JP2009127111A - Method for desulfurizing molten iron - Google Patents

Method for desulfurizing molten iron Download PDF

Info

Publication number
JP2009127111A
JP2009127111A JP2007305805A JP2007305805A JP2009127111A JP 2009127111 A JP2009127111 A JP 2009127111A JP 2007305805 A JP2007305805 A JP 2007305805A JP 2007305805 A JP2007305805 A JP 2007305805A JP 2009127111 A JP2009127111 A JP 2009127111A
Authority
JP
Japan
Prior art keywords
hot metal
desulfurization
impeller
bar member
molten iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007305805A
Other languages
Japanese (ja)
Inventor
Yoshinori Matsuoka
良憲 松岡
Takamitsu Nakasuga
貴光 中須賀
Seii Kimura
世意 木村
Takeshi Mimura
毅 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007305805A priority Critical patent/JP2009127111A/en
Publication of JP2009127111A publication Critical patent/JP2009127111A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for desulfurizing molten iron by which the convolute efficiency of a desulfurizing agent into the molten iron is enhanced to increase the reaction efficiency thereof in the case of applying a mechanical agitation type desulfurizing treatment to the molten iron. <P>SOLUTION: In the method for desulfurizing the molten iron, the desulfurization is performed while performing a mechanical agitation with an impeller 6 by successively adding the desulfurizing agent to the molten iron 3 in the state of dipping the impeller 6 and a bar member 7 into the molten iron 3 charged in a refining vessel 4 from the upward. In the method, the bar member 7 is arranged so that the distance L from the center of the refining vessel 4 to the center of the bar member 7, the maximum width W of the bar member 7 in the direction at the right angle of the flowing direction of the molten iron 3 and the length (h) dipped at the portion of the bar member 7 into the standstill molten iron 3 satisfy a predetermined relation, and the desulfurization of the molten iron 3 is performed while agitating the molten iron 3 with the impeller 6. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、精錬容器に装入された溶銑に対し機械撹拌しながら脱硫処理を行う溶銑脱硫方法に関する。   The present invention relates to a hot metal desulfurization method for performing a desulfurization process while mechanically stirring hot metal charged in a refining vessel.

周知の如く、高炉から出銑される溶銑には、鋼材の特性を低下させる硫黄が多量に含まれているため、鋼材に要求される硫黄濃度まで硫黄を取り除く脱硫処理が行われる。脱硫処理は溶銑及び溶鋼の段階で行われるが、近年の鋼材品質に対する要求の高まりから溶銑段階での脱硫処理が広く行われている。
溶銑の脱硫処理方法としては、高炉鋳床を流れる溶銑に脱硫剤を投入する方法や精錬容器内に溶銑を装入し、この精錬容器内で機械撹拌をしつつ脱硫を行う方法(以降、取鍋溶銑脱硫と呼ぶこともある)が採用されている。
As is well known, since the hot metal discharged from the blast furnace contains a large amount of sulfur that lowers the properties of the steel material, a desulfurization treatment is performed to remove sulfur to a sulfur concentration required for the steel material. The desulfurization treatment is performed at the hot metal and molten steel stages, but the desulfurization treatment at the hot metal stage is widely performed due to the recent increase in demand for steel material quality.
The hot metal desulfurization treatment method includes a method of introducing a desulfurizing agent into the hot metal flowing through the blast furnace casting bed, or a method of charging the hot metal into a refining vessel and performing desulfurization while mechanically stirring in the refining vessel (hereinafter referred to as the removal). (Sometimes called pot hot metal desulfurization).

取鍋溶銑脱硫は、取鍋内の一定量の溶銑に対してインペラによる機械攪拌を行うため、脱硫能力の少ない脱硫剤でも低濃度まで脱硫することができ、溶銑脱硫処理の主流になってきている。
図9に、従来の溶銑脱硫装置100の模式図を示す。脱硫剤を効率よく反応させるためには、脱硫剤を取鍋101内の溶銑中に分散させて当該脱硫剤の反応に関与する面積(反応界面積)を増加させることが重要である。そのため、溶銑脱硫装置100では、インペラ102による撹拌で浮上した脱硫剤を繰り返し溶銑中に分散させている。
In ladle hot metal desulfurization, a certain amount of hot metal in the ladle is mechanically stirred by an impeller, so even a desulfurization agent with a low desulfurization capacity can be desulfurized to a low concentration, and it has become the mainstream of hot metal desulfurization treatment. Yes.
In FIG. 9, the schematic diagram of the conventional hot metal desulfurization apparatus 100 is shown. In order to react the desulfurizing agent efficiently, it is important to disperse the desulfurizing agent in the hot metal in the ladle 101 and increase the area (reaction interface area) involved in the reaction of the desulfurizing agent. Therefore, in the hot metal desulfurization apparatus 100, the desulfurizing agent that has been levitated by the impeller 102 is repeatedly dispersed in the hot metal.

以上述べた取鍋溶銑脱硫において、溶銑に対する脱硫剤の分散量を増やし反応効率を高めるための技術は既に数多く開発されている。
例えば、特許文献1の技術は、インペラの羽根に螺旋型の攪拌翼を付加し、脱硫剤を溶銑に深く分散させて滞留時間を増加させることで反応効率を高めている。
特許文献2の技術は、精錬容器の内壁に邪魔材を設置することで攪拌効率を高めている。邪魔材は溶銑の攪拌を活発にして脱硫剤を溶銑に深く分散させる。
特許文献3の技術は、溶銑中への脱硫剤の分散を促進するためにインペラを偏心させて回転させている。
In the ladle hot metal desulfurization described above, many techniques for increasing the dispersion amount of the desulfurizing agent in the hot metal and increasing the reaction efficiency have already been developed.
For example, in the technique of Patent Document 1, reaction efficiency is improved by adding a spiral stirring blade to the impeller blade and dispersing the desulfurization agent deeply in the molten iron to increase the residence time.
The technique of patent document 2 is improving stirring efficiency by installing a baffle material in the inner wall of a refining container. The baffle material actively stirs the hot metal and disperses the desulfurizing agent deeply in the hot metal.
The technique of Patent Document 3 rotates the impeller eccentrically in order to promote the dispersion of the desulfurizing agent in the hot metal.

特許文献4の技術は、精錬容器内での脱硫処理に関するものであって、溶銑中への脱硫剤の分散を促進するために、直径DCのカラム(邪魔棒)を精錬容器中心から水平距離L、溶銑湯面から深さHCのところに配置している。
特開2002−214825号公報 特開2004−300455号公報 特開2001−262212号公報 特開2005−161141号公報
The technology of Patent Document 4 relates to a desulfurization treatment in a refining vessel, and in order to promote the dispersion of the desulfurizing agent in the hot metal, a column (baffle rod) having a diameter D C is horizontally spaced from the center of the refining vessel. L, arranged at a depth H C from the hot metal surface.
JP 2002-214825 A JP 2004-300455 A JP 2001-262212 A JP-A-2005-161141

しかしながら、特許文献1の技術は、螺旋型の攪拌翼を構成する耐火物の損耗が起こるたびに当該攪拌翼を交換・修繕しなければならずコストの上昇を招く。
特許文献2の技術においては、邪魔材の損耗は避けられず、攪拌効果を維持するには精錬容器の修繕回数の増加は避けられない。また、溶銑の流れを乱すことで攪拌動力が増大するため、攪拌装置への負荷が大きくなるという問題もある。
特許文献3の技術に関しては、偏心した位置に配備されたインペラは、溶銑に対し大きな攪拌動力を与えることができるため、実使用にあたってはインペラの回転数を低減させて攪拌動力を抑えつつ用いねばならない。したがって、脱硫能力は、通常のもの(精錬容器中心でインペラを攪拌したもの)と同程度に留まり、脱硫能力が向上したとは言いがたい。
However, the technique of Patent Document 1 requires replacement and repair of the stirring blade every time the refractory constituting the spiral stirring blade is worn, resulting in an increase in cost.
In the technique of Patent Document 2, wear of the baffle is inevitable, and an increase in the number of repairs of the refining vessel is inevitable in order to maintain the stirring effect. Moreover, since the stirring power is increased by disturbing the hot metal flow, there is also a problem that the load on the stirring device increases.
Regarding the technique of Patent Document 3, since the impeller arranged at an eccentric position can give a large stirring power to the hot metal, it must be used while reducing the stirring power by reducing the rotation speed of the impeller in actual use. Don't be. Therefore, the desulfurization capacity stays at the same level as that of a normal one (the impeller stirred at the center of the refining vessel), and it cannot be said that the desulfurization capacity is improved.

また、特許文献4の技術は、水モデルから得られた知見であり溶銑の挙動を正確に反映したものとはなっていない。加えて、カラムを配置するための様々な条件(カラムの幅、使用する精錬容器の大きさと水平距離Lとの関係)などが明確なものとなっておらず、実際の溶銑脱硫処理に採用することが難しく、脱硫効率を上げることが困難である。
このように、精錬容器内の溶銑に対し機械攪拌しつつ脱硫を行う処理に関し、溶銑中への脱硫剤の巻き込み効率を向上させるという技術は多々開発・開示されているものの、実際の現場へ適応可能なものは殆ど見当たらないのが現状である。
Moreover, the technique of patent document 4 is the knowledge acquired from the water model, and does not reflect the behavior of hot metal correctly. In addition, various conditions for arranging the columns (the relationship between the column width, the size of the smelting vessel used and the horizontal distance L) are not clear, and are adopted for the actual hot metal desulfurization treatment. It is difficult to increase the desulfurization efficiency.
As described above, regarding the process of desulfurization while mechanically stirring the hot metal in the smelting vessel, many technologies have been developed and disclosed to improve the efficiency of the desulfurization agent in the hot metal. The current situation is that there is almost no possibility.

本発明は、上記事情を鑑みてなされたものであり、溶銑に機械攪拌式の脱硫処理を施すに際し、脱硫剤の溶銑中への巻き込み効率を高め、その反応効率を高めることのできる溶銑脱硫方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a hot metal desulfurization method capable of increasing the entrainment efficiency of the desulfurizing agent into the hot metal and performing the reaction efficiency when subjecting the hot metal to mechanical stirring type desulfurization treatment. The purpose is to provide.

前記目的を達成するため、本発明においては以下の技術的手段を講じた。
すなわち、本発明は、精錬容器に装入された溶銑に上方からインペラと棒部材とを浸漬した状態で、当該溶銑に対し脱硫剤を加えつつ攪拌しながら脱硫を行う溶銑脱硫方法において、式(1)〜式(3)を満たすように前記棒部材を配置し、前記溶銑をインペラで攪拌して脱硫処理を行うことを特徴とする。
In order to achieve the above object, the present invention takes the following technical means.
That is, the present invention relates to a hot metal desulfurization method in which desulfurization is performed with stirring while adding a desulfurizing agent to the hot metal in a state where the impeller and the rod member are immersed from above in the hot metal charged in the refining vessel. The rod members are arranged so as to satisfy 1) to Formula (3), and the hot metal is stirred with an impeller to perform a desulfurization process.

まず、本願発明人らは、精錬容器を用いた機械撹拌式の溶銑脱硫方法についてそのメカニズムを考えることとした。
溶銑脱硫に用いる脱硫剤はCaOを主体としていて溶銑に比べて低密度であるから、溶銑中に分散してもやがては溶銑上まで浮上する。その後、インペラの撹拌により再び溶銑中に巻き込まれる。以降はこの繰り返しとなる。そこで従来は、溶銑中に存在する脱硫剤の個数を増加させるために、溶銑上までの浮上時間を長くさせようという着眼点に立った技術が提案されていた。
First, the inventors of the present application have considered the mechanism of a mechanical stirring type hot metal desulfurization method using a refining vessel.
Since the desulfurization agent used for hot metal desulfurization is mainly composed of CaO and has a lower density than hot metal, even if dispersed in the hot metal, it will eventually rise to the hot metal. Then, it is caught in hot metal again by stirring the impeller. This is repeated thereafter. Therefore, conventionally, in order to increase the number of desulfurizing agents present in the hot metal, a technique with a focus on increasing the ascent time until hot metal has been proposed has been proposed.

これに対し、本願発明人らは、溶銑上に浮上してから再度溶銑中へ巻き込まれるまでに要する時間を短くすると、溶銑上に存在する脱硫剤は減少するため、結果として溶銑中の脱硫剤を増加させることができると考えた。
そこで、機械攪拌式の脱硫処理における溶銑上の脱硫剤粒子の挙動を解析し、次のような知見を得た。
精錬容器の中心に位置するインペラを回転させると、溶銑湯面上の脱硫剤粒子は渦を描きながらインペラの所へ移動し、インペラの位置に達するとインペラの羽根によって溶銑中に弾き出される。しかし、このとき脱硫剤粒子には渦運動による遠心力が働くためインペラに向かって引き込まれる障害になっており、脱硫剤粒子の巻き込みに要する時間を増大させている。なかには、力の釣り合いにより溶銑湯面上で移動が停滞している粒子や、遠心力が勝って容器内壁まで飛ばされ付着してしまう粒子もあり、反応効率を低下させる一因となっている。
On the other hand, the inventors of the present application reduced the amount of desulfurization agent present on the hot metal after reducing the time required to rise again on the hot metal and to be entangled again into the hot metal. Thought that can be increased.
Therefore, the behavior of the desulfurizing agent particles on the hot metal in the mechanical stirring type desulfurization treatment was analyzed, and the following knowledge was obtained.
When the impeller located at the center of the refining vessel is rotated, the desulfurizing agent particles on the hot metal surface move to the impeller while drawing a vortex, and when the impeller reaches the position, it is ejected into the hot metal by the impeller blades. However, at this time, centrifugal force due to vortex motion acts on the desulfurizing agent particles, which is an obstacle to be drawn toward the impeller, increasing the time required for the desulfurizing agent particles to be involved. Among them, there are particles that are stagnant on the surface of the molten metal due to the balance of forces, and particles that win the centrifugal force and adhere to the inner wall of the container, which contributes to a reduction in reaction efficiency.

上述のような障害は「精錬容器の内壁近傍であって溶銑が盛り上がった部分」で生じやすい。なぜなら、この盛り上がり部分は、容器中心に向けた溶銑湯面の傾斜が小さく略水平に近く、脱硫剤粒子がインペラへ向けて移動しづらいエリアだからである。
そこで、本願発明者らは、精錬容器に装入された溶銑に上方から棒部材を浸漬した状態で、当該溶銑に対し脱硫剤を加えつつインペラで攪拌しながら脱硫を行うに際し、式(1)〜式(3)を満たすように棒部材を配置することとした。その結果、溶銑湯面での溶銑流れを変えることができ、脱硫剤粒子をインペラへ向けて移動させると共に脱硫剤の溶銑中への巻き込み効率を高め、脱硫剤の反応効率を高めることができるに至った。
The obstacles as described above are likely to occur at “the portion near the inner wall of the smelting vessel where the molten metal is raised”. This is because the bulging portion is an area where the molten metal surface inclined toward the center of the container is small and almost horizontal, and it is difficult for the desulfurizing agent particles to move toward the impeller.
Therefore, the inventors of the present application perform desulfurization while stirring with an impeller while adding a desulfurizing agent to the hot metal in a state where the rod member is immersed in the hot metal charged in the refining vessel. ~ The rod member was arranged to satisfy the formula (3). As a result, the hot metal flow at the hot metal surface can be changed, the desulfurizing agent particles can be moved toward the impeller, and the desulfurization agent can be efficiently entrained in the hot metal, thereby increasing the reaction efficiency of the desulfurizing agent. It came.

本発明に係る溶銑脱硫方法によれば、溶銑に機械攪拌式の脱硫処理を施すに際し、脱硫剤の溶銑中への巻き込み効率を高め、脱硫剤の反応効率を高めることができる。   According to the hot metal desulfurization method according to the present invention, when the hot metal is subjected to mechanical stirring type desulfurization treatment, the entrainment efficiency of the desulfurization agent into the hot metal can be increased, and the reaction efficiency of the desulfurization agent can be increased.

以下、本発明の実施形態を、図を基に説明する。
図1〜図3は、本発明に係る溶銑脱硫方法を行うことのできる溶銑脱硫装置1の概略を示した図である。
図1に示されるように、高炉2から出銑された溶銑3は、精錬容器4(以降、取鍋と呼ぶこともある)に装入された上で転炉5などの精錬工程に移送される。転炉5に達するまでに、取鍋4に装入された溶銑3に対しては脱硫処理が施される。
図2は溶銑脱硫装置1を示したものである。本装置1は、溶銑3が装入される取鍋4とこの取鍋4の中心に上方から挿入されるインペラ6とを有している。インペラ6は回転軸を有すると共に、この回転軸の先端から径方向に突出する複数枚の羽根6Aを備えている。さらに、溶銑3内への脱硫剤の巻き込みを促進させるべく、取鍋4の上方から溶銑3の表面に向けて棒部材7が挿入されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 3 are diagrams showing an outline of a hot metal desulfurization apparatus 1 capable of performing the hot metal desulfurization method according to the present invention.
As shown in FIG. 1, the molten iron 3 discharged from the blast furnace 2 is transferred to a refining process such as a converter 5 after being charged into a refining vessel 4 (hereinafter also referred to as a ladle). The Before reaching the converter 5, the hot metal 3 charged in the ladle 4 is subjected to desulfurization treatment.
FIG. 2 shows the hot metal desulfurization apparatus 1. The apparatus 1 has a ladle 4 in which the hot metal 3 is charged and an impeller 6 inserted from above into the center of the ladle 4. The impeller 6 has a rotating shaft and is provided with a plurality of blades 6A protruding in the radial direction from the tip of the rotating shaft. Further, a rod member 7 is inserted from above the ladle 4 toward the surface of the hot metal 3 in order to promote the entrainment of the desulfurizing agent into the hot metal 3.

脱硫処理は、取鍋4内の溶銑3に脱硫剤を投入すると共にインペラ6を挿入し撹拌を行いつつ進める。棒部材7はインペラ6による溶銑表面流れを乱し、脱硫剤をインペラ6の方へ向かわせ、脱硫剤が溶銑3上に浮上してから再び溶銑3中へ巻き込まれるまでに要する時間を短くする作用を有している。
詳しくは、図2(a)に示すように、断面円柱状の棒部材7(丸棒部材と呼ぶこともある)を溶銑3上方から溶銑3の上部に浸漬させると、図2(b)に示すように、溶銑3表面の渦流れは丸棒部材7に衝突して、取鍋4の中心方向への流れと内壁8方向への流れへと分流する。分流した2つの流れは丸棒部材7の後方に回り込み合流しようとするが、中心方向への流れはそのままインペラ6近傍へ引き込まれる。取鍋4の内壁8方向への流れは丸棒部材7に沿いつつその後方へ回り込み、その後、中心方向の流れを追う形でインペラ6近傍へ流れる。
In the desulfurization treatment, the desulfurizing agent is introduced into the hot metal 3 in the ladle 4 and the impeller 6 is inserted to proceed with stirring. The rod member 7 disturbs the hot metal surface flow caused by the impeller 6, directs the desulfurizing agent toward the impeller 6, and shortens the time required for the desulfurizing agent to float on the hot metal 3 and to be taken into the hot metal 3 again. Has an effect.
Specifically, as shown in FIG. 2 (a), when a rod member 7 (sometimes referred to as a round bar member) having a columnar cross section is immersed from above the hot metal 3 into the upper part of the hot metal 3, FIG. As shown, the vortex flow on the surface of the hot metal 3 collides with the round bar member 7 and is divided into a flow toward the center of the ladle 4 and a flow toward the inner wall 8. The two separated flows circulate behind the round bar member 7 and try to join, but the flow in the central direction is directly drawn near the impeller 6. The flow in the direction of the inner wall 8 of the ladle 4 wraps around the round bar member 7 and then moves backward, and then flows in the vicinity of the impeller 6 in a form that follows the flow in the center direction.

結果的に、丸棒部材7に衝突した溶銑3の流れは全て中心方向に向くようになり、ひいては、溶銑3上の脱硫剤粒子は移動距離を短縮してより短時間でインペラ6による渦の中心へと向かう。また、取鍋4の内壁8付近で停滞していている脱硫剤も前述した分流に乗せて溶銑3内に巻き込ませることができるようになり、脱硫効果を著しく増加できる。
かかる丸丸棒部材7をどの位置に配備するかにより、溶銑3に投入された脱硫剤の反応効率は大きく異なる。本願発明人らは、数々の実験を通して、式(1)〜式(3)を満たすように丸棒部材7を配備することとしている。
As a result, the flow of the hot metal 3 colliding with the round bar member 7 is all directed toward the center direction. As a result, the desulfurizing agent particles on the hot metal 3 are reduced in moving distance, and the vortex generated by the impeller 6 is shortened in a shorter time. Head to the center. In addition, the desulfurization agent stagnating in the vicinity of the inner wall 8 of the ladle 4 can also be entrained in the hot metal 3 by being put on the above-described diversion, and the desulfurization effect can be remarkably increased.
The reaction efficiency of the desulfurizing agent put into the hot metal 3 varies greatly depending on where the round bar member 7 is arranged. The inventors of the present application have arranged the round bar member 7 so as to satisfy the expressions (1) to (3) through many experiments.

こうすることで、脱硫剤の反応効率ηSを90%以上とすることが可能となる。脱硫剤の反応効率ηSを90%以上としておけば、高硫黄濃度の溶銑(例えば、300ppm程度)が高炉から出銑されたとしても、処理後の硫黄濃度を、通常の製品鋼で最低限必要とされる30ppm以下とすることができる。
なお、溶銑3に投入された脱硫剤の反応効率(脱硫率)ηSは式(4)で算出される。脱硫率ηSは、処理前に溶銑3に含有されていた硫黄のうち、処理により除去された硫黄の割合を示すものである。
By doing so, the reaction efficiency η S of the desulfurizing agent can be set to 90% or more. If the reaction efficiency η S of the desulfurizing agent is set to 90% or more, even if hot iron with a high sulfur concentration (for example, about 300 ppm) is discharged from the blast furnace, the sulfur concentration after treatment is minimized with ordinary product steel. The required amount can be 30 ppm or less.
Note that the reaction efficiency (desulfurization rate) η S of the desulfurizing agent charged into the hot metal 3 is calculated by the equation (4). The desulfurization rate η S indicates the proportion of sulfur removed by the treatment among the sulfur contained in the hot metal 3 before the treatment.

以下、式(1)〜式(3)の根拠について説明する。
まず、式(1)に関し、丸棒部材7は、前述の如く、溶銑表面の流れを乱した上でインペラ6へ向かわせ、脱硫剤が溶銑3上に浮上してから再び溶銑3中へ巻き込まれるまでに要する時間を短くするものであるため、脱硫剤が滞留しやすい部分すなわち溶銑3の盛り上がり部分Mに浸漬すればよい。
なお、溶銑3の盛り上がり部分Mとは、図3に示すように、インペラ6攪拌時に、静止状態の溶銑湯面位置Hより高くなる溶銑部分である。盛り上がり部分Mは、溶銑湯面の中心へ向けた傾きが小さく脱硫剤が滞留しやすいエリアとなっている。
Hereinafter, the grounds of the equations (1) to (3) will be described.
First, regarding the formula (1), as described above, the round bar member 7 disturbs the flow of the hot metal surface and is directed to the impeller 6, and after the desulfurizing agent floats on the hot metal 3, the round bar member 7 is entangled again in the hot metal 3. Since the time required for the heat treatment is shortened, the desulfurizing agent may be immersed in the portion where the desulfurizing agent tends to stay, that is, the swelled portion M of the hot metal 3.
As shown in FIG. 3, the bulging portion M of the hot metal 3 is a hot metal portion that becomes higher than the hot metal surface position H in a stationary state when the impeller 6 is stirred. The raised portion M is an area where the inclination toward the center of the hot metal surface is small and the desulfurizing agent tends to stay.

図2の如く、溶銑3の盛り上がり部分Mについて、取鍋4中心から盛り上がり始めまでの距離をL0とすると、L0は以下のようにして求められる。
まず、流体工学及び化学工学の知見から、インペラ6攪拌時の溶銑湯面は式(5)〜式(10)を用いて表される。(例えば、別冊化学工学 撹拌装置の設計と操作,Vol.14,No.7,1970,64頁,化学工業社を参照)
As shown in FIG. 2, when the distance from the center of the ladle 4 to the beginning of the swell portion M of the hot metal 3 is L 0 , L 0 is obtained as follows.
First, from the knowledge of fluid engineering and chemical engineering, the hot metal surface at the time of impeller 6 stirring is expressed using equations (5) to (10). (For example, see the separate chemical engineering stirrer design and operation, Vol. 14, No. 7, 1970, page 64, Chemical Industries, Ltd.)

ここで、盛り上がり部分Mの「盛り上がり始めまでの距離L0」を明らかにすべく、式(6)においてx=L0とする。すると、 Here, in order to clarify the “distance L 0 to the beginning of the swell” of the swelled portion M, x = L 0 is set in Equation (6). Then

が成り立つ。
式(11)から明らかなように、盛り上がり始めL0は、固体回転部(インペラ6の羽根6Aと等角速度で回転する溶銑部分)の半径rc,インペラ6の回転数N,取鍋4中心での渦深さΔHの関数である。また、式(8)よりわかるように、固体回転部の半径rcは、インペラ6の回転数N,取鍋4の内径D,インペラ6の羽根6Aの直径d,羽根6Aの高さb,羽根6Aの枚数np,羽根6Aの捩れ角θ(図2参照)の関数である。一見すると、盛り上がり始めL0は様々なファクタに左右されるように見える。
Holds.
As is apparent from the equation (11), the rising start L 0 is the radius r c of the solid rotating part (the hot metal part rotating at the same angular velocity as the blade 6A of the impeller 6), the rotational speed N of the impeller 6, and the center of the ladle 4 Is a function of the vortex depth ΔH. As can be seen from equation (8), the radius r c of the solid rotating portion, the rotation speed N of the impeller 6, the inner diameter D of the ladle 4, the diameter d of the blade 6A of the impeller 6, the height b of the blades 6A, This is a function of the number n p of the blades 6A and the twist angle θ (see FIG. 2) of the blades 6A. At first glance, it appears that L 0 begins to rise, depending on various factors.

ところが、式(11)に式(10)を代入し、さらに両辺をN2で割ると、両辺からN2の項を消すことができる。また、式(8)からわかるように、固体回転部の半径rcに対する羽根6Aの高さb,羽根6Aの枚数np,羽根6Aの捩れ角θの影響は小さいため無視できる。加えて、実際の溶銑脱硫ではレイノルズ数Reが103より十分大きい(105〜106)ので、式(8)のRe/(103+1.43Re)=1/1.43となり、レイノルズ数Reの影響も無視できる。
以上のことより、式(11)において、盛り上がり始めL0は羽根6Aの直径dと取鍋4の内径D(または、羽根6Aの半径rと取鍋4の内半径R)のファクタの影響を強く受け、羽根6Aの枚数np,羽根6Aの捩れ角θなどの他のファクタ影響は非常に小さいことがわかる。
However, by substituting equation (10) into equation (11) and further dividing both sides by N 2 , the term N 2 can be deleted from both sides. Moreover, as can be seen from equation (8), the height b of the blade 6A to the radius r c of the solid rotation section, the number n p of the blades 6A, the influence of the twist angle θ of the blade 6A negligible for small. In addition, since the Reynolds number Re is sufficiently larger than 10 3 (10 5 to 10 6 ) in actual hot metal desulfurization, Re / (10 3 +1.43 Re) = 1 / 1.43 in the formula (8), and the Reynolds number The influence of Re can also be ignored.
From the above, in equation (11), the start of swell L 0 is influenced by the factors of the diameter d of the blade 6A and the inner diameter D of the ladle 4 (or the radius r of the blade 6A and the inner radius R of the ladle 4). It can be seen that the influence of other factors such as the number n p of the blades 6A and the twist angle θ of the blades 6A is very small.

かかる次元解析を基にした上で、式(11)ならびに式(8)〜式(10)を用いて、盛り上がり始めL0と羽根6Aの半径rと取鍋4の内半径Rとの関係を計算により求めた。図4がその結果である。この図よりL0/Rとr/Rとの関係が式(12)で近似できることがわかる。 Based on this dimensional analysis, the relationship between the start of swell L 0 , the radius r of the blade 6A, and the inner radius R of the ladle 4 is obtained using Equation (11) and Equations (8) to (10). Obtained by calculation. FIG. 4 shows the result. From this figure, it can be seen that the relationship between L 0 / R and r / R can be approximated by equation (12).

丸棒部材7を盛り上がり部分Mに浸漬するには、丸棒部材7の浸漬位置L≧盛り上がり始めL0であればよいから、式(12)にL≧L0の関係を適用し、浸漬させるための条件として、式(1)の左辺の関係が得られる。
ところで、図5は、様々に条件を変えた溶銑モデル実験(実際の溶銑を用いた実験)の結果から得られた「L/(0.38r+0.34R)と脱硫率ηSの関係」を示したものである。この図からわかるように、式(1)の左辺の関係を満たすと、脱硫率ηSを90%以上とすることができる。
In order to immerse the round bar member 7 in the swelled portion M, the immersion position L of the round bar member 7 ≧ starting swell L 0 suffices. Therefore, the relation of L ≧ L 0 is applied to the equation (12) and immersed. As a condition for this, the relationship of the left side of Expression (1) is obtained.
FIG. 5 shows the “relationship between L / (0.38r + 0.34R) and the desulfurization rate η S ” obtained from the results of the hot metal model experiment (experiment using actual hot metal) under various conditions. It is a thing. As can be seen from this figure, the desulfurization rate η S can be 90% or more when the relationship of the left side of the equation (1) is satisfied.

一方、丸棒部材7は内壁8に接触する位置まで移動できる(L≦R−W/2)が、内壁8と丸棒部材7の間の距離が小さいと、丸棒部材7と内壁8側との間の流れが滞ってしまい、丸棒部材7の付近で脱硫剤が滞ってしまう。そのため、脱硫剤の巻き込み効率向上の効果が小さくなる。このような状況を溶銑モデル実験を通じて再現し、図6のような結果を得た。
図6から明らかなように、容器内壁8と丸棒部材7の間の距離L1(=R−W/2−L)と、盛り上がり部分Mの長さ(R−L0=0.66R−0.38r)との関係が、0.1≦L1/(0.66R−0.38r)であるときに、脱硫率ηS≧90%を満足する。この関係を展開することで、式(1)の右辺が規定できる。
On the other hand, the round bar member 7 can move to a position in contact with the inner wall 8 (L ≦ R−W / 2), but if the distance between the inner wall 8 and the round bar member 7 is small, the round bar member 7 and the inner wall 8 side And the desulfurization agent stagnate in the vicinity of the round bar member 7. Therefore, the effect of improving the entrainment efficiency of the desulfurizing agent is reduced. Such a situation was reproduced through a hot metal model experiment, and a result as shown in FIG. 6 was obtained.
As apparent from FIG. 6, the distance L1 (= R−W / 2−L) between the container inner wall 8 and the round bar member 7 and the length of the raised portion M (R−L 0 = 0.66R−0). .38r) satisfies 0.1 ≦ L1 / (0.66R−0.38r) and satisfies the desulfurization rate η S ≧ 90%. By expanding this relationship, the right side of equation (1) can be defined.

0.1≦L1/(0.66R−0.38r)という関係から、盛り上がり部分Mの小さいとき、つまりインペラ6の径が大きいときには丸棒部材7と内壁8との距離は小さくてもよいことがわかる。これはインペラ6径が大きいと内壁8付近でも溶銑3流れが速く、内壁8と丸棒部材7の間の流れが滞らないためである。逆に、インペラ6の径が小さいときには丸棒部材7と内壁8との距離は大きくする必要があることがわかる。これは、インペラ6径が小さいときには、盛り上がり部分Mが大きく内壁8付近の流れが遅くなり、内壁8と丸棒部材7との間の距離を大きくしないと溶銑3の流れが滞ってしまうためである。   From the relationship of 0.1 ≦ L1 / (0.66R−0.38r), the distance between the round bar member 7 and the inner wall 8 may be small when the rising portion M is small, that is, when the diameter of the impeller 6 is large. I understand. This is because if the diameter of the impeller 6 is large, the hot metal 3 flows fast even in the vicinity of the inner wall 8 and the flow between the inner wall 8 and the round bar member 7 does not stagnate. Conversely, it can be seen that when the diameter of the impeller 6 is small, the distance between the round bar member 7 and the inner wall 8 needs to be increased. This is because when the diameter of the impeller 6 is small, the rising portion M is large and the flow in the vicinity of the inner wall 8 becomes slow, and unless the distance between the inner wall 8 and the round bar member 7 is increased, the flow of the hot metal 3 is delayed. is there.

次に、式(2)の根拠について述べる。
まず、丸棒部材7の最大幅Wが大きくなりすぎて、盛り上がり部分Mからはみ出したとしたら、溶銑3流れに影響しない部分が増え非効率である。この観点より、盛り上がり部分Mの長さ(0.66R−0.38r)よりも小さいことが望ましい。
しかしながら、丸棒部材7の最大幅Wが盛り上がり部分Mからはみ出ないとしても、最大幅Wは大きすぎても小さすぎてもよくない。丸棒部材7の最大幅Wが大きいほど広範囲の溶銑3の流れを変えることができ、より多くの脱硫剤を巻き込ませることができるが、最大幅Wが大きくなるにつれ溶銑流れへの抵抗が大きくなり、丸棒部材7の溶損等が激しくなる虞がある。
Next, the basis of the formula (2) will be described.
First, if the maximum width W of the round bar member 7 becomes too large and protrudes from the swelled portion M, the portion not affecting the hot metal 3 flow increases and is inefficient. From this viewpoint, it is desirable that the length is larger than the length of the raised portion M (0.66R−0.38r).
However, even if the maximum width W of the round bar member 7 does not protrude from the raised portion M, the maximum width W may not be too large or too small. The larger the maximum width W of the round bar member 7, the more the flow of the hot metal 3 can be changed, and more desulfurization agent can be entrained. However, as the maximum width W increases, the resistance to the hot metal flow increases. Therefore, there is a possibility that the round bar member 7 may be severely damaged.

すなわち、丸棒部材7の最大幅Wには最適値が存在することが予想され、かかる考えのもと、丸棒部材7の最大幅Wを種々変えた溶銑モデル実験を行った。
図7は、溶銑モデル実験から得られた最大幅Wと脱硫率ηSの変化曲線である。丸棒部材7の最大幅Wと盛り上がり部分Mの長さ(0.66R−0.38r)との比が、0.3≦W/(0.66R−0.38r)≦0.9であるときに、脱硫率ηS≧90%を満足する。この式を展開すると、式(2)が得られる。
式(2)は、盛り上がり部分Mが大きいときは、流れを改善しなければならない領域が大きいため、それに応じて大きな丸棒部材7を浸漬させ、逆に盛り上がり部分Mが小さいときには小さな丸棒部材7を浸漬させることを示している。
That is, it is expected that there is an optimum value for the maximum width W of the round bar member 7, and based on this idea, a hot metal model experiment was performed in which the maximum width W of the round bar member 7 was variously changed.
FIG. 7 is a change curve of the maximum width W and the desulfurization rate η S obtained from the hot metal model experiment. The ratio of the maximum width W of the round bar member 7 to the length of the raised portion M (0.66R−0.38r) is 0.3 ≦ W / (0.66R−0.38r) ≦ 0.9. Sometimes, the desulfurization rate η S ≧ 90% is satisfied. When this expression is expanded, Expression (2) is obtained.
In the formula (2), when the raised portion M is large, the area where the flow must be improved is large. Therefore, the large round bar member 7 is immersed accordingly, and conversely, when the raised portion M is small, the small round bar member 7 is immersed.

次に、式(3)の根拠について述べる。
取鍋4内の溶銑3に対する丸棒部材7の浸漬深さhは、例えば、式(1)で規定された領域では攪拌により溶銑湯面が上昇するから、浸漬深さh=0であっても、攪拌処理中に溶銑3に浸漬することになる。しかし、浸漬深さhが小さくては流れに与える影響が小さいため巻き込み促進効果も小さい。逆に浸漬深さhが大きくなると溶銑3から受ける抵抗が大きくなり溶損等が激しくなることが予想される。
このように、丸棒部材7の浸漬深さhにも最適範囲が存在することが予想され、かかる考えのもと、丸棒部材7の浸漬深さhを種々変えた溶銑モデル実験を行った。
Next, the basis of the formula (3) will be described.
The immersion depth h of the round bar member 7 with respect to the hot metal 3 in the ladle 4 is, for example, the immersion depth h = 0 because the hot metal surface rises by stirring in the region defined by the formula (1). Is immersed in the hot metal 3 during the stirring process. However, if the immersion depth h is small, the effect on the flow is small, so the effect of entrainment is small. Conversely, when the immersion depth h is increased, the resistance received from the hot metal 3 is increased, and it is expected that the melting loss and the like become severe.
Thus, it is expected that there is an optimum range for the immersion depth h of the round bar member 7, and based on this idea, hot metal model experiments were conducted with various changes in the immersion depth h of the round bar member 7. .

図8は、溶銑モデル実験から得られた浸漬深さhと脱硫率ηSの変化曲線である。この図から明らかなように、0≦(h+δ)/H≦0.3であれば、脱硫率ηS≧90%を満足する。この式を展開すると式(3)が得られる。
なお、式(3)においては、浸漬深さにスラグの厚さδを考慮しているため、−δ/H≦h/H≦0.3−δ/Hとなっている。
つまり、溶銑3の流れと共に脱硫剤(脱硫スラグ)も移動し、丸棒部材7に衝突することで運動エネルギを失う。スラグ厚さδが大きくなれば、脱硫スラグが失う運動エネルギが大きくなるため、脱硫スラグの巻き込みが遅くなってしまう。ゆえに、脱硫スラグが厚くなっただけ浸漬深さを小さくして溶銑3が失う運動エネルギーを小さくすればよい。
FIG. 8 is a change curve of the immersion depth h and the desulfurization rate η S obtained from the hot metal model experiment. As is apparent from this figure, when 0 ≦ (h + δ) /H≦0.3, the desulfurization rate η S ≧ 90% is satisfied. When this formula is expanded, formula (3) is obtained.
In formula (3), since the slag thickness δ is taken into consideration in the immersion depth, −δ / H ≦ h / H ≦ 0.3−δ / H.
That is, the desulfurization agent (desulfurization slag) moves with the flow of the molten iron 3 and collides with the round bar member 7 to lose kinetic energy. If the slag thickness δ increases, the kinetic energy lost to the desulfurized slag increases, and therefore the entrainment of the desulfurized slag becomes slow. Therefore, it is only necessary to reduce the kinetic energy lost to the molten iron 3 by reducing the immersion depth as the desulfurized slag becomes thicker.

本発明の溶銑脱硫方法を用いて、実際の溶銑3に対する脱硫処理を行った。
実験条件としては、5tonの銑鉄を低周波炉で溶解後、内半径R=590mmの取鍋4に装入し、脱硫剤を添加して羽根半径r=250mmのインペラ6(羽根6Aの捩れ角θ=90°)で攪拌処理を施した。脱硫剤はCaOにAl灰を添加したものを5kg/ton添加した。インペラ6の回転数は200rpm、処理時間は10minとした。
表1に実施例の条件と結果を示す。No.1〜No.14が本発明の溶銑脱硫方法を適用した場合(実施例)、No.15〜No.26が未適用の場合(比較例)である。また、No.27は丸棒部材7を浸漬させない場合である。
Using the hot metal desulfurization method of the present invention, the actual hot metal 3 was desulfurized.
As experimental conditions, 5 ton of pig iron was melted in a low-frequency furnace, charged into a ladle 4 having an inner radius R = 590 mm, a desulfurizing agent was added, and an impeller 6 having a blade radius r = 250 mm (the twist angle of the blade 6A) A stirring process was performed at θ = 90 °. As the desulfurizing agent, CaO added with Al ash was added at 5 kg / ton. The rotation speed of the impeller 6 was 200 rpm, and the processing time was 10 min.
Table 1 shows the conditions and results of the examples. No. 1-No. No. 14 applies the hot metal desulfurization method of the present invention (Example). 15-No. This is a case where 26 is not applied (comparative example). No. Reference numeral 27 denotes a case where the round bar member 7 is not immersed.

No.1〜No.14のいずれの場合でも、丸棒部材7の配備位置は、式(1)〜式(3)を満たしており、脱硫率がηSが90%以上である。それに対して、No.15〜No.26では脱硫率ηSが70〜80%台と悪く、丸棒部材7を浸漬させない場合(No.27)の脱硫率は65%と最も悪い。
以上の実施例からもわかるように、本願発明の溶銑脱硫方法は、脱硫剤を用いて溶銑3に機械攪拌式の脱硫処理を施すに際し、脱硫剤の溶銑3中への巻き込み効率を高め、脱硫剤の反応効率を高めることができる。
No. 1-No. In any case of 14, the deployment position of the round bar member 7 satisfies the formulas (1) to (3), and the desulfurization rate η S is 90% or more. In contrast, no. 15-No. 26, the desulfurization rate η S is as bad as 70 to 80%, and the desulfurization rate when the round bar member 7 is not immersed (No. 27) is the worst as 65%.
As can be seen from the above examples, the hot metal desulfurization method of the present invention increases the efficiency of entrainment of the desulfurizing agent into the hot metal 3 when the hot metal 3 is subjected to mechanical stirring type desulfurization treatment using the desulfurizing agent. The reaction efficiency of the agent can be increased.

本願発明は、化学工学分野で一般的に邪魔材または邪魔棒と称される技術に一見似ているが、物理的に発揮する効果は異なるものである。すなわち、邪魔材は溶銑3中の流れを変えて攪拌を活発にするものであるが、本発明の棒部材7は、溶銑3表面のわずかな部分の流れを変えるものであるから、技術としては全く異なるものである。
邪魔材の挿入により攪拌流れを変えると攪拌動力が増大することが知られているが、本発明の棒部材7において、流れを変えているのは溶銑3表面のわずかな部分であり、溶銑3全体の流れを変えるわけではないので、攪拌動力の増加はほとんどない。棒部材7は、攪拌動力を増加させることなく脱硫剤の溶銑3中への分散量を増加させることができる。
The present invention is similar to a technique generally referred to as a baffle or baffle rod in the chemical engineering field, but is physically different in effect. That is, the baffle material changes the flow in the hot metal 3 to make the stirring active, but the rod member 7 of the present invention changes the flow of a small part of the surface of the hot metal 3, It is completely different.
It is known that when the stirring flow is changed by inserting a baffle, the stirring power increases. However, in the rod member 7 of the present invention, the flow is changed only in a small part on the surface of the hot metal 3. Since the overall flow is not changed, there is almost no increase in stirring power. The rod member 7 can increase the dispersion amount of the desulfurizing agent in the molten iron 3 without increasing the stirring power.

以上、本発明に係る溶銑脱硫方法は、上述した実施の形態に限定されるものではない。
例えば、棒部材7は丸棒に限定されない。断面三角形や四角形であってもよく、板状であってもよい。
As described above, the hot metal desulfurization method according to the present invention is not limited to the above-described embodiment.
For example, the bar member 7 is not limited to a round bar. The cross section may be a triangle, a quadrangle, or a plate.

溶銑脱硫の概念を示した図である。It is the figure which showed the concept of hot metal desulfurization. 本発明にかかる溶銑脱硫方法を行う装置の模式図である。It is a schematic diagram of the apparatus which performs the hot metal desulfurization method concerning this invention. 棒部材の挿入状況を示した図である。It is the figure which showed the insertion condition of the bar member. インペラの羽根半径と盛り上がり部分までの距離との関係を示した図である。It is the figure which showed the relationship between the blade | wing radius of an impeller and the distance to a swelling part. 棒部材の配置位置と脱硫効率との関係を示した図である。It is the figure which showed the relationship between the arrangement | positioning position of a bar member, and desulfurization efficiency. 棒部材の配置位置と脱硫効率との関係を示した図である。It is the figure which showed the relationship between the arrangement | positioning position of a bar member, and desulfurization efficiency. 棒部材の幅と脱硫効率との関係を示した図である。It is the figure which showed the relationship between the width | variety of a rod member, and desulfurization efficiency. 棒部材の浸漬深さと脱硫効率との関係を示した図である。It is the figure which showed the relationship between the immersion depth of a rod member, and desulfurization efficiency. 従来の溶銑脱硫方法を行う装置の模式図である。It is a schematic diagram of the apparatus which performs the conventional hot metal desulfurization method.

符号の説明Explanation of symbols

1 溶銑脱硫装置
2 高炉
3 溶銑
4 取鍋(精錬容器)
5 転炉
6 インペラ
7 丸棒部材(棒部材)
8 内壁
M 盛り上がり部分
100 溶銑脱硫装置(従来例)
101 取鍋(従来例)
102 インペラ(従来例)
1 Hot metal desulfurization equipment 2 Blast furnace 3 Hot metal 4 Ladle (smelting vessel)
5 Converter 6 Impeller 7 Round bar member (Bar member)
8 Inner wall M Swelling part 100 Hot metal desulfurization equipment (conventional example)
101 Ladle (conventional example)
102 Impeller (conventional example)

Claims (1)

精錬容器に装入された溶銑に上方からインペラと棒部材とを浸漬した状態で、当該溶銑に対し脱硫剤を加えつつ攪拌しながら脱硫を行う溶銑脱硫方法において、
式(1)〜式(3)を満たすように前記棒部材を配置し、前記溶銑をインペラで攪拌して脱硫処理を行うことを特徴とする溶銑脱硫方法。
In the hot metal desulfurization method of performing desulfurization while stirring while adding the desulfurizing agent to the hot metal in a state where the impeller and the rod member are immersed from above in the hot metal charged in the refining vessel,
The hot metal desulfurization method, wherein the rod member is arranged so as to satisfy formulas (1) to (3), and the hot metal is stirred with an impeller to perform a desulfurization treatment.
JP2007305805A 2007-11-27 2007-11-27 Method for desulfurizing molten iron Pending JP2009127111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007305805A JP2009127111A (en) 2007-11-27 2007-11-27 Method for desulfurizing molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007305805A JP2009127111A (en) 2007-11-27 2007-11-27 Method for desulfurizing molten iron

Publications (1)

Publication Number Publication Date
JP2009127111A true JP2009127111A (en) 2009-06-11

Family

ID=40818343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007305805A Pending JP2009127111A (en) 2007-11-27 2007-11-27 Method for desulfurizing molten iron

Country Status (1)

Country Link
JP (1) JP2009127111A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101149257B1 (en) 2009-06-26 2012-05-25 현대제철 주식회사 Method of molten pig iron preliminary treatment for improving desulfuration Effiency
JP2014047376A (en) * 2012-08-30 2014-03-17 Jfe Steel Corp Desulfurization method for molten pig iron
KR101504973B1 (en) 2013-08-29 2015-03-23 주식회사 포스코 Refining method of molten steel and an apparatus thereof
KR101613660B1 (en) * 2014-09-19 2016-04-19 주식회사 포스코 Refining apparatus for molten metal
CN113088629A (en) * 2021-03-31 2021-07-09 成渝钒钛科技有限公司 Slag desulfurization device before no-fishing of secondary steelmaking pretreatment molten iron and use method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101149257B1 (en) 2009-06-26 2012-05-25 현대제철 주식회사 Method of molten pig iron preliminary treatment for improving desulfuration Effiency
JP2014047376A (en) * 2012-08-30 2014-03-17 Jfe Steel Corp Desulfurization method for molten pig iron
KR101504973B1 (en) 2013-08-29 2015-03-23 주식회사 포스코 Refining method of molten steel and an apparatus thereof
KR101613660B1 (en) * 2014-09-19 2016-04-19 주식회사 포스코 Refining apparatus for molten metal
CN113088629A (en) * 2021-03-31 2021-07-09 成渝钒钛科技有限公司 Slag desulfurization device before no-fishing of secondary steelmaking pretreatment molten iron and use method thereof

Similar Documents

Publication Publication Date Title
JP2009127111A (en) Method for desulfurizing molten iron
JP5651283B2 (en) Process for converting copper
JP5252670B2 (en) Molten metal stirring impeller and molten metal stirring apparatus including the impeller
KR20120104399A (en) Operation method for mechanically stirring chrome-containing molten iron
JP5418058B2 (en) Hot metal desulfurization method
KR100845038B1 (en) Impeller for kanvara reactor
JP2007277669A (en) Method for desulfurizing molten iron
JP2003119509A (en) Method for pretreating pig iron, and impeller device
JP2002241825A (en) Method for desulfurizing molten iron and desulfurizing device
JP6119954B2 (en) Hot metal desulfurization treatment method
JP2015218390A (en) Desulfurization method of molten pig iron using combination of mechanical stirring and gas stirring
KR101662017B1 (en) Molten iron preliminary treatment method and stirrer for molten iron preliminary treatment
JP2005290434A (en) Method for desulfurizing molten pig iron
JP5085094B2 (en) Continuous refining method of blast furnace cast floor
JP5978850B2 (en) Hot metal pretreatment method and stirring body for hot metal pretreatment
JP2014177674A (en) Agitator for refinery and method of refining molten iron
CN214168037U (en) KR mechanical stirring method molten iron desulfurization mixing system
KR102090215B1 (en) Processing apparatus for molten metal
JP2001262212A (en) Method for desulfurizing molten iron and desulfurizing device
JP3589075B2 (en) Ladle for molten metal and method for refining molten metal
JP5078319B2 (en) Continuous refining method
JP6489109B2 (en) Molten metal stirring method, stirring device, desulfurization method and desulfurization device
JP5085096B2 (en) Continuous refining method of blast furnace cast floor and blast furnace cast floor equipment
KR101277675B1 (en) Impeller for dispersion of disulfurizer
JP4816138B2 (en) Ladle refining method and ladle refining furnace