浄化に使用されなかったNH3を酸化するとともに、NH3の還元作用によりNOxを浄化(脱硝)させることができる。
更に、未燃焼の排ガス中の浮遊粒子状物質(PM;Particulate Matter)等の捕捉も行う。
Since the estimated internal temperature of the SCR catalyst 82 is performed in the same manner as in the first embodiment described above, description thereof is omitted.
The NH3 slip catalyst 83 can oxidize NH3 that has not been used for NOx purification by the SCR, and can purify (denitrate) NOx by the reducing action of NH3.
Furthermore, trapping of suspended particulate matter (PM) in unburned exhaust gas is also performed.

図7に基づいて制御フローを説明する。
ステップS30にて、エンジン回転数Ne及びトルクTqからエンジンの出力(負荷)状態を算出する。ステップS31にてステップS30の出力状態からNOxの排出量を算出する。
ステップS32にてステップS31で算出したNOx量に基づいて尿素水の噴霧量を算出する。ステップS33にて算出された尿素水噴霧量を還元剤供給手段である噴霧ノズル84から排ガス中に噴霧する。ステップS34にて温度測定手段である入口側温度センサ85及び出口側温度センサ86にて排ガスの温度を測定する。ステップS35にてSCR触媒82の内部温度を算出する(SCR触媒温度推定部)。触媒内部温度の算式は第一実施形態の<伝熱式>と同じなので本実施形態では説明を省略する。
The control flow will be described based on FIG.
In step S30, the engine output (load) state is calculated from the engine speed Ne and torque Tq. In step S31, the NOx emission amount is calculated from the output state of step S30.
In step S32, the spray amount of urea water is calculated based on the NOx amount calculated in step S31. The urea water spray amount calculated in step S33 is sprayed into the exhaust gas from the spray nozzle 84 which is a reducing agent supply means. In step S34, the temperature of the exhaust gas is measured by the inlet side temperature sensor 85 and the outlet side temperature sensor 86 which are temperature measuring means. In step S35, the internal temperature of the SCR catalyst 82 is calculated (SCR catalyst temperature estimation unit). Since the formula for the catalyst internal temperature is the same as the <heat transfer type> in the first embodiment, the description thereof is omitted in this embodiment.

ステップS36において、ステップS35にて算出したSCR触媒82の内部温度に基づいて、SCR触媒82の内部温度とエンジン負荷(エンジン回転数Ne及びトルクTq)状態によるNOx浄化率%をマップ(図8参照)から算出する。NOx浄化率%はエンジン負荷により異なり、実験値データから作成する。
ステップS37にてSCR触媒82からのNH3のスリップ量をNH3スリップ量算出部にて算出する。
即ち、NH3スリップ量=尿素水噴出量―浄化NOx量から求める。
但し、浄化NOx量=エンジンからのNOx排出量×NOx浄化率。
In step S36, based on the internal temperature of the SCR catalyst 82 calculated in step S35, the internal temperature of the SCR catalyst 82 and the NOx purification rate% according to the engine load (engine speed Ne and torque Tq) state are mapped (see FIG. 8). ). The NOx purification rate% differs depending on the engine load, and is created from experimental value data.
In step S37, the NH3 slip amount from the SCR catalyst 82 is calculated by the NH3 slip amount calculator.
That is, NH3 slip amount = urea water ejection amount−purified NOx amount.
However, purification NOx amount = NOx emission amount from engine × NOx purification rate.

ステップS38において、NH3スリップ触媒活性判断部がSCR触媒82を通過した排ガスを出口側温度センサ86で測定して、測定された値にてNH3スリップ触媒83の温度を推定する。
ステップS39にて、ステップS38で推定したNH3スリップ触媒83の温度が活性状態にあるかを判断する。活性状態にない(No)場合には、ステップS30に戻りNH3スリップ触媒83が活性状態になるまで繰返す。
NH3スリップ触媒83の温度が活性する温度に到達した場合を活性状態にあると判断する。
この場合は尿素水の噴霧を停止する。その理由として、噴霧した尿素水でNOx浄化に用いられなかった分はNH3としてNH3スリップ触媒に吸着される。NH3スリップ触媒の温度の上昇や排気ガスの流量の変動により、NH3スリップ触媒に吸着されたNH3は離脱することがある。
一方、活性状態である(Yes)場合、ステップS40に進む。ステップS40では
(入口側温度センサ85検出値+出口側温度センサ86検出値)/2と、SCR触媒82の内部温度とを比較する。これはエンジン1の運転状態において、排気ガスの方が高い場合と、SCR触媒82の内部温度の方が高い場合があるためであり、脱硝率は温度の高い方が高くなるので、高い方を選択する。汎用エンジンの稼働状況は多種多様であり、負荷変動、エンジンの運転又は休止の繰返し等様々である。そのような場合でもより効率的な脱硝作用及び、NH3のスリップ量減少をするためである。
In step S38, the NH3 slip catalyst activity determination unit measures the exhaust gas that has passed through the SCR catalyst 82 by the outlet side temperature sensor 86, and estimates the temperature of the NH3 slip catalyst 83 from the measured value.
In step S39, it is determined whether the temperature of the NH3 slip catalyst 83 estimated in step S38 is in an active state. If it is not in the active state (No), the process returns to step S30 and is repeated until the NH3 slip catalyst 83 is in the active state.
When the temperature of the NH3 slip catalyst 83 reaches the temperature at which it is activated, it is determined that the NH3 slip catalyst 83 is in the active state.
In this case, spraying of urea water is stopped. The reason is that the portion of the sprayed urea water that is not used for NOx purification is adsorbed by the NH3 slip catalyst as NH3. The NH3 adsorbed on the NH3 slip catalyst may be detached due to a rise in the temperature of the NH3 slip catalyst or a change in the flow rate of the exhaust gas.
On the other hand, if it is in the active state (Yes), the process proceeds to step S40. In step S <b> 40, (inlet side temperature sensor 85 detected value + outlet side temperature sensor 86 detected value) / 2 is compared with the internal temperature of the SCR catalyst 82. This is because, in the operating state of the engine 1, the exhaust gas is higher and the internal temperature of the SCR catalyst 82 may be higher. The higher the temperature, the higher the temperature of the denitration rate. select. There are a wide variety of operating conditions of general-purpose engines, such as load fluctuations, repeated operation of the engine, and pauses. This is because even in such a case, a more efficient denitration action and a reduction in the slip amount of NH 3 can be achieved.

ステップS40でSCR触媒82の内部温度の方が高い(No)場合はとして、ステップS41に進む。ステップS41にてSCR触媒82の内部温度に基づいて、SCR触媒82のNH3スリップ量を求める。ステップS42にてNOxスリップ量算出部によりSCR触媒82からのNOxスリップ量を求める。算出方法としては、エンジン1からのNOx排出量から図8のSCR触媒温度とエンジン負荷(Ne・tq)によるNOx浄化率によって求める。ステップS43にてステップS42で求めたNOxスリップ量をNH3スリップ触媒で脱硝するのに必要なNH3量を算出する。図9はNH3スリップ触媒で脱硝するのに必要なNH3量をマップ化したものである。
即ち、SCR触媒82をスリップしたNOx量に対しNH3スリップ触媒の温度別によるNH3のNOx浄化に必要な量を実験値のより作成したものである。
従って、SCR触媒82を通過した排ガスの温度を出口側温度センサ86にて検出した温度をNH3スリップ触媒の温度として、図9からSCR触媒82をスリップしたNOx量と、NH3スリップ触媒の温度とから、NH3スリップ触媒でNOxを還元浄化するのに必要なNH3を算出する。
ステップS44にて、ステップS41で求めたNH3のスリップ量と、ステップS43で求めたNH3スリップ触媒での必要なNH3とを比較して、尿素水が不足する場合は尿素水噴霧量を増大し、スリップしたNOxを浄化するのに必要なNH3スリップ量となるように補正する。補正した値をステップS33に出力して、尿素水噴霧装置87によって排ガス中に尿素水が噴霧される。
If it is determined in step S40 that the internal temperature of the SCR catalyst 82 is higher (No), the process proceeds to step S41. In step S41, the NH 3 slip amount of the SCR catalyst 82 is obtained based on the internal temperature of the SCR catalyst 82. In step S42, the NOx slip amount calculation unit obtains the NOx slip amount from the SCR catalyst 82. As a calculation method, the NOx emission rate from the engine 1 is obtained from the NOx purification rate based on the SCR catalyst temperature and engine load (Ne · tq) in FIG. In step S43, the amount of NH3 required to denitrate the NOx slip amount obtained in step S42 with the NH3 slip catalyst is calculated. FIG. 9 is a map of the amount of NH3 required for denitration with an NH3 slip catalyst.
That is, the amount necessary for NOx purification of NH3 depending on the temperature of the NH3 slip catalyst with respect to the amount of NOx slipped by the SCR catalyst 82 is created from experimental values.
Accordingly, assuming that the temperature of the exhaust gas that has passed through the SCR catalyst 82 is detected by the outlet side temperature sensor 86 as the temperature of the NH3 slip catalyst, the amount of NOx that slips the SCR catalyst 82 from FIG. Then, NH3 required for reducing and purifying NOx with the NH3 slip catalyst is calculated.
In step S44, the NH3 slip amount obtained in step S41 is compared with the required NH3 in the NH3 slip catalyst obtained in step S43. If urea water is insufficient, the urea water spray amount is increased. Correction is made so that the amount of NH3 slip required to purify the slipped NOx is obtained. The corrected value is output to step S33, and urea water is sprayed into the exhaust gas by the urea water spray device 87.

ステップS40にてSCR触媒82の内部温度より、(入口側温度センサ85検出値Tg_i+出口側温度センサ86検出値Tg_o)/2の温度の方が高い場合はYesとしてステップS45へ進む。ステップS45では(検出値Tg_i及び検出値Tg_o)/2の温度に基づいて、
SCR触媒82のNH3スリップ量を求める。ステップS46にてSCR触媒82のNOxスリップ量を求める。ステップS47にて脱硝するのに必要なNH3量を算出する。ステップS48にて尿素水噴霧量を補正する。補正した値をステップS33に出力して、尿素水噴霧装置87によって排ガス中に尿素水が噴霧される。
尚、ステップS46〜ステップS48はステップS42〜ステップS44と制御内容が同じなので、説明を簡略化した。
If the temperature of (inlet side temperature sensor 85 detected value Tg_i + outlet side temperature sensor 86 detected value Tg_o) / 2 is higher than the internal temperature of the SCR catalyst 82 in step S40, the process proceeds to step S45 as Yes. In step S45, based on the temperature of (detection value Tg_i and detection value Tg_o) / 2,
The NH3 slip amount of the SCR catalyst 82 is obtained. In step S46, the NOx slip amount of the SCR catalyst 82 is obtained. In step S47, the amount of NH3 required for denitration is calculated. In step S48, the urea water spray amount is corrected. The corrected value is output to step S33, and urea water is sprayed into the exhaust gas by the urea water spray device 87.
Since steps S46 to S48 have the same control content as steps S42 to S44, the description is simplified.

NH3スリップ触媒83をSCR触媒82の排気系下流側に必要とする本第四実施形態によれば、SCR触媒を意図的に小さくして、NH3及びNOxのSCR触媒でのスリップ量を多くして、NH3スリップ触媒でのNOx脱硝を最大限に活用させて、SCR触媒を小さくさせることによるコスト低減、及び、汎用エンジンの全体形状を小さくでき、作業機械との組み合わせに自由度が増し、構造の簡素化が可能となる。   According to the fourth embodiment that requires the NH3 slip catalyst 83 on the downstream side of the exhaust system of the SCR catalyst 82, the SCR catalyst is intentionally reduced and the slip amount of NH3 and NOx at the SCR catalyst is increased. , Make the most of NOx denitration with NH3 slip catalyst, reduce the cost by reducing the SCR catalyst, and reduce the overall shape of the general-purpose engine, increasing the flexibility in combination with work machines, Simplification is possible.

ディーゼルエンジンの排ガス浄化のため、SCR触媒に尿素水を吸着させて排ガス中のNOxを効率的に浄化すると共に、尿素水から加水分解したNH3のスリップを削減して、より精度の高い脱硝と、尿素水の使用量の減少に伴うディーゼルエンジン運転コストの低減を図るディーゼルエンジンの排ガス浄化装置。   For exhaust gas purification of diesel engines, urea water is adsorbed on the SCR catalyst to efficiently purify NOx in the exhaust gas, and slip of NH3 hydrolyzed from urea water is reduced, so that denitration with higher accuracy is achieved. Diesel engine exhaust gas purification system that reduces diesel engine operating costs due to a decrease in the amount of urea water used.

1 エンジン
5、80 コントローラ
6 尿素水噴霧装置
11、70,82 SCR触媒
12 入口側温度センサ
13 出口側温度センサ
51 排ガス算出手段
52 NOx排出量算出手段
53 尿素水噴霧量目標算出手段
54 排ガス平均温度算出手段
55、81 触媒温度推定部
56 目標吸着量算出手段
57 実吸着量演算手段
61 尿素水噴霧制御装置
62 噴霧ノズル
83 NH3スリップ触媒
DESCRIPTION OF SYMBOLS 1 Engine 5, 80 Controller 6 Urea water spray apparatus 11, 70, 82 SCR catalyst 12 Inlet side temperature sensor 13 Outlet side temperature sensor 51 Exhaust gas calculation means 52 NOx discharge | emission amount calculation means 53 Urea water spray amount target calculation means 54 Exhaust gas average temperature Calculation means 55, 81 Catalyst temperature estimation unit 56 Target adsorption amount calculation means 57 Actual adsorption amount calculation means 61 Urea water spray control device 62 Spray nozzle 83 NH3 slip catalyst

Claims (8)

エンジンの排気系に設けられ、還元剤であるNH3を吸着して排ガス中のNOxを選択還元するSCR触媒と、該SCR触媒に前記還元剤を供給する還元剤供給手段と、前記SCR触媒の入口と出口の前記排ガスの温度を測定する温度測定手段と、該温度測定手段にて検出した前記入口と出口との排ガス温度差に基づいて前記SCR触媒内部温度を推定するSCR触媒温度推定部及び前記SCR触媒内部温度に基づいて前記SCR触媒への前記NH3の吸着量を算出して、該吸着量に基づいて前記還元剤の供給量を算出する還元剤供給量制御部を有した制御手段とを備えたエンジンのNOx浄化装置において、前記エンジン始動時又は冷時に、前記還元剤供給量制御部にて前記還元剤供給量を算出する前記SCR触媒温度(初期値)として、前記温度測定手段の測定結果に基づいた前記SCR触媒の前記入口と前記出口との排ガス温度平均値と、前記SCR触媒温度推定部にて推定した前記SCR触媒内部温度とを比較して、排ガス温度平均値が前記SCR触媒内部温度に対して高いか又は、同等の場合は前記排ガス温度平均値を、前記SCR触媒内部温度の方が高い場合は前記SCR触媒の温度を初期値として前記還元剤供給量を算出して前記還元剤を前記還元剤供給手段から前記SCR触媒に供給するように制御することを特徴とするエンジンのNOx浄化装置。   An SCR catalyst that is provided in the exhaust system of the engine and that selectively reduces NOx in the exhaust gas by adsorbing NH3 as a reducing agent, a reducing agent supply means that supplies the reducing agent to the SCR catalyst, and an inlet of the SCR catalyst A temperature measuring means for measuring the temperature of the exhaust gas at the outlet, an SCR catalyst temperature estimating section for estimating the internal temperature of the SCR catalyst based on the exhaust gas temperature difference between the inlet and the outlet detected by the temperature measuring means, and A control unit having a reducing agent supply amount control unit that calculates an adsorption amount of the NH3 to the SCR catalyst based on an internal temperature of the SCR catalyst, and calculates a supply amount of the reducing agent based on the adsorption amount; In the engine NOx purification device provided, as the SCR catalyst temperature (initial value) for calculating the reducing agent supply amount by the reducing agent supply amount control unit at the time of starting or cooling the engine, The exhaust gas temperature average value of the inlet and the outlet of the SCR catalyst based on the measurement result of the temperature measuring means is compared with the internal temperature of the SCR catalyst estimated by the SCR catalyst temperature estimation unit, and the exhaust gas temperature When the average value is higher than or equivalent to the internal temperature of the SCR catalyst, the exhaust gas temperature average value is used. When the internal temperature of the SCR catalyst is higher, the temperature of the SCR catalyst is used as the initial value to supply the reducing agent. An NOx purification device for an engine characterized by calculating an amount and controlling the reducing agent to be supplied from the reducing agent supply means to the SCR catalyst. 前記SCR触媒温度推定部は前記エンジン停止後も前記SCR触媒温度の推定を継続し、前記SCR触媒温度推定部による前記SCR触媒推定温度と、前記温度測定手段にて検出された前記SCR触媒入口が前記排ガス温度以下となった場合には前記SCR触媒温度の推定を終了し、前記SCR触媒推定温度が前記SCR触媒入口排ガス温度より高い状態で、前記エンジンが再始動した場合には前記触媒温度推定を前記再始動時の前記触媒温度推定値を前記初期値として前記還元剤供給量を算出して前記還元剤を前記還元剤供給手段から前記SCR触媒に供給するように制御することを特徴とする請求項1記載エンジンのNOx浄化装置。   The SCR catalyst temperature estimation unit continues to estimate the SCR catalyst temperature even after the engine is stopped, and the SCR catalyst estimated temperature by the SCR catalyst temperature estimation unit and the SCR catalyst inlet detected by the temperature measuring means are When the exhaust gas temperature becomes lower than the exhaust gas temperature, the estimation of the SCR catalyst temperature is finished. When the estimated SCR catalyst temperature is higher than the exhaust gas temperature at the SCR catalyst inlet and the engine is restarted, the estimation of the catalyst temperature is performed. The reductant supply amount is calculated using the estimated catalyst temperature value at the restart as the initial value, and the reductant is controlled to be supplied from the reductant supply means to the SCR catalyst. The engine NOx purification device according to claim 1. 前記SCR触媒温度推定部は前記SCR触媒入口と、前記SCR触媒出口の排ガス温度を計測して、夫々の排ガス温度、前記触媒の熱容量及び伝熱特性に基づいて前記SCR触媒内部温度を推定することを特徴とする請求項1又は2記載のエンジンのNOx浄化装置。   The SCR catalyst temperature estimation unit measures exhaust gas temperatures at the SCR catalyst inlet and the SCR catalyst outlet, and estimates the internal temperature of the SCR catalyst based on the exhaust gas temperature, the heat capacity and heat transfer characteristics of the catalyst. The NOx purification device for an engine according to claim 1 or 2. 前記エンジンが冷時状態始動時の前記SCR触媒温度を温度センサにて直接測定し、その測定値を前記初期値としたことを特徴とする請求項1記載のエンジンのNOx浄化装置。   2. The engine NOx purification device according to claim 1, wherein the temperature of the SCR catalyst when the engine is in a cold state is directly measured by a temperature sensor, and the measured value is used as the initial value. エンジンの排気系に設けられ、NH3を吸着して排ガス中のNOxを選択還元し、周方向に複数に分割された領域を有する円柱形状のSCR触媒と、該SCR触媒の上流側で、還元剤である前記NH3又は尿素水を噴出する複数の噴霧ノズルを前記SCR触媒の周方向へ等間隔に配設して前記還元剤を前記SCR触媒に供給する還元剤供給手段と、前記SCR触媒の排ガス入口と出口に配設された温度センサとが前記SCR触媒を挟んで且つ、対向した状態で夫々配置された温度測定手段と、該温度測定手段にて測定された温度に基づいて前記SCR触媒内部温度を対向した前記温度センサ毎に温度分布を推定する触媒温度推定部と、前記SCR触媒内部温度に基づいて前記SCR触媒への前記NH3の吸着量を算出して、該吸着量に基づいて還元剤の供給量を前記複数の噴霧ノズル毎に算出する還元剤供給量制御部を有した制御手段とを備えたエンジンのNOx浄化装置において、
前記還元剤供給量制御部は前記触媒温度推定部によって検出された前記温度分布の温度の高さにより前記各噴霧ノズルからの前記還元剤噴出量を制御したことを特徴とするエンジンのNOx浄化装置。
A cylindrical SCR catalyst that is provided in an exhaust system of an engine and selectively reduces NOx in exhaust gas by adsorbing NH3 and having a plurality of regions divided in the circumferential direction, and a reducing agent upstream of the SCR catalyst A reducing agent supply means for supplying the reducing agent to the SCR catalyst by arranging a plurality of spray nozzles for ejecting NH3 or urea water at equal intervals in the circumferential direction of the SCR catalyst, and exhaust gas of the SCR catalyst Temperature sensors arranged at the inlet and outlet of the SCR catalyst with the SCR catalyst sandwiched therebetween, respectively, and the inside of the SCR catalyst based on the temperature measured by the temperature measuring means A catalyst temperature estimation unit that estimates a temperature distribution for each temperature sensor facing the temperature, and calculates the adsorption amount of the NH3 to the SCR catalyst based on the internal temperature of the SCR catalyst, and based on the adsorption amount In the NOx purification apparatus for an engine and a control unit having a reducing agent supply amount control section for calculating a supply amount of the reducing agent for each of the plurality of spray nozzles,
The reducing agent supply amount control unit controls the reducing agent ejection amount from each spray nozzle based on the temperature of the temperature distribution detected by the catalyst temperature estimation unit. .
前記複数の各噴霧ノズルは前記複数に分割された領域のSCR触媒夫々に対向して配置され、前記夫々の噴霧ノズルから噴出される前記還元剤の前記SCR触媒への噴霧領域は前記全噴霧ノズルで前記SCR触媒の排ガス入口側の全域に噴霧されると共に、前記各噴霧ノズルは少なくとも前記SCR触媒の中心部を前記各噴霧ノズル夫々が重複して前記還元剤が噴霧されるように形成されていることを特徴とする請求項5記載のエンジンのNOx浄化装置。   Each of the plurality of spray nozzles is disposed to face each of the SCR catalysts in the plurality of divided regions, and the spray region of the reducing agent sprayed from each of the spray nozzles to the SCR catalyst is the all spray nozzles. The spray nozzle is sprayed over the entire area of the exhaust gas inlet side of the SCR catalyst, and the spray nozzles are formed so that the spray agent is sprayed at least in the center of the SCR catalyst. The engine NOx purification device according to claim 5, wherein 前記複数の各噴霧ノズルは前記複数に分割された領域のSCR触媒の夫々の前記温度センサ毎に分布された前記温度分布の分布域に対し、複数個の前記噴霧ノズルを配置したことを特徴とする請求項5記載の特徴とするエンジンのNOx浄化装置。   Each of the plurality of spray nozzles is provided with a plurality of spray nozzles arranged in the distribution region of the temperature distribution distributed for each of the temperature sensors of the SCR catalyst in the plurality of divided regions. An engine NOx purification device as defined in claim 5. エンジンの排気系に設けられ、還元剤であるNH3を吸着して排ガス中のNOxを選択還元するSCR触媒と、該SCR触媒の前記排気系下流側に前記SCR触媒と間隔を置いて配置され、排ガス中のNOx及びNH3を浄化するNH3スリップ触媒と、前記SCR触媒に前記還元剤を供給する還元剤供給手段と、前記SCR触媒の入口と出口の前記排ガスの温度を測定する温度測定手段と、前記温度測定手段にて検出した前記入口と前記出口との排ガス温度差に基づいて前記SCR触媒内部温度を推定するSCR触媒温度推定部、尿素水噴霧量に対して前記SCR触媒内部温度と前記エンジン負荷によるNOx浄化率に基づいて前記SCR触媒から前記NH3のスリップ量を算出するNH3スリップ量算出部、前記NOx浄化率に基づいて前記SCR触媒でのNOxスリップ量を算出するNOxスリップ量算出部、前記NOxスリップ量の還元に必要な還元剤量を算出する還元剤量算出部、前記温度測定手段による前記出口の排ガス温度の検出温度に基づいて前記NH3スリップ触媒が活性状態になっているかを判断するNH3スリップ触媒活性判断部を有した制御手段とを備えたエンジンのNOx浄化装置において、NH3スリップ触媒活性判断部によってNH3スリップ触媒が活性状態になっていると判断した場合、前記SCR触媒内部温度に基づいて該SCR触媒からのNH3スリップ量とNOxスリップ量を算出して、前記NOxスリップ量を前記NH3スリップ触媒にて浄化するのに必要な前記還元剤量を求める前記SCR触媒の内部温度値として、前記温度測定手段の測定結果に基づいた前記SCR触媒の前記入口と前記出口との排ガス温度平均値と、前記SCR触媒温度推定部にて推定した前記SCR触媒内部温度とを比較して、温度の高い方を前記SCR触媒内部温度として前記還元剤量算出部で算出して前記還元剤供給手段に出力するようにしたことを特徴とするエンジンのNOx浄化装置。   An SCR catalyst that is provided in an engine exhaust system, selectively adsorbs NH3 as a reducing agent and selectively reduces NOx in exhaust gas, and is arranged at a distance from the SCR catalyst downstream of the SCR catalyst in the exhaust system; NH3 slip catalyst for purifying NOx and NH3 in exhaust gas, reducing agent supply means for supplying the reducing agent to the SCR catalyst, temperature measuring means for measuring the temperature of the exhaust gas at the inlet and outlet of the SCR catalyst, An SCR catalyst temperature estimating unit for estimating the internal temperature of the SCR catalyst based on a difference in exhaust gas temperature between the inlet and the outlet detected by the temperature measuring means, and the internal temperature of the SCR catalyst and the engine with respect to the urea water spray amount An NH3 slip amount calculation unit for calculating the NH3 slip amount from the SCR catalyst based on a NOx purification rate by a load, based on the NOx purification rate The NOx slip amount calculating unit for calculating the NOx slip amount in the SCR catalyst, the reducing agent amount calculating unit for calculating the reducing agent amount necessary for the reduction of the NOx slip amount, and detection of the exhaust gas temperature at the outlet by the temperature measuring means And a control means having an NH3 slip catalyst activity determining unit for determining whether the NH3 slip catalyst is in an activated state based on a temperature, wherein the NH3 slip catalyst is determined by the NH3 slip catalyst activity determining unit. Is determined to be active, the NH3 slip amount and NOx slip amount from the SCR catalyst are calculated based on the internal temperature of the SCR catalyst, and the NOx slip amount is purified by the NH3 slip catalyst. As the internal temperature value of the SCR catalyst for obtaining the amount of the reducing agent necessary for the measurement, the temperature measuring means The average value of the exhaust gas temperature at the inlet and the outlet of the SCR catalyst based on the measurement result is compared with the internal temperature of the SCR catalyst estimated by the SCR catalyst temperature estimation unit. A NOx purification device for an engine, characterized in that the internal temperature of the catalyst is calculated by the reducing agent amount calculation unit and output to the reducing agent supply means.
JP2009251132A 2009-10-30 2009-10-30 NOx purification device for internal combustion engine Expired - Fee Related JP5404320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009251132A JP5404320B2 (en) 2009-10-30 2009-10-30 NOx purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009251132A JP5404320B2 (en) 2009-10-30 2009-10-30 NOx purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011094572A true JP2011094572A (en) 2011-05-12
JP5404320B2 JP5404320B2 (en) 2014-01-29

Family

ID=44111752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009251132A Expired - Fee Related JP5404320B2 (en) 2009-10-30 2009-10-30 NOx purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5404320B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013133808A (en) * 2011-12-27 2013-07-08 Toyota Motor Corp Exhaust emission control device of internal combustion engine
US20160061085A1 (en) * 2013-03-07 2016-03-03 Isuzu Motors Limited Control method for exhaust gas aftertreatment device
CN105892504A (en) * 2015-07-30 2016-08-24 大唐环境产业集团股份有限公司 Thermal power plant denitration ammonia supplying automatic return circuit control method and system
WO2016152391A1 (en) * 2015-03-25 2016-09-29 いすゞ自動車株式会社 Exhaust purification system and catalyst control method
CN109062053A (en) * 2018-08-31 2018-12-21 江苏国信靖江发电有限公司 A kind of denitration spray ammonia control method based on multivariate calibration
CN112461995A (en) * 2020-11-03 2021-03-09 西安热工研究院有限公司 Method for predicting ammonia escape of thermal power plant

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254038A (en) * 2002-03-04 2003-09-10 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2004518053A (en) * 2000-10-16 2004-06-17 エンゲルハード・コーポレーシヨン Control system for SCR applications
JP2006022729A (en) * 2004-07-08 2006-01-26 Hino Motors Ltd Control method of exhaust emission control device
JP3951774B2 (en) * 2002-03-29 2007-08-01 三菱ふそうトラック・バス株式会社 NOx purification device for internal combustion engine
JP2008280955A (en) * 2007-05-11 2008-11-20 Bosch Corp Exhaust emission control device for internal combustion engine, and device and method for controlling exhaust emission control device
JP2008279334A (en) * 2007-05-09 2008-11-20 Ne Chemcat Corp Selective reduction catalyst and apparatus for cleaning exhaust gas using the same, and method of cleaning exhaust gas
JP2009115032A (en) * 2007-11-08 2009-05-28 Nippon Soken Inc Exhaust gas purifying apparatus for internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004518053A (en) * 2000-10-16 2004-06-17 エンゲルハード・コーポレーシヨン Control system for SCR applications
JP2003254038A (en) * 2002-03-04 2003-09-10 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP3951774B2 (en) * 2002-03-29 2007-08-01 三菱ふそうトラック・バス株式会社 NOx purification device for internal combustion engine
JP2006022729A (en) * 2004-07-08 2006-01-26 Hino Motors Ltd Control method of exhaust emission control device
JP2008279334A (en) * 2007-05-09 2008-11-20 Ne Chemcat Corp Selective reduction catalyst and apparatus for cleaning exhaust gas using the same, and method of cleaning exhaust gas
JP2008280955A (en) * 2007-05-11 2008-11-20 Bosch Corp Exhaust emission control device for internal combustion engine, and device and method for controlling exhaust emission control device
JP2009115032A (en) * 2007-11-08 2009-05-28 Nippon Soken Inc Exhaust gas purifying apparatus for internal combustion engine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013133808A (en) * 2011-12-27 2013-07-08 Toyota Motor Corp Exhaust emission control device of internal combustion engine
US9562463B2 (en) * 2013-03-07 2017-02-07 Isuzu Motors Limited Control method for exhaust gas aftertreatment device
US20160061085A1 (en) * 2013-03-07 2016-03-03 Isuzu Motors Limited Control method for exhaust gas aftertreatment device
CN107407185A (en) * 2015-03-25 2017-11-28 五十铃自动车株式会社 Emission control system and catalyst control method
JP2016180401A (en) * 2015-03-25 2016-10-13 いすゞ自動車株式会社 Exhaust emission control system
WO2016152391A1 (en) * 2015-03-25 2016-09-29 いすゞ自動車株式会社 Exhaust purification system and catalyst control method
US20180051615A1 (en) 2015-03-25 2018-02-22 Isuzu Motors Limited Exhaust purification system and catalyst control method
US10260398B2 (en) 2015-03-25 2019-04-16 Isuzu Motors Limited Exhaust purification system and catalyst control method
CN107407185B (en) * 2015-03-25 2019-09-13 五十铃自动车株式会社 Emission control system and catalyst control method
CN105892504A (en) * 2015-07-30 2016-08-24 大唐环境产业集团股份有限公司 Thermal power plant denitration ammonia supplying automatic return circuit control method and system
CN105892504B (en) * 2015-07-30 2018-08-31 大唐环境产业集团股份有限公司 The control method and control system of a kind of thermal power plant's denitration for ammonia automatic loop
CN109062053A (en) * 2018-08-31 2018-12-21 江苏国信靖江发电有限公司 A kind of denitration spray ammonia control method based on multivariate calibration
CN109062053B (en) * 2018-08-31 2022-11-29 江苏国信靖江发电有限公司 Denitration ammonia injection control method based on multivariate correction
CN112461995A (en) * 2020-11-03 2021-03-09 西安热工研究院有限公司 Method for predicting ammonia escape of thermal power plant

Also Published As

Publication number Publication date
JP5404320B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
CN101918686B (en) Equipment and method for determining catalyst deterioration
JP3951774B2 (en) NOx purification device for internal combustion engine
CN101725392B (en) Urea water injection amount controller and urea water injection control system
EP1830040B1 (en) Engine exhaust purification apparatus
CN102859135B (en) Exhaust purification device for internal combustion engine
JP5404320B2 (en) NOx purification device for internal combustion engine
US20070214777A1 (en) Methods Of Controlling Reductant Addition
KR101416410B1 (en) Urea injection control system for vehicle and method thereof
JP6130619B2 (en) Control device for NOx purification device
CN102037230A (en) NOx sensor abnormality diagnosing apparatus and abnormality diagnosing method
US20120255285A1 (en) Electronically heated selective catalytic reduction (scr) device
CN104285048A (en) Exhaust gas purification system and method for purifying exhaust gas
KR101316856B1 (en) System for control urea injection quantity of vehicle and method thereof
CN101680332A (en) NOX purification system, and method for control of nox purification system
CN104285049A (en) Exhaust gas purification system and exhaust gas purification method
JP2008157136A (en) Exhaust emission control device for internal combustion engine
JP2008163856A (en) Exhaust emission control device of internal combustion engine
JP5880705B2 (en) Exhaust gas purification device deterioration detection system
JP5398372B2 (en) Engine exhaust purification system
JP2010031731A (en) Exhaust emission control system of internal-combustion engine
EP2937534B1 (en) System for purifying exhaust of internal combustion engine
JP6344259B2 (en) Urea addition control device, learning device
US9046025B2 (en) Selective catalytic reduction device monitoring system
CN109154223B (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP2012082703A (en) DEVICE AND METHOD FOR DETECTING DEGRADATION OF SELECTIVE REDUCTION TYPE NOx CATALYST

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

LAPS Cancellation because of no payment of annual fees