JP2009113486A - Manufacturing method of resin rotor, resin gear, and manufacturing method of semi-fabricated part for forming resin rotor - Google Patents

Manufacturing method of resin rotor, resin gear, and manufacturing method of semi-fabricated part for forming resin rotor Download PDF

Info

Publication number
JP2009113486A
JP2009113486A JP2008269276A JP2008269276A JP2009113486A JP 2009113486 A JP2009113486 A JP 2009113486A JP 2008269276 A JP2008269276 A JP 2008269276A JP 2008269276 A JP2008269276 A JP 2008269276A JP 2009113486 A JP2009113486 A JP 2009113486A
Authority
JP
Japan
Prior art keywords
reinforcing fiber
resin
metal bush
fiber assembly
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008269276A
Other languages
Japanese (ja)
Other versions
JP5315917B2 (en
Inventor
Masaya Ozawa
昌也 小澤
Takahiro Morikawa
貴博 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2008269276A priority Critical patent/JP5315917B2/en
Publication of JP2009113486A publication Critical patent/JP2009113486A/en
Application granted granted Critical
Publication of JP5315917B2 publication Critical patent/JP5315917B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gears, Cams (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a highly reliable resin rotor, by improving the bonding strength between a detent provided onto the outer peripheral part of a metal bushing and a reinforcing fiber base material, even when only one reinforcing fiber base material is employed. <P>SOLUTION: In order to form the reinforcing fiber base material 5, a tubular reinforcing fiber assembly 8, which is composed of a large number of reinforcing fibers assembled together and, at the same time, has a through-hole for fitting the outer peripheral part of the metal bushing at the center, is formed. Then, the reinforcing fiber assembly 8 is fitted to the outer peripheral part of the metal bushing 2. Further, the reinforcing fiber assembly 8 fitted onto the outer peripheral part of the metal bushing 2 is compressed axially. This compression is executed under the condition that the more inner diametral and outer diametral expansion of the reinforcing fiber assembly than the predetermined amount is suppressed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、樹脂製回転体の製造方法に関するものであり、また本発明は樹脂製回転体成形用半加工部品の製造方法に関するものである。   The present invention relates to a method for manufacturing a resin rotating body, and the present invention relates to a method for manufacturing a semi-processed part for molding a resin rotating body.

補強用繊維基材を用いた樹脂製回転体は耐久性能に優れ、車輌用品、産業用部品等に用いられる樹脂製歯車などの樹脂製回転体として好適である。樹脂製歯車を成形するための補強用繊維基材として、筒状に織られた又は編まれた筒状体を端部より裏返しながら巻き込みドーナツ状に形成した補強用繊維基材が特許文献1に記載されている。特許文献1には、当該補強用繊維基材に樹脂を含浸して歯部を形成した樹脂製歯車も記載されている。しかしこの従来の技術では、補強用繊維基材と金属製ブッシュに設けた抜け止めとの結合強度を向上させるために、成形金型内で2つの補強用繊維基材を金属製ブッシュを間に介して2段に重ね、金属製ブッシュの抜け止めを図っている(特許文献1の段落番号0013〜0015)。
また、熱硬化性樹脂と繊維チョップを主成分とする抄造シートをプレス抜きした抄造紙シート素形体を複数枚積み重ねて、成形金型内で加熱加圧成形する樹脂製歯車の製造法が特許文献2に記載されている。
A resin rotator using a reinforcing fiber substrate is excellent in durability and is suitable as a resin rotator such as a resin gear used for vehicle articles, industrial parts and the like. As a reinforcing fiber base material for molding a resin gear, Patent Document 1 discloses a reinforcing fiber base material that is formed into a doughnut shape while turning a tubular body woven or knitted into a tubular shape while turning it over from the end. Are listed. Patent Document 1 also describes a resin gear in which the reinforcing fiber base material is impregnated with resin to form teeth. However, in this conventional technique, in order to improve the bonding strength between the reinforcing fiber base and the stopper provided on the metal bush, two reinforcing fiber bases are placed between the metal bushes in the molding die. In order to prevent the metal bush from coming off, paragraph numbers 0013 to 0015 are disclosed.
Patent Document 2 discloses a method for manufacturing a resin gear in which a plurality of paper-making sheet bodies formed by pressing a paper-making sheet mainly composed of a thermosetting resin and a fiber chop are stacked and heated and pressed in a molding die. 2.

これら樹脂製歯車は、2つの補強用繊維基材の重ね合わせ界面や抄造シート素形体の積層界面に、繊維の絡み合いが殆どなく、使用用途によっては、積層面で剥離が発生しやすいという心配がある。また、補強用繊維基材と金属製ブッシュとの結合強度が不足する心配がある。これらのことから、使用用途によっては樹脂製歯車の耐久性が不足する心配がある。   These resin gears have little fiber entanglement at the overlapping interface of the two reinforcing fiber bases or the lamination interface of the paper sheet body, and depending on the intended use, there is a concern that peeling may easily occur on the laminated surface. is there. Further, there is a concern that the bonding strength between the reinforcing fiber base and the metal bush is insufficient. For these reasons, depending on the intended use, there is a concern that the durability of the resin gear is insufficient.

これらの問題解決のために、補強繊維に繊維チョップを用いて抄造法による金型で集積体を作ることも提案された。特許文献3には繊維チョップと熱硬化性樹脂の混合スラリーを、透水性金型内で加圧ないしは減圧脱水して集積体を得る製造法が開示されている。しかし、水に分散できる樹脂は流動性が低く、樹脂と繊維界面での濡れが不充分なために実用に耐える耐久性が得られない。また、特許文献4には流体流出口を有する成型金型で繊維の充填、加熱加圧もその金型で行い、さらに樹脂注入もその金型で行って加熱加圧をして繊維強化樹脂複合体を形成する方法が開示されている。しかし、この方法では樹脂製回転体の中央部に金属製ブッシュを配置することが難しい。また、注入した樹脂が金網などからなる成型金型全体に洩れて硬化後に成型物を取り出すことが容易にはできない上に、成型金型は目詰まりするために、回数を重ねての使用ができなくなる難点がある。   In order to solve these problems, it has also been proposed to use a fiber chop as the reinforcing fiber to make an aggregate with a paper mold. Patent Document 3 discloses a manufacturing method in which a mixed slurry of a fiber chop and a thermosetting resin is pressurized or dehydrated in a water-permeable mold to obtain an aggregate. However, a resin that can be dispersed in water has low fluidity and insufficient wetting at the interface between the resin and the fiber, so that durability that can withstand practical use cannot be obtained. Further, Patent Document 4 discloses a fiber reinforced resin composite in which a fiber is filled and heated and pressed by a mold having a fluid outlet, and resin injection is also performed by the mold and heated and pressurized. A method of forming a body is disclosed. However, with this method, it is difficult to dispose a metal bush at the center of the resin rotating body. In addition, the injected resin leaks into the entire molding die made of a metal mesh etc., and it is not easy to take out the molded product after curing, and the molding die is clogged, so it can be used repeatedly. There is a problem that disappears.

特開2001−295913号公報JP 2001-295913 A 特開平11−227061号公報JP-A-11-227061 特開2001−1413号公報Japanese Patent Laid-Open No. 2001-1413 特開2005−96173号公報JP 2005-96173 A

中央部に金属製ブッシュを配置した樹脂製回転体において、金属製ブッシュの外周部に設けた回り止め部に補強繊維を充填させるために、金属製ブッシュを上下より2つのリング状補強用繊維基材で挟み込み、回り止めに繊維を喰い込ませて充填させる方法は既知の技術である(特許文献1)。しかし、かかる方法では補強用繊維基材の重ね合わせ界面での繊維の絡みがないために、使用用途によっては界面剥離による耐久性能が低下する心配がある。界面剥離の問題は、1個の補強用繊維基材を使用すすることにより解決されるが、金属製ブッシュに設けた回り止め部を挟み込むことができないために、回り止め部に繊維を喰い込ませた樹脂製回転体を作製することができなかった。   In the resin rotating body in which the metal bush is arranged at the center, the metal bush is made up of two ring-shaped reinforcing fiber bases from above and below in order to fill the anti-rotation portion provided on the outer periphery of the metal bush with the reinforcing fiber. A method of sandwiching with a material and filling a fiber with a rotation stopper is a known technique (Patent Document 1). However, in such a method, since there is no entanglement of fibers at the overlapping interface of the reinforcing fiber base material, there is a concern that the durability performance due to interfacial peeling may be lowered depending on the usage. The problem of interfacial delamination can be solved by using a single reinforcing fiber substrate, but the anti-rotation part provided on the metal bush cannot be sandwiched, so that the fiber is caught in the anti-rotation part. It was not possible to produce a resin rotating body.

本発明の目的は、1つの補強用繊維基材だけを用いた場合であっても、金属製ブッシュの外周部に設けた回り止め部と補強用繊維基材との結合強度を向上させた、信頼性の高い樹脂製回転体または樹脂製回転体成形用半加工部品の製造方法を提供することにある。   The object of the present invention is to improve the bonding strength between the reinforcing fiber substrate and the detent provided on the outer periphery of the metal bush, even when only one reinforcing fiber substrate is used. An object of the present invention is to provide a highly reliable method for manufacturing a resin rotating body or a semi-processed part for molding a resin rotating body.

上記課題を解決するために、鋭意検討した結果、次のような手段を採用するものである。
本発明の樹脂製回転体の製造方法は、外周部に1以上の回り止め部が形成されて軸を中心にして回転する金属製ブッシュを用意するステップと、金属製ブッシュの外周部の外側位置に、この外周部に嵌った状態で配置された補強用繊維基材を形成するステップと、補強用繊維基材に樹脂を含浸させ、樹脂を硬化して樹脂成形体を形成するステップと備えている。そして補強用繊維基材を形成するステップでは、内部に境界面を形成しないように多数の補強繊維により構成され且つ中央部に金属製ブッシュの外周部が嵌る貫通孔を備えた筒状の補強繊維集積体を形成する。次に補強繊維集積体を金属製ブッシュの外周部に嵌める。そして金属製ブッシュの外周部に嵌めた補強繊維集積体を前記軸の軸線方向に圧縮する。この圧縮は、補強繊維集積体が内径方向と外径方向へ所定以上に広がるのを規制した状態で実施する。
In order to solve the above problems, the following means are adopted as a result of intensive studies.
The method for manufacturing a resin rotating body according to the present invention includes a step of preparing a metal bush having one or more anti-rotation portions formed on the outer peripheral portion and rotating about an axis, and an outer position of the outer peripheral portion of the metal bush. A step of forming a reinforcing fiber base disposed in a state of being fitted to the outer periphery, and a step of impregnating the resin into the reinforcing fiber base and curing the resin to form a resin molded body. Yes. In the step of forming the reinforcing fiber base material, a cylindrical reinforcing fiber having a through hole in which the outer peripheral part of the metal bush is fitted in the central part so as not to form a boundary surface inside. An aggregate is formed. Next, the reinforcing fiber assembly is fitted to the outer periphery of the metal bush. Then, the reinforcing fiber assembly fitted on the outer periphery of the metal bush is compressed in the axial direction of the shaft. This compression is performed in a state where the reinforcing fiber assembly is restricted from spreading more than a predetermined amount in the inner diameter direction and the outer diameter direction.

このようにすると1つの補強繊維集積体を金属製ブッシュの軸線方向に圧縮する過程で、嵩高い補強繊維集積体は、前記軸線方向中央部で内径方向に座屈する。これにより、補強繊維集積体が金属製ブッシュの回り止め部に押し付けられ、金属製ブッシュの回り止め部を完全に包むことができる。したがって従来のように、補強用繊維基材の内部に繊維層の境界面を形成することなく、補強用繊維基材と金属製ブッシュの回り止め部との結合強度を向上させることができる。また前記座屈により、補強繊維の密度が、金属製ブッシュに近い側から粗、密、粗となる樹脂製回転体成形用半加工部品を得ることができる。これを用いた樹脂製回転体は、相手部品と噛合う部分の繊維密度を高めることができ、耐久性能を向上させることができる。   In this way, in the process of compressing one reinforcing fiber assembly in the axial direction of the metal bush, the bulky reinforcing fiber assembly is buckled in the inner diameter direction at the central portion in the axial direction. Thereby, the reinforcing fiber assembly is pressed against the rotation stopper of the metal bush, and the rotation stopper of the metal bush can be completely wrapped. Therefore, as in the prior art, the bonding strength between the reinforcing fiber substrate and the detent portion of the metal bush can be improved without forming a boundary surface of the fiber layer inside the reinforcing fiber substrate. Further, by the buckling, it is possible to obtain a resin-made rotating body half-processed part in which the density of the reinforcing fibers becomes rough, dense, and rough from the side close to the metal bush. The resin rotating body using this can increase the fiber density of the portion that meshes with the mating component, and can improve the durability performance.

内部に境界面を有しない補強繊維集積体は、補強繊維チョップを水中分散させたスラリーを、複数の貫通孔を備えた抄造金型を通して吸引しながら補強繊維チョップを集積させてプレート状集積体を形成するステップと、プレート状集積体から筒状の補強繊維集積体を打ち抜くステップとから形成することができる。このような2つのステップにより補強繊維集積体を形成すると、その内部には後に剥離の原因となるような境界層が形成されることはない。   Reinforcing fiber aggregates that do not have a boundary surface inside are obtained by accumulating reinforcing fiber chops while sucking slurry in which the reinforcing fiber chops are dispersed in water through a papermaking mold having a plurality of through holes. The step of forming and the step of punching the cylindrical reinforcing fiber assembly from the plate-like assembly can be formed. When a reinforcing fiber assembly is formed by these two steps, a boundary layer that will cause peeling later is not formed inside.

また筒状の補強繊維集積体は、次のようにして形成してもよい。すなわち内側筒体と、内側筒体と同心的に配置された外側筒体と、内側筒体及び外側筒体の下側端部間を連結する底部材とからなり、内側筒体、外側筒体及び底部材の少なくとも1つの部材に複数の貫通孔が形成された抄造金型を用意する。そして補強繊維チョップを水中分散させたスラリーを、抄造金型を通して吸引しながら補強繊維チョップを底部材上に集積させて筒状の補強繊維集積体を形成する。このようにして補強繊維集積体を製造すると、打ち抜き作業が不要なため、製造工程が少なくてすみ、また打ち抜きのように捨てる材料が多くなる問題が生じることはない。
なお、上記補強繊維集積体の内径は、金属製ブッシュ回り止め部の外径より大きいほうが望ましい。
The cylindrical reinforcing fiber assembly may be formed as follows. That is, it comprises an inner cylinder, an outer cylinder arranged concentrically with the inner cylinder, and a bottom member that connects between the inner cylinder and the lower end of the outer cylinder, and the inner cylinder and the outer cylinder. And a papermaking mold having a plurality of through holes formed in at least one member of the bottom member. Then, the reinforcing fiber chop is accumulated on the bottom member while sucking the slurry in which the reinforcing fiber chop is dispersed in water through a papermaking mold to form a cylindrical reinforcing fiber assembly. When the reinforcing fiber assembly is manufactured in this manner, the punching operation is unnecessary, so that the manufacturing process can be reduced, and there is no problem that the material to be discarded increases like the punching.
The inner diameter of the reinforcing fiber assembly is preferably larger than the outer diameter of the metal bush detent.

金属製ブッシュの外周部に設ける1以上の回り止め部の数及び形状は任意である。例えば、1以上の回り止め部は、軸の径方向に突出する複数の突出部から構成することができる。この場合、複数の突出部は、径方向外側に向かって突出する突出寸法が異なる二種類の突出部から構成することができる。そして二種類の突出部は、前記周方向に交互に並ぶように配置するのが好ましい。   The number and shape of the one or more anti-rotation portions provided on the outer peripheral portion of the metal bush are arbitrary. For example, the one or more anti-rotation portions can be composed of a plurality of protrusions protruding in the radial direction of the shaft. In this case, the plurality of protrusions can be constituted by two types of protrusions having different protrusion dimensions protruding outward in the radial direction. And it is preferable to arrange | position two types of protrusion parts so that it may line up alternately in the said circumferential direction.

また本発明で補強繊維集積体を軸線方向に圧縮するために、例えば、補強繊維集積体が金属製ブッシュの外周部より径方向内側に、及び補強繊維集積体の外周部より径方向外側に広がるのを規制した状態で、補強繊維集積体を軸線方向に圧縮すると、圧縮過程において、補強繊維は金属製ブッシュの径方向内側に向かって移動することになる。その結果、補強繊維は金属製ブッシュの外周部に押し付けられて、1以上の回り止め部の周囲の補強繊維の密度を高くすることができる。補強繊維集積体が金属製ブッシュの外周部より径方向内側へ広がる規制を、若干内側へ広がることを許容し、補強繊維集積体が金属製ブッシュの周縁に覆いかぶさるようにしてもよい。   Further, in order to compress the reinforcing fiber assembly in the axial direction in the present invention, for example, the reinforcing fiber assembly extends radially inward from the outer peripheral portion of the metal bush and radially outward from the outer peripheral portion of the reinforcing fiber integrated body. When the reinforcing fiber assembly is compressed in the axial direction in a state where the above is regulated, the reinforcing fiber moves toward the inside in the radial direction of the metal bush in the compression process. As a result, the reinforcing fibers are pressed against the outer periphery of the metal bush, and the density of the reinforcing fibers around the one or more detents can be increased. The restriction that the reinforcing fiber aggregate is spread radially inward from the outer peripheral portion of the metal bush may be allowed to spread slightly inward, and the reinforcing fiber aggregate may be covered over the periphery of the metal bush.

なおこのようなプレスを可能にするためのプレス装置は、例えば、圧縮動作時に補強用繊維基材が金属製ブッシュの径方向外側に広がるのを規制する筒状金型と、筒状金型の内部に配置されて金属製ブッシュの外周部よりも内側に位置する部分を軸線方向の両側から挟み且つ圧縮動作時に補強繊維集積体が金属製ブッシュの外周部より径方向内側に広がるのを規制する一対の金属製ブッシュ支持用金型と、筒状金型と金属製ブッシュ支持用金型の間に位置して、圧縮動作時に補強繊維集積体を軸線方向両側から挟んで圧縮する一対の圧縮用金型とを備えているのが好ましい。このような圧縮用金型であれば、一対の圧縮用金型で補強繊維集積体を圧縮した場合に、金属製ブッシュの外周部より径方向内側及び補強繊維集積体の外周部より径方向外側の両方向に補強繊維が膨出するのを確実に阻止することができる。この場合、一対の圧縮用金型の少なくとも一方の圧縮用金型の補強用繊維基材と接触する接触面は、他方の圧縮用金型の補強繊維集積体と接触する接触面との間の距離が、筒状金型から一対の金属製ブッシュ支持用金型に近付くに従って長くなるように傾斜する傾斜面であってもよい。   Note that a pressing device for enabling such pressing includes, for example, a cylindrical mold that restricts the reinforcing fiber base material from spreading outward in the radial direction of the metal bush during the compression operation, and a cylindrical mold A portion located inside the outer periphery of the metal bush is sandwiched from both sides in the axial direction and the reinforcing fiber assembly is restricted from spreading radially inward from the outer periphery of the metal bush during the compression operation. A pair of metal bushing support molds and a pair of compression bushings positioned between the cylindrical mold and the metal bush support mold and compressing the reinforcing fiber assembly from both sides in the axial direction during compression operation It is preferable to provide a mold. With such a compression mold, when the reinforcing fiber assembly is compressed with a pair of compression molds, the outer side of the metal bush is radially inward and the outer side of the reinforcing fiber assembly is radially outer. It is possible to reliably prevent the reinforcing fibers from expanding in both directions. In this case, the contact surface that contacts the reinforcing fiber substrate of at least one compression mold of the pair of compression molds is between the contact surface that contacts the reinforcing fiber assembly of the other compression mold. The inclined surface may be inclined such that the distance becomes longer as the distance from the cylindrical mold approaches the pair of metal bush supporting molds.

樹脂成形体に機械加工を施して複数の歯を形成すれば、機械的に強度が高く、しかも、使用時の騒音の発生が少ない樹脂製歯車を得ることができる。なお本発明の樹脂製回転体を用いて、歯車の他に、プーリ等の回転部品を製造してもよいのは勿論である。
なお樹脂を含浸する前までで製造を停止すれば、樹脂製回転体成形用半加工部品を製造することができる。
If the resin molded body is machined to form a plurality of teeth, it is possible to obtain a resin gear having high mechanical strength and less noise during use. Of course, rotating parts such as pulleys may be manufactured in addition to gears using the resin rotating body of the present invention.
If the production is stopped before impregnation with the resin, a semi-processed part for molding a resin rotating body can be produced.

本発明の方法により形成される補強用繊維基材は、補強用繊維基材の重ね合せ界面がなく、剥離することがない。これらのことから、樹脂製歯車などの樹脂製回転体の耐久性能は大幅に向上する。   The reinforcing fiber base formed by the method of the present invention has no overlapping interface with the reinforcing fiber base and does not peel off. From these things, the durability performance of resin-made rotary bodies, such as a resin-made gearwheel, improves significantly.

本発明によれば、1つの補強繊維集積体を軸線方向に圧縮する過程で、補強用繊維基材の一部すなわち補強繊維が金属製ブッシュの外周部に向かう方向に移動し、金属製ブッシュの回り止め部を完全に包むことができ、さらに金属製ブッシュの外周部近傍の補強用繊維基材の密度を高めることができるので、従来のように、補強用繊維基材の内部に繊維層の境界面を形成することなく、補強用繊維基材と金属製ブッシュの回り止め部との結合強度を向上させることができて、樹脂製歯車などの樹脂製回転体の耐久性能を大幅に向上することができる利点が得られる。   According to the present invention, in the process of compressing one reinforcing fiber assembly in the axial direction, a part of the reinforcing fiber base, that is, the reinforcing fiber moves in a direction toward the outer periphery of the metal bush, Since the non-rotating portion can be completely wrapped, and the density of the reinforcing fiber base in the vicinity of the outer periphery of the metal bush can be increased, the fiber layer can be formed inside the reinforcing fiber base as in the past. Without forming a boundary surface, it is possible to improve the bonding strength between the reinforcing fiber base and the detent portion of the metal bush, and greatly improve the durability performance of resin rotating bodies such as resin gears. The advantage that can be obtained.

以下図面を参照して、本発明の実施の形態を詳細に説明する。
図1は、模式的に示した本発明の樹脂製回転体の実施の形態の一例の縦断面図である。この樹脂製回転体1は、図示しない軸を中心にして回転する金属製ブッシュ2を備えている。金属製ブッシュ2の中央部には、図示しない軸が嵌合される貫通孔3が形成されている。また金属製ブッシュの外周部には、複数の回り止め部を構成する突出部4が周方向に所定の間隔をあけて一体に形成されている。なお金属製ブッシュ2に軸が一体に形成されていてもよい。複数の突出部4の軸線方向に測った厚み寸法L2は、金属製ブッシュ2の軸線方向に測った厚み寸法L1よりも小さい。本実施の形態で用いる金属製ブッシュは焼結法により製造されたものである。そして回り止め部を構成する突出部4は、頂部の厚さが厚く基部の厚さが薄いアンダーカット形状である。そして金属製ブッシュ2の横断面に対する角度θが5°以上40°以下のものを用いている。そして図2に示すように、回転方向への負荷に耐える回り止め部の作用を高めるためには、好ましくは、回り止め部となる突出部は、少なくとも高さh1及びh2の異なる2種類の突出部4A及び4Bが交互に配列されたものが好ましい。このようなアンダーカットの形状を持ち、角度θが5°以上40°以下の2種類の突出部を用いると、後述する補強用繊維基材5内に回り止め部としての複数の突出部4Aが完全に埋まった状態となり、両者間の機械的結合の強度を十分なものとすることができる。なお隣り合う二つの突出部間に形成される凹部内に補強用繊維基材5の一部が入ることによっても、前述の機械的強度は当然にして増加する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a longitudinal sectional view of an example of an embodiment of a resin rotating body of the present invention schematically shown. The resin rotating body 1 includes a metal bush 2 that rotates about a shaft (not shown). A through hole 3 into which a shaft (not shown) is fitted is formed at the center of the metal bush 2. Moreover, the protrusion part 4 which comprises a some rotation stop part is integrally formed in the outer peripheral part of metal bushes at predetermined intervals in the circumferential direction. The shaft may be integrally formed with the metal bush 2. The thickness dimension L2 measured in the axial direction of the plurality of protrusions 4 is smaller than the thickness dimension L1 measured in the axial direction of the metal bush 2. The metal bush used in the present embodiment is manufactured by a sintering method. And the protrusion part 4 which comprises a rotation prevention part is an undercut shape with a thick top part and a thin base part. The metal bush 2 has an angle θ with respect to the cross section of 5 ° or more and 40 ° or less. As shown in FIG. 2, in order to enhance the action of the anti-rotation portion that can withstand a load in the rotation direction, preferably, the protrusion serving as the anti-rotation portion has at least two types of protrusions having different heights h1 and h2. It is preferable that the parts 4A and 4B are alternately arranged. When two kinds of protrusions having such an undercut shape and an angle θ of 5 ° or more and 40 ° or less are used, a plurality of protrusions 4A as rotation preventing portions are provided in the reinforcing fiber base 5 described later. It becomes a completely filled state, and the strength of the mechanical bond between them can be made sufficient. Note that the mechanical strength is naturally increased also when a part of the reinforcing fiber base material 5 enters a recess formed between two adjacent protrusions.

本実施の形態では、1つの補強用繊維基材5が、金属製ブッシュ2の外周部の外側の位置に、外周部に嵌った状態で配置されている。そして補強用繊維基材5に樹脂が含浸され且つ樹脂が硬化して形成された樹脂成形体6が形成されている。補強用繊維基材5は、図3に概略的に示すように、多数の補強繊維が集まって構成され且つ中央部に金属製ブッシュ2の外周部が嵌る貫通孔7を備えた筒状の補強繊維集積体8が、金属製ブッシュ2の外周部に嵌った状態で、軸の軸線方向に圧縮されて形成されたものである。補強用繊維基材5または補強繊維集積体8を形成するために用いる補強繊維の種類は後述するように、種々のものを用いることができる。   In the present embodiment, one reinforcing fiber substrate 5 is disposed at a position outside the outer peripheral portion of the metal bush 2 in a state of being fitted to the outer peripheral portion. A resin molded body 6 is formed in which the reinforcing fiber base 5 is impregnated with resin and cured. As schematically shown in FIG. 3, the reinforcing fiber base 5 is a cylindrical reinforcement having a through hole 7 in which a large number of reinforcing fibers are gathered and the outer periphery of the metal bush 2 is fitted in the center. The fiber assembly 8 is formed by being compressed in the axial direction of the shaft while being fitted to the outer periphery of the metal bush 2. As described later, various types of reinforcing fibers can be used for forming the reinforcing fiber substrate 5 or the reinforcing fiber assembly 8.

また、金属製ブッシュ2の外周部に設けた回り止めと樹脂部の結合を強固たるものとするためには、前記回り止めは、軸線方向に沿って測定した頂部の厚み寸法が基部の厚み寸法よりも大きいアンダーカット形状であり、金属製ブッシュの軸線方向に対向する一対の側面の横断面に対する角度が5°以上40°以下、好ましくは、10°以上35°であるものが効果的である。これは外径方向への抜け阻止に作用するものである。   Further, in order to strengthen the connection between the rotation stopper provided on the outer peripheral portion of the metal bush 2 and the resin portion, the thickness of the top measured in the axial direction is the thickness dimension of the base. It is effective to have an undercut shape larger than that of the pair of side surfaces opposed to each other in the axial direction of the metal bush and having an angle of 5 ° to 40 °, preferably 10 ° to 35 °. . This acts to prevent removal in the outer diameter direction.

上記アンダーカット形状をもった回り止め部を構成する突出部は、焼結法で成型すれば、精度よく設計どおりに作ることができる。突出部4の最適構造は、たとえば外径60mmの樹脂製歯車の場合、突出部(山)の数が30であり、突出部の間に形成される凹部すなわち谷部分の数は29である。なおこれらの数は、樹脂製歯車の径や厚さ、歯の構造に応じて適宜変更されることは当然である。   The projecting portion constituting the anti-rotation portion having the undercut shape can be accurately made as designed if it is molded by a sintering method. For example, in the case of a resin gear having an outer diameter of 60 mm, the optimum structure of the protrusion 4 is 30 protrusions (crests) and 29 recesses or valleys formed between the protrusions. Of course, these numbers are appropriately changed according to the diameter and thickness of the resin gear and the tooth structure.

なお円筒状の補強繊維集積体8を得るためには、図4に示すような抄造金型9を用いるのが好ましい。この抄造金型9は、内側筒体10と、内側筒体10と同心的に配置された外側筒体11と、内側筒体10及び外側筒体11の下側端部間を連結する底部材12とからなり、内側筒体10、外側筒体11及び底部材12の少なくとも1つの部材に、10メッシュ以上250メッシュ以下の複数の貫通孔が形成されたものである。この例では、内側筒体10、外側筒体11及び底部材12のすべてに、10メッシュ以上250メッシュ以下の複数の貫通孔が形成されている。なお具体的な内側筒体10、外側筒体11及び底部材12は、濾水性を有する金網によって構成されている。この抄造金型9の内側筒体10外径寸法は、使用する金属製ブッシュ2の突出部4を含む外径寸法と同じか、好ましくはこの外径寸法より大きくしておく。得られた円筒状の補強繊維集積体8の内径が金属製ブッシュ2の外径よりも小さいと、補強繊維集積体8の径方向及び厚み方向の中央位置に金属製ブッシュ2を配置することができない。または金属製ブッシュ2の外周部に設けた回り止め用の突出部4に円筒状の補強繊維集積体8の内径部分の繊維が引っかかり、円筒状の補強繊維集積体8の形状が崩れてしまうためである。抄造金型9は、ポンプPによって室内が負圧状態に吸引されるケース13内にセットされて使用される。   In order to obtain the cylindrical reinforcing fiber assembly 8, it is preferable to use a papermaking mold 9 as shown in FIG. The papermaking mold 9 includes an inner cylinder 10, an outer cylinder 11 concentrically arranged with the inner cylinder 10, and a bottom member that connects between the lower ends of the inner cylinder 10 and the outer cylinder 11. 12, and a plurality of through holes of 10 mesh or more and 250 mesh or less are formed in at least one member of the inner cylinder body 10, the outer cylinder body 11, and the bottom member 12. In this example, a plurality of through holes of 10 mesh or more and 250 mesh or less are formed in all of the inner cylinder body 10, the outer cylinder body 11, and the bottom member 12. In addition, the specific inner cylinder body 10, the outer cylinder body 11, and the bottom member 12 are comprised with the wire mesh which has drainage. The outer diameter of the inner cylindrical body 10 of the papermaking mold 9 is the same as or preferably larger than the outer diameter including the protrusion 4 of the metal bush 2 to be used. When the inner diameter of the obtained cylindrical reinforcing fiber assembly 8 is smaller than the outer diameter of the metal bush 2, the metal bush 2 can be arranged at the center position in the radial direction and thickness direction of the reinforcing fiber assembly 8. Can not. Alternatively, because the fibers of the inner diameter portion of the cylindrical reinforcing fiber assembly 8 are caught by the protrusions 4 for preventing rotation provided on the outer peripheral portion of the metal bush 2, the shape of the cylindrical reinforcing fiber assembly 8 collapses. It is. The papermaking mold 9 is set and used in a case 13 that is sucked into a negative pressure by the pump P.

抄造金型9を構成する部材に用いる金網(貫通孔が形成された構造体)のメッシュサイズは250メッシュより大きくなると水と繊維の濾過抵抗が大きくなり、抄造金型9の内部に入れた補強繊維チョップを含むスラリーを、ポンプPで吸引して水分を抄造金型9から排水させても、繊維と水の分離に要する時間が長くなり、製造サイクルが長くなる。またメッシュサイズが10メッシュより小さいと、繊維長が長い補強繊維チョップを使用しても網目の隙間(貫通孔)が大きいために補強繊維の多くが水と共に流出してしまう。そのために、補強繊維集積体8の繊維密度が著しく低下してしまう問題が発生する。よって使用するメッシュサイズは10メッシュ以上250メッシュ以下が好ましい。   When the mesh size of the metal mesh (structure with through-holes) used for the members constituting the papermaking mold 9 becomes larger than 250 mesh, the filtration resistance of water and fibers increases, and the reinforcement put inside the papermaking mold 9 Even if the slurry containing the fiber chop is sucked by the pump P and the water is drained from the papermaking mold 9, the time required for separation of the fiber and water becomes long, and the manufacturing cycle becomes long. On the other hand, if the mesh size is smaller than 10 mesh, even if a reinforcing fiber chop having a long fiber length is used, the mesh gap (through hole) is large, so that most of the reinforcing fiber flows out together with water. Therefore, there arises a problem that the fiber density of the reinforcing fiber assembly 8 is remarkably lowered. Therefore, the mesh size used is preferably 10 mesh or more and 250 mesh or less.

また、円筒状の補強繊維集積体8は、図8に示すようにプレート状集積体26を形成し、このプレート状集積体26から筒状の補強繊維集積体8を打ち抜く(プレス抜きする)ようにして形成してもよい。   Further, the cylindrical reinforcing fiber assembly 8 forms a plate-like assembly 26 as shown in FIG. 8, and the cylindrical reinforcing fiber assembly 8 is punched out (pressed out) from the plate-like assembly 26. May be formed.

使用する補強繊維チョップは、融点、あるいは分解温度が250℃以上の繊維からなるものが好ましい。このような繊維チョップを用いて補強繊維集積体8を形成することで、成形時の成形温度や加工温度、実際の使用時にかかる雰囲気温度において、樹脂製回転体内の繊維チョップが熱劣化を起こすことなく、耐熱性に優れた樹脂製回転体とすることができる。このような繊維としては、パラ系アラミド繊維、メタ系アラミド繊維、炭素繊維、ガラス繊維、ボロン繊維、セラミック繊維、超高強力ポリエチレン繊維、ポリケトン繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、全芳香族ポリエステル繊維、ポリイミド繊維、およびポリビニルアルコール系繊維から選ばれた少なくとも1種以上の繊維を使用するのが好ましい。
また、補強繊維チョップには、引張強度15cN/dtex以上、引張弾性率350cN/dtex以上の高強度高弾性率繊維を少なくとも20体積%以上含むことが好ましい。このようにして得られる補強繊維集積体8を用いた樹脂製回転体は、使用中にかかる高負荷に耐え得るものとすることができる。
The reinforcing fiber chop used is preferably made of fibers having a melting point or decomposition temperature of 250 ° C. or higher. By forming the reinforcing fiber assembly 8 using such a fiber chop, the fiber chop in the resin-made rotating body undergoes thermal deterioration at the molding temperature and processing temperature at the time of molding and the atmospheric temperature at the time of actual use. And a resin rotating body having excellent heat resistance. Such fibers include para-aramid fibers, meta-aramid fibers, carbon fibers, glass fibers, boron fibers, ceramic fibers, ultra-high strength polyethylene fibers, polyketone fibers, polyparaphenylene benzobisoxazole fibers, wholly aromatic polyesters. It is preferable to use at least one fiber selected from fibers, polyimide fibers, and polyvinyl alcohol fibers.
The reinforcing fiber chop preferably contains at least 20% by volume of high-strength and high-modulus fiber having a tensile strength of 15 cN / dtex or more and a tensile modulus of 350 cN / dtex or more. The resin rotating body using the reinforcing fiber assembly 8 thus obtained can withstand a high load applied during use.

また、抄造後及び金属製ブッシュと一体化した後の補強用繊維基材5を次工程に移動、又は搬送する際に形状を維持するための強度を付与するためには、補強繊維がアラミド繊維をフィブリル化処理した微細繊維を含み、微細繊維のフリーネスが100ml以上400ml以下であって、微細繊維の含有量が補強繊維中の30質量%以下になるように配合することが望ましい。望ましい態様としては、パラアラミド繊維の機械的剪断で繊維軸方向に裂開させたフィブリル化処理したアラミド微細繊維を混合することが好ましい。フリーネスが400mlを超えるとフィブリル化が不充分のため補強用繊維基材の形状を維持するための強度を付与することが困難になる。またフリーネスが100ml未満になると繊維軸方向に裂開させるだけでなく、径方向に剪断されて粉末状態になってしまうために繊維の絡みが悪くなって、補強用繊維基材の形状を維持するための強度を付与する事が困難となる。また濾水性が悪化し、樹脂含浸の妨げるとなる。またフィブリル化処理したアラミド微細繊維が30質量%を超えると繊維間の隙間にフィブリル化した微細繊維が充填され、樹脂注入成形時に、樹脂の樹脂含浸が阻害され、含浸不良などの不具合が生じてしまう。好ましくは適度な強度を付与し、樹脂含浸性を阻害しない5から10質量%のフィブリル化した微細繊維を配合するのが良い。   Further, in order to give strength for maintaining the shape when moving or transporting the reinforcing fiber substrate 5 after the paper making and integration with the metal bush to the next process, the reinforcing fiber is an aramid fiber. It is desirable to blend so that the fine fiber freeness is 100 ml or more and 400 ml or less, and the fine fiber content is 30% by mass or less in the reinforcing fiber. As a desirable mode, it is preferable to mix fibrillated aramid fine fibers which are cleaved in the fiber axis direction by mechanical shearing of para-aramid fibers. If the freeness exceeds 400 ml, fibrillation is insufficient and it becomes difficult to impart strength to maintain the shape of the reinforcing fiber substrate. Further, when the freeness is less than 100 ml, not only the fiber axis direction is cleaved but also the powder is crushed in the radial direction and the entanglement of the fibers deteriorates, and the shape of the reinforcing fiber base is maintained. Therefore, it becomes difficult to provide the strength. Further, the drainage is deteriorated, which impedes resin impregnation. When the fibrillated aramid fine fibers exceed 30% by mass, the fibrillated fine fibers are filled in the gaps between the fibers, and the resin impregnation of the resin is hindered during resin injection molding, resulting in defects such as poor impregnation. End up. Preferably, 5 to 10% by mass of fibrillated fine fibers which give appropriate strength and do not impair resin impregnation properties are blended.

上記繊維チョップを水中に分散させる際の濃度は、0.3g/リットル以上20g/リットル以下が好ましい。繊維長が短い繊維を使用する場合、繊維同士の絡みが少なく、分散が良いため濃度20g/リットルの高濃度のスラリーで分散させることができる。一方、繊維長が長い繊維を使用する場合、繊維長が長すぎるため濃度0.3g/リットルの低濃度でないと充分分散させることができない。   The concentration when the fiber chop is dispersed in water is preferably 0.3 g / liter or more and 20 g / liter or less. When fibers having a short fiber length are used, there is little entanglement between the fibers and good dispersion makes it possible to disperse with a high concentration slurry having a concentration of 20 g / liter. On the other hand, when a fiber having a long fiber length is used, the fiber length is too long and cannot be sufficiently dispersed unless the concentration is a low concentration of 0.3 g / liter.

ちなみに、前述の補強繊維がアラミド繊維をフィブリル化処理した微細繊維を含む場合において、金属製ブッシュ2の直径が5cmの場合に使用する補強繊維集積体8の厚み寸法(軸線方向寸法)は、約8cmである。そして後述する圧縮作業により、補強繊維集積体8は約1.5cm程度まで圧縮されて補強用繊維基材5に成形される。   Incidentally, in the case where the above-mentioned reinforcing fibers include fine fibers obtained by fibrillating aramid fibers, the thickness dimension (axial dimension) of the reinforcing fiber assembly 8 used when the diameter of the metal bush 2 is 5 cm is about 8 cm. The reinforcing fiber assembly 8 is compressed to about 1.5 cm and formed into the reinforcing fiber base 5 by a compression operation described later.

次に、補強繊維集積体8を圧縮して補強用繊維基材5を備えた樹脂製回転体成形用半加工部品を製造するステップの一例を図5を用いて説明する。図5に示したプレス装置は、圧縮動作時に補強用繊維基材が金属製ブッシュの径方向外側に広がるのを規制する筒状金型15と、筒状金型15の内部に配置されて金属製ブッシュ2の外周部よりも内側に位置する部分を軸線方向の両側から挟み且つ圧縮動作時に補強繊維集積体8が金属製ブッシュ2の外周部より径方向内側に広がるのを規制する一対の金属製ブッシュ支持用金型16及び17と、筒状金型15と一対の金属製ブッシュ支持用金型16及び17の間に位置して、圧縮動作時に補強繊維集積体8を軸線方向両側から挟んで圧縮する一対の圧縮用金型18及び19とを備えている。このような圧縮用金型であれば、一対の圧縮用金型18及び19で補強繊維集積体8を圧縮した場合に、金属製ブッシュ2の外周部より径方向内側及び補強繊維集積体の外周部より径方向外側の両方向に補強繊維が膨出するのを確実に阻止することができる。   Next, an example of the steps for manufacturing the resin-made rotating body forming half-processed part provided with the reinforcing fiber base 5 by compressing the reinforcing fiber assembly 8 will be described with reference to FIG. The press apparatus shown in FIG. 5 has a cylindrical mold 15 that restricts the reinforcing fiber base material from spreading outward in the radial direction of the metal bush during the compression operation, and a metal that is disposed inside the cylindrical mold 15. A pair of metals that sandwich a portion located inside the outer periphery of the bush 2 from both sides in the axial direction and restrict the reinforcing fiber assembly 8 from spreading radially inward from the outer periphery of the metal bush 2 during compression operation Located between the bush-supporting molds 16 and 17 and the cylindrical mold 15 and the pair of metal bush-supporting molds 16 and 17, the reinforcing fiber assembly 8 is sandwiched from both sides in the axial direction during the compression operation. And a pair of compression molds 18 and 19 for compression. With such a compression mold, when the reinforcing fiber assembly 8 is compressed by the pair of compression molds 18 and 19, the inner side in the radial direction from the outer periphery of the metal bush 2 and the outer periphery of the reinforcing fiber assembly. It is possible to reliably prevent the reinforcing fibers from bulging out in both directions radially outward from the portion.

このとき、図5(C)に示すように、嵩高い補強繊維集積体8は、軸線方向中央部で内径方向に座屈する。これにより、補強繊維集積体8が金属製ブッシュ2の回り止め部に押し付けられ、金属製ブッシュの回り止め部を完全に包むことができる。また、図10に模式的に示すように、前記座屈により、補強繊維の密度が、金属製ブッシュに近い側から粗、密、粗となる樹脂製回転体成形用半加工部品を得ることができる。なお、補強繊維の密度は、例えば、電子顕微鏡にて樹脂製回転体の断面写真(500倍程度)を撮影し、単位面積当りの補強繊維の本数を計測することにより、確認することができる。
なお補強繊維集積体8は水分を含んだ状態で圧縮しても、乾燥した状態で圧縮してもどちらでも樹脂製回転体成形用半加工部品を製造する事は可能であるが、圧縮後の樹脂製回転体成形用半加工部品の基材厚みの戻り量が少ない点から、水分を含んだ補強繊維集積体を使用したほうが好ましい。
At this time, as shown in FIG. 5C, the bulky reinforcing fiber assembly 8 is buckled in the inner diameter direction at the central portion in the axial direction. Thereby, the reinforcing fiber assembly 8 is pressed against the rotation preventing portion of the metal bush 2, and the rotation preventing portion of the metal bush can be completely wrapped. Further, as schematically shown in FIG. 10, by the buckling, it is possible to obtain a semi-processed part for molding a resin rotary body in which the density of the reinforcing fibers is rough, dense, and rough from the side close to the metal bush. it can. The density of the reinforcing fibers can be confirmed, for example, by taking a cross-sectional photograph (about 500 times) of the resin rotating body with an electron microscope and measuring the number of reinforcing fibers per unit area.
The reinforcing fiber assembly 8 can be used to produce a semi-processed part for molding a resin rotating body, either by compressing it in a moisture-containing state or by compressing it in a dry state. It is more preferable to use a reinforced fiber assembly containing moisture from the viewpoint that the return amount of the base material thickness of the resin-made rotating body forming half-processed part is small.

次に図6に示すように、補強用繊維基材5を備えた樹脂製回転体成形用半加工部品を金型27内に配置した後に金型27に液状樹脂を注入して補強用繊維基材5に樹脂を含浸させ、その後硬化させて、樹脂成形体を備えた樹脂製回転体を成形する。成形した樹脂製回転体の樹脂成形体の外周部に機械加工を施して歯を形成すれば樹脂製歯車を得ることができる。また外周面に沿って溝を形成すれば、プーリを得ることができる。   Next, as shown in FIG. 6, after the resin-made rotating body forming half-processed part provided with the reinforcing fiber base 5 is placed in the mold 27, a liquid resin is injected into the mold 27, and the reinforcing fiber base The material 5 is impregnated with a resin and then cured to form a resin rotating body provided with a resin molded body. A resin gear can be obtained by forming a tooth by machining the outer peripheral portion of the resin molded body of the molded resin rotating body. If a groove is formed along the outer peripheral surface, a pulley can be obtained.

液状樹脂としては、熱硬化性樹脂、熱可塑性樹脂等いずれのものでも良く、エポキシ樹脂、ポリアミノアミド樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ポリエーテルサルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンサルファイド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂から選ばれた1以上の樹脂と該樹脂の硬化剤を組合せたものが使用できる。   The liquid resin may be any of thermosetting resin, thermoplastic resin, and the like, epoxy resin, polyaminoamide resin, phenol resin, unsaturated polyester resin, polyimide resin, polyethersulfone resin, polyetheretherketone resin, A combination of at least one resin selected from polyamideimide resin, polyamide resin, polyester resin, polyphenylene sulfide resin, polyethylene resin, and polypropylene resin and a curing agent for the resin can be used.

これらの中でも、樹脂硬化物の強度、耐熱性等の点からポリアミノアミド樹脂が好ましく、耐熱性、強度が優れる2,2’−(1,3フェニレン)ビス2−オキサゾリンとアミン硬化剤、および前記混合物100質量部に対し5質量部以下の触媒とからなる樹脂を使用することが好ましい。前記触媒を5質量部以上添加すると硬化時間が短く、補強用繊維基材に樹脂が充分含浸される前に樹脂が硬化してしまうため、樹脂含浸不良の問題が発生する。   Among these, a polyaminoamide resin is preferable from the viewpoint of strength and heat resistance of the cured resin, 2,2 ′-(1,3-phenylene) bis-2-oxazoline and amine curing agent having excellent heat resistance and strength, and the above-mentioned It is preferable to use a resin composed of 5 parts by mass or less of the catalyst with respect to 100 parts by mass of the mixture. When the catalyst is added in an amount of 5 parts by mass or more, the curing time is short, and the resin is cured before the resin is sufficiently impregnated into the reinforcing fiber base.

補強繊維の樹脂製回転体に含まれる割合は、所望する樹脂製回転体の強度等によって異なるが、30体積%以上50体積%以下であることが好ましい。樹脂製回転体に占める補強繊維の割合が30体積%未満である場合、樹脂を繊維で補強する効果がほとんど見られず、また金属製ブッシュ回り止めへの繊維の充填も不充分となる。また、補強繊維の割合が50体積%を越えた場合は、繊維の占める割合が高すぎるため、樹脂注入成形時樹脂の樹脂含浸不足が発生しやすくなるなどの問題がおこる。そのため繊維強化樹脂複合体に含まれる繊維の割合は樹脂製回転体の強度があり、及び2つの突出部の間に形成される回り止め用の凹部内ならびに回り止め部の周囲に繊維が確実に充填され、しかも樹脂の含浸を阻害しない35〜45体積%がさらに好ましい。   The ratio of the reinforcing fiber contained in the resin rotating body varies depending on the desired strength of the resin rotating body, but is preferably 30% by volume or more and 50% by volume or less. When the proportion of the reinforcing fiber in the resin rotating body is less than 30% by volume, the effect of reinforcing the resin with the fiber is hardly seen, and the filling of the fiber into the metal bush detent is insufficient. Further, when the proportion of the reinforcing fibers exceeds 50% by volume, the proportion of the fibers is too high, which causes problems such as insufficient resin impregnation of the resin during resin injection molding. Therefore, the ratio of the fiber contained in the fiber reinforced resin composite has the strength of the rotating body made of resin, and the fiber is surely placed in the recess for rotation prevention formed between the two protrusions and around the rotation prevention part. More preferably, it is 35 to 45% by volume, which is filled and does not hinder the impregnation of the resin.

以下、本発明の実施例を説明する。
実施例1
スラリーを製造するために、繊維チョップ投入時の濃度が1g/リットルとなる量の水を満たしたタンクに、樹脂成形体中の補強繊維の繊維総量が40体積%となり、また繊維チョップとして、アスペクト比200のパラ系アラミド繊維“帝人(株)製「テクノーラ(商標)」”を50質量%、アスペクト比200のメタ系アラミド繊維“帝人(株)製「コーネックス(商標)」”を45質量%、そしてフリーネス値300mlまでフィブリル化処理した微細繊維“デュポン(株)製「ケブラー(商標)」”を5質量%となる量をそれぞれ投入し、攪拌機で攪拌し分散させる。図4の抄造金型を用いる場合には、減圧用のポンプPにてケース13内の空洞部分Sを80kPa以下に減圧する。そしてこの抄造金型9内に、分散させた繊維チョップを含むスラリーを充填し、繊維チョップと水を分離して円筒状の補強繊維集積体8を得る。なお抄造金型を構成する金網としては金属製70メッシュの金網を用いた。
Examples of the present invention will be described below.
Example 1
In order to produce a slurry, the total amount of reinforcing fibers in the resin molded product is 40% by volume in a tank filled with water in an amount of 1 g / liter when the fiber chop is added. 50% by mass of para-aramid fiber “Technola (trademark)” manufactured by Teijin Limited with a ratio of 200, and 45% by mass of meta-aramid fiber “Conex (trademark)” manufactured by Teijin Limited with an aspect ratio of 200 4 and fine fiber "Kevlar (trademark)" manufactured by DuPont Co., Ltd., which has been fibrillated to a freeness value of 300 ml, are added in amounts of 5% by mass, and stirred and dispersed with a stirrer. In the case of using a mold, the cavity portion S in the case 13 is depressurized to 80 kPa or less by the depressurizing pump P. Then, the fiber choke dispersed in the papermaking mold 9 is used. Filling a slurry containing obtain a cylindrical reinforcing fiber aggregate 8 separates the chopped fibers and water. It should be noted as a wire mesh that constitutes the papermaking mold with wire mesh metal 70 mesh.

次に、図5に示す金型を用いて、金型中央の下側のセンターピン17の上に金属製ブッシュ2を配置した後、円筒状の補強繊維集積体8を下側の圧縮用金型19の上に配置する。使用する金属製ブッシュ2の突出部4の形状は、h1=2mm、h2=0.5mmであり、アンダーカット形状であり、金属製ブッシュ2の横断面に対する角度θが20°である。そして金属製ブッシュ2を下側のセンターピン17と上側のセンターピン16で挟み込む。その後、一対の圧縮用金型18及び19により補強繊維集積体8を所定厚さまで軸方向に圧縮する。これにより円筒状の補強繊維集積体8を金属製ブッシュ2に設けた突出部4と一体化させる。これを乾燥して補強用繊維基材5を得る。   Next, using the mold shown in FIG. 5, the metal bush 2 is disposed on the lower center pin 17 of the mold center, and then the cylindrical reinforcing fiber assembly 8 is replaced with the lower compression mold. Place on the mold 19. The shape of the protrusion 4 of the metal bush 2 to be used is h1 = 2 mm and h2 = 0.5 mm, is an undercut shape, and the angle θ with respect to the cross section of the metal bush 2 is 20 °. Then, the metal bush 2 is sandwiched between the lower center pin 17 and the upper center pin 16. Thereafter, the reinforcing fiber assembly 8 is compressed in the axial direction to a predetermined thickness by the pair of compression molds 18 and 19. Thereby, the cylindrical reinforcing fiber assembly 8 is integrated with the protrusion 4 provided on the metal bush 2. This is dried to obtain the reinforcing fiber substrate 5.

次に図6に示すように、上記の工程で得られた金属製ブッシュ2と一体化した補強用繊維基材5を200℃に加熱した成形金型27に配置して型締めする。そして、成形金型27内部を圧力90kPa以下に減圧した後、2,2’−(1,3フェニレン)ビス2−オキサゾリン(三国製薬工業(株)製「1,3−PBO」)69質量部、4,4’−ジアミノジフェニルメタン(三井化学(株)製「MDA」)31質量部を混合したものを温度140℃で溶解し、オクチルブロマイド1質量部を加えて撹拌した樹脂を金型内部に注入して補強用繊維基材11に含浸させ、成形金型27内で加熱硬化し歯車素材を得る。この歯車素材を切削加工により歯を形成することにより樹脂製歯車を得る。   Next, as shown in FIG. 6, the reinforcing fiber base material 5 integrated with the metal bush 2 obtained in the above process is placed in a molding die 27 heated to 200 ° C. and clamped. Then, after reducing the pressure inside the molding die 27 to 90 kPa or less, 69 parts by mass of 2,2 ′-(1,3-phenylene) bis-2-oxazoline (“1,3-PBO” manufactured by Mikuni Pharmaceutical Co., Ltd.) , 4,4′-diaminodiphenylmethane (“MDA” manufactured by Mitsui Chemicals Co., Ltd.) mixed with 31 parts by mass is dissolved at a temperature of 140 ° C., 1 part by mass of octyl bromide is added, and the agitated resin is placed inside the mold. The reinforcing fiber base material 11 is injected and impregnated, and heat-cured in the molding die 27 to obtain a gear material. A resin gear is obtained by forming teeth by cutting this gear material.

比較例1
パラ系アラミド繊維とメタ系アラミド繊維の混紡糸(パラ系アラミド繊維混紡量:45質量%)で編んだ丸編み筒状体を準備する。この筒状体を軸方向に端部より巻き上げてリング状に整える。さらに断面が矩形になるように金型でプレス成形した補強用繊維基材を2個使用し、図7に示すように、金属製ブッシュ2に設けた突出部4を挟み込み、加熱した成形金型41に配置して型締めをする。その後の工程は、実施例1と同様にして、樹脂製歯車51を製造する。この比較例は、特許文献1に記載の方法により製造するものである。
比較例2
図8に示す抄造金型25を用いてプレート状集積体を作成した。抄造金型25は、底面部25Aのみ金網で構成されており、金網は#70のシート状メッシュである。この抄造金型25に、実施例1と同様の繊維配合、濃度でタンク21内で水中に分散させた繊維チョップを導入して、脱水を行い、厚み20mm〜30mmの集積物26’を得る。集積物26’を乾燥した後、外径φ80mm×内径φ55mmのリング状に打ち抜き、筒状の補強繊維集積体8を得る。樹脂製回転体を作製する際は補強繊維集積体8を2個使用する。なお、補強繊維集積体8を用いて樹脂製回転体を作製した場合の樹脂成形体に対する補強繊維の体積が40体積%となるように、補強繊維の投入量を計算している。
Comparative Example 1
A circular knitted tubular body knitted with a mixed yarn of para-aramid fiber and meta-aramid fiber (para-aramid fiber blend amount: 45% by mass) is prepared. This cylindrical body is wound up from the end in the axial direction and arranged in a ring shape. Further, two reinforcing fiber bases press-molded with a mold so that the cross section is rectangular are used, and as shown in FIG. 7, the projecting portion 4 provided on the metal bush 2 is sandwiched and heated. Place in 41 and clamp. Subsequent steps are performed in the same manner as in Example 1 to manufacture the resin gear 51. This comparative example is manufactured by the method described in Patent Document 1.
Comparative Example 2
A plate-like assembly was prepared using the papermaking mold 25 shown in FIG. In the papermaking mold 25, only the bottom surface portion 25A is formed of a wire mesh, and the wire mesh is a # 70 sheet-like mesh. A fiber chop dispersed in water in the tank 21 with the same fiber blending and concentration as in Example 1 is introduced into the papermaking mold 25 and dehydrated to obtain an aggregate 26 'having a thickness of 20 to 30 mm. After the accumulated product 26 ′ is dried, it is punched into a ring shape having an outer diameter φ80 mm × an inner diameter φ55 mm to obtain a cylindrical reinforcing fiber assembly 8. When producing a resin rotating body, two reinforcing fiber assemblies 8 are used. The input amount of the reinforcing fiber is calculated so that the volume of the reinforcing fiber relative to the resin molded body when the resin rotating body is manufactured using the reinforcing fiber assembly 8 is 40% by volume.

上記の工程で得られた補強繊維集積体8を2個使用し、図7に示すように、金属製ブッシュ2に設けた突出部4を挟み込み、加熱した成形金型41内に配置して型締めをする。その後の工程は、実施例1と同様にして、樹脂製歯車を製造する。   Two reinforcing fiber aggregates 8 obtained in the above process are used, and as shown in FIG. 7, the protrusion 4 provided on the metal bush 2 is sandwiched and placed in a heated molding die 41. Tighten. Subsequent steps are performed in the same manner as in Example 1 to produce a resin gear.

上記実施例1および比較例1〜2に示す方法で作製した樹脂製歯車を用いてボス抜き強度を測定した結果を表1に示す。測定方法は以下に示すとおりである。
ボス抜き強度:図9に示すように樹脂部のみに接し、かつ金属製ブッシュ2の外径サイズより大きい内径の円筒形状の台55の上に樹脂製歯車51を配置する。上方より金属製ブッシュ2を押さえる金具56を取付け、これに荷重を加え樹脂製歯車51が破壊に至る最大荷重を測定した。
Table 1 shows the results of measuring the boss punching strength using the resin gears produced by the methods shown in Example 1 and Comparative Examples 1-2. The measuring method is as follows.
Boss removal strength: As shown in FIG. 9, the resin gear 51 is disposed on a cylindrical base 55 that is in contact with only the resin portion and has an inner diameter larger than the outer diameter size of the metal bush 2. A metal fitting 56 for holding the metal bush 2 was attached from above, and a load was applied to this to measure the maximum load that caused the resin gear 51 to break.

Figure 2009113486
Figure 2009113486


実施例1と比較例1〜2の対照から、本発明の実施例1は金属製ブッシュのアンダーカット部分への繊維の充填性が比較例1,2より向上しているため、ボス抜き強度が向上している。

From the comparison between Example 1 and Comparative Examples 1 and 2, since Example 1 of the present invention has improved fiber filling properties in the undercut portion of the metal bush compared to Comparative Examples 1 and 2, the boss punching strength is high. It has improved.

模式的に示した本発明の樹脂製回転体の実施の形態の一例の縦断面図である。It is the longitudinal cross-sectional view of an example of embodiment of the resin-made rotary body of this invention typically shown. (A)及び(B)は金属製ブッシュの平面図及び縦断面図である。(A) And (B) is the top view and longitudinal cross-sectional view of metal bushes. 補強繊維集積体の概略図である。It is the schematic of a reinforcement fiber assembly. 補強繊維集積体の製造に用いる抄造金型を示す概略図である。It is the schematic which shows the papermaking metal mold | die used for manufacture of a reinforced fiber assembly. (A)乃至(D)は、補強用繊維基材の成形工程を順番に示す図である。(A) thru | or (D) is a figure which shows the formation process of the fiber base material for a reinforcement in order. 樹脂注入用の金型に樹脂製回転体成形用半加工部品を配置した状態を示す説明図である。It is explanatory drawing which shows the state which has arrange | positioned the resin-made rotary body shaping | molding semi-processed part to the metal mold | die for resin injection | pouring. 比較例の樹脂製回転体を製造する場合の例を説明するために用いる図である。It is a figure used in order to demonstrate the example in the case of manufacturing the resin-made rotary body of a comparative example. (A)及び(B)はプレート状集積体を製造する抄造金型の例とプレート状集積体から補強繊維集積体を製造する例を示す図である。(A) And (B) is a figure which shows the example of the papermaking metal mold | die which manufactures a plate-shaped integration body, and the example which manufactures a reinforcement fiber integration body from a plate-shaped integration body. ボス抜き強度を測定する装置の構成を示す図である。It is a figure which shows the structure of the apparatus which measures the boss punch strength. 補強繊維集積体を圧縮したときの様子を示す説明図である。It is explanatory drawing which shows a mode when a reinforcement fiber assembly is compressed.

符号の説明Explanation of symbols

1 樹脂製回転体
2 金属製ブッシュ
3 貫通孔
4,4A,4B 突出部(回り止め部)
5 補強用繊維基材
8 補強繊維集積体
DESCRIPTION OF SYMBOLS 1 Resin rotating body 2 Metal bush 3 Through-hole 4, 4A, 4B Protrusion part (rotation prevention part)
5 Reinforcing fiber substrate 8 Reinforcing fiber assembly

Claims (7)

外周部に1以上の回り止め部を有して、軸を中心にして回転する金属製ブッシュと、
前記金属製ブッシュの前記外周部の外側位置に、前記外周部に嵌った状態で配置された補強用繊維基材を形成するステップと、
前記補強用繊維基材に樹脂を含浸させ、前記樹脂を硬化して樹脂成形体を形成するステップとを備えてなる樹脂製回転体の製造方法であって、
前記補強用繊維基材を形成するステップは、
内部に境界面を形成しないように多数の補強繊維により構成され且つ中央部に前記金属製ブッシュの前記外周部が嵌る貫通孔を備えた筒状の補強繊維集積体を形成するステップと、
前記補強繊維集積体を前記金属製ブッシュの前記外周部に嵌めるステップと、
前記金属製ブッシュの前記外周部に嵌めた前記補強繊維集積体を前記軸の軸線方向に圧縮するステップであり、
前記軸の軸線方向に圧縮するステップは、補強繊維集積体が内径方向と外径方向へ所定以上に広がるのを規制した状態で実施することを特徴とする樹脂製回転体の製造方法。
A metal bush having one or more detents on the outer periphery and rotating about an axis;
Forming a reinforcing fiber base disposed on the outer periphery of the metal bush in a state of being fitted to the outer periphery; and
A step of impregnating the reinforcing fiber substrate with a resin and curing the resin to form a resin molded body, comprising:
Forming the reinforcing fiber substrate comprises:
Forming a cylindrical reinforcing fiber assembly comprising a plurality of reinforcing fibers so as not to form a boundary surface inside and having a through-hole into which the outer peripheral portion of the metal bush fits in a central portion;
Fitting the reinforcing fiber assembly to the outer periphery of the metal bush;
Compressing the reinforcing fiber assembly fitted to the outer periphery of the metal bush in the axial direction of the shaft;
The step of compressing in the axial direction of the shaft is performed in a state in which the reinforcing fiber assembly is restricted from spreading more than a predetermined amount in the inner diameter direction and the outer diameter direction.
前記軸の軸線方向に圧縮するステップは、前記補強繊維集積体の内径が、前記金属製ブッシュの外周部より径方向内側に、及び前記補強繊維集積体の外径が、径方向外側に広がるのを規制した状態で、前記補強繊維集積体を前記軸線方向に圧縮することを特徴とする請求項1に記載の樹脂製回転体の製造方法。   In the step of compressing in the axial direction of the shaft, the inner diameter of the reinforcing fiber assembly is expanded radially inward from the outer periphery of the metal bush, and the outer diameter of the reinforcing fiber assembly is expanded outward in the radial direction. The method for manufacturing a resin rotating body according to claim 1, wherein the reinforcing fiber assembly is compressed in the axial direction in a state where the pressure is regulated. 前記軸の軸線方向に圧縮するステップは、圧縮動作時に前記補強繊維集積体が前記金属製ブッシュの径方向外側に広がるのを規制する筒状金型と、前記筒状金型の内部に配置されて前記金属製ブッシュの前記外周部よりも内側に位置する部分を前記軸線方向の両側から挟み且つ圧縮動作時に前記補強繊維集積体が前記金属製ブッシュの外周部より径方向内側に広がるのを規制する一対の金属製ブッシュ支持用金型と、前記筒状金型と前記一対の金属製ブッシュ支持用金型の間に位置して、圧縮動作時に前記補強繊維集積体を前記軸線方向両側から挟んで圧縮する一対の圧縮用金型とを備えているプレス装置により実施するものである請求項2に記載の樹脂製回転体の製造方法。   The step of compressing in the axial direction of the shaft includes a cylindrical mold that restricts the reinforcing fiber assembly from spreading outward in the radial direction of the metal bush during a compression operation, and an inside of the cylindrical mold. The portion of the metal bush positioned inside the outer peripheral portion is sandwiched from both sides in the axial direction, and the reinforcing fiber assembly is restricted from spreading radially inward from the outer peripheral portion of the metal bush during the compression operation. A pair of metal bushing supporting molds, and the cylindrical metal mold and the pair of metal bushing supporting molds sandwiching the reinforcing fiber assembly from both sides in the axial direction during a compression operation. The manufacturing method of the resin-made rotating body according to claim 2, which is carried out by a press device provided with a pair of compression molds to be compressed by the step. 前記請求項1乃至3のいずれか1項に記載の方法により製造された樹脂製回転体の樹脂成形体に歯切り加工が施されて形成された樹脂製歯車。   A resin gear formed by performing gear cutting on a resin molded body of a resin rotating body manufactured by the method according to any one of claims 1 to 3. 外周部に1以上の回り止め部を有して、軸を中心にして回転する金属製ブッシュと、
前記金属製ブッシュの前記外周部の外側位置に、前記外周部に嵌った状態で配置された補強用繊維基材を形成するステップとからなる樹脂製回転体成形用半加工部品を製造する方法であって、
前記補強用繊維基材を形成するステップは、
内部に境界面を形成しないように多数の補強繊維により構成され且つ中央部に前記金属製ブッシュの前記外周部が嵌る貫通孔を備えた筒状の補強繊維集積体を形成するステップと、
前記補強繊維集積体を前記金属製ブッシュの前記外周部に嵌めるステップと、
前記金属製ブッシュの前記外周部に嵌めた前記補強繊維集積体を前記軸の軸線方向に圧縮するステップであり、
前記軸の軸線方向に圧縮するステップは、補強繊維集積体が内径方向と外径方向へ所定以上に広がるのを規制した状態で実施することを特徴とする樹脂製回転体成形用半加工部品の製造方法。
A metal bush having one or more detents on the outer periphery and rotating about an axis;
A method for producing a resin-made rotating body half-processed part comprising a step of forming a reinforcing fiber base disposed in a state of being fitted to the outer peripheral portion at a position outside the outer peripheral portion of the metal bush. There,
Forming the reinforcing fiber substrate comprises:
Forming a cylindrical reinforcing fiber assembly comprising a plurality of reinforcing fibers so as not to form a boundary surface inside and having a through-hole into which the outer peripheral portion of the metal bush fits in a central portion;
Fitting the reinforcing fiber assembly to the outer periphery of the metal bush;
Compressing the reinforcing fiber assembly fitted to the outer periphery of the metal bush in the axial direction of the shaft;
The step of compressing in the axial direction of the shaft is carried out in a state where the reinforcing fiber assembly is restricted from spreading more than a predetermined amount in the inner diameter direction and the outer diameter direction. Production method.
補強繊維の密度が、金属製ブッシュに近い側から粗、密、粗であることを特徴とする樹脂製回転体。   A resin rotating body characterized in that the density of reinforcing fibers is coarse, dense, or coarse from the side close to the metal bush. 補強繊維の密度が、金属製ブッシュに近い側から粗、密、粗であることを特徴とする樹脂製回転体成形用半加工部品。   A semi-processed part for molding a resin rotating body, characterized in that the density of the reinforcing fibers is rough, dense, or rough from the side close to the metal bush.
JP2008269276A 2007-10-18 2008-10-20 Manufacturing method of resin rotating body, resin gear, and manufacturing method of semi-processed part for molding resin rotating body Expired - Fee Related JP5315917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008269276A JP5315917B2 (en) 2007-10-18 2008-10-20 Manufacturing method of resin rotating body, resin gear, and manufacturing method of semi-processed part for molding resin rotating body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007270957 2007-10-18
JP2007270957 2007-10-18
JP2008269276A JP5315917B2 (en) 2007-10-18 2008-10-20 Manufacturing method of resin rotating body, resin gear, and manufacturing method of semi-processed part for molding resin rotating body

Publications (2)

Publication Number Publication Date
JP2009113486A true JP2009113486A (en) 2009-05-28
JP5315917B2 JP5315917B2 (en) 2013-10-16

Family

ID=40781146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008269276A Expired - Fee Related JP5315917B2 (en) 2007-10-18 2008-10-20 Manufacturing method of resin rotating body, resin gear, and manufacturing method of semi-processed part for molding resin rotating body

Country Status (1)

Country Link
JP (1) JP5315917B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011152729A (en) * 2010-01-28 2011-08-11 Shin Kobe Electric Mach Co Ltd Papermaking compressor
JP2011208656A (en) * 2010-03-29 2011-10-20 Shin Kobe Electric Mach Co Ltd Resin gear
JP2012000979A (en) * 2010-05-20 2012-01-05 Shin Kobe Electric Mach Co Ltd Method of manufacturing molding material for resin rotating body, method of manufacturing resin rotating body, and resin rotating body manufactured thereby
JP2013141826A (en) * 2012-01-13 2013-07-22 Shin Kobe Electric Mach Co Ltd Method of manufacturing fiber substrate and method of manufacturing resin rotor
JP2014051097A (en) * 2013-10-01 2014-03-20 Nippon Gasket Co Ltd Resin gear manufacturing apparatus
CN105531090A (en) * 2013-12-27 2016-04-27 日立化成株式会社 Molding material manufacturing method, molding material manufacturing apparatus, and method for manufacturing resin gear
JP2016203429A (en) * 2015-04-17 2016-12-08 日立化成株式会社 Method for producing rotor made of resin, and method for producing gear made of resin
JP2016203428A (en) * 2015-04-17 2016-12-08 日立化成株式会社 Method for producing rotor made of resin, and method for producing gear made of resin

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642608A (en) * 1992-07-21 1994-02-18 Toyota Motor Corp Resin gear reinforced with fiber
JPH10286888A (en) * 1997-04-17 1998-10-27 Shin Kobe Electric Mach Co Ltd Manufacture of phenolic resin gear
JP2001295913A (en) * 2000-04-12 2001-10-26 Shin Kobe Electric Mach Co Ltd Resin gear and method of manufacturing the same
JP2007070599A (en) * 2005-06-14 2007-03-22 Shin Kobe Electric Mach Co Ltd Method for producing crosslinked resin and fiber-reinforced resin molded article
JP2007138146A (en) * 2005-10-21 2007-06-07 Teijin Techno Products Ltd Fiber reinforcement material for gear made of fiber-reinforced resin, gear made of fiber-reinforced resin and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642608A (en) * 1992-07-21 1994-02-18 Toyota Motor Corp Resin gear reinforced with fiber
JPH10286888A (en) * 1997-04-17 1998-10-27 Shin Kobe Electric Mach Co Ltd Manufacture of phenolic resin gear
JP2001295913A (en) * 2000-04-12 2001-10-26 Shin Kobe Electric Mach Co Ltd Resin gear and method of manufacturing the same
JP2007070599A (en) * 2005-06-14 2007-03-22 Shin Kobe Electric Mach Co Ltd Method for producing crosslinked resin and fiber-reinforced resin molded article
JP2007138146A (en) * 2005-10-21 2007-06-07 Teijin Techno Products Ltd Fiber reinforcement material for gear made of fiber-reinforced resin, gear made of fiber-reinforced resin and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011152729A (en) * 2010-01-28 2011-08-11 Shin Kobe Electric Mach Co Ltd Papermaking compressor
JP2011208656A (en) * 2010-03-29 2011-10-20 Shin Kobe Electric Mach Co Ltd Resin gear
JP2012000979A (en) * 2010-05-20 2012-01-05 Shin Kobe Electric Mach Co Ltd Method of manufacturing molding material for resin rotating body, method of manufacturing resin rotating body, and resin rotating body manufactured thereby
JP2013141826A (en) * 2012-01-13 2013-07-22 Shin Kobe Electric Mach Co Ltd Method of manufacturing fiber substrate and method of manufacturing resin rotor
JP2014051097A (en) * 2013-10-01 2014-03-20 Nippon Gasket Co Ltd Resin gear manufacturing apparatus
CN105531090A (en) * 2013-12-27 2016-04-27 日立化成株式会社 Molding material manufacturing method, molding material manufacturing apparatus, and method for manufacturing resin gear
JP2016203429A (en) * 2015-04-17 2016-12-08 日立化成株式会社 Method for producing rotor made of resin, and method for producing gear made of resin
JP2016203428A (en) * 2015-04-17 2016-12-08 日立化成株式会社 Method for producing rotor made of resin, and method for producing gear made of resin

Also Published As

Publication number Publication date
JP5315917B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5315917B2 (en) Manufacturing method of resin rotating body, resin gear, and manufacturing method of semi-processed part for molding resin rotating body
JP5163104B2 (en) Manufacturing method of resin rotating body and manufacturing method of semi-finished product for resin rotating body molding
JP5062009B2 (en) Method of manufacturing semi-finished product for molding resin rotating body, method of manufacturing resin rotating body, and resin gear
JP5163105B2 (en) Resin rotating body and manufacturing method thereof, semi-processed product for resin rotating body molding and manufacturing method thereof, and mold for molding fiber base material for reinforcement
JP5769027B2 (en) Manufacturing method of fiber substrate and manufacturing method of resin rotating body
JP5445175B2 (en) Paper compressor
JP5556477B2 (en) Manufacturing method of resin gears
JP2012167682A (en) Resin rotor, resin gear, and method of manufacturing resin rotor
JP2017089778A (en) Process of manufacture of resin gear
WO2013172340A1 (en) Method for producing semi-processed product for molding rotating resin-body, method for producing rotating resin-body, and heating and pressurization device
JP2010115853A (en) Method for manufacturing semi-fabricated product for molding resin-made rotator, method for manufacturing resin-made rotator, and resin-made gear
JP4519355B2 (en) Underwater sliding member and manufacturing method thereof
JP5560663B2 (en) Manufacturing method of fiber substrate and manufacturing method of resin gear
JP2017061059A (en) Manufacturing method of toothed gear semi-finished body and manufacturing method of toothed gear using the semi-finished body
JP6086234B2 (en) Manufacturing method of resin gears
JP5540820B2 (en) Resin gear
JP5818088B2 (en) Resin molded body and resin gear using the same
JP2014213560A (en) Method of producing resin molding and method of producing resin-made gear using the resin molding produced
JP2018162854A (en) Resin gear
JP2017115969A (en) Method for manufacturing resin gear
JP6156695B2 (en) Gear device
JP6103299B2 (en) Manufacturing method of resin molded body and manufacturing method of resin gear
JP2013221105A (en) Resin molded body and resin-made gear using the same
JP2004107661A (en) Underwater slide member, and method for manufacturing the same
JP3991613B2 (en) Manufacturing method of resin gears

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130624

R150 Certificate of patent or registration of utility model

Ref document number: 5315917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

LAPS Cancellation because of no payment of annual fees