JP2014213560A - Method of producing resin molding and method of producing resin-made gear using the resin molding produced - Google Patents

Method of producing resin molding and method of producing resin-made gear using the resin molding produced Download PDF

Info

Publication number
JP2014213560A
JP2014213560A JP2013093749A JP2013093749A JP2014213560A JP 2014213560 A JP2014213560 A JP 2014213560A JP 2013093749 A JP2013093749 A JP 2013093749A JP 2013093749 A JP2013093749 A JP 2013093749A JP 2014213560 A JP2014213560 A JP 2014213560A
Authority
JP
Japan
Prior art keywords
resin
fiber
resin molded
short
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013093749A
Other languages
Japanese (ja)
Inventor
昌也 小澤
Masaya Ozawa
昌也 小澤
貴博 森川
Takahiro Morikawa
貴博 森川
直樹 古畑
Naoki Furuhata
直樹 古畑
洋一 森尾
Yoichi Morio
洋一 森尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2013093749A priority Critical patent/JP2014213560A/en
Publication of JP2014213560A publication Critical patent/JP2014213560A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Gears, Cams (AREA)
  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin molding having higher strength and a resin-made gear using the resin molding.SOLUTION: A method of producing a resin molding includes a first step of accumulating, by a papermaking method, a slurry prepared by mixing a short fiber, a powder resin and water to form an accumulated body of the short fiber and the powder resin, a second step of compressing the accumulated body in the thickness direction to form a molded raw material and a third step of pressure-molding the molded raw material while heating to form a resin molding. The short fiber has a protrusion part protruding outward in the fiber diameter direction and/or a concave part depressed inward in the fiber diameter direction on the peripheral surface. The ratio of the short fiber in the resin molding is preferably 5-85 vol.%.

Description

本発明は、樹脂成形体の製造法及びこれにより製造された樹脂成形体を用いる樹脂製歯車の製造法に関する。   The present invention relates to a method for producing a resin molded body and a method for producing a resin gear using the resin molded body produced thereby.

自動車・オートバイには、年々厳しくなる排ガス規制や燃費向上要求に対応するため、その構成部品を軽量化し、小型化する要求が強くなっている。その要求に応えるために、エンジン内部やエンジン周辺部の部品を樹脂化することが進められている。
この流れの中で、高強度で高耐熱性の樹脂を使用した樹脂製歯車が、金属製歯車と噛み合う相手歯車として、エンジン内部及びエンジン周辺部にて使用されている。樹脂製歯車は、軽量化と、歯の噛み合い時の騒音を抑制することに寄与している。
For automobiles and motorcycles, in order to respond to exhaust gas regulations and demands for improving fuel efficiency that are becoming stricter year by year, there is an increasing demand for lighter and smaller components. In order to meet such demands, it has been promoted to plasticize parts inside and around the engine.
In this flow, resin gears using high-strength and high-heat-resistant resins are used in the engine interior and the engine periphery as mating gears that mesh with metal gears. The resin gear contributes to weight reduction and suppression of noise at the time of meshing of teeth.

特に、自動車用途の樹脂製歯車は、エンジン内部、エンジン周辺部で使用する場合に高強度が要求される。
そのため、樹脂製歯車は、特許文献1及び2に記載されるように、補強繊維を用いて、補強繊維と樹脂との複合体により高い強度の保持を達成している。
In particular, resin gears for automobile use are required to have high strength when used in the engine interior and the engine periphery.
Therefore, as described in Patent Documents 1 and 2, the resin gear uses a reinforcing fiber to achieve high strength retention by a composite of the reinforcing fiber and the resin.

特開2009−154339号公報JP 2009-154339 A 特開2009−154338号公報JP 2009-154338 A

自動車・オートバイ用途の樹脂製歯車は、エンジン内部、エンジン周辺部で使用する際に、更なる軽量化、小型化が要求される。
このような要求に対応するためには、樹脂製歯車材料の更なる高強度化が必要となる。
Resin gears for automobiles and motorcycles are required to be further reduced in weight and size when used inside and around the engine.
In order to meet such demands, it is necessary to further increase the strength of the resin gear material.

本発明の目的は、上記課題に鑑みてなされたものであり、より高強度の樹脂成形体を製造し、この樹脂成形体を用いた樹脂製歯車を製造することである。   The object of the present invention is made in view of the above problems, and is to manufacture a resin molded body having a higher strength and to manufacture a resin gear using the resin molded body.

上記の課題を解決するために、本発明に係る製造法は、以下の手段を採用する。
第1の発明は、短繊維と粉末状樹脂と水とを混合して調製したスラリを抄造法により集積させ、短繊維と粉末状樹脂の集積体を形成する第1のステップと、前記集積体を厚さ方向に圧縮して成形素材を形成する第2のステップと、前記成形素材を加熱加圧成形して樹脂成形体を形成する第3のステップを経る樹脂成形体の製造法であって、前記短繊維として、その周面に繊維径方向の外方へ突出する突出部及び/又は繊維径方向の内側へ窪む凹部を有した短繊維を採用することを特徴とする。
第2の発明は、第1の発明において、短繊維の繊維径が0.005〜3mm、短繊維の繊維長が0.5〜20mmであることを特徴とする。
第3の発明は、第1又は第2の発明において、樹脂成形体中に占める短繊維の割合が、5〜85体積%であることを特徴とする。
第4の発明は、第3の発明において、短繊維が、パラ型全芳香族ポリアミド繊維及び/又はメタ型全芳香族ポリアミド繊維を含むことを特徴とする。
第5の発明は、請求項1〜4のいずれかに記載される製造法により樹脂成形体を得て、この樹脂成形体を歯車の歯部に加工することを特徴とする樹脂製歯車の製造法である。
In order to solve the above problems, the production method according to the present invention employs the following means.
According to a first aspect of the present invention, there is provided a first step in which a slurry prepared by mixing short fibers, a powdered resin, and water is accumulated by a papermaking method to form an aggregate of short fibers and a powdered resin, and the aggregate A method of manufacturing a resin molded body that undergoes a second step of forming a molding material by compressing the molding material in a thickness direction and a third step of forming a resin molding by heating and pressing the molding material. As the short fiber, a short fiber having a protruding portion protruding outward in the fiber radial direction and / or a concave portion recessed inward in the fiber radial direction is adopted as the short fiber.
A second invention is characterized in that, in the first invention, the fiber diameter of the short fibers is 0.005 to 3 mm, and the fiber length of the short fibers is 0.5 to 20 mm.
The third invention is characterized in that, in the first or second invention, the proportion of the short fibers in the resin molded body is 5 to 85% by volume.
The fourth invention is characterized in that, in the third invention, the short fibers include para-type wholly aromatic polyamide fibers and / or meta-type wholly aromatic polyamide fibers.
According to a fifth aspect of the present invention, there is provided a resin gear manufactured by obtaining a resin molded body by the manufacturing method according to any one of claims 1 to 4 and processing the resin molded body into a gear tooth portion. Is the law.

本発明の樹脂成形体の製造法によれば、短繊維の周面に繊維径方向の外方へ突出する突出部及び/又は繊維径方向の内側へ窪む凹部を有することにより、抄造の時に短繊維同士の絡み合いが促進され、形状の崩れにくい成形素材が得られる。この成形素材は、繊維同士が絡み合ってできた空間に粉末状樹脂が保持されている。この成形素材を加熱加圧成形して製造された樹脂成形体は、突出部及び/又は凹部を有した形状の短繊維が樹脂成形体から引き抜かれ難いので、樹脂成形体の強度が向上する。
また、突出部及び/又は凹部を有した形状の短繊維が、短繊維同士の絡み合いにより形成された成形素材中に十分な空隙を生じせしめる。従って、この成形素材を加熱加圧成形すると、前記空隙に樹脂を浸透させやすく、樹脂含浸不足(不良)の箇所が発生しにくい樹脂成形体が製造される。
According to the method for producing a resin molded body of the present invention, the peripheral surface of the short fiber has a protruding portion protruding outward in the fiber radial direction and / or a concave portion recessed inward in the fiber radial direction. Entangling of short fibers is promoted, and a molding material that does not easily lose its shape is obtained. In this molding material, a powdery resin is held in a space formed by intertwining fibers. In the resin molded body produced by heat-press molding this molding material, the strength of the resin molded body is improved because the short fibers having a protruding portion and / or a recess are difficult to be pulled out from the resin molded body.
Moreover, the short fiber having a shape having a protruding portion and / or a concave portion causes a sufficient gap in the molding material formed by the entanglement of the short fibers. Therefore, when this molding material is heat-press molded, a resin molded body is produced in which the resin easily penetrates into the voids, and a portion where resin impregnation is insufficient (defective) is unlikely to occur.

短繊維の繊維径を0.005〜3mm、短繊維の繊維長を0.5〜20mmとした場合は、抄造のためのスラリを調製する時に繊維の分散性がよくなる。また、製造した樹脂成形体の強度が一層大きくなる。   When the fiber diameter of the short fibers is 0.005 to 3 mm and the fiber length of the short fibers is 0.5 to 20 mm, the dispersibility of the fibers is improved when preparing a slurry for papermaking. Moreover, the strength of the produced resin molded body is further increased.

樹脂成形体中に占める短繊維の割合を5〜85体積%とした場合は、樹脂含浸不足(不良)の箇所がより発生しにくくなり、製造した樹脂成形体の強度が一層大きくなる。   When the proportion of the short fibers in the resin molded body is set to 5 to 85% by volume, a portion where the resin impregnation is insufficient (defect) is less likely to occur, and the strength of the manufactured resin molded body is further increased.

短繊維がパラ型全芳香族ポリアミド繊維及び/又はメタ型全芳香族ポリアミド繊維を含む場合は、高温、高負荷雰囲気で樹脂成形体を使用するときの信頼性がより高くなる。   When the short fiber includes a para-type wholly aromatic polyamide fiber and / or a meta-type wholly aromatic polyamide fiber, the reliability when the resin molded body is used in a high-temperature, high-load atmosphere becomes higher.

上記の効果のとおりであるので、上記の製造法により樹脂成形体を得て、この樹脂成形体を歯車の歯部に加工すると、この樹脂製歯車は、自動車エンジンやその周辺部に用いられる歯車に必要とされる強度、耐熱性を保持することができる。   Since it is as said effect, if a resin molding is obtained by said manufacturing method and this resin molding is processed into the tooth part of a gear, this resin gear will be a gear used for an automobile engine and its peripheral part. It is possible to maintain the strength and heat resistance required for the.

本発明の実施例に用いる短繊維の形状を示す説明図である。It is explanatory drawing which shows the shape of the short fiber used for the Example of this invention. 本発明の実施例に用いる他の短繊維の形状を示す説明図である。It is explanatory drawing which shows the shape of the other short fiber used for the Example of this invention. 本発明の実施例に用いるさらに他の短繊維の形状を示す説明図である。It is explanatory drawing which shows the shape of the other short fiber used for the Example of this invention. 本発明の実施例に用いる加熱加圧成形の金型を示す模式断面図である。It is a schematic cross section which shows the metal mold | die of the heat press molding used for the Example of this invention. 本発明の実施例に用いる抄造装置を示す模式断面図である。It is a schematic cross section which shows the papermaking apparatus used for the Example of this invention. 本発明の実施例において製造する樹脂製歯車に用いる金属製ブッシュを示す概略図である。左図は金属製ブッシュを平面方向に切断した断面図を示し、右図は同厚さ方向に切断した断面図を示す。It is the schematic which shows the metal bushes used for the resin gears manufactured in the Example of this invention. The left figure shows a sectional view of a metal bush cut in the plane direction, and the right figure shows a sectional view cut in the same thickness direction. 本発明の実施例に用いる短繊維を得るための繊維形状加工金型を示す模式断面図である。It is a schematic cross section which shows the fiber shape processing metal mold | die for obtaining the short fiber used for the Example of this invention. 本発明の比較例に用いる短繊維の形状を示す説明図である。It is explanatory drawing which shows the shape of the short fiber used for the comparative example of this invention.

本発明にて用いる樹脂は粉末形態(粒子形態を含む)で提供され、熱硬化性樹脂、熱可塑性樹脂など種々の材質のものを用いることができる。例えば、エポキシ樹脂、ポリアミノアミド樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ポリエーテルサルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンサルファイド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂から選ばれた1以上の樹脂を組み合わせたものが使用できる。これらの中でも樹脂硬化物の強度、耐熱性等の点からフェノール樹脂が好ましい。
粉末状樹脂の粒子形状は任意であるが、粒状のものを用いるのが好ましい。また、粒子径は、短繊維の繊維径により異なるが、50μm以下が好ましい。これにより、短繊維の集積体の短繊維同士の間隙に均一に分布させることができる。粒子径が大きい場合、短繊維の集積体の繊維配向を乱すことがあり、また、加熱加圧成形して樹脂成形体を製造する際、樹脂成形体内部の短繊維と樹脂が均一に分布しない原因となることがある。
The resin used in the present invention is provided in a powder form (including a particle form), and various kinds of materials such as a thermosetting resin and a thermoplastic resin can be used. For example, epoxy resin, polyaminoamide resin, phenol resin, unsaturated polyester resin, polyimide resin, polyethersulfone resin, polyetheretherketone resin, polyamideimide resin, polyamide resin, polyester resin, polyphenylene sulfide resin, polyethylene resin, polypropylene A combination of one or more resins selected from resins can be used. Among these, a phenol resin is preferable from the viewpoints of the strength and heat resistance of the cured resin.
The particle shape of the powdery resin is arbitrary, but a granular resin is preferably used. Moreover, although a particle diameter changes with fiber diameters of a short fiber, 50 micrometers or less are preferable. Thereby, it can distribute uniformly in the gap | interval of the short fibers of the short fiber accumulation body. When the particle size is large, the fiber orientation of the short fiber aggregate may be disturbed, and when the resin molded body is manufactured by heat and pressure molding, the short fibers and the resin inside the resin molded body are not uniformly distributed. It can be a cause.

本発明にて用いる短繊維は、融点又は分解温度が、250℃以上のものから選択されることが好ましい。このような短繊維を用いることで、成形時の成形温度や加工温度、実使用時の雰囲気温度において、短繊維が熱劣化を起こすことなく、耐熱性に優れた樹脂成形体を製造することができる。
短繊維として好適に用いられるものを、より具体的に述べると、パラ型全芳香族ポリアミド繊維、メタ型全芳香族ポリアミド繊維、炭素繊維、ガラス繊維、ボロン繊維、セラミック繊維、超高強力ポリエチレン繊維、ポリケトン繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、全芳香族ポリエステル繊維、ポリイミド繊維、及びポリビニルアルコール系繊維から選ばれた少なくとも1種以上の繊維を使用することができる。
これらの中でも、樹脂成形体の強度、耐熱性等の点からパラ型全芳香族ポリアミド繊維及び/またはメタ型全芳香族ポリアミド繊維を用いることが好ましい。
パラ型全芳香族ポリアミド繊維とメタ型全芳香族ポリアミド繊維とフィブリル化処理した微細繊維とを混合して用いることが、特に好ましい形態であり、高い強度と耐熱性を得ることができる。
The short fibers used in the present invention are preferably selected from those having a melting point or decomposition temperature of 250 ° C. or higher. By using such short fibers, it is possible to produce a resin molded article having excellent heat resistance without causing thermal degradation of the short fibers at the molding temperature and processing temperature at the time of molding and the ambient temperature at the time of actual use. it can.
More specifically, what is preferably used as a short fiber is para-type wholly aromatic polyamide fiber, meta-type wholly aromatic polyamide fiber, carbon fiber, glass fiber, boron fiber, ceramic fiber, ultra-high strength polyethylene fiber , Polyketone fiber, polyparaphenylene benzobisoxazole fiber, wholly aromatic polyester fiber, polyimide fiber, and polyvinyl alcohol fiber can be used.
Among these, it is preferable to use para-type wholly aromatic polyamide fibers and / or meta-type wholly aromatic polyamide fibers from the viewpoint of the strength and heat resistance of the resin molded body.
Mixing and using para type wholly aromatic polyamide fiber, meta type wholly aromatic polyamide fiber, and fine fiber subjected to fibrillation is a particularly preferable mode, and high strength and heat resistance can be obtained.

本発明に用いる短繊維の繊維径は、特に限定されるものではないが、0.005〜3mmとすることが好ましい。繊維径が細くなると、繊維自体の強度が弱くなり、樹脂成形体に必要とされる強度の確保が難しくなってくる。繊維径が太くなると、抄造のためのスラリを調製する時に短繊維の分散性が低下してくる。繊維径を前記の範囲にすることにより、樹脂成形体に必要とされる強度を一段と確実に確保することができると共に、抄造のためのスラリ調製時に短繊維の分散性が十分となる。   Although the fiber diameter of the short fiber used for this invention is not specifically limited, It is preferable to set it as 0.005-3 mm. As the fiber diameter becomes smaller, the strength of the fiber itself becomes weaker, and it becomes difficult to ensure the strength required for the resin molded body. When the fiber diameter is increased, the dispersibility of the short fibers decreases when preparing a slurry for papermaking. By setting the fiber diameter in the above range, the strength required for the resin molded product can be ensured more reliably, and the dispersibility of the short fibers becomes sufficient when preparing a slurry for papermaking.

本発明に用いる短繊維の繊維長は、特に限定されるものではないが、0.5〜20mmとすることが好ましい。繊維長が短くなると、短繊維間の結束性(からみ)が不十分となり、樹脂成形体に必要とされる強度の確保が難しくなってくる。繊維長が長くなると、抄造のためのスラリを調製する時に短繊維の分散性が低下してくる。繊維長を前記の範囲にすることにより、樹脂成形体に必要とされる強度を確保することができると共に、抄造のためのスラリ調製時に繊維の分散性が十分となる。
尚、短繊維の繊維長は、先に述べた繊維径よりも長い寸法とすることが好ましい。
また、繊維長は、樹脂成形体の強度と抄造スラリ調製時の分散性のバランスから、特に、3〜14mmがより好ましい。
Although the fiber length of the short fiber used for this invention is not specifically limited, It is preferable to set it as 0.5-20 mm. When the fiber length is shortened, the binding property (entanglement) between the short fibers becomes insufficient, and it becomes difficult to ensure the strength required for the resin molded body. When the fiber length becomes long, the dispersibility of the short fibers decreases when preparing a slurry for papermaking. By setting the fiber length in the above range, it is possible to ensure the strength required for the resin molded body, and the dispersibility of the fibers becomes sufficient when preparing a slurry for papermaking.
In addition, it is preferable that the fiber length of the short fiber is a dimension longer than the fiber diameter described above.
The fiber length is more preferably 3 to 14 mm, particularly from the balance between the strength of the resin molded body and the dispersibility during preparation of the papermaking slurry.

本発明において、短繊維の周面から突出した突出部は、短繊維の周面から径方向の外方へと突出していれば特に限定されるものではないが、短繊維の周面からの突出部の高さが繊維径の5%より大きい場合、樹脂成形体の強度確保、樹脂の含浸不足(不良)低下抑制の効果が大きく好ましい。
突出部の位置は、特に限定されるものではないが、例えば、短繊維の端部を除いた周面、短繊維の端部に近い周面、短繊維の端部を引き裂き「ハ」字型に広げたもの等とすることができる。
突出部は、例えば、次のようにして形成することができる。
長繊維から所定長さの短繊維に切断加工する際に、予め刃先を摩耗させた断裁機等を用いることにより、繊維の端部をささくれだたせ、繊維の端部が分岐した形状の突出部を形成することができる(図1(a)参照)。
また、長繊維から所定の長さの短繊維に切断後、繊維の端部をプレス等による圧縮または、ハンマ等で圧縮する(たたく)ことにより、繊維の端部に突出部を形成することができる(図1(b)参照)。
In the present invention, the protrusion protruding from the peripheral surface of the short fiber is not particularly limited as long as it protrudes radially outward from the peripheral surface of the short fiber, but the protrusion from the peripheral surface of the short fiber. When the height of the part is larger than 5% of the fiber diameter, the effect of ensuring the strength of the resin molded product and suppressing the decrease in resin impregnation deficiency (defect) is preferable.
The position of the protrusion is not particularly limited. For example, the peripheral surface excluding the end of the short fiber, the peripheral surface close to the end of the short fiber, and the end of the short fiber are torn. It can be the one spread out.
The protrusion can be formed as follows, for example.
When cutting a long fiber from a short fiber into a predetermined length, the end of the fiber is raised by using a cutting machine or the like whose blade edge has been worn in advance, and the protruding portion has a shape in which the end of the fiber branches off Can be formed (see FIG. 1A).
In addition, after cutting from long fibers into short fibers of a predetermined length, the ends of the fibers can be compressed by a press or the like or compressed (tapped) with a hammer or the like to form protrusions at the ends of the fibers. (See FIG. 1 (b)).

本発明において、短繊維周面から窪んだ凹部は、短繊維の周面から径方向の内側へ凹んでいれば特に限定されものではないが、凹部の深さが繊維径の5%より大きい場合、樹脂成形体の強度確保、樹脂の含浸不足(不良)低下抑止の効果が大きく好ましい。
凹部の位置は、特に限定されるものではないが、繊維のからみ合いを十分にし短繊維を樹脂成形体から抜けにくくすることから、短繊維の端部に近い周面よりも端部から遠い位置の周面に設けることが好ましい。
尚、先に述べた突出部と凹部とは、混在させることもできる。混在のさせ方は、突出部だけを形成した短繊維と凹部だけを形成した短繊維とを併用すること、ひとつの短繊維に突出部と凹部の双方を形成することのいずれでもあってもよい。
凹部は、例えば、次のようにして形成することができる。
凸形状の金型を使用して、短繊維の周面の一部を圧縮することにより、繊維の側面に押しつぶされた凹部を形成することができる。この場合、圧縮により広がった突出部も併せて形成することができる(図2参照)。圧縮は、短繊維の融点以上の雰囲気温度で行うことが好ましい。
また、針や刃物等を使用して、短繊維の表面に傷をつけ、凹部を形成することができる(図3参照)。
In the present invention, the recess recessed from the peripheral surface of the short fiber is not particularly limited as long as it is recessed radially inward from the peripheral surface of the short fiber, but the depth of the recess is larger than 5% of the fiber diameter. The effect of ensuring the strength of the resin molded body and suppressing the decrease in the impregnation (defect) of the resin impregnation is great.
The position of the concave portion is not particularly limited, but it is located farther from the end than the peripheral surface near the end of the short fiber, because it sufficiently entangles the fiber and makes it difficult to remove the short fiber from the resin molded body. It is preferable to provide it on the peripheral surface.
In addition, the protrusion part and recessed part which were mentioned previously can also be mixed. The method of mixing may be either using a short fiber having only a protruding portion and a short fiber having only a concave portion, or forming both a protruding portion and a concave portion in one short fiber. .
The recess can be formed as follows, for example.
By using a convex mold and compressing a part of the peripheral surface of the short fiber, it is possible to form a concave portion crushed on the side surface of the fiber. In this case, it is possible to form a projecting portion that is expanded by compression (see FIG. 2). The compression is preferably performed at an ambient temperature equal to or higher than the melting point of the short fiber.
Moreover, the surface of a short fiber can be damaged using a needle | hook, a cutter, etc., and a recessed part can be formed (refer FIG. 3).

上記短繊維と粉末状樹脂と水とを混合して調製したスラリを抄造し、短繊維と粉末状樹脂の集積体を形成する。そして、この集積体を厚さ方向に圧縮して成形素材を形成する。前記圧縮は短繊維と粉末状樹脂の集積体が所定厚みとなるまで行なう。尚、圧縮を行なう時間、温度は使用する短繊維と粉末状樹脂の種類によって任意であるが、前記圧縮の際、圧縮用の相対する一方の金型にヒータを取り付け、加熱した状態で圧縮してもよい。これにより、抄造後の成形素材に含まれる水分を取り除く時間を短縮することができる。また、前記圧縮の際、相対する他方の金型に貫通孔を設けて当該貫通孔から吸引しながら圧縮することにより、抄造後の成形素材に含まれる水分を取り除く時間を短縮することができる。   A slurry prepared by mixing the short fibers, the powdered resin, and water is made to form an aggregate of the short fibers and the powdered resin. Then, the aggregate is compressed in the thickness direction to form a molding material. The compression is performed until the aggregate of short fibers and powdered resin has a predetermined thickness. The compression time and temperature are arbitrary depending on the type of short fiber and powdered resin used. At the time of compression, a heater is attached to one opposing mold for compression and compression is performed in a heated state. May be. Thereby, the time which removes the water | moisture content contained in the shaping | molding raw material after papermaking can be shortened. Further, during the compression, by providing a through hole in the other opposing mold and compressing while sucking from the through hole, it is possible to shorten the time for removing moisture contained in the molding material after paper making.

上記短繊維と粉末状樹脂を水中に分散させる際の濃度は、0.3g/リットル以上20g/リットル以下が好ましい。繊維長が短い繊維を使用する場合、繊維同士の絡みが少なく、分散が良いため濃度20g/リットルの高濃度で分散させたスラリを調製することができる。一方、繊維長が長い繊維を使用する場合、繊維長が長すぎるため0.3g/リットルの低濃度でないと充分分散させることができない。   The concentration when the short fibers and the powdery resin are dispersed in water is preferably 0.3 g / liter or more and 20 g / liter or less. When fibers having a short fiber length are used, a slurry dispersed at a high concentration of 20 g / liter can be prepared because there is little entanglement between the fibers and good dispersion. On the other hand, when a fiber having a long fiber length is used, the fiber length is too long and cannot be sufficiently dispersed unless the concentration is as low as 0.3 g / liter.

ちなみに、前述の短繊維がアラミド繊維をフィブリル化処理した微細繊維を含む場合において、金属製ブッシュの直径が5cmの場合に使用する短繊維と粉末状樹脂の集積体の厚み寸法(軸線方向寸法)は、約10cmである。そして後述する圧縮作業により、短繊維と粉末状樹脂の集積体は約2cm程度まで圧縮されて成形素材に成形される。   By the way, when the short fibers mentioned above contain fine fibers obtained by fibrillation of aramid fibers, the thickness dimension (axial dimension) of the short fiber and powder resin aggregate used when the diameter of the metal bush is 5 cm. Is about 10 cm. Then, by a compression operation to be described later, the aggregate of short fibers and powdered resin is compressed to about 2 cm and formed into a molding material.

本発明において製造される樹脂成形体は、先に述べた短繊維と樹脂の複合体であり、先に述べた成形素材を加熱加圧成形することにより作製する。   The resin molded body produced in the present invention is a composite of the short fibers and the resin described above, and is produced by heat-press molding the above-described molding material.

加熱加圧成形は、例えば、図4に示すような金型を用いて行うことができる。
予め加熱した金型内に成形素材を配置した後に加熱加圧成形して粉末状樹脂を硬化させて、樹脂成形体を成形する。樹脂が硬化したら、成形素材から成形された樹脂成形体を金型から取り出して、樹脂成形体の製造を完了する。
The heat and pressure molding can be performed using, for example, a mold as shown in FIG.
After the molding material is placed in a preheated mold, it is heated and pressed to cure the powdered resin, thereby molding a resin molded body. When the resin is cured, the resin molded body molded from the molding material is taken out from the mold to complete the production of the resin molded body.

具体的には、図4に示すように、成形素材1と金属製ブッシュ6とで構成した樹脂成形体用の成形構成体2を、金型3内に配置した後にこの金型3を閉じ、加熱加圧成形により成形素材1に含まれている樹脂を硬化させて、金属製ブッシュ6と一体となった樹脂成形体となす。
金型3は、固定金型4と、この固定金型4の中心に配置して上下方向に変位する移動金型5と、この移動金型5と対になって金属製ブッシュ6を挟持する上金型7とを備えている。
Specifically, as shown in FIG. 4, after the molding structure 2 for the resin molding composed of the molding material 1 and the metal bush 6 is placed in the mold 3, the mold 3 is closed, The resin contained in the molding material 1 is cured by heating and pressing to form a resin molded body integrated with the metal bush 6.
The mold 3 includes a fixed mold 4, a movable mold 5 that is arranged at the center of the fixed mold 4 and is displaced in the vertical direction, and a metal bush 6 that is paired with the movable mold 5. An upper mold 7 is provided.

上金型7の押圧部7Aが、固定金型4内に挿入されて、金属製ブッシュ6を押圧すると、移動金型5は、上金型7の挿入量に応じて下方に変位する。樹脂が硬化したら、成形素材1を芯材として成形された樹脂成形体を金型3から取り出して、樹脂成形体の製造を完了する。   When the pressing portion 7 </ b> A of the upper mold 7 is inserted into the fixed mold 4 and presses the metal bush 6, the moving mold 5 is displaced downward according to the amount of insertion of the upper mold 7. When the resin is cured, the resin molded body molded with the molding material 1 as a core material is taken out from the mold 3 to complete the production of the resin molded body.

樹脂成形体中に占める短繊維の割合は、特に限定されるものではないが、5〜85体積%とすることが好ましく、30〜60体積%とすることがより好ましい。短繊維の占める割合が少なくなると、樹脂成形体に必要とされる強度が確保できなくなってくる。短繊維の占める割合が多くなると、加熱加圧成形時に溶融した樹脂が樹脂成形体全体に流動せずに、樹脂含浸不足部分の発生率が高くなる。短繊維の含有量が前記の範囲であれば、樹脂成形体に必要とされる強度を確保することができると共に、樹脂含浸不足(不良)の発生率を小さくできる。   The ratio of the short fibers in the resin molded body is not particularly limited, but is preferably 5 to 85% by volume, and more preferably 30 to 60% by volume. If the proportion of short fibers decreases, the strength required for the resin molding cannot be secured. When the proportion of the short fibers increases, the resin melted at the time of heat and pressure molding does not flow to the entire resin molded body, and the occurrence rate of the resin impregnated portion increases. If the content of the short fibers is within the above range, the strength required for the resin molded product can be ensured, and the occurrence rate of insufficient resin impregnation (defective) can be reduced.

本発明において製造される樹脂製歯車は、歯部が先に述べた樹脂成形体を用いて作製されるものであり、具体的には、樹脂成形体を作製する際に、その中心部分に金属製ブッシュを配置してその中心に歯車を回転させる回転軸を設置できるようにし、この金属製ブッシュ周囲の樹脂成形体をホブカッタ、シェービングカッタ等の工具で切削加工して歯を作製する。   In the resin gear manufactured in the present invention, the tooth portion is manufactured using the resin molded body described above. Specifically, when the resin molded body is manufactured, a metal is formed at the center portion thereof. A rotating shaft for rotating a gear is arranged at the center of a bush made of metal, and a resin molded body around the metal bush is cut with a tool such as a hob cutter or a shaving cutter to produce teeth.

実施例1
先ず、スラリを製造するために、投入時の短繊維と粉末状樹脂の濃度が4g/リットルとなる量の水を満たしたタンクを用意する。そしてこのタンク内に、樹脂成形体中の短繊維の繊維総量が40体積%となる量に短繊維(パラ型全芳香族ポリアミド繊維と、メタ型全芳香族ポリアミド繊維と、フィブリル化処理した微細繊維)と、樹脂成形体中の樹脂の総量が60体積%となる量に粉末状樹脂を入れる。
本実施例において用いた短繊維は、具体的に、アスペクト比:200、単繊維繊度:1.7detx、繊維長:3mmのパラ型全芳香族ポリアミド繊維(帝人テクノプロダクツ製「テクノーラ(登録商標)」)を50質量%、アスペクト比:200、単繊維繊度:2.2detx、繊維長:3mmのメタ型全芳香族ポリアミド繊維(帝人テクノプロダクツ製「コーネックス(登録商標)」)を45質量%であり、ほかに、フリーネス値:300mlまでフィブリル化処理した微細繊維(デュポン株式会社製「ケブラー(登録商標)」)を5質量%となる量で混合している。また、粉末状樹脂として、粒子径20μmのフェノール樹脂粉末“エア・ウォーター・ベルパール(株)製「ベルパール(登録商標)」を投入する。次に攪拌機でタンク内の水を攪拌し繊維チョップとフェノール樹脂粉末を分散させる。
前記のパラ型全芳香族ポリアミド繊維(帝人テクノプロダクツ製「テクノーラ(登録商標)」)及びメタ型全芳香族ポリアミド繊維(帝人テクノプロダクツ製「コーネックス(登録商標)」)の繊維端部形状は、長繊維から短繊維へ押し切り断裁機を用いて切断加工する際に、予め、裁断刃を鑢等により研磨(刃先を丸める)した押し切り断裁機を用いることにより、図1(a)に示すように、その短繊維の両端部をささくれだたせ、端部が分岐した形状に突出させている。
Example 1
First, in order to produce a slurry, a tank filled with an amount of water that provides a concentration of short fibers and powdered resin at the time of charging of 4 g / liter is prepared. In this tank, the short fibers (para-type wholly aromatic polyamide fiber, meta-type wholly aromatic polyamide fiber, and fibrillated fine fiber are added so that the total amount of the short fibers in the resin molding becomes 40% by volume. Fiber) and a resin powder in an amount such that the total amount of resin in the resin molding is 60% by volume.
Specifically, the short fibers used in this example are para-type wholly aromatic polyamide fibers having an aspect ratio of 200, a single fiber fineness of 1.7 detex, and a fiber length of 3 mm (“Technora (registered trademark)” manufactured by Teijin Techno Products). )) 50% by mass, aspect ratio: 200, single fiber fineness: 2.2 detex, fiber length: 3 mm meta-type wholly aromatic polyamide fiber (Teijin Techno Products "Conex (registered trademark)") 45% by mass In addition, fine fibers ("Kevlar (registered trademark)" manufactured by DuPont Co., Ltd.) fibrillated to a freeness value of 300 ml are mixed in an amount of 5% by mass. In addition, phenol resin powder “Bellepearl (registered trademark)” manufactured by Air Water Bellpearl Co., Ltd. having a particle diameter of 20 μm is introduced as the powdery resin. Next, the water in the tank is stirred with a stirrer to disperse the fiber chop and the phenol resin powder.
The fiber end shape of the para-type wholly aromatic polyamide fiber (“Technola (registered trademark)” manufactured by Teijin Techno Products) and the meta-type wholly aromatic polyamide fiber (“Conex (registered trademark)” manufactured by Teijin Techno Products) are: As shown in FIG. 1 (a), when a cutting machine is used to cut a cutting blade from a long fiber to a short fiber using a cutting cutter in advance (polishing the blade edge). In addition, both ends of the short fiber are raised and protruded into a branched shape.

図5(A)に示す抄造装置8を用いて、ブッシュ支持台12上に、金属製ブッシュ6を位置決めする。
実施例1では、図6に示す金属製ブッシュ6を使用しており、各寸法は、以下の通りである。尚、突出部分は、切削加工にて成形したテーパ形状としている。
・ブッシュ内径:30mm
・ブッシュ外径:50mm
・ブッシュ全体厚み:13mm
・突出部分の外径:54mm
そして、図5(B)に示すように、上支持台11を下方向に移動して、ブッシュ支持台12と上支持台11との間に、金属製ブッシュ6を挟持する。ここで、下圧縮型14の位置は、金属製ブッシュ6の軸方向中央から金網16上面迄の距離が、50mmとなる位置とした。この抄造装置8内に、先に述べた短繊維と樹脂粉末を分散させた抄造用のスラリを投入する。そして、真空吸引をして下圧縮型14に設けた複数の通液管15から水を排水することにより、抄造スラリ中の水を分離して、円筒状の集積体17を得る。尚、排水時に通液管15より短繊維が流出するのを防止するために、金網16として20メッシュのものを、用いた。
The metal bush 6 is positioned on the bush support 12 using the papermaking apparatus 8 shown in FIG.
In Example 1, the metal bush 6 shown in FIG. 6 is used, and each dimension is as follows. In addition, the protrusion part is made into the taper shape shape | molded by cutting.
・ Bush inner diameter: 30mm
・ Bush outer diameter: 50mm
・ Bush thickness: 13mm
・ Outer diameter of protruding part: 54mm
Then, as shown in FIG. 5B, the upper support 11 is moved downward, and the metal bush 6 is sandwiched between the bush support 12 and the upper support 11. Here, the position of the lower compression mold 14 was set such that the distance from the center in the axial direction of the metal bush 6 to the upper surface of the metal mesh 16 was 50 mm. In the papermaking apparatus 8, the papermaking slurry in which the short fibers and the resin powder described above are dispersed is charged. Then, vacuum suction is performed to drain water from the plurality of liquid passing pipes 15 provided in the lower compression mold 14, thereby separating the water in the papermaking slurry and obtaining the cylindrical accumulation body 17. In addition, in order to prevent short fibers from flowing out from the liquid flow pipe 15 during drainage, a 20 mesh mesh was used as the wire mesh 16.

次に、金属製ブッシュ6の周囲に、更に強固に短繊維を喰い込ませるために圧縮を行う。図5(C)に示すように、上圧縮型13を、金属製ブッシュ6の軸方向中央から上圧縮型13下面までの距離が、50mmとなる位置まで下降させる。この位置は、金属製ブッシュ6が、下圧縮型14と上圧縮型13との間の、中央に位置する状態となる位置である。
そして、図5(D)に示すように、金属製ブッシュ6が、下圧縮型14と上圧縮型13との間の、中央に位置する状態で、下圧縮型14と上圧縮型13とをそれぞれ同速度で相互に近づく方向に移動させ、繊維集積体17が、厚み:20mmとなるまで圧縮する。
圧縮を1分間行なうことにより、金属製ブッシュ6と一体化した成形素材1を得た。尚、前記圧縮の際、下圧縮型14の通液管15から、継続的に真空吸引した状態で圧縮している。
この成形素材1を水分含有率が0.5質量%以下になるまで乾燥する。ちなみに、本実施例では、前記乾燥により成形素材1の厚みは20〜50mmとなる。
Next, compression is performed in order to make the short fibers bite more firmly around the metal bush 6. As shown in FIG. 5C, the upper compression mold 13 is lowered to a position where the distance from the axial center of the metal bush 6 to the lower surface of the upper compression mold 13 is 50 mm. This position is a position where the metal bush 6 is located in the center between the lower compression mold 14 and the upper compression mold 13.
Then, as shown in FIG. 5D, the lower compression mold 14 and the upper compression mold 13 are placed with the metal bush 6 positioned at the center between the lower compression mold 14 and the upper compression mold 13. The fibers are moved toward each other at the same speed, and the fiber aggregates 17 are compressed until the thickness becomes 20 mm.
The molding material 1 integrated with the metal bush 6 was obtained by performing compression for 1 minute. During the compression, the compression is performed while continuously sucking vacuum from the liquid passage 15 of the lower compression mold 14.
The molding material 1 is dried until the moisture content becomes 0.5% by mass or less. Incidentally, in this embodiment, the thickness of the molding material 1 becomes 20 to 50 mm by the drying.

次に、図4に示すように、上記の工程で得られた成形素材1と金属製ブッシュ6とが一体化した成形構成体2を、200℃に加熱した移動金型5に配置して型締めする。そして、成形素材1を加熱加圧成形して粉末状樹脂を硬化させ樹脂成形体を得る。樹脂の硬化が不十分な場合は、必要に応じて後加熱工程を付与して、樹脂の硬化を確実に進めるようにしても良い。ちなみに、本実施例では、厚み20〜50mmであった成形素材1は、前記加熱加圧成形により、金属製ブッシュ6とほぼ同厚みの13mmとなる。
樹脂成形体の外周に切削加工により歯を形成し、以下の表1に示す寸法の樹脂製歯車を得た。
Next, as shown in FIG. 4, the molding structure 2 in which the molding material 1 and the metal bush 6 obtained in the above process are integrated is placed in a moving mold 5 heated to 200 ° C. Tighten. And the molding raw material 1 is heat-press-molded, a powdery resin is hardened, and a resin molding is obtained. If the resin is not sufficiently cured, a post-heating step may be applied as necessary to ensure that the resin is cured. Incidentally, in this embodiment, the molding material 1 having a thickness of 20 to 50 mm becomes 13 mm, which is substantially the same thickness as the metal bush 6 by the heat and pressure molding.
Teeth were formed by cutting on the outer periphery of the resin molded body to obtain resin gears having the dimensions shown in Table 1 below.

Figure 2014213560
Figure 2014213560

実施例2
パラ型全芳香族ポリアミド繊維(帝人テクノプロダクツ製「テクノーラ(登録商標)」)及びメタ型全芳香族ポリアミド繊維(帝人テクノプロダクツ製「コーネックス(登録商標)」)の繊維形状を、図2に示す様な形状とした以外は、実施例1と同様の方法で樹脂製歯車を得た。すなわち、短繊維をプレス加工により圧縮し、厚み(押しつぶした後の高さ)を繊維径の95%以下とし、圧縮により広がった幅を繊維径の105%以上とした。このような短繊維の周面に凹部と突出部を付与する加工は、図7に示す様な凸形状のある金型を使用し、金型温度270〜300℃で実施した。
Example 2
Fig. 2 shows the fiber shapes of para-type wholly aromatic polyamide fibers ("Technola (registered trademark)" manufactured by Teijin Techno Products) and meta-type wholly aromatic polyamide fibers ("Conex (registered trademark)" manufactured by Teijin Techno Products). A resin gear was obtained in the same manner as in Example 1 except that the shape was as shown. That is, the short fiber was compressed by pressing, the thickness (height after crushing) was 95% or less of the fiber diameter, and the width widened by the compression was 105% or more of the fiber diameter. The process which provides a recessed part and a protrusion part to the surrounding surface of such a short fiber was implemented at the mold temperature of 270-300 degreeC using the metal mold | die with a convex shape as shown in FIG.

実施例3
パラ型全芳香族ポリアミド繊維(帝人テクノプロダクツ製「テクノーラ(登録商標)」)及びメタ型全芳香族ポリアミド繊維(帝人テクノプロダクツ製「コーネックス(登録商標)」)の繊維形状を、図3に示す様な形状とした以外は、実施例1と同様の方法で樹脂製歯車を得た。すなわち、短繊維を270℃以上の雰囲気中でカッターナイフ等の刃物を用いて、繊維径の1〜25%の深さの凹形状をつけた。
Example 3
Fig. 3 shows the fiber shapes of para-type wholly aromatic polyamide fibers ("Technola (registered trademark)" manufactured by Teijin Techno Products) and meta-type wholly aromatic polyamide fibers ("Conex (registered trademark)" manufactured by Teijin Techno Products). A resin gear was obtained in the same manner as in Example 1 except that the shape was as shown. That is, a concave shape having a depth of 1 to 25% of the fiber diameter was applied to the short fiber using a cutter such as a cutter knife in an atmosphere of 270 ° C. or higher.

比較例1
パラ型全芳香族ポリアミド繊維(帝人テクノプロダクツ製「テクノーラ(登録商標)」)及びメタ型全芳香族ポリアミド繊維(帝人テクノプロダクツ製「コーネックス(登録商標)」)の繊維形状は、図8に示す様な突出部も凹部を有さない、周面が滑らかなものとした以外は、実施例1と同様の方法で樹脂製歯車を得た。
Comparative Example 1
The fiber shapes of the para-type wholly aromatic polyamide fiber (“Technola (registered trademark)” manufactured by Teijin Techno Products) and the meta-type wholly aromatic polyamide fiber (“Conex (registered trademark)” manufactured by Teijin Techno Products) are shown in FIG. A resin gear was obtained in the same manner as in Example 1 except that the protruding portion as shown also had no recess and the peripheral surface was smooth.

<樹脂製歯車耐久評価>
実施例1〜3及び比較例1の樹脂製歯車での耐久評価結果を、表3に示す。
耐久評価は、下記表2に示した2種類の入力トルク(10N・m、20N・m)で実施し、各入力トルクにおいて樹脂製歯車を連続回転させ、樹脂製歯車が破壊するまでの時間を測定し、耐久性を確認した。
<Resin gear durability evaluation>
Table 3 shows the durability evaluation results of the resin gears of Examples 1 to 3 and Comparative Example 1.
Durability evaluation was carried out using the two types of input torque (10 N · m, 20 N · m) shown in Table 2 below. The time required for the resin gear to continuously rotate at each input torque until the resin gear was destroyed was measured. Measured and confirmed durability.

Figure 2014213560
Figure 2014213560

Figure 2014213560
Figure 2014213560

表3に示すように、実施例1〜3では、入力トルク10N・mにて300時間以上、入力トルク20N・mにて10時間以上の耐久寿命となっているが、比較例1では、繊維が抜けることもあり、耐久性が伸びず、特に高い入力トルクでの寿命が悪化する。   As shown in Table 3, in Examples 1 to 3, the durability was 300 hours or more at an input torque of 10 N · m, and 10 hours or more at an input torque of 20 N · m. , The durability does not increase, and the life at a particularly high input torque is deteriorated.

1…成形素材、2…成形構成体、3…金型、4…固定金型、5…移動金型、6…金属製ブッシュ、7…上金型、7A…押圧部、8…抄造装置、10…筒状金型、11…上支持台、12…ブッシュ支持台、13…上圧縮型、14…下圧縮型、15…通液管、16…金網、17…集積体 DESCRIPTION OF SYMBOLS 1 ... Molding material, 2 ... Molding structure, 3 ... Die, 4 ... Fixed mold, 5 ... Moving mold, 6 ... Metal bush, 7 ... Upper mold, 7A ... Pressing part, 8 ... Papermaking apparatus, DESCRIPTION OF SYMBOLS 10 ... Cylindrical metal mold, 11 ... Upper support stand, 12 ... Bush support stand, 13 ... Upper compression type, 14 ... Lower compression type, 15 ... Liquid-flow pipe, 16 ... Metal mesh, 17 ... Accumulation body

Claims (5)

短繊維と粉末状樹脂と水とを混合して調製したスラリを抄造法により集積させ、短繊維と粉末状樹脂の集積体を形成する第1のステップと、
前記集積体を厚さ方向に圧縮して成形素材を形成する第2のステップと、
前記成形素材を加熱加圧成形して樹脂成形体を形成する第3のステップを経る樹脂成形体の製造法であって、
前記短繊維として、その周面に繊維径方向の外方へ突出する突出部及び/又は繊維径方向の内側へ窪む凹部を有した短繊維を採用することを特徴とする樹脂成形体の製造法。
A first step in which a slurry prepared by mixing short fibers, powdered resin and water is accumulated by a papermaking method to form an aggregate of short fibers and powdered resin;
A second step of compressing the aggregate in the thickness direction to form a molding material;
A method for producing a resin molded body that undergoes a third step of forming a resin molded body by heating and pressing the molding material,
As the short fiber, a short fiber having a protruding portion protruding outward in the fiber radial direction and / or a concave portion recessed inward in the fiber radial direction is adopted as the short fiber. Law.
短繊維が、繊維径0.005〜3mm、繊維長0.5〜20mmである請求項1記載の樹脂成形体の製造法。   The method for producing a resin molded body according to claim 1, wherein the short fibers have a fiber diameter of 0.005 to 3 mm and a fiber length of 0.5 to 20 mm. 樹脂成形体中に占める短繊維の割合が、5〜85体積%である請求項1又は2に記載の樹脂成形体の製造法。   The method for producing a resin molded product according to claim 1 or 2, wherein the proportion of short fibers in the resin molded product is 5 to 85% by volume. 短繊維が、パラ型全芳香族ポリアミド繊維及び/又はメタ型全芳香族ポリアミド繊維を含む請求項3記載の樹脂成形体の製造法。   The method for producing a resin molded product according to claim 3, wherein the short fibers include para-type wholly aromatic polyamide fibers and / or meta-type wholly aromatic polyamide fibers. 請求項1〜4のいずれかに記載される製造法により樹脂成形体を得、この樹脂成形体を歯車の歯部に加工することを特徴とする樹脂製歯車の製造法。   A method for producing a resin gear, comprising: obtaining a resin molded body by the manufacturing method according to any one of claims 1 to 4; and processing the resin molded body into a gear tooth portion.
JP2013093749A 2013-04-26 2013-04-26 Method of producing resin molding and method of producing resin-made gear using the resin molding produced Pending JP2014213560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013093749A JP2014213560A (en) 2013-04-26 2013-04-26 Method of producing resin molding and method of producing resin-made gear using the resin molding produced

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013093749A JP2014213560A (en) 2013-04-26 2013-04-26 Method of producing resin molding and method of producing resin-made gear using the resin molding produced

Publications (1)

Publication Number Publication Date
JP2014213560A true JP2014213560A (en) 2014-11-17

Family

ID=51939790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013093749A Pending JP2014213560A (en) 2013-04-26 2013-04-26 Method of producing resin molding and method of producing resin-made gear using the resin molding produced

Country Status (1)

Country Link
JP (1) JP2014213560A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019177613A (en) * 2018-03-30 2019-10-17 日本ガスケット株式会社 Manufacturing method of fiber reinforced resin
JP2019177612A (en) * 2018-03-30 2019-10-17 日本ガスケット株式会社 Method and apparatus for molding fiber reinforced resin
CN112848389A (en) * 2020-12-21 2021-05-28 中南大学 Method for rapidly forming hybrid fiber reinforced thermoplastic composite structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366324A (en) * 1986-09-03 1988-03-25 Osaka Gas Co Ltd Knot carbon fiber, production thereof and composite material containing knot carbon fiber as reinforcing material
JP2001001413A (en) * 1999-06-17 2001-01-09 Saamosetta:Kk Production of thermosetting molding material
JP2010056479A (en) * 2008-08-29 2010-03-11 Kyocera Corp Prepreg sheet, wiring board, and mounting structure
JP2011208656A (en) * 2010-03-29 2011-10-20 Shin Kobe Electric Mach Co Ltd Resin gear
JP2012031891A (en) * 2010-07-29 2012-02-16 Shin Kobe Electric Mach Co Ltd Resin gear

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366324A (en) * 1986-09-03 1988-03-25 Osaka Gas Co Ltd Knot carbon fiber, production thereof and composite material containing knot carbon fiber as reinforcing material
JP2001001413A (en) * 1999-06-17 2001-01-09 Saamosetta:Kk Production of thermosetting molding material
JP2010056479A (en) * 2008-08-29 2010-03-11 Kyocera Corp Prepreg sheet, wiring board, and mounting structure
JP2011208656A (en) * 2010-03-29 2011-10-20 Shin Kobe Electric Mach Co Ltd Resin gear
JP2012031891A (en) * 2010-07-29 2012-02-16 Shin Kobe Electric Mach Co Ltd Resin gear

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019177613A (en) * 2018-03-30 2019-10-17 日本ガスケット株式会社 Manufacturing method of fiber reinforced resin
JP2019177612A (en) * 2018-03-30 2019-10-17 日本ガスケット株式会社 Method and apparatus for molding fiber reinforced resin
CN112848389A (en) * 2020-12-21 2021-05-28 中南大学 Method for rapidly forming hybrid fiber reinforced thermoplastic composite structure
CN112848389B (en) * 2020-12-21 2022-06-24 中南大学 Method for rapidly forming hybrid fiber reinforced thermoplastic composite structure

Similar Documents

Publication Publication Date Title
JP5062009B2 (en) Method of manufacturing semi-finished product for molding resin rotating body, method of manufacturing resin rotating body, and resin gear
CN105524405A (en) Antistatic peek composite material and preparation method thereof
US20040164438A1 (en) Slurry composition and method for forming friction material therefrom
JP5163105B2 (en) Resin rotating body and manufacturing method thereof, semi-processed product for resin rotating body molding and manufacturing method thereof, and mold for molding fiber base material for reinforcement
JP2014213560A (en) Method of producing resin molding and method of producing resin-made gear using the resin molding produced
JP2009154338A (en) Manufacturing method of rotary body made of resin and manufacturing method of semi-finished article for molding rotary body made of resin
JP5315917B2 (en) Manufacturing method of resin rotating body, resin gear, and manufacturing method of semi-processed part for molding resin rotating body
JP5794316B2 (en) Method for manufacturing semi-finished product for molding resin rotating body and method for manufacturing resin rotating body
JP5818088B2 (en) Resin molded body and resin gear using the same
JP2012167682A (en) Resin rotor, resin gear, and method of manufacturing resin rotor
JP5556477B2 (en) Manufacturing method of resin gears
JP5769027B2 (en) Manufacturing method of fiber substrate and manufacturing method of resin rotating body
JP2017061059A (en) Manufacturing method of toothed gear semi-finished body and manufacturing method of toothed gear using the semi-finished body
JP2010115853A (en) Method for manufacturing semi-fabricated product for molding resin-made rotator, method for manufacturing resin-made rotator, and resin-made gear
JP5540820B2 (en) Resin gear
JP2017115969A (en) Method for manufacturing resin gear
JP2013221105A (en) Resin molded body and resin-made gear using the same
JP7056431B2 (en) How to manufacture gearbox components and how to manufacture preforms for gearbox components
JP6103299B2 (en) Manufacturing method of resin molded body and manufacturing method of resin gear
JP5620936B2 (en) Manufacturing method of resin gear
JP4252864B2 (en) Underwater sliding member and manufacturing method thereof
JP6086234B2 (en) Manufacturing method of resin gears
JP2011099171A (en) Fiber base material and resin gear using the fiber base material
JP2017089779A (en) Resin gear
KR101346267B1 (en) Plastics gear of manufacturing methods

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170105