JP2009114506A - Impeller for stirring molten metal and molten metal stirring apparatus therewith - Google Patents

Impeller for stirring molten metal and molten metal stirring apparatus therewith Download PDF

Info

Publication number
JP2009114506A
JP2009114506A JP2007289439A JP2007289439A JP2009114506A JP 2009114506 A JP2009114506 A JP 2009114506A JP 2007289439 A JP2007289439 A JP 2007289439A JP 2007289439 A JP2007289439 A JP 2007289439A JP 2009114506 A JP2009114506 A JP 2009114506A
Authority
JP
Japan
Prior art keywords
molten metal
stirring
impeller
container
comparative example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007289439A
Other languages
Japanese (ja)
Other versions
JP5252670B2 (en
Inventor
Masayuki Sugiura
正之 杉浦
Takahiro Yoshino
貴博 吉野
Nariaki Tanaka
成顕 田中
Satomi Makimoto
学己 牧本
Noboru Kaji
昇 鍛冶
Kosei Okimoto
耕成 沖本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Nippon Steel Texeng Co Ltd
Original Assignee
Nisshin Koki Co Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Koki Co Ltd, Nisshin Steel Co Ltd filed Critical Nisshin Koki Co Ltd
Priority to JP2007289439A priority Critical patent/JP5252670B2/en
Publication of JP2009114506A publication Critical patent/JP2009114506A/en
Application granted granted Critical
Publication of JP5252670B2 publication Critical patent/JP5252670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an impeller for stirring molten metal excellent in stirring capacity. <P>SOLUTION: The impeller 1 for stirring the molten metal includes four stirring blades 5 projecting in the diameter direction from the neighborhood of the low end part 4 of a rotating shaft 2. The stirring blades 5 are respectively formed generally as a square-column state having an upper surface 11, a lower surface 12, a front surface 13, a rear surface 14 and an outer side surface 15. The stirring blade 5 is further provided with a rear part upper cutting-off surface 16 as an inclining surface cutting off the corner part from the upper surface 11 to the rear surface 14, a front part outer cutting-off surface 17 as the inclining surface cutting off the corner part from the front surface 13 to the outer side surface 15 and the front lower cutting-off surface 18 as the inclining surface cutting off the corner part from the lower surface 12 to the front surface 13. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、たとえば溶融金属より比重の小さい添加物と溶融金属との混合に用いられ、溶融金属に浸漬され回転して撹拌する溶融金属撹拌用インペラおよびそれを備える溶融金属撹拌装置に関する。   The present invention relates to an impeller for stirring a molten metal that is used for mixing an additive having a specific gravity lower than that of a molten metal and the molten metal, and is immersed in the molten metal and rotated and stirred, and a molten metal stirring device including the impeller.

従来、溶融金属の不純物を低減する精錬は、溶融金属にフラックスを添加してもしくはフラックスを添加しながら気体吹込撹拌または機械撹拌している。精錬反応は、溶融金属とフラックスとの界面で進行するので、溶融金属を撹拌してフラックスを溶融金属中に巻込み、溶融金属とフラックスとの反応界面を広くすることが反応促進にとって好ましい。フラックスは、溶融金属に比べて比重が小さく、添加しただけでは溶融金属の表面に浮くので、溶融金属とフラックスとを混合して反応界面を広くするために気体吹込撹拌または機械撹拌が行なわれる。   Conventionally, refining to reduce impurities in molten metal is performed by blowing or mechanically stirring the molten metal while adding flux or adding flux. Since the refining reaction proceeds at the interface between the molten metal and the flux, it is preferable for promoting the reaction to stir the molten metal and wind the flux into the molten metal to widen the reaction interface between the molten metal and the flux. Flux has a smaller specific gravity than molten metal and floats on the surface of the molten metal only by adding it. Therefore, in order to mix the molten metal and the flux to widen the reaction interface, gas blowing stirring or mechanical stirring is performed.

気体吹込撹拌と機械撹拌とを比べると、機械撹拌の方が、溶融金属に巻込まれた後に浮上するフラックスを繰返し巻込みやすいので、より効果的に精錬反応を進行させることができる。このことから、たとえば溶鋼の脱硫では、取鍋内の溶鋼に脱硫フラックスを添加し、インペラと呼ばれる撹拌羽根を有する回転体が、溶鋼に浸漬され回転して撹拌する機械撹拌式脱硫法が行なわれている。   Comparing gas blowing agitation with mechanical agitation, mechanical agitation is more likely to repeatedly entrain flux that rises after being entrained in the molten metal, so that the refining reaction can proceed more effectively. For this reason, for example, in the desulfurization of molten steel, a mechanical stirring type desulfurization method is performed in which a desulfurization flux is added to the molten steel in the ladle, and a rotating body having a stirring blade called an impeller is immersed in the molten steel and rotated and stirred. ing.

インペラを用いて機械撹拌する溶鋼の脱硫では、効率的な脱硫を実現するべく種々の提案がなされている。たとえば、インペラの回転数を増して脱硫率の温度依存性を小さくし、低温操業で脱硫速度を向上することが提案されている(非特許文献1参照)。しかし、インペラの回転数を増すと、インペラの寿命が短くなり、溶鋼の飛散が多くなり、回転による振動が大きくなるという問題がある。   In the desulfurization of molten steel that is mechanically stirred using an impeller, various proposals have been made to realize efficient desulfurization. For example, it has been proposed to increase the rotational speed of the impeller to reduce the temperature dependence of the desulfurization rate and to improve the desulfurization rate by low-temperature operation (see Non-Patent Document 1). However, when the number of revolutions of the impeller is increased, there is a problem that the life of the impeller is shortened, the scattering of molten steel is increased, and vibration due to the rotation is increased.

また、溶鋼を入れる容器内にじゃま板を設けることによって、撹拌時の溶鋼に不規則な上下流を生成し、フラックスを効率的に巻込んで脱硫率を向上することが提案されている(非特許文献2参照)。しかし、溶鋼は温度が高いので、溶鋼中に設けられるじゃま板は、熱および溶鋼の流動によって損傷するおそれが高く、損傷によって溶鋼に混入したじゃま板の砕片が非金属介在物の生因になるという問題がある。   In addition, it has been proposed that a baffle plate is provided in a vessel in which the molten steel is placed, thereby generating irregular upstream and downstream in the molten steel during stirring, and efficiently entraining the flux to improve the desulfurization rate (non- Patent Document 2). However, since the molten steel is hot, the baffle plates that are provided in the molten steel are likely to be damaged by heat and the flow of the molten steel, and the fragments of the baffle that are mixed into the molten steel due to the damage cause nonmetallic inclusions. There is a problem.

また溶鋼を入れる容器の中心線に対してインペラの軸線がずれるように偏心させて回転することにより、溶鋼の流れを不規則化し撹拌能力を向上することが提案されている(非特許文献3参照)。しかし、インペラを偏心配置して回転すると、振動を助長する。偏心量を少なくすれば振動を問題ない程度に低減し得るが、少ない偏心量では、偏心による撹拌能力向上効果を期待することができないという問題がある。   Further, it has been proposed to make the flow of the molten steel irregular and improve the stirring ability by rotating the impeller so that the axis of the impeller is deviated from the center line of the container in which the molten steel is placed (see Non-Patent Document 3). ). However, when the impeller is eccentrically arranged and rotated, vibration is promoted. If the amount of eccentricity is reduced, vibration can be reduced to an extent that there is no problem, but if the amount of eccentricity is small, there is a problem that the effect of improving the stirring ability due to the eccentricity cannot be expected.

そこで、インペラの撹拌羽根の形状を工夫し、容器内の溶鋼に上下流を形成して撹拌能力を向上することが提案されている(たとえば、特許文献1および特許文献2参照)。特許文献1および2では、インペラの撹拌羽根の形状を工夫することで撹拌能力を高め、低速回転でも脱硫時間の短縮効果が得られるとする。
CAMP−ISIJ、社団法人日本鉄鋼協会、2002年、Vol.15、p.873 鉄と鋼、社団法人日本鉄鋼協会、2004年、Vol.90、No.6、p.329−333 鉄と鋼、社団法人日本鉄鋼協会、2002年、Vol.88、No.1、p.1−7 実開平05−27044号公報 実開平07−41400号公報
Thus, it has been proposed to improve the stirring ability by devising the shape of the impeller stirring blade and forming upstream and downstream in the molten steel in the container (see, for example, Patent Document 1 and Patent Document 2). In Patent Documents 1 and 2, it is assumed that the stirring ability is improved by devising the shape of the impeller stirring blade, and the effect of shortening the desulfurization time can be obtained even at low speed rotation.
CAMP-ISIJ, Japan Iron and Steel Institute, 2002, Vol. 15, p. 873 Iron and steel, Japan Iron and Steel Association, 2004, Vol. 90, no. 6, p. 329-333 Iron and Steel, Japan Iron and Steel Association, 2002, Vol. 88, no. 1, p. 1-7 Japanese Utility Model Publication No. 05-27044 Japanese Utility Model Publication No. 07-41400

特許文献1および2では、普通炭素鋼の溶鋼を脱硫精錬の対象とする。しかし、溶融金属の精錬では、普通炭素鋼の脱硫に比べてより強い撹拌をしなければ効率よく精錬できない場合がある。たとえば、ステンレス溶鋼の脱硫である。ステンレス溶鋼は、耐食性をよくするためにCrを多く含有する。CrがSの活量を低下させる元素であるため、Crを含有するステンレス鋼では脱硫反応が進行しにくい。したがって、ステンレス溶鋼の脱硫では、普通炭素鋼の脱硫に比べてより強い撹拌が必要になる。特許文献1および2に開示される撹拌羽根形状を有するインペラによって普通炭素鋼で達成される程度の撹拌能力では、ステンレス溶鋼の脱硫にとって十分でない。   In Patent Documents 1 and 2, molten steel of ordinary carbon steel is targeted for desulfurization refining. However, in the refining of molten metal, there is a case where the refining cannot be efficiently performed unless the stirring is stronger than that in the desulfurization of ordinary carbon steel. For example, desulfurization of molten stainless steel. Stainless steel melt contains a large amount of Cr in order to improve corrosion resistance. Since Cr is an element that reduces the activity of S, the desulfurization reaction does not easily proceed in stainless steel containing Cr. Therefore, desulfurization of molten stainless steel requires stronger stirring than desulfurization of ordinary carbon steel. The stirrability that can be achieved with ordinary carbon steel by the impeller having the stirrer blade shape disclosed in Patent Documents 1 and 2 is not sufficient for desulfurization of molten stainless steel.

本発明の目的は、撹拌能力に優れる溶融金属撹拌用インペラおよびそれを備える溶融金属撹拌装置を提供することである。   The objective of this invention is providing the impeller for molten metal stirring which is excellent in stirring capability, and a molten metal stirring apparatus provided with the same.

本発明の溶融金属撹拌用インペラは、容器内の溶融金属に上方から浸漬され、かつ回転して回転軸の下端部付近から径方向に突出する複数の撹拌羽根で溶融金属を撹拌することに用いられる。撹拌羽根は、それぞれ大略的に、上面、下面、前面、後面および外側面を有する角柱状に形成され、前面が回転方向前方側であり、後面が回転方向後方側であり、外側面が径方向外側である。撹拌羽根は、さらに、上面から後面にかけて角部を切欠いた傾斜面となる後部上切欠面と、前面から外側面にかけて角部を切欠いた傾斜面となる前部外切欠面と、下面から前面にかけて角部を切欠いた傾斜面となる前部下切欠面とを有することを特徴とする。   The impeller for stirring a molten metal according to the present invention is used to stir molten metal with a plurality of stirring blades that are immersed in the molten metal in a container from above and rotate and project radially from the vicinity of the lower end of the rotating shaft. It is done. The stirring blades are each roughly formed in a prismatic shape having an upper surface, a lower surface, a front surface, a rear surface, and an outer surface, the front surface is the front side in the rotational direction, the rear surface is the rear side in the rotational direction, and the outer surface is the radial direction. Outside. The stirring blade further includes a rear upper notch surface that is an inclined surface with a corner notched from the upper surface to the rear surface, a front outer notch surface that is an inclined surface with a corner notched from the front surface to the outer surface, and a lower surface to the front surface. It has the front lower notch surface used as the inclined surface which notched the corner | angular part, It is characterized by the above-mentioned.

また本発明で、前記前部外切欠面は、回転方向後方へ向うにつれて下方に傾斜するように形成されることを特徴とする。   In the present invention, the front outer notch surface is formed to be inclined downward as it goes rearward in the rotation direction.

また本発明で、前記撹拌羽根は、下面から後面にかけて角部を切欠いた傾斜面となる後部下切欠面を有することを特徴とする。   In the present invention, the stirring blade has a rear lower notch surface that is an inclined surface with a corner portion notched from the lower surface to the rear surface.

また本発明で、前記撹拌羽根は、下面に対して後面の成す角度が90度未満であることを特徴とする。   In the present invention, the stirring blade is characterized in that an angle formed by a rear surface with respect to the lower surface is less than 90 degrees.

さらに本発明は、前記いずれかの溶融金属撹拌用インペラと溶融金属を入れる容器とを備え、容器の中心線に対して回転軸の軸線がずれて偏心するように溶融金属撹拌用インペラが配置されることを特徴とする溶融金属撹拌装置である。   Further, the present invention includes any one of the above-described molten metal stirring impellers and a container in which the molten metal is placed, and the molten metal stirring impeller is disposed so that the axis of the rotation axis is deviated from the center line of the container. This is a molten metal stirring device.

本発明によれば、撹拌羽根の後部上切欠面が溶融金属を下方に引込む流れを作り、前部外切欠面が溶融金属を回転軸の径方向外方へ押出す流れおよび下方に押出す流れを作り、前部下切欠面が溶融金属を下方に押出す流れを作る。このように撹拌羽根に切欠面を形成することによって、容器内の溶融金属に外方向および上下方向に強い流れを作ることが可能になるので、撹拌能力に優れる溶融金属撹拌用インペラを提供することができる。   According to the present invention, the rear upper notch surface of the stirring blade creates a flow that draws the molten metal downward, and the front outer notch surface extrudes the molten metal radially outward of the rotating shaft and flows downward. The front lower notch surface creates a flow that pushes the molten metal downward. By forming a notch surface in the stirring blade in this way, it becomes possible to create a strong flow in the outward and vertical directions in the molten metal in the container, and therefore, an impeller for stirring the molten metal having excellent stirring ability is provided. Can do.

また溶融金属撹拌用インペラに後部下切欠面を形成することによって、インペラ側に向う上方向の流れを作る。インペラ後面側は流れの停滞する澱みが生じ易いが、後部下切欠面により、流れの停滞が緩和され、インペラ前面により多くの体積を供給することができるので、一層撹拌能力に優れる溶融金属撹拌用インペラを提供することができる。   Further, by forming a rear lower notch surface on the molten metal stirring impeller, an upward flow toward the impeller side is created. Stagnation of the flow is likely to occur on the rear surface of the impeller, but the lower notch surface reduces the flow stagnation and can supply a larger volume to the front surface of the impeller. An impeller can be provided.

また後部上切欠面に連なる後面が下面に対して成す角度を90度未満にすることによって、後部上切欠面で下方に引込まれる溶融金属を、後面に沿って円滑に下方へ向って流すことができるので、一層撹拌能力に優れる溶融金属撹拌用インペラを提供することができる。   In addition, by making the angle formed by the rear surface connected to the rear upper notch surface with respect to the lower surface less than 90 degrees, the molten metal drawn downward on the rear upper notch surface flows smoothly downward along the rear surface. Therefore, it is possible to provide an impeller for stirring a molten metal that is further excellent in stirring ability.

さらに本発明の溶融金属撹拌装置によれば、撹拌能力に優れる溶融金属撹拌用インペラは、容器の中心線に対して回転軸の軸線がずれて偏心するように配置されて回転する。溶融金属撹拌用インペラが偏心配置されて回転することで溶融金属に不規則で複雑な流れを作ることができる。また撹拌能力に優れる溶融金属撹拌用インペラは、小さい偏心量で十分に強く撹拌することができるので、偏心に起因する装置の振動が抑制される。このようにして撹拌能力に優れる溶融金属撹拌装置を提供することができる。   Furthermore, according to the molten metal stirring device of the present invention, the molten metal stirring impeller excellent in stirring ability is arranged and rotated so that the axis of the rotation axis is deviated from the center line of the container. By rotating the impeller for stirring the molten metal eccentrically, it is possible to create an irregular and complicated flow in the molten metal. Moreover, since the impeller for stirring a molten metal having excellent stirring ability can stir sufficiently strongly with a small amount of eccentricity, vibration of the apparatus due to eccentricity is suppressed. Thus, the molten metal stirring apparatus which is excellent in stirring ability can be provided.

図1は、本発明の一つの実施形態である溶融金属撹拌用インペラ1の構成を示す。溶融金属撹拌用インペラ1は、容器内の溶融金属に上方から浸漬され、かつ矢符10で示す時計まわりに回転して回転軸2の下端部4付近から径方向に突出する複数の撹拌羽根5で溶融金属を撹拌することに用いられる。本実施形態では、4つの撹拌羽根5を有する溶融金属撹拌用インペラ1について例示する。以後、溶融金属撹拌用インペラを単にインペラと略記する。   FIG. 1 shows a configuration of a molten metal stirring impeller 1 according to an embodiment of the present invention. The molten metal stirring impeller 1 is immersed in the molten metal in the container from above and rotates clockwise as indicated by an arrow 10 to protrude in the radial direction from the vicinity of the lower end 4 of the rotating shaft 2. Used to stir the molten metal. In the present embodiment, a molten metal stirring impeller 1 having four stirring blades 5 is illustrated. Hereinafter, the impeller for stirring molten metal is simply abbreviated as an impeller.

撹拌羽根5は、それぞれ大略的に、上面11、下面12、前面13、後面14および外側面15を有する角柱状に形成される。ここで、前面13は回転方向前方側であり、後面14は回転方向後方側であり、外側面15は径方向外側である。また下面12は、回転軸2の軸線3に対して垂直になるように形成される。   The stirring blades 5 are each generally formed in a prismatic shape having an upper surface 11, a lower surface 12, a front surface 13, a rear surface 14, and an outer surface 15. Here, the front surface 13 is the front side in the rotational direction, the rear surface 14 is the rear side in the rotational direction, and the outer surface 15 is the outer side in the radial direction. The lower surface 12 is formed so as to be perpendicular to the axis 3 of the rotating shaft 2.

撹拌羽根5は、さらに、上面11から後面14にかけて角部を切欠いた傾斜面となる後部上切欠面16と、前面13から外側面15にかけて角部を切欠いた傾斜面となる前部外切欠面17と、下面11から前面13にかけて角部を切欠いた傾斜面となる前部下切欠面18と、下面12から後面14にかけて角部を切欠いた傾斜面となる後部下切欠面19とを有する。また前部外切欠面17は、回転方向後方へ向うにつれて下方に傾斜するように形成される。   The stirring blade 5 further includes a rear upper cut surface 16 that is an inclined surface with a corner cut out from the upper surface 11 to the rear surface 14, and a front outer cut surface that is an inclined surface with a corner cut out from the front surface 13 to the outer surface 15. 17, a front lower notch surface 18 that is an inclined surface with a corner notched from the bottom surface 11 to the front surface 13, and a rear lower notch surface 19 that is an inclined surface with a corner notched from the bottom surface 12 to the rear surface 14. The front outer notch surface 17 is formed so as to incline downward as it goes rearward in the rotational direction.

撹拌羽根5は、下面12に対して後面14の成す角度θが90度未満になるように形成される。θの下限は特に限定しないが、好ましくは60度以上である。θを60度未満にすると、撹拌羽根5の回転方向の厚みが薄くなり、強度低下が懸念されるからである。   The stirring blade 5 is formed such that the angle θ formed by the rear surface 14 with respect to the lower surface 12 is less than 90 degrees. The lower limit of θ is not particularly limited, but is preferably 60 degrees or more. This is because if θ is less than 60 degrees, the thickness of the stirring blade 5 in the rotational direction is reduced, and there is a concern about strength reduction.

インペラ1の材料としては、たとえば耐火モルタルなどの不定形耐火物が好適に用いられる。不定形耐火物を所望の形状に成形し焼成してインペラ1を製造することができる。   As the material of the impeller 1, an amorphous refractory such as a refractory mortar is preferably used. The impeller 1 can be manufactured by forming an amorphous refractory into a desired shape and firing it.

図2は、撹拌羽根5で形成される溶融金属の流れの状態を示す。撹拌羽根5はそれぞれ同じ形状をしているので、図2では流れの状態を判りやすくするために1つの撹拌羽根5のみを示す。容器に入れた溶融金属に撹拌羽根5の全部または一部を上方から浸漬し、インペラ1を軸線3まわりに回転させるのに伴い、撹拌羽根5が軸線3を中心として周回運動する。撹拌羽根5の周回運動によって、撹拌羽根5に形成される各切欠面16,17,18,19は、溶融金属に次のような流れを作る。   FIG. 2 shows the state of the molten metal flow formed by the stirring blade 5. Since each of the stirring blades 5 has the same shape, only one stirring blade 5 is shown in FIG. 2 for easy understanding of the flow state. All or part of the stirring blade 5 is immersed from above into the molten metal contained in the container, and the stirring blade 5 rotates around the axis 3 as the impeller 1 rotates about the axis 3. Due to the revolving motion of the stirring blade 5, the respective notch surfaces 16, 17, 18, 19 formed on the stirring blade 5 make the following flow in the molten metal.

後部上切欠面16は、溶融金属を下方に引込む流れ21を作る。前部外切欠面17は、溶融金属を回転軸2の径方向外方および周方向に押出す流れ22と、溶融金属を下方に押出す流れ23とを作る。前部下切欠面18は、溶融金属を下方に押出す流れ24を作る。   The rear upper notch surface 16 creates a flow 21 that draws molten metal downward. The front outer notch surface 17 creates a flow 22 for extruding the molten metal radially outward and circumferentially of the rotary shaft 2 and a flow 23 for extruding the molten metal downward. The front lower notch surface 18 creates a flow 24 that pushes the molten metal downward.

また後部下切欠面19は、インペラ側に向う上方向の流れ25を作る。インペラ後面側は、流れの停滞するよどみが生じ易く、インペラ前面により押出され得る溶融金属の体積を減少させる。流れ25によってインペラ後面側の澱みが解消され、より多量の溶融金属をインペラ前面から吐出させることができる。   Further, the rear lower cut surface 19 creates an upward flow 25 toward the impeller side. The rear surface side of the impeller is liable to cause stagnation of the flow and reduces the volume of molten metal that can be extruded by the front surface of the impeller. The stagnation on the rear surface side of the impeller is eliminated by the flow 25, and a larger amount of molten metal can be discharged from the front surface of the impeller.

撹拌羽根5の各切欠面16,17,18,19が、溶融金属を引込みかつ押出して容器内の溶融金属に外方向および上下方向の不規則で複雑な強い流れを作り、撹拌能力を向上する。このように切欠面を有する形状の撹拌羽根5とすることによって、溶融金属の撹拌能力に優れるインペラ1を提供することができる。   Each notch surface 16, 17, 18, 19 of the stirring blade 5 draws and extrudes the molten metal to create an irregular and complex flow in the outward and vertical directions in the molten metal in the container, thereby improving the stirring ability. . Thus, by setting it as the stirring blade 5 of the shape which has a notch surface, the impeller 1 which is excellent in the stirring ability of a molten metal can be provided.

なお、インペラ1の撹拌能力向上は、主として、前部外切欠面17が溶融金属を回転軸2の径方向および周方向に押出し、前部下切欠面18が溶融金属を容器の底面に向けて下方に押出し、後部上切欠面16が溶融金属表層の流れを下方に引込むという循環する流れによって達成される。後部下切欠面19は、上記の循環する流れの中で形成されがちな澱みを解消することによって、撹拌能力のさらなる向上に寄与していると考えられる。   The impeller 1 has a stirring ability mainly because the front outer notch surface 17 pushes the molten metal in the radial direction and the circumferential direction of the rotary shaft 2, and the front lower notch surface 18 lowers the molten metal toward the bottom surface of the container. The rear upper notch surface 16 is achieved by a circulating flow that draws the molten metal surface layer downward. It is considered that the rear lower notch surface 19 contributes to further improvement of the stirring ability by eliminating the stagnation that tends to be formed in the circulating flow.

図3は、本発明の他の実施形態である溶融金属撹拌装置31の構成を簡略化して示す。溶融金属撹拌装置31は、インペラ1と溶融金属32を入れる容器33とを備え、容器33の中心を通り鉛直方向に延びる線34に対して、回転軸2の軸線3がずれて偏心するようにインペラ1と容器33とが相対配置される。ここで、容器33の中心を通り鉛直方向に延びる線34を中心線34と呼ぶ。なお、図3では図示を省略するが、溶融金属撹拌装置31は、容器33の周辺にインペラ1を回転させるモーターならびにモーターおよびインペラ1を取付ける枠体を含む。   FIG. 3 shows a simplified configuration of a molten metal stirring device 31 according to another embodiment of the present invention. The molten metal stirring device 31 includes an impeller 1 and a container 33 into which the molten metal 32 is placed so that the axis 3 of the rotating shaft 2 is deviated and decentered with respect to a line 34 that passes through the center of the container 33 and extends in the vertical direction. The impeller 1 and the container 33 are disposed relative to each other. Here, a line 34 that passes through the center of the container 33 and extends in the vertical direction is referred to as a center line 34. Although not shown in FIG. 3, the molten metal stirring device 31 includes a motor for rotating the impeller 1 and a frame for attaching the motor and the impeller 1 around the container 33.

容器33は、底付き円筒形状であり、鉄製の外殻35および外殻35に内張りされる耐火物36で構成される。このような容器33には、たとえば溶融金属32としてステンレス溶鋼を入れる取鍋などがある。   The container 33 has a cylindrical shape with a bottom and includes an iron outer shell 35 and a refractory 36 lined on the outer shell 35. An example of such a container 33 is a ladle in which molten stainless steel is placed as the molten metal 32.

インペラ1は、溶融金属32に浸漬されて撹拌するとき、その特徴的な形状により、優れた撹拌能力を発揮する。溶融金属撹拌装置31は、インペラ1の軸線3を中心線34から偏心させることによって、一層優れた撹拌能力を発揮することができる。インペラ1の軸線3と容器中心34との偏心量をEcで表す。   When impeller 1 is immersed in molten metal 32 and stirred, it exhibits excellent stirring ability due to its characteristic shape. The molten metal stirring device 31 can exhibit even more excellent stirring ability by decentering the axis 3 of the impeller 1 from the center line 34. The amount of eccentricity between the axis 3 of the impeller 1 and the container center 34 is represented by Ec.

図4は、溶融金属撹拌装置31における溶融金属32の流れの状態を簡略化して示す。図4(a)は横断面から見た状態を示し、図4(b)は平面から見た状態を示す。中心線34に対して偏心配置されるインペラ1の回転によって容器33内の溶融金属32に形成される流れを図4中に矢符で示す。   FIG. 4 shows a simplified state of the flow of the molten metal 32 in the molten metal stirring device 31. FIG. 4A shows a state seen from a cross section, and FIG. 4B shows a state seen from a plane. The flow formed in the molten metal 32 in the container 33 by the rotation of the impeller 1 eccentrically arranged with respect to the center line 34 is indicated by arrows in FIG.

溶融金属32の流れについて以下に説明する。上下方向については、偏心により容器33の内壁までの距離が狭まっている側で、下方に押出された溶融金属が、容器33の底面に衝突し反射して上方に向きを変え、さらにインペラ1によって引込まれるという極めて不規則かつ複雑な流れを形成する。また周方向については、偏心により容器33の内壁までの距離が広まっている側で、前部外切欠面17によって径方向外方へ向って押出される溶融金属が、周方向の流れを霍乱して不規則な流れを形成する。   The flow of the molten metal 32 will be described below. As for the vertical direction, on the side where the distance to the inner wall of the container 33 is narrowed due to eccentricity, the molten metal extruded downward collides with the bottom surface of the container 33 and is reflected and turned upward. It creates a very irregular and complicated flow of being drawn. Further, in the circumferential direction, the molten metal extruded outward in the radial direction by the front outer notch surface 17 on the side where the distance to the inner wall of the container 33 is widened due to eccentricity disturbs the flow in the circumferential direction. Form an irregular flow.

強い撹拌力を発揮するインペラ1を備え、インペラ1の軸線3と中心線34とをわずかに偏心させることで、装置の振動を助長することなく、インペラ1によって形成される溶融金属の流れの不規則さおよび複雑さを増幅することができる。このことによって、一層優れた撹拌能力を有する溶融金属撹拌装置を提供することが可能になる。   The impeller 1 that exhibits a strong stirring force is provided, and the axial line 3 and the center line 34 of the impeller 1 are slightly decentered, so that the flow of the molten metal formed by the impeller 1 is prevented without encouraging vibration of the apparatus. Regularity and complexity can be amplified. This makes it possible to provide a molten metal stirring device having a further excellent stirring ability.

このように、溶融金属撹拌装置31は、極めて優れた撹拌能力を有するので、強い撹拌力を必要とするたとえばステンレス溶鋼の脱硫装置として好適である。ステンレス溶鋼にフラックスを添加し、溶融金属撹拌装置31で撹拌すると、その強い撹拌力によって、フラックスをステンレス溶鋼中へ強く巻込み、また巻込み後一旦浮上しても繰返し巻込むことができるので、ステンレス溶鋼とフラックスとの反応界面の面積を広くすることができる。   Thus, since the molten metal stirring apparatus 31 has an extremely excellent stirring ability, it is suitable as a desulfurization apparatus for, for example, stainless molten steel that requires a strong stirring force. When the flux is added to the molten stainless steel and stirred by the molten metal stirring device 31, the strong stirring force allows the flux to be strongly wound into the molten stainless steel, and can be repeatedly wound even after floating once, The area of the reaction interface between the molten stainless steel and the flux can be increased.

(実施例)
以下、本発明の実施例について説明する。
図5は、撹拌能力の試験に用いた試験装置41の構成を簡略化して示す。試験装置41は、インペラを備える溶融金属撹拌装置を模した水モデル機41である。インペラを備える溶融金属撹拌装置の実機としては、溶融金属にステンレス溶鋼、フラックスに脱硫フラックス、容器に取鍋を用いる機械撹拌式脱硫装置を想定した。水モデル機41では、ステンレス溶鋼の代わりに水42、脱硫フラックスの代わりにシリカ系中空球体、取鍋の代わりにアクリル樹脂製の容器43を用いた。以後、シリカ系中空球体をトレーサーと呼ぶ。
(Example)
Examples of the present invention will be described below.
FIG. 5 shows a simplified configuration of the test apparatus 41 used for the stirring ability test. The test apparatus 41 is a water model machine 41 simulating a molten metal stirring apparatus equipped with an impeller. As a real machine of the molten metal stirring apparatus provided with the impeller, a mechanical stirring type desulfurization apparatus using a molten steel stainless steel as a molten metal, a desulfurization flux as a flux, and a ladle as a container was assumed. In the water model machine 41, water 42 was used instead of molten stainless steel, silica hollow spheres were used instead of the desulfurized flux, and acrylic resin containers 43 were used instead of the ladle. Hereinafter, the silica-based hollow sphere is referred to as a tracer.

本実施例では、実機の約1/3サイズの水モデル機41により撹拌能力を試験した。水モデル機41は、容器43の直径dmを920mm、静止状態の水深さdwを660mm、インペラを浸漬したときのインペラ下端部の容器底面からの高さである浸漬深さdeを270mmに設定した。   In this example, the stirring ability was tested with a water model machine 41 of about 1/3 size of the actual machine. In the water model machine 41, the diameter dm of the container 43 is set to 920 mm, the water depth dw in a stationary state is set to 660 mm, and the immersion depth de that is the height from the bottom surface of the impeller when the impeller is immersed is set to 270 mm. .

試験に用いたインペラのサイズも、実機の約1/3の寸法に設定した。インペラには、実施例を1種類、比較例を3種類使用した。実施例には、図1に示す形状のインペラ1を使用した。3種類の比較例1〜3には、実施例に形状が類似し、実施例に比べていずれかの切欠面を有していないインペラ44a,44b,44cを使用した。比較例1〜3のインペラを総称するときは参照符号44で表記する。なお、水モデル機41に使用したインペラ1,44は鋼製である。   The size of the impeller used for the test was also set to about 1/3 of the actual machine. One type of example and three types of comparative examples were used for the impeller. In the example, an impeller 1 having a shape shown in FIG. 1 was used. For the three types of Comparative Examples 1 to 3, impellers 44a, 44b, and 44c that are similar in shape to the example and do not have any notch surface as compared with the example were used. When impellers of Comparative Examples 1 to 3 are collectively referred to by reference numeral 44. The impellers 1 and 44 used in the water model machine 41 are made of steel.

図6は、比較例1のインペラ44aの構成を簡略化して示す。比較例1のインペラ44aは、下面12aと後面14aとの成す角度θが85度に設定されているが、切欠面を有していない。   FIG. 6 shows a simplified configuration of the impeller 44a of the first comparative example. The impeller 44a of Comparative Example 1 has an angle θ between the lower surface 12a and the rear surface 14a set to 85 degrees, but does not have a notch surface.

図7は、比較例2のインペラ44bの構成を簡略化して示す。比較例2のインペラ44bは、前部下切欠面18bおよび後部下切欠面19bを有し、下面12bと後面14bとの成す角度θが85度に設定されているが、前部外切欠面および後部上切欠面を有していない。   FIG. 7 shows a simplified configuration of the impeller 44b of the second comparative example. The impeller 44b of Comparative Example 2 has a front lower notch surface 18b and a rear lower notch surface 19b, and the angle θ formed between the lower surface 12b and the rear surface 14b is set to 85 degrees. Does not have an upper cutaway surface.

図8は、比較例3のインペラ44cの構成を簡略化して示す。比較例3のインペラ44cは、前部外切欠面17c、前部下切欠面18cおよび後部下切欠面19cを有し、下面12cと後面14cとの成す角度θが85度に設定されているが、後部上切欠面を有していない。   FIG. 8 shows a simplified configuration of the impeller 44c of the third comparative example. The impeller 44c of Comparative Example 3 has a front outer notch surface 17c, a front lower notch surface 18c, and a rear lower notch surface 19c, and an angle θ formed between the lower surface 12c and the rear surface 14c is set to 85 degrees. It does not have a rear upper notch.

図9は、水モデル機41に使用したインペラ1,44の形状に関する各部の寸法測定位置を示す。寸法測定位置を以下に説明し、実測値を表1に示す。
A:撹拌羽根が突出する方向での撹拌羽根上端部のインペラの径
B:撹拌羽根が突出する方向での撹拌羽根下端部のインペラの径
C:撹拌羽根の回転方向の厚み
D:インペラ回転時の最大外周径
H:撹拌羽根の上下方向の長さである幅
θ:下面と後面との成す角度
FIG. 9 shows the dimension measurement position of each part regarding the shape of the impellers 1 and 44 used in the water model machine 41. The dimension measurement position will be described below, and the actual measurement values are shown in Table 1.
A: Impeller diameter at the upper end of the stirring blade in the direction in which the stirring blade protrudes B: Impeller diameter at the lower end of the stirring blade in the direction in which the stirring blade protrudes C: Thickness in the rotation direction of the stirring blade D: During impeller rotation H: Width that is the length of the stirring blade in the vertical direction θ: Angle formed between the lower surface and the rear surface

Figure 2009114506
Figure 2009114506

想定する実機との相似則を考慮し、フルード数および単位容量の撹拌動力を同一として、式(1)および式(2)により、水モデル機41のインペラ1,44の回転数ならびにトレーサーの大きさおよびかさ比重を定めた。   Considering the similarity law with the assumed actual machine, the fluid number and the stirring power of the unit capacity are the same, and the number of rotations of the impellers 1 and 44 of the water model machine 41 and the size of the tracer are calculated by the equations (1) and (2). The bulk and bulk specific gravity were determined.

=N(D/D2/3 ・・・(1)
ここで、N:実機のインペラの回転数
:水モデル機のインペラの回転数
: 実機のインペラ回転時の最大外周径
:水モデル機のインペラ回転時の最大外周径
N 2 = N 1 (D 2 / D 1 ) 2/3 (1)
Where N 1 is the speed of the impeller of the actual machine
N 2 : Speed of impeller of water model machine
D 1 : Maximum outer diameter during impeller rotation of actual machine
D 2 : Maximum outer diameter of the water model machine when the impeller rotates

/r=(N/N
×√{(1−ρs1/ρl1)/(1−ρs2/ρl2)}・・・(2)
ここで、r:フラックスの径
:トレーサーの径
ρs1:フラックスのかさ比重
ρs2:トレーサーのかさ比重
ρl1:ステンレス溶鋼の比重
ρl2:水の比重
r 2 / r 1 = (N 2 D 2 / N 1 D 1 )
× √ {(1-ρ s1 / ρ l1 ) / (1-ρ s2 / ρ l2 )} (2)
Where r 1 is the diameter of the flux
r 2 : Diameter of the tracer
ρ s1 : Flux bulk specific gravity
ρs2 : Bulk specific gravity of the tracer
ρ 11 : Specific gravity of molten stainless steel
ρ l2 : Specific gravity of water

なお、トレーサーは、式(2)から平均粒径120μm、かさ比重0.29が得られたので、これに基づいて撹拌の予備試験をしたが、撹拌によりトレーサーが水中に分散する時間が極めて短く、挙動を十分に観察することができなかった。そこで、観察に適する平均粒径が10mm、かさ比重が約0.8のトレーサーに変更して試験した。   In addition, since the average particle diameter of 120 μm and the bulk specific gravity of 0.29 were obtained from the formula (2), the tracer was subjected to a preliminary test for stirring, but the time for the tracer to disperse in water by stirring was extremely short. The behavior could not be observed sufficiently. Therefore, the test was performed by changing to a tracer having an average particle size of 10 mm suitable for observation and a bulk specific gravity of about 0.8.

インペラ1,44の回転については、容器33の中心線34とインペラ1,44の軸線3とを一致させた偏心なしの場合と、ずらして偏心させた場合とについて試験した。偏心量Ecは、25mm、50mmおよび75mmの3段階に変化させた。   Regarding the rotation of the impellers 1, 44, the case where there was no eccentricity in which the center line 34 of the container 33 and the axis 3 of the impellers 1, 44 coincided and the case where they were shifted eccentrically were tested. The amount of eccentricity Ec was changed in three stages of 25 mm, 50 mm and 75 mm.

図5に戻って撹拌能力の評価方法について説明する。インペラ1,44が回転し撹拌している状態での評価要素には、水面盛上り高さhi、渦中心位置深さhwおよびトレーサー侵入深さheの3つがある。水面盛上り高さhiとは、インペラ1,44が回転して容器43内の水面が静止水面よりも高くなったとき、その水面が最も高くなった位置の容器底面からの高さをいう。渦中心位置深さhwとは、インペラ1,44が回転して渦が形成され、渦の中心で静止水面よりも水面が低くなったとき、その水面が最も低くなった位置の容器底面からの高さをいう。トレーサー侵入深さheとは、水に巻込まれたトレーサーが容器43の中で達することができた最も深い位置の容器底面からの高さをいう。   Returning to FIG. 5, a method for evaluating the stirring ability will be described. There are three evaluation elements in the state where the impellers 1 and 44 are rotating and agitating: a water surface rising height hi, a vortex center position depth hw, and a tracer penetration depth he. The water surface rising height hi refers to the height from the bottom surface of the container where the water surface becomes the highest when the impeller 1, 44 rotates and the water surface in the container 43 becomes higher than the static water surface. The vortex center position depth hw means that when the impeller 1, 44 rotates to form a vortex and the water surface is lower than the stationary water surface at the center of the vortex, the water surface is at the lowest position from the bottom of the container. Say height. The tracer penetration depth he refers to the height from the bottom of the container at the deepest position where the tracer caught in water can reach in the container 43.

水面盛上り高さhiおよび渦中心位置深さhwは、ともに流れの強さの指標になるが、必ずしも水とトレーサーとが撹拌され混合されている状態を表すものではない。トレーサー侵入深さheは、トレーサーが侵入した深さが深いほど浮上するまでに時間を要するので、トレーサーが水中に滞在している時間を表していると言える。トレーサーが水中に滞在している時間が長いと、同じ機会に水中に存在し得るトレーサーの量が多くなるので、水とトレーサーとの接触界面すなわち反応界面の面積が広いと解することができる。そこで、トレーサー侵入深さheで撹拌能力を評価した。トレーサー侵入深さheが小さいほど、すなわちトレーサーがより深い位置まで侵入するほど撹拌能力が優れると判定した。   Both the water surface rising height hi and the vortex center position depth hw are indicators of the strength of the flow, but do not necessarily represent a state where water and the tracer are stirred and mixed. The tracer penetration depth he can be said to represent the time during which the tracer stays in the water because it takes time to rise as the depth of penetration of the tracer increases. If the tracer stays in the water for a long time, the amount of the tracer that can exist in the water at the same time increases, so it can be understood that the area of the contact interface between water and the tracer, that is, the reaction interface is large. Therefore, the stirring ability was evaluated by the tracer penetration depth he. It was determined that the smaller the tracer penetration depth he is, that is, the better the stirring ability is as the tracer penetrates to a deeper position.

以下、試験結果について説明する。
図10は、偏心なしの場合における比較例1および比較例2について回転数とトレーサー侵入深さとの関係を示す。図11は、偏心なしの場合における比較例3および実施例について回転数とトレーサー侵入深さとの関係を示す。
Hereinafter, the test results will be described.
FIG. 10 shows the relationship between the rotational speed and the tracer penetration depth for Comparative Example 1 and Comparative Example 2 without eccentricity. FIG. 11 shows the relationship between the rotational speed and the tracer penetration depth for Comparative Example 3 and Example in the case of no eccentricity.

実施例および比較例1〜3のいずれにおいても、回転数の増加に伴いトレーサー侵入深さheが減少した。回転数100rpmの場合、実施例、比較例2および比較例3では、トレーサー侵入深さheが50mm未満まで達したのに対して、比較例1では、トレーサー侵入深さheが450mmまでしか達することができなかった。   In any of Examples and Comparative Examples 1 to 3, the tracer penetration depth he decreased as the rotational speed increased. In the case of the rotational speed of 100 rpm, the tracer penetration depth he reached to less than 50 mm in Example, Comparative Example 2 and Comparative Example 3, whereas in Comparative Example 1, the tracer penetration depth he reached only 450 mm. I could not.

回転数が150rpm以上の場合、実施例、比較例2および比較例3ではトレーサー侵入深さheが0mm、すなわちトレーサーが容器底面まで達したのに対して、比較例1ではトレーサー侵入深さheが約180mmまでしか達することができなかった。このことから、切欠面を有する実施例および比較例2,3は、切欠面を有していない比較例1よりも撹拌能力が優れていることが判る。   When the rotational speed is 150 rpm or more, the tracer penetration depth he is 0 mm in Example, Comparative Example 2 and Comparative Example 3, that is, the tracer reaches the bottom of the container, whereas in Comparative Example 1, the tracer penetration depth he is It could only reach up to about 180 mm. From this, it can be seen that the example having the notched surface and the comparative examples 2 and 3 have better stirring ability than the comparative example 1 having no notched surface.

さらに、回転数が50rpmの低速回転の場合、実施例のみトレーサー侵入深さheが600mm未満に達したが、比較例1〜3では、トレーサー侵入深さheが600mm超えであった。このように、前部外切欠面、前部下切欠面、後部上切欠面および後部下切欠面を有する実施例は、前部外切欠面および後部上切欠面を有していない比較例2および後部上切欠面を有していない比較例3に比べて撹拌能力の高いことが判る。   Furthermore, in the case of the low-speed rotation with the rotation speed of 50 rpm, the tracer penetration depth he reached less than 600 mm only in the examples, but in Comparative Examples 1 to 3, the tracer penetration depth he exceeded 600 mm. Thus, the embodiment having the front outer notch surface, the front lower notch surface, the rear upper notch surface, and the rear lower notch surface is the comparative example 2 and the rear portion having no front outer notch surface and rear upper notch surface. It can be seen that the stirring ability is higher than that of Comparative Example 3 which does not have an upper notch surface.

次に、インペラ1,44の軸線3と中心線34とが偏心量Ecを有する場合の試験結果を説明する。偏心ありの試験は、偏心なしの場合に切欠面の効果が認められた実施例および比較例2,3のインペラについて行なった。図12は、偏心量Ecが25mmの場合における比較例2、比較例3および実施例について回転数とトレーサー侵入深さとの関係を示す。図13は、偏心量Ecが50mmの場合における比較例2、比較例3および実施例について回転数とトレーサー侵入深さとの関係を示す。図14は、偏心量Ecが75mmの場合における比較例2、比較例3および実施例について回転数とトレーサー侵入深さとの関係を示す。   Next, the test results when the axis 3 and the center line 34 of the impellers 1 and 44 have an eccentric amount Ec will be described. The test with eccentricity was performed on the impellers of Examples and Comparative Examples 2 and 3 in which the effect of the notched surface was recognized when there was no eccentricity. FIG. 12 shows the relationship between the rotational speed and the tracer penetration depth for Comparative Example 2, Comparative Example 3, and Example when the eccentricity Ec is 25 mm. FIG. 13 shows the relationship between the rotational speed and the tracer penetration depth for Comparative Example 2, Comparative Example 3, and Example when the eccentricity Ec is 50 mm. FIG. 14 shows the relationship between the rotational speed and the tracer penetration depth for Comparative Example 2, Comparative Example 3, and Example when the eccentricity Ec is 75 mm.

偏心量Ecが75mmと大きい場合、回転数が100rpm以上では、実施例、比較例2および比較例3のいずれもトレーサーが容器底面まで達して差が生じなかった。回転数が50rpmの低速回転でも、実施例および比較例2のトレーサー侵入深さheが100mm、比較例3のトレーサー侵入深さheが150mmであり、3者の間に大きな差が生じなかった。   When the amount of eccentricity Ec was as large as 75 mm, when the rotational speed was 100 rpm or more, the tracer reached the bottom of the container in any of Example, Comparative Example 2 and Comparative Example 3, and no difference occurred. Even at a low rotation speed of 50 rpm, the tracer penetration depth he of Example and Comparative Example 2 was 100 mm, and the tracer penetration depth he of Comparative Example 3 was 150 mm, and there was no significant difference between the three.

しかし、偏心量Ecを75mmよりも小さくすると、実施例と比較例2および比較例3とでトレーサー侵入深さheに差が生じた。特に偏心量Ecが小さい25mmの場合、回転数50rpmの低速回転では、実施例のトレーサー侵入深さheが150mmまで達することができたのに対して、比較例2では300mm、比較例3では350mmにしか達しなかった。   However, when the eccentric amount Ec was made smaller than 75 mm, the tracer penetration depth he was different between the example, the comparative example 2 and the comparative example 3. In particular, when the eccentricity Ec is small 25 mm, the tracer penetration depth he of the example can reach 150 mm at a low speed rotation of 50 rpm, whereas the comparative example 2 is 300 mm and the comparative example 3 is 350 mm. Only reached.

偏心量Ecを大きくすると、比較例2および比較例3でもトレーサー侵入深さheは小さくなり撹拌能力が向上するが、装置の振動が懸念される。しかし、切欠面を有して高い撹拌能力を発揮し得る実施例のインペラを使用し、小さな偏心量に設定することにより、振動の問題がなく、かつ優れた撹拌能力を有する溶融金属撹拌装置を実現することができる。   When the eccentric amount Ec is increased, the tracer penetration depth he is reduced in the comparative example 2 and the comparative example 3 and the stirring ability is improved, but there is a concern about vibration of the apparatus. However, by using the impeller of the embodiment that has a notch surface and can exhibit high stirring ability, and setting it to a small amount of eccentricity, there is no problem of vibration and a molten metal stirring apparatus having excellent stirring ability Can be realized.

本発明の一つの実施形態である溶融金属撹拌用インペラ1の構成を示す図である。It is a figure which shows the structure of the impeller 1 for molten metal stirring which is one Embodiment of this invention. 撹拌羽根5で形成される溶融金属の流れの状態を示す図である。It is a figure which shows the state of the flow of the molten metal formed with the stirring blade. 本発明の他の実施形態である溶融金属撹拌装置31の構成を簡略化して示す断面図である。It is sectional drawing which simplifies and shows the structure of the molten metal stirring apparatus 31 which is other embodiment of this invention. 溶融金属撹拌装置31における溶融金属32の流れの状態を簡略化して示す図である。It is a figure which simplifies and shows the state of the flow of the molten metal 32 in the molten metal stirring apparatus 31. 撹拌能力の試験に用いた試験装置41の構成を簡略化して示す断面図である。It is sectional drawing which simplifies and shows the structure of the test apparatus 41 used for the test of stirring ability. 比較例1のインペラ44aの構成を簡略化して示す図である。It is a figure which simplifies and shows the structure of the impeller 44a of the comparative example 1. 比較例2のインペラ44bの構成を簡略化して示す図である。It is a figure which simplifies and shows the structure of the impeller 44b of the comparative example 2. 比較例3のインペラ44cの構成を簡略化して示す図である。It is a figure which simplifies and shows the structure of the impeller 44c of the comparative example 3. 水モデル機41に使用したインペラ1,44の形状に関する各部の寸法測定位置を示す図である。It is a figure which shows the dimension measurement position of each part regarding the shape of the impellers and 44 used for the water model machine. 偏心なしの場合における比較例1および比較例2について回転数とトレーサー侵入深さとの関係を示すグラフである。It is a graph which shows the relationship between a rotation speed and a tracer penetration | invasion depth about the comparative example 1 and the comparative example 2 in the case of no eccentricity. 偏心なしの場合における比較例3および実施例について回転数とトレーサー侵入深さとの関係を示すグラフである。It is a graph which shows the relationship between a rotation speed and a tracer penetration | invasion depth about the comparative example 3 and Example in the case of no eccentricity. 偏心量Ecが25mmの場合における比較例2、比較例3および実施例について回転数とトレーサー侵入深さとの関係を示すグラフである。It is a graph which shows the relationship between a rotation speed and tracer penetration | invasion depth about the comparative example 2, the comparative example 3, and Example in case eccentricity Ec is 25 mm. 偏心量Ecが50mmの場合における比較例2、比較例3および実施例について回転数とトレーサー侵入深さとの関係を示すグラフである。It is a graph which shows the relationship between a rotation speed and a tracer penetration | invasion depth about the comparative example 2, comparative example 3, and Example in case eccentricity Ec is 50 mm. 偏心量Ecが75mmの場合における比較例2、比較例3および実施例について回転数とトレーサー侵入深さとの関係を示すグラフである。It is a graph which shows the relationship between a rotation speed and tracer penetration | invasion depth about the comparative example 2, the comparative example 3, and Example in case eccentricity Ec is 75 mm.

符号の説明Explanation of symbols

1,44 インペラ
2 回転軸
3 軸線
5 撹拌羽根
11 上面
12 下面
13 前面
14 後面
15 外側面
16 後部上切欠面
17 前部外切欠面
18 前部下切欠面
19 後部下切欠面
31 溶融金属撹拌装置
32 溶融金属
33 容器
34 中心線
41 水モデル機
DESCRIPTION OF SYMBOLS 1,44 Impeller 2 Rotating shaft 3 Axis 5 Stirring blade 11 Upper surface 12 Lower surface 13 Front surface 14 Rear surface 15 Outer surface 16 Rear upper notch surface 17 Front outer notch surface 18 Front lower notch surface 19 Rear lower notch surface 31 Molten metal stirring device 32 Molten metal 33 Container 34 Center line 41 Water model machine

Claims (5)

容器内の溶融金属に上方から浸漬され、かつ回転して回転軸の下端部付近から径方向に突出する複数の撹拌羽根で溶融金属を撹拌する溶融金属撹拌用インペラにおいて、
撹拌羽根は、
それぞれ大略的に、上面、下面、前面、後面および外側面を有する角柱状に形成され、前面が回転方向前方側であり、後面が回転方向後方側であり、外側面が径方向外側であり、
さらに、上面から後面にかけて角部を切欠いた傾斜面となる後部上切欠面と、
前面から外側面にかけて角部を切欠いた傾斜面となる前部外切欠面と、
下面から前面にかけて角部を切欠いた傾斜面となる前部下切欠面と、
を有することを特徴とする溶融金属撹拌用インペラ。
In a molten metal stirring impeller that stirs molten metal with a plurality of stirring blades that are immersed in the molten metal in the container from above and rotate to protrude radially from the vicinity of the lower end of the rotating shaft.
The stirring blade
Each is roughly formed in a prismatic shape having an upper surface, a lower surface, a front surface, a rear surface and an outer surface, the front surface is the front side in the rotational direction, the rear surface is the rear side in the rotational direction, and the outer surface is the outer side in the radial direction,
Furthermore, a rear upper notch surface that is an inclined surface with a corner notched from the upper surface to the rear surface;
A front outer cut-out surface that is an inclined surface with a corner cut from the front surface to the outer surface;
A front lower cut surface that is an inclined surface with a corner cut from the bottom surface to the front surface;
An impeller for stirring a molten metal, comprising:
前記前部外切欠面は、
回転方向後方へ向かうにつれて下方に傾斜するように形成されることを特徴とする請求項1記載の溶融金属撹拌用インペラ。
The front outer cut-out surface is
The impeller for stirring molten metal according to claim 1, wherein the impeller is stirred so as to incline downward toward the rear in the rotational direction.
前記撹拌羽根は、
下面から後面にかけて角部を切欠いた傾斜面となる後部下切欠面を有することを特徴とする請求項1または2記載の溶融金属撹拌用インペラ。
The stirring blade is
3. The impeller for stirring a molten metal according to claim 1, further comprising a rear lower notch surface which is an inclined surface with a corner portion notched from the lower surface to the rear surface.
前記撹拌羽根は、
下面に対して後面の成す角度が90度未満であることを特徴とする請求項1〜3のいずれか1つに記載の溶融金属撹拌用インペラ。
The stirring blade is
The impeller for molten metal stirring according to any one of claims 1 to 3, wherein an angle formed by the rear surface with respect to the lower surface is less than 90 degrees.
請求項1ないし4のいずれか1つの溶融金属撹拌用インペラと、
溶融金属を入れる容器と、を備え、
容器の中心線に対して回転軸の軸線がずれて偏心するように溶融金属撹拌用インペラが配置されることを特徴とする溶融金属撹拌装置。
An impeller for stirring molten metal according to any one of claims 1 to 4,
A container for containing molten metal,
An apparatus for stirring molten metal, wherein an impeller for stirring a molten metal is disposed so that an axis of a rotating shaft is deviated from a center line of a container.
JP2007289439A 2007-11-07 2007-11-07 Molten metal stirring impeller and molten metal stirring apparatus including the impeller Active JP5252670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007289439A JP5252670B2 (en) 2007-11-07 2007-11-07 Molten metal stirring impeller and molten metal stirring apparatus including the impeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007289439A JP5252670B2 (en) 2007-11-07 2007-11-07 Molten metal stirring impeller and molten metal stirring apparatus including the impeller

Publications (2)

Publication Number Publication Date
JP2009114506A true JP2009114506A (en) 2009-05-28
JP5252670B2 JP5252670B2 (en) 2013-07-31

Family

ID=40781965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007289439A Active JP5252670B2 (en) 2007-11-07 2007-11-07 Molten metal stirring impeller and molten metal stirring apparatus including the impeller

Country Status (1)

Country Link
JP (1) JP5252670B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042815A (en) * 2009-08-19 2011-03-03 Jfe Steel Corp Method for desulfurizing molten iron
WO2011083655A1 (en) * 2010-01-07 2011-07-14 日新製鋼株式会社 Operation method for mechanically stirring chrome-containing molten iron
JP2012167868A (en) * 2011-02-15 2012-09-06 Tokyo Yogyo Co Ltd Stirring device
JP2013108175A (en) * 2011-10-28 2013-06-06 Jfe Steel Corp Method for deciding cross-sectional shape of impeller rotary shaft and impeller rotary shaft using the method
KR101443590B1 (en) 2013-02-27 2014-09-23 현대제철 주식회사 Impeller
JP2015221427A (en) * 2014-05-22 2015-12-10 ポスコ Stirrer
EP3031935A1 (en) * 2013-08-07 2016-06-15 Posco Molten iron refining method and device thereof
CN105950811A (en) * 2016-06-08 2016-09-21 武汉钢铁股份有限公司 Stirrer used for molten iron mechanical stirring and efficient mixing desulphurization
RU2717621C1 (en) * 2016-09-27 2020-03-24 Норсистерн Юниверсити Cast iron recovery method using melt vortex mixing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4995203U (en) * 1972-12-11 1974-08-16
JPS5957800U (en) * 1982-10-07 1984-04-14 日本鋼管株式会社 Stirring device for metal melting furnace
JPS59166611A (en) * 1983-03-12 1984-09-20 Nippon Steel Corp Reduction refining of molten steel containing chromium
JPH0481949U (en) * 1990-11-27 1992-07-16
JPH0527043U (en) * 1991-04-11 1993-04-06 住友金属工業株式会社 Impeller for stirring molten metal
JP2000212621A (en) * 1999-01-18 2000-08-02 Nippon Steel Corp Impeller for stirring
JP2001262212A (en) * 2000-03-23 2001-09-26 Kawasaki Steel Corp Method for desulfurizing molten iron and desulfurizing device
JP2001288506A (en) * 2000-04-04 2001-10-19 Kawasaki Steel Corp Method for stirring treatment of molten metal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4995203U (en) * 1972-12-11 1974-08-16
JPS5957800U (en) * 1982-10-07 1984-04-14 日本鋼管株式会社 Stirring device for metal melting furnace
JPS59166611A (en) * 1983-03-12 1984-09-20 Nippon Steel Corp Reduction refining of molten steel containing chromium
JPH0481949U (en) * 1990-11-27 1992-07-16
JPH0527043U (en) * 1991-04-11 1993-04-06 住友金属工業株式会社 Impeller for stirring molten metal
JP2000212621A (en) * 1999-01-18 2000-08-02 Nippon Steel Corp Impeller for stirring
JP2001262212A (en) * 2000-03-23 2001-09-26 Kawasaki Steel Corp Method for desulfurizing molten iron and desulfurizing device
JP2001288506A (en) * 2000-04-04 2001-10-19 Kawasaki Steel Corp Method for stirring treatment of molten metal

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042815A (en) * 2009-08-19 2011-03-03 Jfe Steel Corp Method for desulfurizing molten iron
EP2522758A4 (en) * 2010-01-07 2017-03-01 Nisshin Steel Co., Ltd. Operation method for mechanically stirring chrome-containing molten iron
CN102712960A (en) * 2010-01-07 2012-10-03 日新制钢株式会社 Operation method for mechanically stirring chrome-containing molten iron
US8753423B2 (en) 2010-01-07 2014-06-17 Nisshin Steel Co., Ltd. Operation method for mechanically stirring chrome-containing molten iron
JP2011140698A (en) * 2010-01-07 2011-07-21 Nisshin Steel Co Ltd Method for operating mechanical stirring of molten iron containing chromium
WO2011083655A1 (en) * 2010-01-07 2011-07-14 日新製鋼株式会社 Operation method for mechanically stirring chrome-containing molten iron
JP2012167868A (en) * 2011-02-15 2012-09-06 Tokyo Yogyo Co Ltd Stirring device
JP2013108175A (en) * 2011-10-28 2013-06-06 Jfe Steel Corp Method for deciding cross-sectional shape of impeller rotary shaft and impeller rotary shaft using the method
KR101443590B1 (en) 2013-02-27 2014-09-23 현대제철 주식회사 Impeller
EP3031935A1 (en) * 2013-08-07 2016-06-15 Posco Molten iron refining method and device thereof
JP2016530402A (en) * 2013-08-07 2016-09-29 ポスコ Method and apparatus for refining molten metal
EP3031935A4 (en) * 2013-08-07 2017-04-05 Posco Molten iron refining method and device thereof
US10077482B2 (en) 2013-08-07 2018-09-18 Posco Molten iron refining method and device thereof
JP2015221427A (en) * 2014-05-22 2015-12-10 ポスコ Stirrer
CN105950811A (en) * 2016-06-08 2016-09-21 武汉钢铁股份有限公司 Stirrer used for molten iron mechanical stirring and efficient mixing desulphurization
RU2717621C1 (en) * 2016-09-27 2020-03-24 Норсистерн Юниверсити Cast iron recovery method using melt vortex mixing

Also Published As

Publication number Publication date
JP5252670B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5252670B2 (en) Molten metal stirring impeller and molten metal stirring apparatus including the impeller
EP2070588A1 (en) Stirrer and stirring method
JP6393694B2 (en) Stirring blade and stirring device
JP2007167708A (en) Submerged agitation apparatus
Asiri Design and implementation of differential agitators to maximize agitating performance
JP2021000589A (en) Agitation blade assembly and agitation tank
JP2015054272A (en) Agitation device
JP2009127111A (en) Method for desulfurizing molten iron
KR20190016554A (en) Stirring wing and stirring device
KR200447286Y1 (en) Agitator
TWI515042B (en) Method of molten iron preliminary treatment and agitator for molten iron preliminary treatment
JP2021098151A (en) Gas-liquid mixing device and gas-liquid mixing method
JP5597315B1 (en) Stirrer
CN203737156U (en) Helical ribbon agitator
CN205995393U (en) For the feeding system on agitator tank
Takahashi et al. Laminar mixing in eccentric stirred tank with different bottom
JP2006087998A (en) Agitation method
CN109207350B (en) Stirring method for improving dissolved oxygen degree of fermentation liquor in liquid fermentation tank
JP4220168B2 (en) Stirring apparatus and stirring method for liquid containing solid particles
JP2017039075A (en) Solid-liquid agitation device
JP2008188543A (en) Agitation method and agitator
JP4333430B2 (en) Slurry agitator
JP2014037568A (en) Hot pig iron preliminary processing method and agitation body for hot pig iron preliminary processing
JP2021084077A (en) Stirring device and gas-liquid mixing method
JP2021098152A (en) Gas-liquid mixing device and gas-liquid mixing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5252670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250