WO2013172340A1 - Method for producing semi-processed product for molding rotating resin-body, method for producing rotating resin-body, and heating and pressurization device - Google Patents

Method for producing semi-processed product for molding rotating resin-body, method for producing rotating resin-body, and heating and pressurization device Download PDF

Info

Publication number
WO2013172340A1
WO2013172340A1 PCT/JP2013/063413 JP2013063413W WO2013172340A1 WO 2013172340 A1 WO2013172340 A1 WO 2013172340A1 JP 2013063413 W JP2013063413 W JP 2013063413W WO 2013172340 A1 WO2013172340 A1 WO 2013172340A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
bush
fibers
short fibers
fiber
Prior art date
Application number
PCT/JP2013/063413
Other languages
French (fr)
Japanese (ja)
Inventor
昌也 小澤
貴博 森川
直樹 古畑
直己 小林
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Priority to JP2013551453A priority Critical patent/JP5794316B2/en
Publication of WO2013172340A1 publication Critical patent/WO2013172340A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties

Definitions

  • the present invention relates to a method for producing a resin-made rotary body-molding semi-finished product, and the present invention relates to a method for producing a resin-made rotary body. Furthermore, the present invention relates to a heating and pressurizing device.
  • a resin-made rotating body using a reinforcing fiber base is excellent in durability performance, and is suitable as a resin-made rotating body such as a resin-made gear used for automotive parts, industrial parts and the like.
  • JP-A 2009-154338 (Patent Document 1) and JP-A 2009-250364 (Patent Document 2) use a slurry obtained by mixing water and a reinforcing fiber consisting of short fibers at the outer peripheral part of the bush.
  • a method of manufacturing a resin rotating body for forming a reinforcing fiber base There is disclosed a method of manufacturing a resin rotating body for forming a reinforcing fiber base.
  • the slurry is placed in a fixed mold containing a metal bush, dewatered from the slurry so that the reinforcing fibers do not leak, and the reinforcing fibers are gathered around the bush to form an aggregate.
  • the assembly is then compressed to form a reinforcing fibrous substrate.
  • the reinforcing fiber base is impregnated with the resin, and the resin is cured to manufacture a resin rotating body.
  • Patent Documents 1 and 2 prevent the deterioration of the durability performance by using a reinforcing fiber base in which a metal bush and reinforcing fibers are integrated.
  • the reinforcing fiber base material is disposed in the molding die, and while the reinforcing fiber base material is pressed from the axial direction, the pressure in the molding die is reduced to a vacuum and the resin is flowed.
  • the reinforcing fiber base should be impregnated with resin. As a result, the structure of the molding die becomes complicated, and the number of processes increases.
  • the object of the present invention is to provide a method for manufacturing a resin-made rotary member molding semi-finished product and a method for manufacturing a resin-made rotary member, which can form a resin rotary member molding semi-finished product and a resin rotary member. It is.
  • Still another object of the present invention is to provide a method for manufacturing a resin-made rotating body molding blank which can form a resin-made rotating body molding blank in a short time.
  • Another object of the present invention is to provide a heating and pressing device suitable for producing a resin rotating body.
  • a semi-finished product for molding a resin rotary body to be improved In the method of manufacturing a semi-finished product for molding a resin rotary body to be improved according to the present invention, first, one or more detents are formed on the outer peripheral portion, and a bush capable of rotating about a rotation axis is prepared. Carry out the following steps. Next, the step of forming a forming material formed of an aggregate of short fibers and powdered resin and disposed in a state of being fitted to the bush so as to surround one or more rotation preventing portions is performed on the outer peripheral portion of the bush. .
  • the step of forming the forming material is constituted by the following two steps.
  • a slurry prepared by mixing short fibers, powdered resin and water is collected by filtration and dewatering, and short fibers and powdered resin are accumulated around the outer periphery of the bush to prevent one or more rotations.
  • An assembly of short fibers and powdered resin surrounding the outer periphery of the bush including the part is formed.
  • the filtration and dewatering method is a method in which a slurry containing short fibers is placed in a predetermined container and dewatered while filtering the slurry in the container to form an aggregate of short fibers and a powdered resin. is there.
  • the first step and the second step may be performed continuously in the same device containing a bush and an aggregate of short fibers and powdered resin. If the assembly of short fibers and powdered resin is continuously compressed using the same apparatus, it is not necessary to handle an aggregate that is bulky and weak in strength (it is easy to lose shape). It will be less. In addition, since the density of the forming material is increased by the compression performed in the second step, the strength of the forming material can be enhanced, and the workability (handling ability) is significantly improved.
  • the first step is preferably performed in a state where the housing space of the bush and the aggregate of the short fibers and the powdered resin is vacuumed and sucked. As a result, the time for accumulating the short fibers and the powdered resin around the outer peripheral portion of the bush can be shortened.
  • the slurry is prepared by adding one or more types of polymer flocculating agent of the electrostatic attraction aggregation type to a mixture of short fibers, powdered resin and water. You may do so.
  • an electrostatic attractive aggregation type polymer flocculant is added, the polymer flocculant functions not only as an aggregating function but also as a fixing agent, so that the short fibers are fixed together and the short fibers and the powder form The resin is fixed.
  • the amount of short fibers and powdered resin remaining in the aggregate can be increased. That is, the fixing rate of the short fiber and the powdered resin can be increased.
  • an anionic polymer flocculating agent (anionic polymer flocculating agent) Is preferably added.
  • a cationic polymer flocculant cationic polymer flocculating agent
  • a part of short fibers and a part of powdered resin gather to form a large number of aggregates called floc.
  • an anionic polymer flocculant is added, the flocs aggregate together to form larger flocs, and a large number of flocs with large dimensions are formed. When such floc is formed, the dewaterability is improved.
  • the dewatering can be performed in a short time, and the fixing rate of the short fiber and the powdered resin is improved.
  • a cationic styrenic polymer aqueous solution is used as the cationic polymer flocculant and an anionic acrylic polymer aqueous solution is used as the anionic polymer flocculant, high dewaterability can be obtained.
  • amphoteric polymer flocculating agent may be used as one or more types of electrostatic attractive flocculation type polymer flocculants.
  • Amphoteric polymer flocculant refers to the neutralization effect (cation) of short fibers and powdery particles in the mixed liquid, formation of entanglement (high molecular weight) by the polymer chain, and entanglement (high molecular weight) It exerts a reinforcing effect by electrostatic attraction due to the charge of the anion and the cation.
  • the molding material is heated and pressurized to melt the powdery resin, and the molten resin produced is impregnated into the reinforcing fiber layer consisting of short fibers, and then the molten resin is cured to form a resin molded body.
  • the inside of the molding die is depressurized to a vacuum, and the resin is poured to impregnate the resin into the molding material. , The number of processes can be reduced.
  • the structure of the molding die can be simplified.
  • short fibers are intended to encompass not only fibers having literally short lengths but also fine fibers and / or pulp-like fibers obtained by fibrillating fibers.
  • the short fibers include aramid fibers having a length of 2 to 6 mm and fine fibers obtained by fibrillating the aramid fibers, the freeness of the fine fibers is 100 ml or more and 400 ml or less, and the content of the fine fibers is short fibers It is preferable to use what becomes 30 mass% or less among them. Use of such a short fiber makes it easy to compress and can obtain a necessary and sufficient bonding strength between the resin molded body and the detent.
  • powdery resin those of various materials such as thermosetting resin and thermoplastic resin can be used.
  • the particle shape of the powdery resin is arbitrary, it is preferable to use a granular one.
  • the particle diameter is different depending on the fiber diameter of the short fiber, but a particle diameter which can be uniformly distributed in the gap of the aggregate of short fibers is preferable.
  • the particle diameter is large, the fiber orientation of the aggregate of short fibers is disturbed, or when forming a resin molded body by heating and pressure forming, the short fibers and the resin inside the molded body are not uniformly distributed. It is.
  • the short fibers consist of synthetic fibers having a thermal decomposition temperature or melting temperature of 250 ° C. or higher, and the powdered resin has a moldable temperature that is lower than the thermal decomposition temperature or melting temperature of synthetic fibers and a particle diameter of 50 ⁇ m or less It is preferable to be made of particles of a curable resin or a thermoplastic resin.
  • the particle diameter of 50 ⁇ m or less means the diameter dimension of the particles measured by the metal mesh sieving method defined in JIS-Z8801-1.
  • the ratio of the short fiber with respect to a resin molding it is desirable that it is 30 volume% or more and 60 volume% or less. If the value is in this range, the mechanical strength required for the resin molding can be reliably obtained.
  • the heating and pressurizing apparatus that can be used in the present invention to heat and press the molding material is fixed with a recess that accommodates the molding material together with the bush so as to restrict the outward spread of the molding material.
  • the first movable mold which is disposed displaceably with respect to the fixing bracket so that the mold and the supporting portion for supporting the bush are displaced in the recessed portion of the fixed mold, and the supporting portion inserted into the recessed portion It is possible to use one having a supported bush and a second movable mold provided with a pressing portion for pressing the molding material toward the inner bottom surface of the recess.
  • the heating and pressing device is configured such that the fixed mold, the first movable mold, and the second movable are movable in a state where the inner bottom surface of the fixed mold and the pressing portion of the second movable mold are in contact with the molding material.
  • the mold is heated to a moldable temperature of the powdery resin, and the second movable mold is moved toward the inner bottom surface in the molten state of the powdery resin.
  • a resin molded body is machined to form a plurality of teeth, it is possible to obtain a gear which is mechanically strong and which generates less noise at the time of use.
  • rotating parts such as pulleys may be manufactured using the resin rotating body of the present invention.
  • the molding material formed by the method of the present invention has no overlapping interface of the substrate and does not peel off. From these facts, the durability performance of the resin rotary body such as the resin gear is greatly improved.
  • FIG. 1 It is a longitudinal cross-sectional view of an example of embodiment of the resin-made rotary body of this invention shown typically.
  • (A) and (B) are the top view and longitudinal cross-sectional view of metal bush.
  • or (D) are figures which show the papermaking of a forming raw material, and a compression process in order. It is a schematic sectional drawing which shows an example of the metal mold
  • (A) is a figure used in order to explain the problem which arises by mesh size
  • (B) is a figure used in order to explain the function of a polymer flocculant of an electrostatic attraction aggregation type.
  • (A) And (B) is a figure which shows an example of a paper-making apparatus used in order to manufacture a prior art example, and the manufacture example of the conventional fiber base material for reinforcement.
  • (A) is a schematic sectional drawing which shows an example of the metal mold
  • (B) is a longitudinal cross-sectional view of the resin-made rotary body manufactured by a prior art example. It is a figure which shows the structure of the apparatus which measures boss
  • the protrusion 4A to be the detent should have at least two protrusions 4A with height h1. It is preferable that the recesses 4B formed between the protrusions 4A and having the bottom of the height h2 be alternately arranged. With such an undercut shape and using a projecting portion 4A having an angle ⁇ of 5 ° or more and 40 ° or less, a plurality of projections serving as a rotation stopping portion in the forming material 5 shown in FIG. 3 (D) and FIG. The portion 4A is completely filled, and the strength of the mechanical connection between the bush 2 and the molding material 5 can be made sufficient.
  • one forming material 5 shown in FIG. 3D and FIG. 4 is disposed at a position outside the outer peripheral portion 4 of the metal bush 2 in a state of being fitted to the outer peripheral portion 4. Then, the molding material 5 is heated and pressed to form the resin molded body 6.
  • the filtration dewatering and compressing device 7 capable of continuously performing filtration and dewatering and compression is used to form the outer peripheral portion 4 of the metal bush 2.
  • An aggregate 8 of short fibers and powdered resin is formed at the outer position. Then, the aggregate 8 of the short fibers and the powdered resin is compressed in the axial direction of the rotation shaft to form the molding material 5.
  • short fibers and powdered resin are accumulated around the outer peripheral part 4 of the bush 2 by the filtration dehydration method, and the short fibers and powdered resin surrounding the outer peripheral part 4 of the bush 2 including one or more detents (4A)
  • the mold used in the filtration dewatering and compressing device 7 restricts the aggregate 8 of the short fiber and the powdered resin from spreading outward in the radial direction of the metal bush 2 during the compression operation.
  • a cylindrical mold 10 and a portion disposed inside the cylindrical mold 10 and positioned inside the outer peripheral portion of the metal bush 2 from both sides in the axial direction, and when compressed, a short fiber and a powdered resin A pair of bush supporting molds 11 and 12 that restrict the aggregate 8 from spreading radially inward of the metal bush 2, and a position between the cylindrical mold 10 and the pair of bush supporting molds 11 and 12
  • a pair of compression molds 13 and 14 are provided to sandwich and compress the short fiber / powder resin aggregate 8 from both sides in the axial direction during the compression operation.
  • a plurality of through holes 15 for draining water are formed in the lower compression mold 14. ing. It is preferable to provide a pump for vacuum suction for the plurality of through holes 15 since drainage can be completed in a short time.
  • a bottom member 16 having a filtering function is disposed on the lower compression mold 14 in order to prevent the outflow of the short fibers and the powdered resin during drainage.
  • a wire mesh can be used for the bottom member 16.
  • the mesh size of the wire mesh is larger than 100 mesh, the mesh (through holes) of the wire mesh becomes smaller, so that the filtration resistance of water, short fibers and powdered resin becomes large.
  • the short fibers and the powdered resin can be separated from water. The time required is longer and the manufacturing cycle is longer.
  • the mesh size to be used is preferably 10 mesh or more and 100 mesh or less.
  • the pair of bush supporting molds 11 and 12 are positioned inward of the outer peripheral portion 4 of the metal bush 2 so that the short fibers and the powdered resin do not enter inside the outer peripheral portion of the metal bush 2
  • the cylindrical mold 10 is supported by being sandwiched from both sides in the direction in which the center line of the cylindrical mold 10 extends.
  • the lower bush support mold 12, the upper bush support mold 11, the lower compression mold 14, the upper compression mold 13 and the cylindrical mold 10 are independent of each other. It is configured to be movable up and down.
  • the slurry formed by mixing the short fiber, the powdered resin, and the water is supplied from the upper opening of the cylindrical mold 10, as shown in FIG. 3 (B).
  • the time for accumulating the short fibers and the powdered resin around the outer peripheral portion 4 of the bush 2 is shortened. Can.
  • vacuum suction is continued, and water is discharged from the plurality of through holes 15 provided in the lower compression mold 14, whereby short fibers and powdered resin surrounding the periphery of the metal bush 2 are made.
  • An aggregate 8 is formed.
  • the shape of the outer peripheral surface of the aggregate 8 of the short fibers and the powdery resin is determined by the shape of the inner peripheral surface of the cylindrical mold 10.
  • the slurry may be supplied from a plurality of places on the upper opening of the cylindrical mold 10.
  • the metal bush 2 is between the pair of compression molds 13 and 14.
  • the upper compression mold 13 is lowered to a position where it is positioned at the center.
  • the pair of compression molds 13 and 14 are respectively moved in a state where the metal bush 2 is positioned at the center of the pair of compression molds 13 and 14, and the short fibers are And the aggregate 8 of powdery resin is compressed to a predetermined thickness.
  • the compression time and temperature are arbitrary depending on the type of short fiber and powdered resin used, but during the compression, a heater may be attached to the upper compression mold 13 and compressed in a heated state .
  • the time for removing the water contained in the molding material 5 can be shortened. Further, during the compression, by compressing in a vacuum suction state from the through holes 15 of the lower compression mold 14, the time for removing the water contained in the forming material 5 after the sheet making can be shortened.
  • the length of the short fiber is determined as follows, for example, when using a metal bush 2 as shown in FIG. That is, the protrusion dimension of the protrusion 4A (height of the protrusion 4A measured in the radial direction from the center portion 2A of the metal bush 2) is h1, and the height of the bottom of the recess 4B (diameter from the center portion 2A of the metal bush 2) Assuming that the height of the bottom of the concave portion 4B measured in the direction is h2, the length of the short fiber is equal to or larger than the smaller value of 0.5 ⁇ h1 mm and 1 ⁇ h2 mm, and 5 ⁇ h1 mm and 10 ⁇ h2 mm It is preferable to be less than or equal to the larger value of.
  • the effect of the detent becomes weak.
  • a fiber length sufficient for the short fiber to cover is required, and the length of the short fiber is 0.5 ⁇ h1 mm and 1 It is appropriate that the value is smaller than or equal to the smaller value of h2 mm.
  • the short fibers may cause the uniform dispersion of the slurry, resulting in a non-uniform fiber distribution that does not contribute to the increase in strength.
  • the length of the short fiber is suitably equal to or less than the larger value of 5 ⁇ h1 mm and 10 ⁇ h2 mm.
  • a protrusion a protrusion having two or more different protrusion sizes
  • having a height h3 larger than h1 may be used in combination.
  • the fiber length of the short fiber thus determined is preferably 2 mm to 6 mm, more preferably 3 mm. If the fiber length is less than 2 mm, the mechanical properties of the fiber-reinforced resin molded product are degraded. When the fiber length exceeds 6 mm, when the fiber bundle is dissociated and dispersed in water, the dissociation of the fiber bundle becomes difficult.
  • fine fibers and / or pulp fibers obtained by fibrillating aramid fibers and the like may be used in combination.
  • the projecting portion 4A constituting the anti-rotation portion having the undercut shape can be formed as designed with high accuracy if it is molded by a sintering method.
  • the optimum structure of the protrusion 4A is, for example, in the case of a resin gear having an outer diameter of 60 mm, the number of protrusions (crests) is 30 and the number of recesses or valleys formed between the protrusions is 29. Of course, these numbers may be suitably changed according to the diameter and thickness of the resin gear and the structure of the teeth.
  • the short fibers used are preferably fibers having a thermal decomposition temperature or melting temperature of 250 ° C. or higher.
  • the short fibers in the resin rotating body do not undergo thermal deterioration at the molding temperature and processing temperature at the time of molding, and the ambient temperature during actual use. It is possible to form a resin rotary body excellent in the properties.
  • para-aramid fibers As fibers that can be used in the present embodiment, para-aramid fibers, meta-aramid fibers, carbon fibers, glass fibers, boron fibers, ceramic fibers, ultra-high strength polyethylene fibers, polyketone fibers, polyparaphenylene benzobisoxazole
  • At least one or more synthetic fibers selected from fibers, wholly aromatic polyester fibers, polyimide fibers, and polyvinyl alcohol-based fibers can be used.
  • the short fibers contain at least 20% by volume or more of high strength and high elasticity modulus fibers having a tensile strength of 15 cN / dtex or more and a tensile elastic modulus of 350 cN / dtex or more.
  • the resin rotating body using the molding material 5 obtained in this manner can withstand high load applied during use.
  • the short fibers contain fine fibers and / or pulp fibers obtained by fibrillating aramid fibers.
  • the freeness (degree of freeness) of fine fibers and / or pulp fibers usable here is 100 ml or more and 400 ml or less, and the content of the fine fibers is 30% by mass or less in the short fibers Is desirable.
  • the fibrillation is insufficient, which is not preferable for imparting strength to maintain the shape of the molding material.
  • freeness is less than 100 ml, not only tearing in the axial direction of the fiber but also shearing in the radial direction to become a powder state, the entanglement of the fibers becomes worse and the shape of the molding material is maintained It is not preferable to impart strength. It is preferable to blend 5 to 10% by weight of fibrillated fibrils which can impart adequate strength to the molding material.
  • thermosetting resin those of various materials such as thermosetting resin and thermoplastic resin can be used.
  • epoxy resin polyaminoamide resin, phenol resin, unsaturated polyester resin, polyimide resin, polyether sulfone resin, polyether ether ketone resin, polyamide imide resin, polyamide resin, polyester resin, polyphenylene sulfide resin, polyethylene resin, polypropylene
  • phenol resins are preferable in view of the strength and heat resistance of the cured resin.
  • the particle shape of the powdery resin is arbitrary, it is preferable to use a granular one. Moreover, although a particle diameter changes with fiber diameters of a short fiber, 50 micrometers or less are preferable. The particle size was measured by the metal mesh sieving method defined in JIS-Z8801-1. Thereby, powdery resin can be uniformly distributed to the clearance gap of the collection of a staple fiber. When the particle diameter of the powdery resin is large, the fiber orientation of the aggregate of short fibers is disturbed, or when heat and pressure molding is performed to form a resin rotating body, the short fibers are formed inside the resin rotating body. This causes the powdery resin to be not uniformly distributed with the melted and cured resin.
  • the concentration at which the short fibers are dispersed in water is preferably 0.3 g / liter to 20 g / liter.
  • concentration at which the short fibers are dispersed in water is preferably 0.3 g / liter to 20 g / liter.
  • a fiber having a short fiber length it is possible to disperse with a high concentration slurry having a concentration of 20 g / liter because the fibers are less entangled and the dispersion is good.
  • the fiber length is too long and sufficient dispersion can not be achieved unless the concentration is as low as 0.3 g / liter.
  • FIG. 4 an example of the heating-pressing apparatus 20 which pressurizes the shaping
  • the mold 22 used in this apparatus is a fixed mold 25 provided with a recess 23 for accommodating the semi-finished product 21 composed of the bush 2 and the forming material 5 so as to restrict the outward spread of the forming material 5 in the radial direction.
  • the first movable mold 27 disposed displaceably with respect to the fixed mold 25 so as to be displaced within the recessed section 23 of the fixed mold 25, and the support portion 26 supporting the bush 2 is inserted into the recessed section 23.
  • the second movable mold 29 is provided with a pressing portion 29A for pressing the bush 2 supported by the support portion 26 and the molding material 5 toward the inner bottom surface 24 of the recess 23.
  • the stationary mold 25 is held in the heating device 30.
  • the first movable mold 27 is also heated by the heating device 30.
  • the second movable mold 29 is also heated by another heating device (not shown). Therefore, the heating and pressurizing device 20 is configured such that the fixed mold 25 and the first mold 25 are in a state where the inner bottom surface 24 of the fixed mold 25 and the pressing portion 29A of the second movable mold 29 are in contact with the forming material.
  • the movable mold 27 and the second movable mold 29 are heated to the moldable temperature of the powdery resin, and the second movable mold 29 moves toward the inner bottom surface 24 in the molten state of the powdered resin. It is configured.
  • the pressing portion 29A of the second movable mold 29 is inserted into the recess 23 of the fixed mold 25 and the metal bush 2 is pressed, the first movable mold 27 , And is displaced downward according to the insertion amount of the second movable mold 29.
  • the powdery resin is a thermosetting resin
  • a resin-made rotating body provided with a resin molded body mainly formed of short fibers as a core material (reinforcing fiber layer) It takes out from the mold 22, and the manufacture of the resin rotary body is completed.
  • a resin gear can be obtained by machining the outer peripheral portion of the resin molded body of the resin rotary body molded in this manner to form a tooth. If a groove is formed along the outer peripheral surface, a pulley can be obtained.
  • the proportion of the short fibers contained in the resin molding having the short fiber as a core material varies depending on the strength of the desired resin molding, etc., but is preferably 30% by volume or more and 60% by volume or less with respect to the resin molding .
  • the proportion of short fibers in the resin molded product is less than 30% by volume, the effect of reinforcing the resin with fibers is hardly observed, and the filling of the fibers into the detent portion of the metal bush 2 also becomes insufficient. .
  • the proportion of short fibers exceeds 60% by volume, the proportion of fibers is too high, and the molten resin during heating and pressure molding does not flow in the entire resin molded body, and a resin-deficient portion is easily generated. Problems occur.
  • the ratio of the fibers contained in the resin molded body is the strength of the resin rotary body, and the fibers are surely filled in the detent for depression 4B formed between the two projecting portions 4A, and further, the resin More preferred is 35 to 45% by volume which does not inhibit the impregnation.
  • short fibers and water are mixed to form a slurry.
  • a slurry for example, the mesh size of the wire mesh used for the bottom member 16 of the compression mold 14 shown in FIG. 3 becomes small (the mesh size of the wire mesh becomes large) because the viscosity of the slurry is low.
  • the fixing yield of the short fibers and the powdered resin in the molding material 5 is deteriorated. As schematically shown in FIG.
  • the electrostatic attraction aggregation type polymer flocculant functions not only as an aggregation function but also as a fixing agent
  • the short fibers are fixed to each other, the short fibers and the powdered resin are fixed.
  • the amount of short fibers and powdered resin remaining in the assembly 8 shown in FIG. 3 (B) can be increased. That is, the fixing rate of the short fiber and the powdered resin can be increased.
  • any usable electrostatic attraction aggregation type polymer flocculant may be used as long as it can increase the fixing rate of the short fiber and the powdery resin and does not significantly inhibit the dewatering property.
  • the cationic polymer flocculant for example, styrenic polymers, polyamine condensates, dicyandiamide condensates, cationically modified acrylic copolymers, polymethacrylic acid esters, polyamidine hydrochloride can be used.
  • an anionic polymer flocculant for example, an acrylic copolymer, a sulfonated polyphenol, a polyhydric phenol resin, a polyacrylic ester type, a polyacrylic acid soda / amide derivative can be used.
  • an anionic polymer coagulant is added.
  • a cationic polymer flocculant is added to the mixed solution, a plurality of short fibers and a part of powdery resin are gathered to form an aggregate called flock. Ru.
  • an anionic polymer flocculant is added, the flocs gather together to form a larger floc, and a large number of floc having a large size are formed. When such floc is formed, the dewaterability is improved.
  • the dewatering can be performed in a short time, and the fixing rate of the short fiber and the powdered resin is improved.
  • a cationic styrenic polymer aqueous solution is used as the cationic polymer flocculant and an anionic acrylic polymer aqueous solution is used as the anionic polymer flocculant, high dewaterability can be obtained.
  • an amphoteric polymer coagulant can be used as the polymer coagulant.
  • Amphoteric polymer flocculant refers to the neutralization effect (cation) of short fibers and powdery particles in the mixed liquid, formation of entanglement (high molecular weight) by the polymer chain, and entanglement (high molecular weight) It exerts a reinforcing effect by electrostatic attraction due to the charge of the anion and the cation.
  • an amphoteric polymer flocculant for example, acrylamide, acrylic acid, alkylamino acrylate quaternary salt copolymer, polyacrylic acid ester type, polymethacrylic acid ester type can be used.
  • Example 1 In order to produce a slurry, a tank filled with short fibers and water having a concentration of 4 g / l when the powdered resin is charged is prepared. In this tank, short fibers in an amount such that the total amount of short fibers in the resin molding is 40% by volume, and powdered resin in an amount such that the total amount of resin in the resin molding is 60% by volume. Specifically, as a fiber chop used as a short fiber, 50 mass% of a para-aramid fiber having an aspect ratio of 200 “Teconra (trademark)” manufactured by Teijin Limited, a meta-aramid fiber having an aspect ratio of 200, “Teijin ( 45% by mass of "CornexTM” manufactured by Co., Ltd.
  • the addition amount of the cationic styrenic polymer aqueous solution is 0.2% by mass with respect to the total amount of the short fibers and the powdery resin, and the addition amount of the anionic acrylic polymer aqueous solution is the short fibers and the powdery resin It was 0.1 mass% with respect to the total amount of.
  • the metal bush 2 is positioned on the lower bush supporting mold 12 using the filtration dewatering and compressing device 7 shown in FIG. 3 (A).
  • the upper bush support mold 11 is moved downward to sandwich the metal bush between the pair of bush support molds 11 and 12.
  • the position of the lower compression mold 14 is a position at which the distance from the axial center of the metal bush 2 to the top surface of the bottom member 16 is 50 mm.
  • a slurry containing dispersed fiber chops and phenolic resin powder is filled in the filtration dewatering and compressing device 7 while vacuum suction is being performed. Then, by continuing the vacuum suction and draining the water from the plurality of through holes 15 provided in the lower compression mold 14, the fiber chops and the phenol resin powder are separated from the water, and the cylindrical short fibers are separated. And an aggregate 8 of powdered resin is obtained.
  • the bottom member 16 is disposed on the lower compression mold 14. As the bottom member 16, a metal mesh of 20 mesh was used.
  • the metal bush 2 is compressed in order to more firmly wick the fiber into the detent portion of the metal bush 2.
  • the upper compression die 13 is lowered to a position where the distance from the axial center of the metal bush 2 to the lower surface of the upper compression die 13 is 50 mm. This position is a position where the metal bush 2 is located at the center between the pair of compression dies 13 and 14.
  • the pair of compression dies 13 and 14 are set to speed 1 to 5 respectively.
  • the molding material 5 is dried until the water content becomes 0.5 mass% or less. Incidentally, in the present embodiment, the thickness of the molding material 5 becomes 20 to 50 mm by the drying.
  • a first movable mold which is heated at 200 ° C. to a forming material 5 (a semi-finished product for forming a rotating body made of resin) integrated with the metal bush 2 obtained in the above process. Place at 27 and clamp. Then, the molding material 5 is heat and pressure molded to harden the powdery resin to obtain a gear material.
  • the molding material 5 having a thickness of 20 to 50 mm becomes 13 mm having substantially the same thickness as the metal bush 2 by the heat and pressure molding.
  • a resin gear is obtained by forming teeth by cutting this gear material.
  • Example 2 The same slurry as that produced in Example 1 was stirred without adding a cationic polymer flocculant and an anionic polymer flocculant to prepare a slurry used in this example.
  • the resin gear was manufactured similarly to Example 1 using the slurry produced in this way.
  • the mesh size of the metal wire mesh used in the filtration dehydration compression device 7 shown in FIG. 3A was 20 mesh as in the first embodiment.
  • Example 3 A cationic styrenic polymer aqueous solution was added as a cationic polymer flocculant to the same slurry as that produced in the above Example 1 and stirred to obtain a slurry used in this example.
  • the addition amount of the cationic styrenic polymer aqueous solution was 0.2% by mass with respect to the total amount of the short fibers and the powdered resin.
  • the resin gear was manufactured similarly to Example 1 using the slurry produced in this way.
  • Example 4 An anionic acrylic polymer aqueous solution was added as the anionic polymer flocculant to the same slurry as that produced in Example 1 above, and the mixture was stirred to obtain a slurry used in this example.
  • the addition amount of the anionic acrylic polymer aqueous solution was 0.1% by mass with respect to the total amount of the short fibers and the powdered resin.
  • the resin gear was manufactured similarly to Example 1 using the slurry produced in this way.
  • Example 5 By simultaneously adding a cationic styrenic polymer aqueous solution as a cationic polymer flocculant and an anionic acrylic polymer aqueous solution as an anionic polymer flocculant to the same slurry produced in Example 1 above. The mixture was stirred to obtain a slurry used in this example.
  • the addition amount of the cationic styrenic polymer aqueous solution is 0.2% by mass with respect to the total amount of the short fibers and the powdery resin
  • the addition amount of the anionic acrylic polymer aqueous solution is the short fibers and the powdery resin It was 0.1 mass% with respect to the total amount of.
  • the resin gear was manufactured similarly to Example 1 using the slurry produced in this way.
  • Example 6 An anionic acrylic polymer aqueous solution is added as an anionic polymer flocculant to the same slurry as prepared in Example 1 above and stirred, and then a cationic styrenic polymer as a cationic polymer flocculant The aqueous solution was added and stirred to obtain a slurry used in this example.
  • the addition amount of the anionic acrylic polymer aqueous solution is 0.1% with respect to the total amount of the short fiber and the powdered resin
  • the addition amount of the cationic styrenic polymer aqueous solution is that of the short fiber and the powdered resin It was 0.2 wt% with respect to the total amount.
  • the resin gear was manufactured similarly to Example 1 using the slurry produced in this way.
  • Example 7 In place of the electrostatic attraction aggregation type polymer flocculant added to the slurry in Example 1, a polyethylene oxide type flocculant was used as the thickening aggregation type polymer flocculant.
  • flocculant As a polyethylene oxide type coagulant
  • the addition amount of the polyethylene oxide type flocculant was 0.05% by mass with respect to the total amount of the short fibers and the powdered resin.
  • the resin gear was manufactured similarly to Example 1 using the slurry produced in this way.
  • the mesh size of the metal wire mesh used in the filtration dehydration compression device 7 shown in FIG. 3A was 20 mesh as in the first embodiment.
  • Example 1 In order to produce a slurry, prepare a tank filled with water in such an amount that the concentration when short fiber is charged is 4 g / liter. Then, in the tank, short fibers of an amount such that the total amount of short fibers in the resin molded body is 40% by volume are placed. The type and mixing ratio of the fiber chops used as the short fibers are as shown in Example 1. Next, the water in the tank is stirred with a stirrer to disperse the fiber chops.
  • the metal bush 2 is positioned on the lower bush supporting mold 12 using the filtration dewatering and compressing device 7 shown in FIG. 3 (A).
  • the shape of the metal bush 2 used is as shown in the first embodiment.
  • the upper bush support mold 11 is moved downward to sandwich the metal bush between the pair of bush support molds 11 and 12.
  • the position of the lower compression mold 14 is a position at which the distance from the axial center of the metal bush 2 to the top surface of the bottom member 16 is 40 mm.
  • a slurry containing dispersed fiber chops is filled.
  • the bottom member 16 is disposed on the lower compression mold 14. A metal mesh of 100 mesh was used as the bottom member 16.
  • the metal bush 2 is compressed in order to more firmly wick the fiber into the detent portion of the metal bush 2.
  • the pair of compression dies 13 and 14 are set to speed 1 to 5 respectively.
  • the reinforcing fiber base integrated with the metal bush 2 obtained in the above process is placed in a first movable mold 27 heated to 200 ° C. and clamped. Then, after the inside of the first movable mold 27 is depressurized to a pressure of 90 kPa or less, 69 parts by mass of 2,2 '-(1,3 phenylene) bis 2-oxazoline and 31 parts by mass of 4,4'-diaminodiphenylmethane are mixed.
  • the melted resin is melted at a temperature of 140 ° C., 1 part by mass of octyl bromide is added, and the stirred resin is injected into the inside of the mold to impregnate the reinforcing fiber base and heat-cured in the first movable mold 27 Get the gear material.
  • a resin gear is obtained by forming teeth by cutting this gear material.
  • the papermaking apparatus 307 includes a bottom surface portion 313 and a rectangular cylindrical papermaking cylinder 309. In addition, only the bottom surface part 313 was comprised with the wire mesh.
  • the wire mesh used was a sheet mesh of 100 mesh.
  • the slurry containing the dispersed fiber chops described above was introduced into the paper-making apparatus 307 to obtain an aggregate 310.
  • the stack 310 was removed and dewatered and dried. Then, as shown to FIG. 7 (B), it pierce
  • FIG. 8 (A) is a schematic longitudinal sectional view of the resin rotating body manufactured in this manner. There is almost no entanglement of short fibers at the superposed interface BS of the two reinforcing fiber bases 305 in the resin molded body 306 of the resin rotary body.
  • Boss removal strength As shown in FIG. 9, the resin gear 51 is disposed on a cylindrical base 55 having an inner diameter larger than the outer diameter of the metal bush 2 in contact with only the resin molded body. A metal fitting 56 for holding the metal bush 2 was attached from the upper side, a load was applied to the metal fitting 56, and the maximum load until the resin gear 51 was broken was measured.
  • the semi-finished product for resin rotary body molding according to the present invention has a pressure reduction inside the mold for molding while pressing the reinforcing fiber base from the axial direction as in the conventional example. Then, the work of pouring the resin and impregnating the reinforcing fiber base with the resin can be omitted, and the actual working time can be shortened.
  • the resin rotary body according to the present invention does not form the boundary surface of the fiber layer inside the molding material, and can improve the bonding strength between the resin molded body and the detent portion of the bush. Therefore, the boss removal strength is improved.
  • Table 2 shows the results of the evaluation of the fixing yield and the drainage time in the case where the resin rotary body molding semi-processed article was prepared by the method shown in the above-mentioned Examples 1 to 7.
  • the measurement method is as follows.
  • Fixing yield 100% of fiber chops and phenol resin powder contained in the slurry, which is an index showing how many% of fiber chops and phenol resin powder remain after dehydration.
  • the fixing yield is determined by adding a coagulant and preparing a slurry with the material combination specified in Examples 1 to 7, and measuring the mass after drying of the formed material 5 produced using the filtration dehydration compression device 7. Calculated.
  • Drainage time It was measured as the time for the slurry liquid level to reach the bottom member 16 after the slurry was filled in the filter dewatering and compressing device 7.
  • Example 1 has a high fixing yield as compared to Example 2, and the drainage time is almost the same as Example 2.
  • the fixing yield is high in Example 7, the drainage time is nearly eight times longer than those in Examples 1 to 6, and it is understood that it is not practical.
  • Examples 2 to 5 have a concern that the fixing yield of the phenol resin powder is particularly low and mechanical strength of the resin gear gear is reduced as compared with Example 1, and therefore phenol is taken into consideration in fixing production when slurry is produced. Resin powder is compounded in excess.
  • the necessary amount of the short fiber and the powdery resin is accumulated around the detent of the bush and the bush is detented
  • the part can be completely surrounded by a collection of short fibers and powdered resin. Further, by compressing this, it is possible to ensure penetration of the short fiber and the powdered resin into the detent portion of the bush and to increase the density of the short fiber in the vicinity of the outer periphery of the bush.
  • the bonding strength between the resin molded product and the detent portion of the bush can be improved without forming the boundary surface of the fiber layer inside the reinforcing fiber base material, and it is made of resin
  • the advantage is obtained that the durability performance of the resin rotary body such as a gear can be greatly improved.
  • a resin molded body can be formed by heating and pressure forming a forming material, as in the prior art, the pressure in the forming mold is reduced to a vacuum while the reinforcing fiber base material is pressed from the axial direction. Then, the work of pouring the resin and impregnating the reinforcing fiber base with the resin can be omitted, and the number of processes can be reduced. In addition, the structure of the molding die can be simplified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

The present invention enables production of a highly reliable rotating resin-body by which a resin molded body can be formed with a simple process, an overlay interface of a base material is not created, and joining strength between the resin molded body and a turning-stopper section provided to an outer peripheral section of a bush made of metal is enhanced. The present invention comprises a first step for aggregating short fiber and a powdered resin on the perimeter of an outer peripheral section of a bush (2) by filtering and dewatering and thereby forming an aggregate (8) of the short fiber and the powdered resin surrounding the outer peripheral section of the bush (2), and a second step for compressing the aggregate (8) of the short fiber and the powdered resin in the axial direction of a rotating shaft to form a molding material (5). Then, the molding material is heated and pressurized to form a resin molded body.

Description

樹脂製回転体成形用半加工品の製造方法及び樹脂製回転体の製造方法ならびに加熱加圧装置Method of manufacturing resin-made rotating body molding semi-finished product, method of manufacturing resin-made rotating body, and heating and pressing apparatus
 本発明は、樹脂製回転体成形用半加工品の製造方法に関するものであり、また本発明は樹脂製回転体の製造方法に関するものである。さらに、本発明は加熱加圧装置に関するものである。 The present invention relates to a method for producing a resin-made rotary body-molding semi-finished product, and the present invention relates to a method for producing a resin-made rotary body. Furthermore, the present invention relates to a heating and pressurizing device.
 補強用繊維基材を用いた樹脂製回転体は耐久性能に優れ、車輌用部品、産業用部品等に用いられる樹脂製歯車などの樹脂製回転体として好適である。 A resin-made rotating body using a reinforcing fiber base is excellent in durability performance, and is suitable as a resin-made rotating body such as a resin-made gear used for automotive parts, industrial parts and the like.
 特開2009-154338号公報(特許文献1)及び特開2009-250364号公報(特許文献2)には、短繊維からなる補強繊維と水とを混合したスラリーを用いて、ブッシュの外周部に補強用繊維基材を形成する樹脂製回転体の製造方法が開示されている。これらの公報に記載の方法では、スラリーを金属製ブッシュを収納した固定金型内に入れ、補強繊維が漏出しないようにスラリーから脱水を行ってブッシュの周囲に補強繊維を集合させて集合物を作り、その後集合体を圧縮して補強用繊維基材を形成する。その後、補強用繊維基材に樹脂を含浸させて、樹脂を硬化させて樹脂製回転体を製造する。 JP-A 2009-154338 (Patent Document 1) and JP-A 2009-250364 (Patent Document 2) use a slurry obtained by mixing water and a reinforcing fiber consisting of short fibers at the outer peripheral part of the bush. There is disclosed a method of manufacturing a resin rotating body for forming a reinforcing fiber base. In the methods described in these publications, the slurry is placed in a fixed mold containing a metal bush, dewatered from the slurry so that the reinforcing fibers do not leak, and the reinforcing fibers are gathered around the bush to form an aggregate. The assembly is then compressed to form a reinforcing fibrous substrate. Thereafter, the reinforcing fiber base is impregnated with the resin, and the resin is cured to manufacture a resin rotating body.
特開2009-154338号公報JP, 2009-154338, A 特開2009-250364号公報JP, 2009-250364, A
 特許文献1及び2に記載の従来の方法は、金属製ブッシュと補強繊維とを一体化した補強用繊維基材を使用することで耐久性能の低下を防止する。しかし、この従来の方法では、補強用繊維基材を成形用金型に配置して、この補強用繊維基材を軸方向から押圧しながら成形用金型内部を真空に減圧し、樹脂を流しこんで該補強用繊維基材に樹脂を含浸させなければならない。このため、成形用金型の構造が複雑となり、また工程数が増加するという問題がある。 The conventional methods described in Patent Documents 1 and 2 prevent the deterioration of the durability performance by using a reinforcing fiber base in which a metal bush and reinforcing fibers are integrated. However, in this conventional method, the reinforcing fiber base material is disposed in the molding die, and while the reinforcing fiber base material is pressed from the axial direction, the pressure in the molding die is reduced to a vacuum and the resin is flowed. The reinforcing fiber base should be impregnated with resin. As a result, the structure of the molding die becomes complicated, and the number of processes increases.
 また従来の方法では、短繊維を漏出させることなく、しかも短い時間で成形素材を製造することができなかった。 Moreover, in the conventional method, it was not possible to produce a molding material in a short time without leaking the short fibers.
 本発明の目的は、簡易な工程で樹脂製回転体成形用半加工品及び樹脂製回転体を形成できる樹脂製回転体成形用半加工品の製造方法及び樹脂製回転体の製造方法を提供することにある。 The object of the present invention is to provide a method for manufacturing a resin-made rotary member molding semi-finished product and a method for manufacturing a resin-made rotary member, which can form a resin rotary member molding semi-finished product and a resin rotary member. It is.
 本発明の更に他の目的は、短い時間で、樹脂製回転体成形用半加工品を形成できる樹脂製回転体成形用半加工品の製造方法を提供することにある。 Still another object of the present invention is to provide a method for manufacturing a resin-made rotating body molding blank which can form a resin-made rotating body molding blank in a short time.
 本発明の他の目的は、樹脂製回転体を製造するのに適した加熱加圧装置を提供することにある。 Another object of the present invention is to provide a heating and pressing device suitable for producing a resin rotating body.
 本発明が改良の対象とする樹脂製回転体成形用半加工品の製造方法では、まず外周部に1以上の回り止め部が形成されて回転軸を中心にして回転することができるブッシュを用意するステップを実施する。次に、ブッシュの外周部に、短繊維と粉末状樹脂の集合物によって形成され且つ1以上の回り止め部を囲むようにブッシュに嵌った状態で配置された成形素材を形成するステップを実施する。 In the method of manufacturing a semi-finished product for molding a resin rotary body to be improved according to the present invention, first, one or more detents are formed on the outer peripheral portion, and a bush capable of rotating about a rotation axis is prepared. Carry out the following steps. Next, the step of forming a forming material formed of an aggregate of short fibers and powdered resin and disposed in a state of being fitted to the bush so as to surround one or more rotation preventing portions is performed on the outer peripheral portion of the bush. .
 本発明では、成形素材を形成するステップを次の二つのステップにより構成する。第1のステップでは、短繊維と粉末状樹脂と水とを混合して調製したスラリーを濾過脱水法により、ブッシュの外周部の周囲に短繊維と粉末状樹脂を集積させて1以上の回り止め部を含むブッシュの外周部を囲む短繊維と粉末状樹脂の集合物を形成する。濾過脱水法とは、短繊維を含むスラリーを所定の容器にいれて、容器内のスラリーを濾過しながら脱水することにより、短繊維と粉末状樹脂が集合してなる集合物を形成する方法である。このような方法により短繊維と粉末状樹脂の集合物を製造すれば、成形素材の中央部に剥離の原因となるような境界部が形成されることはない。さらに濾過しながら脱水する際に、1以上の回り止め部の周囲に短繊維と粉末状樹脂が確実に回り込むため、樹脂成形体とブッシュの回り止め部との結合強度を高めることができる。そして第2のステップでは、短繊維と粉末状樹脂の集合物を回転軸の軸線方向に圧縮してブッシュの外周部に成形素材を形成する。この圧縮によって、回り止め部への短繊維と粉末状樹脂の喰い込みを確実なものとするとともに、回り止め部の周囲の短繊維の密度が高まり、ブッシュと樹脂成形体との結合がさらに高まる。 In the present invention, the step of forming the forming material is constituted by the following two steps. In the first step, a slurry prepared by mixing short fibers, powdered resin and water is collected by filtration and dewatering, and short fibers and powdered resin are accumulated around the outer periphery of the bush to prevent one or more rotations. An assembly of short fibers and powdered resin surrounding the outer periphery of the bush including the part is formed. The filtration and dewatering method is a method in which a slurry containing short fibers is placed in a predetermined container and dewatered while filtering the slurry in the container to form an aggregate of short fibers and a powdered resin. is there. When an aggregate of short fibers and powdered resin is produced by such a method, a boundary portion which causes peeling is not formed at the central portion of the molding material. Furthermore, when dewatering while filtering, the short fibers and the powdered resin reliably wrap around the one or more detents, so the bonding strength between the resin molded body and the detents of the bush can be increased. Then, in the second step, the aggregate of short fibers and powdered resin is compressed in the axial direction of the rotating shaft to form a forming material on the outer peripheral portion of the bush. While this compression makes sure that the short fiber and powdery resin are embedded in the detent portion, the density of the short fibers around the detent portion increases and the bond between the bush and the resin molding further increases. .
 なお、前記第1のステップと前記第2のステップとを、ブッシュと、短繊維と粉末状樹脂の集合物を収容している同一装置内で連続して行ってもよい。短繊維と粉末状樹脂の集合物を同一の装置を用いて連続して圧縮まで行った場合は、嵩高く強度が弱い(型崩れしやすい)集合物を取り扱う作業が必要ないため、作業工程が少なくて済む。また、第2のステップで行う圧縮により成形素材の密度が高まるので、成形素材の強度を高めることができ、作業性(取り扱い性)が大幅に向上する。 Note that the first step and the second step may be performed continuously in the same device containing a bush and an aggregate of short fibers and powdered resin. If the assembly of short fibers and powdered resin is continuously compressed using the same apparatus, it is not necessary to handle an aggregate that is bulky and weak in strength (it is easy to lose shape). It will be less. In addition, since the density of the forming material is increased by the compression performed in the second step, the strength of the forming material can be enhanced, and the workability (handling ability) is significantly improved.
 第1のステップは、ブッシュと、短繊維と粉末状樹脂の集合物の収容空間を減圧吸引した状態で行うことが好ましい。これにより、ブッシュの外周部の周囲に短繊維と粉末状樹脂を集積させる時間を短縮することができる。 The first step is preferably performed in a state where the housing space of the bush and the aggregate of the short fibers and the powdered resin is vacuumed and sucked. As a result, the time for accumulating the short fibers and the powdered resin around the outer peripheral portion of the bush can be shortened.
 また第1のステップでは、短繊維と粉末状樹脂と水とを混合した混合液に、1種以上の静電引力凝集タイプの高分子凝集剤(polymer flocculating agent)を添加してスラリーを調整するようにしてもよい。静電引力凝集タイプの高分子凝集剤を添加すると、高分子凝集剤が凝集機能だけでなく定着剤(fixing agent)としても機能し、短繊維同士が定着するともとに、短繊維と粉末状樹脂が定着する。その結果、集合物中に残る短繊維及び粉末状樹脂の量を増やすことができる。すなわち短繊維と粉末状樹脂の定着率を高めることができる。 In the first step, the slurry is prepared by adding one or more types of polymer flocculating agent of the electrostatic attraction aggregation type to a mixture of short fibers, powdered resin and water. You may do so. When an electrostatic attractive aggregation type polymer flocculant is added, the polymer flocculant functions not only as an aggregating function but also as a fixing agent, so that the short fibers are fixed together and the short fibers and the powder form The resin is fixed. As a result, the amount of short fibers and powdered resin remaining in the aggregate can be increased. That is, the fixing rate of the short fiber and the powdered resin can be increased.
 なお1種以上の静電引力凝集タイプの高分子凝集剤として、混合液に、カチオン性高分子凝集剤(cationic polymer flocculating agent)を添加した後、アニオン性高分子凝集剤(anionic polymer flocculating agent)を添加するのが好ましい。混合液にカチオン性高分子凝集剤を添加すると、一部の短繊維と一部の粉末状樹脂とが集まってできる多数のフロックと呼ばれる集合物が形成される。その後アニオン性高分子凝集剤を添加すると、フロック同士が集合して更に大きなフロックの形成が進み、寸法の大きなフロックが多数形成される。このようなフロックが形成されると、脱水性が向上する。その結果、短い時間で脱水をできるとともに、短繊維と粉末状樹脂の定着率が向上する。特に、カチオン性高分子凝集剤としてカチオン性スチレン系高分子水溶液を用い、アニオン性高分子凝集剤としてアニオン性アクリル系高分子水溶液を用いると、高い脱水性を得ることができる。 Furthermore, after adding a cationic polymer flocculant (cationic polymer flocculating agent) to the mixed solution as one or more kinds of electrostatic attractive flocculation type polymer flocculants, an anionic polymer flocculating agent (anionic polymer flocculating agent) Is preferably added. When a cationic polymer flocculant is added to the mixed solution, a part of short fibers and a part of powdered resin gather to form a large number of aggregates called floc. Thereafter, when an anionic polymer flocculant is added, the flocs aggregate together to form larger flocs, and a large number of flocs with large dimensions are formed. When such floc is formed, the dewaterability is improved. As a result, the dewatering can be performed in a short time, and the fixing rate of the short fiber and the powdered resin is improved. In particular, when a cationic styrenic polymer aqueous solution is used as the cationic polymer flocculant and an anionic acrylic polymer aqueous solution is used as the anionic polymer flocculant, high dewaterability can be obtained.
 なお1種以上の静電引力凝集タイプの高分子凝集剤として、両性高分子凝集剤(amphoteric polymer flocculating agent)を用いてもよい。両性高分子凝集剤とは、混合液中の短繊維及び粉末状粒子の中和効果(カチオン)と、高分子鎖による絡まり合い(高分子量体)の生成と、絡まり合い(高分子量体)をアニオンとカチオンの電荷による静電引力により補強する作用を発揮するものである。 In addition, an amphoteric polymer flocculating agent may be used as one or more types of electrostatic attractive flocculation type polymer flocculants. Amphoteric polymer flocculant refers to the neutralization effect (cation) of short fibers and powdery particles in the mixed liquid, formation of entanglement (high molecular weight) by the polymer chain, and entanglement (high molecular weight) It exerts a reinforcing effect by electrostatic attraction due to the charge of the anion and the cation.
 なお成形素材を加熱しながら加圧して、粉末状樹脂を溶融させて生成した溶融樹脂を短繊維からなる補強繊維層に含浸させた後、溶融樹脂を硬化させれば樹脂成形体を形成することができる。本発明では、特許文献1及び2のように、成形素材を軸方向から押圧しながら成形用金型内部を真空に減圧し、樹脂を流しこんで成形素材に樹脂を含浸させる作業が必要ないため、工程数が少なくて済む。また成形用金型の構造も簡略化できる。 The molding material is heated and pressurized to melt the powdery resin, and the molten resin produced is impregnated into the reinforcing fiber layer consisting of short fibers, and then the molten resin is cured to form a resin molded body. Can. In the present invention, as in Patent Documents 1 and 2, while the molding material is pressed from the axial direction, the inside of the molding die is depressurized to a vacuum, and the resin is poured to impregnate the resin into the molding material. , The number of processes can be reduced. In addition, the structure of the molding die can be simplified.
 なお短繊維としては、種々の材質及び種類のものを用いることができる。本願特許請求の範囲において「短繊維」とは、文字通りに長さが短い繊維だけでなく、繊維をフィブリル化処理した微細繊維及び/またはパルプ状繊維を含んでいる場合を包含するものである。例えば、短繊維として、長さが2乃至6mmのアラミド繊維と、アラミド繊維をフィブリル化処理した微細繊維を含み、微細繊維のフリーネスが100ml以上400ml以下であって、微細繊維の含有量が短繊維中の30質量%以下となるものを用いるのが好ましい。このような短繊維を用いると、圧縮が容易でしかも、樹脂成形体と回り止め部との間に必要十分な結合強度を得ることができる。 In addition, as a short fiber, the thing of various materials and kinds can be used. In the claims of the present application, the term "short fibers" is intended to encompass not only fibers having literally short lengths but also fine fibers and / or pulp-like fibers obtained by fibrillating fibers. For example, the short fibers include aramid fibers having a length of 2 to 6 mm and fine fibers obtained by fibrillating the aramid fibers, the freeness of the fine fibers is 100 ml or more and 400 ml or less, and the content of the fine fibers is short fibers It is preferable to use what becomes 30 mass% or less among them. Use of such a short fiber makes it easy to compress and can obtain a necessary and sufficient bonding strength between the resin molded body and the detent.
 粉末状樹脂としては、熱硬化性樹脂、熱可塑性樹脂など種々の材質のものを用いることができる。粉末状樹脂の粒子形状は任意であるが、粒状のものを用いるのが好ましい。また、粒子径は、短繊維の繊維径により異なるが、短繊維の集合物の隙間に均一に分布できるような粒子径が好ましい。粒子径が大きい場合、短繊維の集合物の繊維配向を乱したり、加熱加圧成形して樹脂成形体を形成する際、成形体内部の短繊維と樹脂が均一に分布しない原因となるからである。 As powdery resin, those of various materials such as thermosetting resin and thermoplastic resin can be used. Although the particle shape of the powdery resin is arbitrary, it is preferable to use a granular one. Further, the particle diameter is different depending on the fiber diameter of the short fiber, but a particle diameter which can be uniformly distributed in the gap of the aggregate of short fibers is preferable. When the particle diameter is large, the fiber orientation of the aggregate of short fibers is disturbed, or when forming a resin molded body by heating and pressure forming, the short fibers and the resin inside the molded body are not uniformly distributed. It is.
 また短繊維は、熱分解温度或いは溶融温度が250℃以上の合成繊維からなり、粉末状樹脂は、成形可能温度が合成繊維の熱分解温度或いは溶融温度よりも低く且つ粒子径が50μm以下の熱硬化性樹脂または熱可塑性樹脂の粒子からなるのが好ましい。このような合成繊維と粉末状樹脂とを用いると、短繊維を熱分解或いは溶融させずに、粉末状樹脂だけを溶融して、短繊維の周囲に溶融した樹脂を確実に浸透させて、樹脂製回転体を形成することができる。本願明細書において、50μm以下の粒子径は、JIS-Z8801-1で規定されている金属製網ふるい分け法によって測定した粒子の径寸法を意味する。 The short fibers consist of synthetic fibers having a thermal decomposition temperature or melting temperature of 250 ° C. or higher, and the powdered resin has a moldable temperature that is lower than the thermal decomposition temperature or melting temperature of synthetic fibers and a particle diameter of 50 μm or less It is preferable to be made of particles of a curable resin or a thermoplastic resin. When such a synthetic fiber and powdered resin are used, only the powdered resin is melted without thermally decomposing or melting the short fiber, and the molten resin is surely permeated around the short fiber, thereby the resin A rotating body can be formed. In the present specification, the particle diameter of 50 μm or less means the diameter dimension of the particles measured by the metal mesh sieving method defined in JIS-Z8801-1.
 なお樹脂成形体に対する短繊維の割合は、30体積%以上60体積%以下であることが望ましい。この範囲の値であれば、樹脂成形体に必要とされる機械的強度を、確実に得ることができる。 In addition, as for the ratio of the short fiber with respect to a resin molding, it is desirable that it is 30 volume% or more and 60 volume% or less. If the value is in this range, the mechanical strength required for the resin molding can be reliably obtained.
 本発明で用いることができる、成形素材を加熱しながら加圧する加熱加圧装置は、成形素材の径方向外側への広がりを規制するようにブッシュと一緒に成形素材を収容する凹部を備えた固定金型と、ブッシュを支持する支持部が固定金型の凹部内で変位するように固定金具に対して変位可能に配置された第1の可動金型と、凹部内に挿入されて支持部に支持されたブッシュ及び成形素材を凹部の内底面に向かって押す押圧部を備えた第2の可動金型とを備えているものを用いることができる。この加熱加圧装置は、固定金型の内底面と、第2の可動金型の押圧部とを成形素材に接触させた状態で、固定金型、第1の可動金型及び第2の可動金型が粉末状樹脂の成形可能温度に加熱され、粉末状樹脂が溶融した状態で第2の可動金型が内底面に向かって移動するように構成されているのが好ましい。このような加熱加圧装置であれば、簡単な構造で加熱と加圧とを実行することができる。 The heating and pressurizing apparatus that can be used in the present invention to heat and press the molding material is fixed with a recess that accommodates the molding material together with the bush so as to restrict the outward spread of the molding material. The first movable mold, which is disposed displaceably with respect to the fixing bracket so that the mold and the supporting portion for supporting the bush are displaced in the recessed portion of the fixed mold, and the supporting portion inserted into the recessed portion It is possible to use one having a supported bush and a second movable mold provided with a pressing portion for pressing the molding material toward the inner bottom surface of the recess. The heating and pressing device is configured such that the fixed mold, the first movable mold, and the second movable are movable in a state where the inner bottom surface of the fixed mold and the pressing portion of the second movable mold are in contact with the molding material. Preferably, the mold is heated to a moldable temperature of the powdery resin, and the second movable mold is moved toward the inner bottom surface in the molten state of the powdery resin. With such a heating and pressurizing device, heating and pressurization can be performed with a simple structure.
 樹脂成形体に機械加工を施して複数の歯を形成すれば、機械的に強度が高く、しかも、使用時の騒音の発生が少ない歯車を得ることができる。なお本発明の樹脂製回転体を用いて、歯車の他に、プーリ等の回転部品を製造してもよいのは勿論である。 If a resin molded body is machined to form a plurality of teeth, it is possible to obtain a gear which is mechanically strong and which generates less noise at the time of use. Of course, in addition to the gears, rotating parts such as pulleys may be manufactured using the resin rotating body of the present invention.
 本発明の方法により形成される成形素材は、基材の重ね合せ界面がなく、剥離することがない。これらのことから、樹脂製歯車などの樹脂製回転体の耐久性能は大幅に向上する。 The molding material formed by the method of the present invention has no overlapping interface of the substrate and does not peel off. From these facts, the durability performance of the resin rotary body such as the resin gear is greatly improved.
模式的に示した本発明の樹脂製回転体の実施の形態の一例の縦断面図である。It is a longitudinal cross-sectional view of an example of embodiment of the resin-made rotary body of this invention shown typically. (A)及び(B)は、金属製ブッシュの平面図及び縦断面図である。(A) and (B) are the top view and longitudinal cross-sectional view of metal bush. (A)乃至(D)は、成形素材の抄造及び圧縮工程を順番に示す図である。(A) thru | or (D) are figures which show the papermaking of a forming raw material, and a compression process in order. 加熱加圧成形用の金型の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the metal mold | die for heat-pressure molding. (A)はメッシュサイズにより生じる問題を説明するために用いる図であり、(B)は静電引力凝集タイプの高分子凝集剤の機能を説明するために用いる図である。(A) is a figure used in order to explain the problem which arises by mesh size, (B) is a figure used in order to explain the function of a polymer flocculant of an electrostatic attraction aggregation type. 静電引力凝集タイプの高分子凝集剤の機能を説明するために用いる図である。It is a figure used in order to demonstrate the function of a polymer flocculant of electrostatic attraction aggregation type. (A)及び(B)は、従来例を製造するために用いる抄造装置の一例と、従来の補強用繊維基材の製造例を示す図である。(A) And (B) is a figure which shows an example of a paper-making apparatus used in order to manufacture a prior art example, and the manufacture example of the conventional fiber base material for reinforcement. (A)は従来例を製造するために用いる樹脂注型用の金型の一例を示す概略断面図であり、(B)は従来例で製造した樹脂製回転体の縦断面図である。(A) is a schematic sectional drawing which shows an example of the metal mold | die for resin casting used in order to manufacture a prior art example, (B) is a longitudinal cross-sectional view of the resin-made rotary body manufactured by a prior art example. ボス抜き強度を測定する装置の構成を示す図である。It is a figure which shows the structure of the apparatus which measures boss | hub removal strength.
 以下図面を参照して、本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[第1の実施の形態]
 図1は、模式的に示した本発明の樹脂製回転体の第1の実施の形態の一例の縦断面図である。この樹脂製回転体1は、図示しない回転軸を中心にして回転する金属製ブッシュ2を備えている。金属製ブッシュ2の中央部には、図示しない軸が嵌合される貫通孔3が形成されている。また金属製ブッシュ2の外周部4には、複数の回り止め部を構成する突出部4Aが周方向に所定の間隔をあけて一体に形成されている。なお金属製ブッシュ2に軸が一体に形成されていてもよい。複数の突出部4Aの軸線方向に測った厚み寸法L2は、金属製ブッシュ2の軸線方向に測った厚み寸法L1よりも小さい。そして図2に示すように、回転方向への負荷に耐える回り止め部の作用を高めるためには、好ましくは、回り止め部となる突出部4Aは、少なくとも高さh1の突出部4Aと二つの突出部4A間に形成されて高さh2の底部を有する凹部4Bとが交互に配列されたものが好ましい。このようなアンダーカットの形状を持ち、角度θが5°以上40°以下の突出部4Aを用いると、図3(D)及び図4に示す成形素材5内に回り止め部としての複数の突出部4Aが完全に埋まった状態となり、ブッシュ2と成形素材5との間の機械的結合の強度を十分なものとすることができる。
First Embodiment
FIG. 1 is a longitudinal sectional view of an example of a first embodiment of a resin rotary body according to the present invention schematically shown. The resin rotating body 1 is provided with a metal bush 2 which rotates around a rotating shaft (not shown). A through hole 3 in which a shaft (not shown) is fitted is formed at the center of the metal bush 2. Further, on the outer peripheral portion 4 of the metal bush 2, protruding portions 4A constituting a plurality of detents are integrally formed at predetermined intervals in the circumferential direction. The shaft may be formed integrally with the metal bush 2. The thickness L2 measured in the axial direction of the plurality of protrusions 4A is smaller than the thickness L1 measured in the axial direction of the metal bush 2. And, as shown in FIG. 2, in order to enhance the action of the detent to bear the load in the rotational direction, preferably, the protrusion 4A to be the detent should have at least two protrusions 4A with height h1. It is preferable that the recesses 4B formed between the protrusions 4A and having the bottom of the height h2 be alternately arranged. With such an undercut shape and using a projecting portion 4A having an angle θ of 5 ° or more and 40 ° or less, a plurality of projections serving as a rotation stopping portion in the forming material 5 shown in FIG. 3 (D) and FIG. The portion 4A is completely filled, and the strength of the mechanical connection between the bush 2 and the molding material 5 can be made sufficient.
 本実施の形態では、図3(D)及び図4に示す1つの成形素材5が、金属製ブッシュ2の外周部4の外側の位置に、外周部4に嵌った状態で配置されている。そして成形素材5を加熱加圧成形して、樹脂成形体6が形成されている。 In the present embodiment, one forming material 5 shown in FIG. 3D and FIG. 4 is disposed at a position outside the outer peripheral portion 4 of the metal bush 2 in a state of being fitted to the outer peripheral portion 4. Then, the molding material 5 is heated and pressed to form the resin molded body 6.
 成形素材5を形成する場合には、図3に概略的に示すように、濾過及び脱水と圧縮を連続して行うことができる濾過脱水圧縮装置7を用いて金属製ブッシュ2の外周部4の外側位置に短繊維と粉末状樹脂の集合物8を形成する。そしてこの短繊維と粉末状樹脂の集合物8を回転軸の軸線方向に圧縮することにより成形素材5を形成する。 When forming the forming material 5, as schematically shown in FIG. 3, the filtration dewatering and compressing device 7 capable of continuously performing filtration and dewatering and compression is used to form the outer peripheral portion 4 of the metal bush 2. An aggregate 8 of short fibers and powdered resin is formed at the outer position. Then, the aggregate 8 of the short fibers and the powdered resin is compressed in the axial direction of the rotation shaft to form the molding material 5.
 まず、濾過脱水法によりブッシュ2の外周部4の周囲に短繊維と粉末状樹脂を集積させて1以上の回り止め部(4A)を含むブッシュ2の外周部4を囲む短繊維と粉末状樹脂の集合物8を形成する第1のステップについて説明する。 First, short fibers and powdered resin are accumulated around the outer peripheral part 4 of the bush 2 by the filtration dehydration method, and the short fibers and powdered resin surrounding the outer peripheral part 4 of the bush 2 including one or more detents (4A) The first step of forming the aggregate 8 of FIG.
 図3(A)に示すように、この濾過脱水圧縮装置7で用いる金型は、圧縮動作時に短繊維と粉末状樹脂の集合物8が金属製ブッシュ2の径方向外側に広がるのを規制する筒状金型10と、筒状金型10の内部に配置されて金属製ブッシュ2の外周部よりも内側に位置する部分を軸線方向の両側から挟み且つ圧縮動作時に短繊維と粉末状樹脂の集合物8が金属製ブッシュ2の径方向内側に広がるのを規制する一対のブッシュ支持用金型11及び12と、筒状金型10と一対のブッシュ支持用金型11及び12の間に位置して、圧縮動作時に短繊維と粉末状樹脂の集合物8を軸線方向両側から挟んで圧縮する一対の圧縮用金型13及び14とを備えている。そしてこの金型では、下側の圧縮用金型14に透水性または濾過性を付与するために、下側の圧縮用金型14には水を排水するための複数の貫通孔15が形成されている。この複数の貫通孔15に対して、真空吸引するためのポンプを設けると排水を短時間で完了することができ好ましい。なおこの例では、排水時において短繊維と粉末状樹脂の流出を防止するために、下側の圧縮用金型14上には濾過機能を有する底部材16が配置されている。 As shown in FIG. 3 (A), the mold used in the filtration dewatering and compressing device 7 restricts the aggregate 8 of the short fiber and the powdered resin from spreading outward in the radial direction of the metal bush 2 during the compression operation. A cylindrical mold 10 and a portion disposed inside the cylindrical mold 10 and positioned inside the outer peripheral portion of the metal bush 2 from both sides in the axial direction, and when compressed, a short fiber and a powdered resin A pair of bush supporting molds 11 and 12 that restrict the aggregate 8 from spreading radially inward of the metal bush 2, and a position between the cylindrical mold 10 and the pair of bush supporting molds 11 and 12 A pair of compression molds 13 and 14 are provided to sandwich and compress the short fiber / powder resin aggregate 8 from both sides in the axial direction during the compression operation. Then, in this mold, in order to impart water permeability or filterability to the lower compression mold 14, a plurality of through holes 15 for draining water are formed in the lower compression mold 14. ing. It is preferable to provide a pump for vacuum suction for the plurality of through holes 15 since drainage can be completed in a short time. In this example, a bottom member 16 having a filtering function is disposed on the lower compression mold 14 in order to prevent the outflow of the short fibers and the powdered resin during drainage.
 なおこの底部材16には金網を使用できる。金網のメッシュサイズは、100メッシュより大きくなると、金網の網目(貫通孔)が小さくなるため、水と、短繊維と粉末状樹脂の濾過抵抗が大きくなる。その結果、金型の内部に入れた短繊維と粉末状樹脂を含む後述のスラリーを、ポンプで吸引して水分を金型から排水させても、短繊維及び粉末状樹脂と、水の分離に要する時間が長くなり、製造サイクルが長くなる。またメッシュサイズが10メッシュより小さいと、繊維長が長い短繊維を使用しても金網の網目(貫通孔)が大きいために、濾過機能が低く、短繊維や粉末状樹脂の多くが水と共に流出してしまう。そのために、短繊維と粉末状樹脂の集合物8の繊維密度や樹脂量が著しく低下してしまう問題が発生する。よって使用するメッシュサイズは10メッシュ以上100メッシュ以下が好ましい。 A wire mesh can be used for the bottom member 16. When the mesh size of the wire mesh is larger than 100 mesh, the mesh (through holes) of the wire mesh becomes smaller, so that the filtration resistance of water, short fibers and powdered resin becomes large. As a result, even if the slurry containing the short fibers and the powdered resin contained in the inside of the mold is sucked by a pump and the water is drained from the mold, the short fibers and the powdered resin can be separated from water. The time required is longer and the manufacturing cycle is longer. If the mesh size is smaller than 10 mesh, even if short fibers with a long fiber length are used, the meshwork (through holes) of the wire mesh is large, so the filtration function is low, and many of the short fibers and powdered resin flow out with water. Resulting in. As a result, there arises a problem that the fiber density and the resin amount of the aggregate 8 of the short fibers and the powdered resin are significantly reduced. Therefore, the mesh size to be used is preferably 10 mesh or more and 100 mesh or less.
 一対のブッシュ支持用金型11及び12は、金属製ブッシュ2の外周部よりも内側に短繊維と粉末状樹脂が入り込まないように金属製ブッシュ2の外周部4よりも内側に位置する部分を筒状金型10の中心線が延びる方向の両側から挟んで支持する。なおこの例では、下側のブッシュ支持用金型12、上側のブッシュ支持用金型11、下側の圧縮用金型14、上側の圧縮用金型13、及び筒状金型10はそれぞれ単独で上下に移動可能に構成されている。 The pair of bush supporting molds 11 and 12 are positioned inward of the outer peripheral portion 4 of the metal bush 2 so that the short fibers and the powdered resin do not enter inside the outer peripheral portion of the metal bush 2 The cylindrical mold 10 is supported by being sandwiched from both sides in the direction in which the center line of the cylindrical mold 10 extends. In this example, the lower bush support mold 12, the upper bush support mold 11, the lower compression mold 14, the upper compression mold 13 and the cylindrical mold 10 are independent of each other. It is configured to be movable up and down.
 金属製ブッシュ2を一対のブッシュ支持用金型11及び12の間に挟む場合には、図3(A)に示すように、上側のブッシュ支持用金型11が上方向に移動する。そして金属製ブッシュ2を下側のブッシュ支持用金型12の上に位置決めした後に、図3(B)に示すように、上側のブッシュ支持用金型11を下方向に移動して、一対のブッシュ支持用金型11及び12の間に金属製ブッシュ2を挟持する。 When the metal bush 2 is sandwiched between the pair of bush supporting molds 11 and 12, as shown in FIG. 3A, the upper bush supporting mold 11 is moved upward. Then, after the metal bush 2 is positioned on the lower bush support mold 12, as shown in FIG. 3 (B), the upper bush support mold 11 is moved downward to form a pair of bushes. The metal bush 2 is held between the bush supporting molds 11 and 12.
 短繊維と粉末状樹脂と、水とを混合して形成したスラリーは、図3(B)に示すように、筒状金型10の上側の開口部から供給される。このとき、下側の圧縮用金型14の複数の貫通孔15から真空吸引した状態で行うことにより、ブッシュ2の外周部4の周囲に短繊維と粉末状樹脂を集積させる時間を短縮することができる。そして真空吸引を継続して、下側の圧縮用金型14に設けた複数の貫通孔15から水分を排出することにより、金属製ブッシュ2の外周部の周囲を囲む短繊維と粉末状樹脂の集合物8を形成する。このように一対のブッシュ支持用金型11及び12を用いると、金属製ブッシュ2の位置決めと支持を簡単に行うことができる。また短繊維と粉末状樹脂の集合物8の外周面の形状は、筒状金型10の内周面の形状によって定まる。その結果、筒状金型10の内周面を歯車形状とすることにより、短繊維と粉末状樹脂の集合物8の外周面に歯車形状の凹凸を形成することも可能になる。なおスラリーの供給は、筒状金型10の上側の開口部の複数の場所から行ってもよい。 The slurry formed by mixing the short fiber, the powdered resin, and the water is supplied from the upper opening of the cylindrical mold 10, as shown in FIG. 3 (B). At this time, by performing vacuum suction from the plurality of through holes 15 of the lower compression mold 14, the time for accumulating the short fibers and the powdered resin around the outer peripheral portion 4 of the bush 2 is shortened. Can. Then, vacuum suction is continued, and water is discharged from the plurality of through holes 15 provided in the lower compression mold 14, whereby short fibers and powdered resin surrounding the periphery of the metal bush 2 are made. An aggregate 8 is formed. When the pair of bush supporting molds 11 and 12 is used as described above, positioning and support of the metal bush 2 can be easily performed. The shape of the outer peripheral surface of the aggregate 8 of the short fibers and the powdery resin is determined by the shape of the inner peripheral surface of the cylindrical mold 10. As a result, by forming the inner peripheral surface of the cylindrical mold 10 into a gear shape, it becomes possible to form a gear-shaped unevenness on the outer peripheral surface of the aggregate 8 of short fibers and powdered resin. The slurry may be supplied from a plurality of places on the upper opening of the cylindrical mold 10.
 次に、短繊維と粉末状樹脂の集合物を回転軸の軸線方向に圧縮して成形素材を形成する第2のステップについて説明する。 Next, a second step of compressing the aggregate of the short fibers and the powdered resin in the axial direction of the rotating shaft to form a molding material will be described.
 前述の濾過脱水圧縮装置7で用いる金型であれば、一対の圧縮用金型13及び14で短繊維と粉末状樹脂の集合物8を圧縮した場合に、金属製ブッシュ2の径方向の内側及び外側の両方向に短繊維と粉末状樹脂が膨出するのを確実に阻止することができる。 In the case of a mold used in the above-described filtration dewatering and compression device 7, when the aggregate 8 of short fibers and powdered resin is compressed with the pair of compression molds 13 and 14, the inner side in the radial direction of the metal bush 2 In addition, it is possible to reliably prevent the short fibers and the powdered resin from bulging in both the outer and outer directions.
 下側の圧縮用金型14に設けた複数の貫通孔15から水分を排出した後、図3(C)に示すように、金属製ブッシュ2が一対の圧縮用金型13と14の間の中央に位置する状態となる位置まで、上側の圧縮用金型13を下降させる。その後、図3(D)に示すように、金属製ブッシュ2が一対の圧縮用金型13及び14の中央に位置する状態で、一対の圧縮用金型13及び14をそれぞれ移動させ、短繊維と粉末状樹脂の集合物8が所定の厚みとなるまで圧縮する。なお圧縮を行う時間、温度は使用する短繊維と粉末状樹脂の種類によって任意であるが、前記圧縮の際、上側の圧縮用金型13にヒータを取り付け、加熱した状態で圧縮してもよい。これにより、成形素材5に含まれる水分を取り除く時間を短縮することができる。また前記圧縮の際、下側の圧縮用金型14の貫通孔15から真空吸引した状態で圧縮することにより、抄造後の成形素材5に含まれる水分を取り除く時間を短縮することができる。 After the water is discharged from the plurality of through holes 15 provided in the lower compression mold 14, as shown in FIG. 3C, the metal bush 2 is between the pair of compression molds 13 and 14. The upper compression mold 13 is lowered to a position where it is positioned at the center. Thereafter, as shown in FIG. 3D, the pair of compression molds 13 and 14 are respectively moved in a state where the metal bush 2 is positioned at the center of the pair of compression molds 13 and 14, and the short fibers are And the aggregate 8 of powdery resin is compressed to a predetermined thickness. The compression time and temperature are arbitrary depending on the type of short fiber and powdered resin used, but during the compression, a heater may be attached to the upper compression mold 13 and compressed in a heated state . Thus, the time for removing the water contained in the molding material 5 can be shortened. Further, during the compression, by compressing in a vacuum suction state from the through holes 15 of the lower compression mold 14, the time for removing the water contained in the forming material 5 after the sheet making can be shortened.
 成形素材5または短繊維と粉末状樹脂の集合物8を形成するために用いる短繊維の種類は後述するように、種々のものを用いることができる。そして短繊維の長さは、例えば、図2に示すような金属製ブッシュ2を用いる場合には、次のように定める。すなわち突出部4Aの突出寸法(金属製ブッシュ2の中央部分2Aから径方向へ測った突出部4Aの高さ)をh1、凹部4Bの底部の高さ(金属製ブッシュ2の中央部分2Aから径方向へ測った凹部4Bの底部の高さ)をh2としたとき、短繊維の長さは、0.5×h1mmと1×h2mmの小さいほうの値以上であり、5×h1mmと10×h2mmの大きいほうの値以下であるのが好ましい。ここで、高さ寸法h1とh2が同じ場合は、回り止めの効果が弱くなる。突出部4Aまたは凹部4Bの底部の高さ寸法h1またはh2に対しては、短繊維が覆いかぶさるのに充分な繊維長さが必要であり、短繊維の長さが0.5×h1mmと1×h2mmの小さいほうの値以上であることが適当である。また、短繊維は、長すぎてもスラリーの均一分散を妨げる原因となり、強度の増強に寄与しない不均一な繊維分布になる。そのため短繊維の長さは、5×h1mmと10×h2mmの大きいほうの値以下が適当である。なお、突出部4Aとして、凹部4Bの底部の高さ寸法がh1よりも大きなh3となる突出部(2種類以上の突出寸法の異なる突出部)を組み合わせて使用してもよいのは勿論である。 As the types of short fibers used to form the molding material 5 or the short fibers and the aggregate 8 of powdery resin, various types can be used as described later. The length of the short fiber is determined as follows, for example, when using a metal bush 2 as shown in FIG. That is, the protrusion dimension of the protrusion 4A (height of the protrusion 4A measured in the radial direction from the center portion 2A of the metal bush 2) is h1, and the height of the bottom of the recess 4B (diameter from the center portion 2A of the metal bush 2) Assuming that the height of the bottom of the concave portion 4B measured in the direction is h2, the length of the short fiber is equal to or larger than the smaller value of 0.5 × h1 mm and 1 × h2 mm, and 5 × h1 mm and 10 × h2 mm It is preferable to be less than or equal to the larger value of. Here, when the height dimensions h1 and h2 are the same, the effect of the detent becomes weak. For the height dimension h1 or h2 of the bottom of the protrusion 4A or the recess 4B, a fiber length sufficient for the short fiber to cover is required, and the length of the short fiber is 0.5 × h1 mm and 1 It is appropriate that the value is smaller than or equal to the smaller value of h2 mm. In addition, even if the short fibers are too long, they may cause the uniform dispersion of the slurry, resulting in a non-uniform fiber distribution that does not contribute to the increase in strength. Therefore, the length of the short fiber is suitably equal to or less than the larger value of 5 × h1 mm and 10 × h2 mm. Of course, as the protrusion 4A, a protrusion (a protrusion having two or more different protrusion sizes) having a height h3 larger than h1 may be used in combination. .
 このようにして定めた短繊維の繊維長は、好ましくは2mmから6mmであり、さらに好ましくは3mmである。繊維長が2mm未満の場合、繊維強化樹脂成形体の機械特性が低下する。また、繊維長が6mmを超えると、繊維束を水中で解離し分散させるときに、繊維束の解離が困難になる。また、これまで説明した短繊維(繊維チョップ)のほかに、アラミド繊維等をフィブリル化処理した微細繊維及び/またはパルプ状繊維を併用してもよい。 The fiber length of the short fiber thus determined is preferably 2 mm to 6 mm, more preferably 3 mm. If the fiber length is less than 2 mm, the mechanical properties of the fiber-reinforced resin molded product are degraded. When the fiber length exceeds 6 mm, when the fiber bundle is dissociated and dispersed in water, the dissociation of the fiber bundle becomes difficult. In addition to the short fibers (fiber chops) described above, fine fibers and / or pulp fibers obtained by fibrillating aramid fibers and the like may be used in combination.
 上記アンダーカット形状をもった回り止め部を構成する突出部4Aは、焼結法で成型すれば、精度よく設計どおりに作ることができる。突出部4Aの最適構造は、たとえば外径60mmの樹脂製歯車の場合、突出部(山)の数が30であり、突出部の間に形成される凹部すなわち谷部分の数は29である。なおこれらの数は、樹脂製歯車の径や厚さ、歯の構造に応じて適宜変更されることは当然である。 The projecting portion 4A constituting the anti-rotation portion having the undercut shape can be formed as designed with high accuracy if it is molded by a sintering method. The optimum structure of the protrusion 4A is, for example, in the case of a resin gear having an outer diameter of 60 mm, the number of protrusions (crests) is 30 and the number of recesses or valleys formed between the protrusions is 29. Of course, these numbers may be suitably changed according to the diameter and thickness of the resin gear and the structure of the teeth.
 使用する短繊維は、熱分解温度或いは溶融温度が250℃以上の繊維からなるものが好ましい。このような短繊維を用いて成形素材5を形成することで、成形時の成形温度や加工温度、実使用時の雰囲気温度において、樹脂製回転体内の短繊維が熱劣化を起こすことなく、耐熱性に優れた樹脂製回転体を形成できる。本実施の形態で用いることができる繊維としては、パラ系アラミド繊維、メタ系アラミド繊維、炭素繊維、ガラス繊維、ボロン繊維、セラミック繊維、超高強力ポリエチレン繊維、ポリケトン繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、全芳香族ポリエステル繊維、ポリイミド繊維、及びポリビニルアルコール系繊維から選ばれた少なくとも1種以上の合成繊維を使用することができる。 The short fibers used are preferably fibers having a thermal decomposition temperature or melting temperature of 250 ° C. or higher. By forming the molding material 5 using such short fibers, the short fibers in the resin rotating body do not undergo thermal deterioration at the molding temperature and processing temperature at the time of molding, and the ambient temperature during actual use. It is possible to form a resin rotary body excellent in the properties. As fibers that can be used in the present embodiment, para-aramid fibers, meta-aramid fibers, carbon fibers, glass fibers, boron fibers, ceramic fibers, ultra-high strength polyethylene fibers, polyketone fibers, polyparaphenylene benzobisoxazole At least one or more synthetic fibers selected from fibers, wholly aromatic polyester fibers, polyimide fibers, and polyvinyl alcohol-based fibers can be used.
 また、短繊維には、引張強度15cN/dtex以上、引張弾性率350cN/dtex以上の高強度高弾性率繊維を少なくとも20体積%以上含むことが好ましい。このようにして得られる成形素材5を用いた樹脂製回転体は、使用中にかかる高負荷に耐え得るものとすることができる。 Further, it is preferable that the short fibers contain at least 20% by volume or more of high strength and high elasticity modulus fibers having a tensile strength of 15 cN / dtex or more and a tensile elastic modulus of 350 cN / dtex or more. The resin rotating body using the molding material 5 obtained in this manner can withstand high load applied during use.
 また、濾過脱水圧縮装置7を用いて成形素材5を金属製ブッシュ2と一体化して形成したものを次工程に移動、又は搬送する際に形状を維持するための強度を付与するためには、短繊維がアラミド繊維をフィブリル化処理した微細繊維及び/またはパルプ状繊維を含めるのが好ましい。ここで使用可能な微細繊維及び/またはパルプ状繊維のフリーネス(濾水度)は、100ml以上400ml以下であって、微細繊維の含有量が短繊維中の30質量%以下になるように配合することが望ましい。望ましい態様としては、パラアラミド繊維の機械的剪断で繊維軸方向に裂開させたフィブリル化処理のアラミド微細繊維と短繊維とを混合することが好ましい。フリーネスが400mlを超えると、フィブリル化が不充分のため成形素材の形状を維持するための強度を付与する上で好ましいものでなくなる。またフリーネスが100ml未満になると繊維軸方向に裂開させるだけでなく、径方向に剪断されて粉末状態になってしまうために、繊維の絡みが悪くなって、成形素材の形状を維持するための強度を付与する上で好ましいものでなくなる。成形素材に適度な強度を付与することができる5~10質量%のフィブリル化した微細繊維を配合するのが好ましい。 Also, in order to impart strength for maintaining the shape when moving or transporting the one formed by integrating the forming material 5 with the metal bush 2 using the filtration dewatering and compressing device 7 to the next step, It is preferred that the short fibers contain fine fibers and / or pulp fibers obtained by fibrillating aramid fibers. The freeness (degree of freeness) of fine fibers and / or pulp fibers usable here is 100 ml or more and 400 ml or less, and the content of the fine fibers is 30% by mass or less in the short fibers Is desirable. As a desirable mode, it is preferable to mix aramid microfibers and short fibers which are fibrillated at an axial direction of the fiber by mechanical shearing of para-aramid fiber. If the freeness exceeds 400 ml, the fibrillation is insufficient, which is not preferable for imparting strength to maintain the shape of the molding material. In addition, when freeness is less than 100 ml, not only tearing in the axial direction of the fiber but also shearing in the radial direction to become a powder state, the entanglement of the fibers becomes worse and the shape of the molding material is maintained It is not preferable to impart strength. It is preferable to blend 5 to 10% by weight of fibrillated fibrils which can impart adequate strength to the molding material.
 粉末状樹脂としては、熱硬化性樹脂、熱可塑性樹脂など種々の材質のものを用いることができる。例えば、エポキシ樹脂、ポリアミノアミド樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ポリエーテルサルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンサルファイド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂から選ばれた1以上の樹脂を組み合わせたものが使用できる。これらの中でも樹脂硬化物の強度、耐熱性等の点からフェノール樹脂が好ましい。 As powdery resin, those of various materials such as thermosetting resin and thermoplastic resin can be used. For example, epoxy resin, polyaminoamide resin, phenol resin, unsaturated polyester resin, polyimide resin, polyether sulfone resin, polyether ether ketone resin, polyamide imide resin, polyamide resin, polyester resin, polyphenylene sulfide resin, polyethylene resin, polypropylene A combination of one or more resins selected from resins can be used. Among these, phenol resins are preferable in view of the strength and heat resistance of the cured resin.
 粉末状樹脂の粒子形状は任意であるが、粒状のものを用いるのが好ましい。また、粒子径は、短繊維の繊維径により異なるが、50μm以下が好ましい。なお粒子径は、JIS-Z8801-1で規定されている金属製網ふるい分け法によって測定した。これにより、短繊維の集合物の隙間に粉末状樹脂を均一に分布させることができる。粉末状樹脂の粒子径が大きい場合には、短繊維の集合物の繊維配向を乱したり、加熱加圧成形して樹脂製回転体を形成する際に、樹脂製回転体内部で短繊維と粉末状樹脂が溶融して硬化した樹脂とが均一に分布しない原因となる。 Although the particle shape of the powdery resin is arbitrary, it is preferable to use a granular one. Moreover, although a particle diameter changes with fiber diameters of a short fiber, 50 micrometers or less are preferable. The particle size was measured by the metal mesh sieving method defined in JIS-Z8801-1. Thereby, powdery resin can be uniformly distributed to the clearance gap of the collection of a staple fiber. When the particle diameter of the powdery resin is large, the fiber orientation of the aggregate of short fibers is disturbed, or when heat and pressure molding is performed to form a resin rotating body, the short fibers are formed inside the resin rotating body. This causes the powdery resin to be not uniformly distributed with the melted and cured resin.
 上記短繊維を水中に分散させる際の濃度は、0.3g/リットル以上20g/リットル以下が好ましい。繊維長が短い繊維を使用する場合、繊維同士の絡みが少なく、分散が良いため濃度20g/リットルの高濃度のスラリーで分散させることができる。一方、繊維長が長い繊維を使用する場合、繊維長が長すぎるため0.3g/リットルの低濃度でないと充分分散させることができない。 The concentration at which the short fibers are dispersed in water is preferably 0.3 g / liter to 20 g / liter. In the case of using a fiber having a short fiber length, it is possible to disperse with a high concentration slurry having a concentration of 20 g / liter because the fibers are less entangled and the dispersion is good. On the other hand, when using a fiber with a long fiber length, the fiber length is too long and sufficient dispersion can not be achieved unless the concentration is as low as 0.3 g / liter.
 ちなみに、前述の短繊維がアラミド繊維をフィブリル化処理した微細繊維及び/またはパルプ状繊維を含む場合において、金属製ブッシュ2の直径が5cmの場合に使用する短繊維と粉末状樹脂の集合物8の厚み寸法(軸線方向寸法)は、約10cmである。そして後述する圧縮作業により、短繊維と粉末状樹脂の集合物8は約2cm程度まで圧縮されて成形素材5に成形される。ブッシュ2に成形素材5が成形されたものが、樹脂製回転体成形用半加工品21である。 Incidentally, in the case where the above-mentioned short fibers contain fine fibers and / or pulp-like fibers obtained by fibrillating aramid fibers, an aggregate of short fibers and powdered resin used when the diameter of the metal bush 2 is 5 cm. Thickness dimension (axial dimension) is about 10 cm. Then, the aggregate 8 of the short fiber and the powdered resin is compressed to about 2 cm and molded into a molding material 5 by a compression operation described later. The molded material 5 is molded on the bush 2 to form a resin-made rotary body-forming semi-finished product 21.
 次に、成形素材を加熱加圧成形して樹脂成形体を形成するステップについて説明する。 Next, a step of forming a resin molded body by heat and pressure molding a forming material will be described.
 図4には、成形素材5を加熱しながら加圧する加熱加圧装置20の一例を示してある。この装置で用いる金型22は、成形素材5の径方向外側への広がりを規制するようにブッシュ2と成形素材5とからなる半加工品21を収容する凹部23を備えた固定金型25、ブッシュ2を支持する支持部26が固定金型25の凹部23内で変位するように固定金型25に対して変位可能に配置された第1の可動金型27と、凹部23内に挿入されて支持部26に支持されたブッシュ2及び成形素材5を凹部23の内底面24に向かって押す押圧部29Aを備えた第2の可動金型29とを備えている。固定金型25は、加熱装置30内に保持されている。なお第1の可動金型27も加熱装置30によって加熱される。また、第2の可動金型29も、図示していない別の加熱装置によって加熱されている。したがって、この加熱加圧装置20は、固定金型25の内底面24と、第2の可動金型29の押圧部29Aとを成形素材に接触させた状態で、固定金型25、第1の可動金型27及び第2の可動金型29が粉末状樹脂の成形可能温度に加熱され、粉末状樹脂が溶融した状態で第2の可動金型29が内底面24に向かって移動するように構成されている。 In FIG. 4, an example of the heating-pressing apparatus 20 which pressurizes the shaping | molding material 5 while heating is shown. The mold 22 used in this apparatus is a fixed mold 25 provided with a recess 23 for accommodating the semi-finished product 21 composed of the bush 2 and the forming material 5 so as to restrict the outward spread of the forming material 5 in the radial direction. The first movable mold 27 disposed displaceably with respect to the fixed mold 25 so as to be displaced within the recessed section 23 of the fixed mold 25, and the support portion 26 supporting the bush 2 is inserted into the recessed section 23. The second movable mold 29 is provided with a pressing portion 29A for pressing the bush 2 supported by the support portion 26 and the molding material 5 toward the inner bottom surface 24 of the recess 23. The stationary mold 25 is held in the heating device 30. The first movable mold 27 is also heated by the heating device 30. The second movable mold 29 is also heated by another heating device (not shown). Therefore, the heating and pressurizing device 20 is configured such that the fixed mold 25 and the first mold 25 are in a state where the inner bottom surface 24 of the fixed mold 25 and the pressing portion 29A of the second movable mold 29 are in contact with the forming material. The movable mold 27 and the second movable mold 29 are heated to the moldable temperature of the powdery resin, and the second movable mold 29 moves toward the inner bottom surface 24 in the molten state of the powdered resin. It is configured.
 この加熱加圧装置20では、第2の可動金型29の押圧部29Aが、固定金型25の凹部23内に挿入されて、金属製ブッシュ2を押圧すると、第1の可動金型27は、第2の可動金型29の挿入量に応じて下方に変位する。粉末状樹脂が熱硬化性樹脂の場合には、樹脂が溶融した後、樹脂が硬化したら、主として短繊維を芯材(補強繊維層)として成形された樹脂成形体を備えた樹脂製回転体を金型22から取り出して、樹脂製回転体の製造を完了する。 In the heating and pressing device 20, when the pressing portion 29A of the second movable mold 29 is inserted into the recess 23 of the fixed mold 25 and the metal bush 2 is pressed, the first movable mold 27 , And is displaced downward according to the insertion amount of the second movable mold 29. When the powdery resin is a thermosetting resin, after the resin is melted, when the resin is cured, a resin-made rotating body provided with a resin molded body mainly formed of short fibers as a core material (reinforcing fiber layer) It takes out from the mold 22, and the manufacture of the resin rotary body is completed.
 このようにして成形した樹脂製回転体の樹脂成形体の外周部に機械加工を施して歯を形成すれば樹脂製歯車を得ることができる。また外周面に沿って溝を形成すれば、プーリを得ることができる。 A resin gear can be obtained by machining the outer peripheral portion of the resin molded body of the resin rotary body molded in this manner to form a tooth. If a groove is formed along the outer peripheral surface, a pulley can be obtained.
 短繊維を芯材とする樹脂成形体に含まれる短繊維の割合は、所望する樹脂成形体の強度等によって異なるが、樹脂成形体に対して30体積%以上60体積%以下であることが好ましい。樹脂成形体に占める短繊維の割合が30体積%未満である場合、樹脂を繊維で補強する効果がほとんど見られず、また金属製ブッシュ2の回り止め部への繊維の充填も不充分となる。また、短繊維の割合が60体積%を超えた場合は、繊維の占める割合が高すぎるため、加熱加圧成形時に溶融した樹脂が樹脂成形体全体に流動せず樹脂不足部分が発生しやすくなるなどの問題がおこる。そのため樹脂成形体に含まれる繊維の割合は樹脂製回転体の強度があり、及び2つの突出部4Aの間に形成される回り止め用の凹部4B内に繊維が確実に充填され、しかも樹脂の含浸を阻害しない35~45体積%がさらに好ましい。 The proportion of the short fibers contained in the resin molding having the short fiber as a core material varies depending on the strength of the desired resin molding, etc., but is preferably 30% by volume or more and 60% by volume or less with respect to the resin molding . When the proportion of short fibers in the resin molded product is less than 30% by volume, the effect of reinforcing the resin with fibers is hardly observed, and the filling of the fibers into the detent portion of the metal bush 2 also becomes insufficient. . When the proportion of short fibers exceeds 60% by volume, the proportion of fibers is too high, and the molten resin during heating and pressure molding does not flow in the entire resin molded body, and a resin-deficient portion is easily generated. Problems occur. Therefore, the ratio of the fibers contained in the resin molded body is the strength of the resin rotary body, and the fibers are surely filled in the detent for depression 4B formed between the two projecting portions 4A, and further, the resin More preferred is 35 to 45% by volume which does not inhibit the impregnation.
[第2の実施の形態]
 第1の実施の形態では、短繊維と水とを混合してスラリーを作っている。このようなスラリーを用いる場合には、スラリーの粘度が低いために、例えば図3に示した圧縮用金型14の底部材16に用いる金網のメッシュサイズが小さくなる(金網の網目が大きくなる)と、成形素材5中の短繊維及び粉末状樹脂の定着歩留まりが悪くなる。図5(A)に模式的に示すように、例えば、一辺が100μmのメッシュサイズの金網を使用する場合に、粉末状樹脂の粒子径が10μmであったとすると、濾過性能が悪いために、水と一緒に排出されてしまう粉末状樹脂の量が多くなる。このような事態を防ぐために、メッシュサイズを大きくする(金網の網目を小さくする)と、濾過性能は上がるものの、脱水時間が長くなる。そこで第2の実施の形態では、このような問題に対応するために、前述の第1のステップにおいて、短繊維と粉末状樹脂と水とを混合した混合液に、1種以上の静電引力凝集タイプの高分子凝集剤を添加してスラリーを調整する。静電引力凝集タイプの高分子凝集剤を添加すると、図5(B)に模式的に示すように、静電引力凝集タイプの高分子凝集剤が凝集機能だけでなく定着剤としても機能し、短繊維同士が定着するともとに、短繊維と粉末状樹脂が定着する。その結果、図3(B)に示す集合物8中に残る短繊維及び粉末状樹脂の量を増やすことができる。すなわち短繊維と粉末状樹脂の定着率を高めることができる。
Second Embodiment
In the first embodiment, short fibers and water are mixed to form a slurry. When such a slurry is used, for example, the mesh size of the wire mesh used for the bottom member 16 of the compression mold 14 shown in FIG. 3 becomes small (the mesh size of the wire mesh becomes large) because the viscosity of the slurry is low. In addition, the fixing yield of the short fibers and the powdered resin in the molding material 5 is deteriorated. As schematically shown in FIG. 5A, for example, when using a metal mesh having a mesh size of 100 μm on one side, if the particle diameter of the powdery resin is 10 μm, the filtration performance will be poor, The amount of powdered resin that is discharged together with the In order to prevent such a situation, if the mesh size is increased (the mesh size of the wire mesh is reduced), the filtration performance is improved but the dewatering time is increased. Therefore, in the second embodiment, in order to cope with such a problem, in the first step described above, at least one type of electrostatic attraction is applied to the mixed solution in which the short fiber, the powdered resin and the water are mixed. A slurry is prepared by adding a flocculating type polymer flocculant. When an electrostatic attraction aggregation type polymer flocculant is added, as shown schematically in FIG. 5B, the electrostatic attraction aggregation type polymer flocculant functions not only as an aggregation function but also as a fixing agent, When the short fibers are fixed to each other, the short fibers and the powdered resin are fixed. As a result, the amount of short fibers and powdered resin remaining in the assembly 8 shown in FIG. 3 (B) can be increased. That is, the fixing rate of the short fiber and the powdered resin can be increased.
 使用可能な静電引力凝集タイプの高分子凝集剤は、短繊維と粉末状樹脂の定着率を高めることができて、しかも脱水性を著しく阻害しないものであれば、どのようなものでもよく、カチオン性高分子凝集剤としては、例えば、スチレン系高分子、ポリアミン縮合物、ジシアンジアミド縮合物、カチオン変性アクリル系共重合体、ポリメタアクリル酸エステル系、ポリアミジン塩酸塩を用いることができる。また、アニオン性高分子凝集剤としては、例えば、アクリル系共重合物、スルホン化ポリフェノール、多価フェノール系樹脂、ポリアクリル酸エステル系、ポリアクリル酸ソーダ・アミド誘導体を用いることができる。 Any usable electrostatic attraction aggregation type polymer flocculant may be used as long as it can increase the fixing rate of the short fiber and the powdery resin and does not significantly inhibit the dewatering property. As the cationic polymer flocculant, for example, styrenic polymers, polyamine condensates, dicyandiamide condensates, cationically modified acrylic copolymers, polymethacrylic acid esters, polyamidine hydrochloride can be used. Moreover, as an anionic polymer flocculant, for example, an acrylic copolymer, a sulfonated polyphenol, a polyhydric phenol resin, a polyacrylic ester type, a polyacrylic acid soda / amide derivative can be used.
 代表的な高分子凝集剤を用いた凝集方法では、混合液に、カチオン性高分子凝集剤を添加した後、アニオン性高分子凝集剤を添加する。図6に模式的に示すように、混合液にカチオン性高分子凝集剤を添加すると、一部の短繊維と一部の粉末状樹脂とが集まってできる多数のフロックと呼ばれる集合物が形成される。その後アニオン性高分子凝集剤を添加すると、フロック同士が集合して更に大きなフロックの生成が進み、寸法の大きなフロックが多数形成される。このようなフロックが形成されると、脱水性が向上する。その結果、短い時間で脱水をできるとともに、短繊維と粉末状樹脂の定着率が向上する。特に、カチオン性高分子凝集剤としてカチオン性スチレン系高分子水溶液を用い、アニオン性高分子凝集剤としてアニオン性アクリル系高分子水溶液を用いると、高い脱水性を得ることができる。 In the aggregation method using a typical polymer coagulant, after adding a cationic polymer coagulant to a mixed solution, an anionic polymer coagulant is added. As schematically shown in FIG. 6, when a cationic polymer flocculant is added to the mixed solution, a plurality of short fibers and a part of powdery resin are gathered to form an aggregate called flock. Ru. Thereafter, when an anionic polymer flocculant is added, the flocs gather together to form a larger floc, and a large number of floc having a large size are formed. When such floc is formed, the dewaterability is improved. As a result, the dewatering can be performed in a short time, and the fixing rate of the short fiber and the powdered resin is improved. In particular, when a cationic styrenic polymer aqueous solution is used as the cationic polymer flocculant and an anionic acrylic polymer aqueous solution is used as the anionic polymer flocculant, high dewaterability can be obtained.
 また高分子凝集剤として、両性高分子凝集剤を用いることができる。両性高分子凝集剤とは、混合液中の短繊維及び粉末状粒子の中和効果(カチオン)と、高分子鎖による絡まり合い(高分子量体)の生成と、絡まり合い(高分子量体)をアニオンとカチオンの電荷による静電引力により補強する作用を発揮するものである。このような、両性高分子凝集剤としては、例えば、アクリルアミド・アクリル酸・アルキルアミノアクリレート4級塩共重合物、ポリアクリル酸エステル系、ポリメタクリル酸エステル系を用いることができる。 In addition, as the polymer coagulant, an amphoteric polymer coagulant can be used. Amphoteric polymer flocculant refers to the neutralization effect (cation) of short fibers and powdery particles in the mixed liquid, formation of entanglement (high molecular weight) by the polymer chain, and entanglement (high molecular weight) It exerts a reinforcing effect by electrostatic attraction due to the charge of the anion and the cation. As such an amphoteric polymer flocculant, for example, acrylamide, acrylic acid, alkylamino acrylate quaternary salt copolymer, polyacrylic acid ester type, polymethacrylic acid ester type can be used.
 以下、本発明の実施例を説明する。 Hereinafter, examples of the present invention will be described.
[実施例1]
 スラリーを製造するために、短繊維と粉末状樹脂投入時の濃度が4g/リットルとなる量の水を満たしたタンクを用意する。そしてこのタンク内に、樹脂成形体中の短繊維の繊維総量が40体積%となる量の短繊維と、樹脂成形体中の樹脂の総量が60体積%となる量の粉末状樹脂を入れる。具体的には、短繊維として用いる繊維チョップとして、アスペクト比200のパラ系アラミド繊維“帝人(株)製「テクノーラ(商標)」”を50質量%、アスペクト比200のメタ系アラミド繊維“帝人(株)製「コーネックス(商標)」”を45質量%、そしてフリーネス値300mlまでフィブリル化処理した微細繊維“デュポン(株)製「ケブラー(商標)」”を5質量%となる量をそれぞれ投入する。また、粉末状樹脂として、粒子径20μmのフェノール樹脂粉末“エア・ウォーター・ベルパール(株)製「ベルパール(商標)」を投入する。次に攪拌機でタンク内の水を攪拌し繊維チョップとフェノール樹脂粉末を分散させてスラリーを製造する。
Example 1
In order to produce a slurry, a tank filled with short fibers and water having a concentration of 4 g / l when the powdered resin is charged is prepared. In this tank, short fibers in an amount such that the total amount of short fibers in the resin molding is 40% by volume, and powdered resin in an amount such that the total amount of resin in the resin molding is 60% by volume. Specifically, as a fiber chop used as a short fiber, 50 mass% of a para-aramid fiber having an aspect ratio of 200 “Teconra (trademark)” manufactured by Teijin Limited, a meta-aramid fiber having an aspect ratio of 200, “Teijin ( 45% by mass of "CornexTM" manufactured by Co., Ltd. and 5% by mass of fine fibers "KevlarTM" manufactured by DuPont Co., Ltd., which are fibrillated to a freeness value of 300 ml In addition, as a powdered resin, a phenolic resin powder "Air-Bell-Balpearl Co., Ltd.""Velpearl(trademark)" having a particle diameter of 20 μm is introduced. Next, the water in the tank is stirred with a stirrer to disperse the fiber chops and the phenolic resin powder to produce a slurry.
 このとき、カチオン性高分子凝集剤として明成化学工業株式会社が「セラフィックスST」(商標)の名称で販売するカチオン性スチレン系高分子水溶液を添加して撹拌した後、アニオン性高分子凝集剤として明成化学工業株式会社が「ファイレックスM」(商標)の名称で販売するアニオン性アクリル系高分子水溶液を添加して撹拌して、本実施例で用いるスラリーとした。カチオン性スチレン系高分子水溶液の添加量は、短繊維と粉末状樹脂の総量に対して、0.2質量%であり、アニオン性アクリル系高分子水溶液の添加量は、短繊維と粉末状樹脂の総量に対して、0.1質量%であった。 At this time, after adding and stirring the cationic styrenic polymer aqueous solution sold by Meisei Chemical Industry Co., Ltd. under the name "Cerafix ST" (trade name) as a cationic polymer flocculant, an anionic polymer flocculant As an aqueous solution of an anionic acrylic polymer sold by Meisei Chemical Industry Co., Ltd. under the name of "FYLEX M" (trademark) as a slurry, the slurry used in this example was added and stirred. The addition amount of the cationic styrenic polymer aqueous solution is 0.2% by mass with respect to the total amount of the short fibers and the powdery resin, and the addition amount of the anionic acrylic polymer aqueous solution is the short fibers and the powdery resin It was 0.1 mass% with respect to the total amount of.
 次に図3(A)に示す濾過脱水圧縮装置7を用いて、下側のブッシュ支持用金型12上に金属製ブッシュ2を位置決めする。使用する金属製ブッシュ2の突出部4A及び凹部4Bの形状は、h1=2mm、h2=0.5mmであり、アンダーカット形状であり、金属製ブッシュ2の仮想中心横断面と側面SFとの間の角度θが20°である。そして、図3(B)に示すように、上側のブッシュ支持用金型11を下方向に移動して、一対のブッシュ支持用金型11及び12の間に金属製ブッシュを挟持する。ここで、下側の圧縮用金型14の位置は、金属製ブッシュ2の軸方向中央から底部材16上面までの距離が50mmとなる位置とした。この濾過脱水圧縮装置7内に、真空吸引をしながら、分散させた繊維チョップとフェノール樹脂粉末を含むスラリーを充填する。そして、真空吸引を継続して下側の圧縮用金型14に設けた複数の貫通孔15から水を排水することにより、繊維チョップとフェノール樹脂粉末と、水を分離して円筒状の短繊維と粉末状樹脂の集合物8を得る。なお排水時に貫通孔15より繊維チョップとフェノール樹脂粉末が流出するのを防止するために、下側の圧縮用金型14上には底部材16を配置した。この底部材16としては金属製20メッシュの金網を用いた。 Next, the metal bush 2 is positioned on the lower bush supporting mold 12 using the filtration dewatering and compressing device 7 shown in FIG. 3 (A). The shapes of the protrusion 4A and the recess 4B of the metal bush 2 used are h1 = 2 mm, h2 = 0.5 mm, and are undercut shapes, and between the virtual center cross section of the metal bush 2 and the side face SF Is 20 °. Then, as shown in FIG. 3B, the upper bush support mold 11 is moved downward to sandwich the metal bush between the pair of bush support molds 11 and 12. Here, the position of the lower compression mold 14 is a position at which the distance from the axial center of the metal bush 2 to the top surface of the bottom member 16 is 50 mm. A slurry containing dispersed fiber chops and phenolic resin powder is filled in the filtration dewatering and compressing device 7 while vacuum suction is being performed. Then, by continuing the vacuum suction and draining the water from the plurality of through holes 15 provided in the lower compression mold 14, the fiber chops and the phenol resin powder are separated from the water, and the cylindrical short fibers are separated. And an aggregate 8 of powdered resin is obtained. In addition, in order to prevent the fiber chops and the phenolic resin powder from flowing out from the through holes 15 at the time of drainage, the bottom member 16 is disposed on the lower compression mold 14. As the bottom member 16, a metal mesh of 20 mesh was used.
 次に金属製ブッシュ2の回り止め部にさらに強固に繊維を喰い込ませるために圧縮を行う。まず図3(C)に示すように、上側の圧縮用金型13を、金属製ブッシュ2の軸方向中央から上側の圧縮用金型13下面までの距離が50mmとなる位置まで下降させる。この位置は、金属製ブッシュ2が一対の圧縮用金型13と14の間の中央に位置する状態となる位置である。そして、図3(D)に示すように、金属製ブッシュ2が一対の圧縮用金型13と14の間の中央に位置する状態で、一対の圧縮用金型13及び14をそれぞれ速度1~5mm/sで相互に近づく方向に移動させ、短繊維と粉末状樹脂の集合物8が厚み20mmとなるまで圧縮する。この状態で1分間圧縮することにより、金属製ブッシュ2と一体化した成形素材5を得た。前記圧縮の際、下側の圧縮用金型14の貫通孔15から真空吸引した状態で圧縮している。 Next, the metal bush 2 is compressed in order to more firmly wick the fiber into the detent portion of the metal bush 2. First, as shown in FIG. 3C, the upper compression die 13 is lowered to a position where the distance from the axial center of the metal bush 2 to the lower surface of the upper compression die 13 is 50 mm. This position is a position where the metal bush 2 is located at the center between the pair of compression dies 13 and 14. Then, as shown in FIG. 3 (D), with the metal bush 2 positioned at the center between the pair of compression dies 13 and 14, the pair of compression dies 13 and 14 are set to speed 1 to 5 respectively. It is moved in a direction approaching each other at 5 mm / s and compressed until the aggregate 8 of short fibers and powdered resin becomes 20 mm thick. By compressing for 1 minute in this state, a forming material 5 integrated with the metal bush 2 was obtained. In the case of the said compression, it compresses in the state vacuum-sucked from the through-hole 15 of the lower mold 14 for compression.
 この成形素材5を水分含有率が0.5質量%以下になるまで乾燥する。ちなみに、本実施例では、前記乾燥により成形素材5の厚みは20~50mmとなる。 The molding material 5 is dried until the water content becomes 0.5 mass% or less. Incidentally, in the present embodiment, the thickness of the molding material 5 becomes 20 to 50 mm by the drying.
 次に図4に示すように、上記の工程で得られた金属製ブッシュ2と一体化した成形素材5(樹脂製回転体成形用半加工品)を200℃に加熱した第1の可動金型27に配置して型締めする。そして、成形素材5を加熱加圧成形して粉末状樹脂を硬化させ歯車素材を得る。ちなみに、本実施例では、厚み20~50mmであった成形素材5は、前記加熱加圧成形により、金属製ブッシュ2とほぼ同厚みの13mmとなる。 Next, as shown in FIG. 4, a first movable mold which is heated at 200 ° C. to a forming material 5 (a semi-finished product for forming a rotating body made of resin) integrated with the metal bush 2 obtained in the above process. Place at 27 and clamp. Then, the molding material 5 is heat and pressure molded to harden the powdery resin to obtain a gear material. Incidentally, in the present embodiment, the molding material 5 having a thickness of 20 to 50 mm becomes 13 mm having substantially the same thickness as the metal bush 2 by the heat and pressure molding.
 この歯車素材を切削加工により歯を形成することにより樹脂製歯車を得る。 A resin gear is obtained by forming teeth by cutting this gear material.
[実施例2]
 上記実施例1で製造したのと同じスラリーに、カチオン性高分子凝集剤及びアニオン性高分子凝集剤を添加せずに撹拌して、本実施例で用いるスラリーとした。このようにして作製したスラリーを用いて、実施例1と同様に樹脂製歯車を製造した。なお図3(A)に示す濾過脱水圧縮装置7で用いる金属製金網のメッシュサイズは、実施例1と同様に20メッシュを用いた。
Example 2
The same slurry as that produced in Example 1 was stirred without adding a cationic polymer flocculant and an anionic polymer flocculant to prepare a slurry used in this example. The resin gear was manufactured similarly to Example 1 using the slurry produced in this way. The mesh size of the metal wire mesh used in the filtration dehydration compression device 7 shown in FIG. 3A was 20 mesh as in the first embodiment.
[実施例3]
 上記実施例1で製造したのと同じスラリーに対して、カチオン性高分子凝集剤としてカチオン性スチレン系高分子水溶液を添加して撹拌して、本実施例で用いるスラリーとした。カチオン性スチレン系高分子水溶液の添加量は、短繊維と粉末状樹脂の総量に対して、0.2質量%であった。このようにして作製したスラリーを用いて、実施例1と同様に樹脂製歯車を製造した。
[Example 3]
A cationic styrenic polymer aqueous solution was added as a cationic polymer flocculant to the same slurry as that produced in the above Example 1 and stirred to obtain a slurry used in this example. The addition amount of the cationic styrenic polymer aqueous solution was 0.2% by mass with respect to the total amount of the short fibers and the powdered resin. The resin gear was manufactured similarly to Example 1 using the slurry produced in this way.
[実施例4]
 上記実施例1で製造したのと同じスラリーに対して、アニオン性高分子凝集剤としてアニオン性アクリル系高分子水溶液を添加して撹拌して、本実施例で用いるスラリーとした。アニオン性アクリル系高分子水溶液の添加量は、短繊維と粉末状樹脂の総量に対して、0.1質量%であった。このようにして作製したスラリーを用いて、実施例1と同様に樹脂製歯車を製造した。
Example 4
An anionic acrylic polymer aqueous solution was added as the anionic polymer flocculant to the same slurry as that produced in Example 1 above, and the mixture was stirred to obtain a slurry used in this example. The addition amount of the anionic acrylic polymer aqueous solution was 0.1% by mass with respect to the total amount of the short fibers and the powdered resin. The resin gear was manufactured similarly to Example 1 using the slurry produced in this way.
[実施例5]
 上記実施例1で製造したのと同じスラリーに対して、カチオン性高分子凝集剤としてカチオン性スチレン系高分子水溶液と、アニオン性高分子凝集剤としてアニオン性アクリル系高分子水溶液を同時に添加して撹拌して、本実施例で用いるスラリーとした。カチオン性スチレン系高分子水溶液の添加量は、短繊維と粉末状樹脂の総量に対して、0.2質量%であり、アニオン性アクリル系高分子水溶液の添加量は、短繊維と粉末状樹脂の総量に対して、0.1質量%であった。このようにして作製したスラリーを用いて、実施例1と同様に樹脂製歯車を製造した。
[Example 5]
By simultaneously adding a cationic styrenic polymer aqueous solution as a cationic polymer flocculant and an anionic acrylic polymer aqueous solution as an anionic polymer flocculant to the same slurry produced in Example 1 above. The mixture was stirred to obtain a slurry used in this example. The addition amount of the cationic styrenic polymer aqueous solution is 0.2% by mass with respect to the total amount of the short fibers and the powdery resin, and the addition amount of the anionic acrylic polymer aqueous solution is the short fibers and the powdery resin It was 0.1 mass% with respect to the total amount of. The resin gear was manufactured similarly to Example 1 using the slurry produced in this way.
[実施例6]
 上記実施例1で製造したのと同じスラリーに対して、アニオン性高分子凝集剤としてアニオン性アクリル系高分子水溶液を添加して撹拌した後、カチオン性高分子凝集剤としてカチオン性スチレン系高分子水溶液を添加して撹拌して、本実施例で用いるスラリーとした。アニオン性アクリル系高分子水溶液の添加量は、短繊維と粉末状樹脂の総量に対して、0.1%であり、カチオン性スチレン系高分子水溶液の添加量は、短繊維と粉末状樹脂の総量に対して、0.2wt%であった。このようにして作製したスラリーを用いて、実施例1と同様に樹脂製歯車を製造した。
[Example 6]
An anionic acrylic polymer aqueous solution is added as an anionic polymer flocculant to the same slurry as prepared in Example 1 above and stirred, and then a cationic styrenic polymer as a cationic polymer flocculant The aqueous solution was added and stirred to obtain a slurry used in this example. The addition amount of the anionic acrylic polymer aqueous solution is 0.1% with respect to the total amount of the short fiber and the powdered resin, and the addition amount of the cationic styrenic polymer aqueous solution is that of the short fiber and the powdered resin It was 0.2 wt% with respect to the total amount. The resin gear was manufactured similarly to Example 1 using the slurry produced in this way.
[実施例7]
 実施例1でスラリーに添加する静電引力凝集タイプの高分子凝集剤に代えて、増粘凝集タイプの高分子凝集剤としてポリエチレンオキサイド系凝集剤を用いた。ポリエチレンオキサイド系凝集剤としては、住友精化株式会社が「ペオ」(商標)の名称で販売するポリエチレンオキサイド系凝集剤を添加して撹拌して、本実施例で用いるスラリーとした。ポリエチレンオキサイド系凝集剤の添加量は、短繊維と粉末状樹脂の総量に対して、0.05質量%であった。このようにして作製したスラリーを用いて、実施例1と同様に樹脂製歯車を製造した。なお図3(A)に示す濾過脱水圧縮装置7で用いる金属製金網のメッシュサイズは、実施例1と同様に20メッシュを用いた。
[Example 7]
In place of the electrostatic attraction aggregation type polymer flocculant added to the slurry in Example 1, a polyethylene oxide type flocculant was used as the thickening aggregation type polymer flocculant. As a polyethylene oxide type coagulant | flocculant, the polyethylene oxide type coagulant | flocculant which Sumitomo Seika Co., Ltd. sells under the name of "Peo" (trademark) was added and stirred, and it was set as the slurry used by the present Example. The addition amount of the polyethylene oxide type flocculant was 0.05% by mass with respect to the total amount of the short fibers and the powdered resin. The resin gear was manufactured similarly to Example 1 using the slurry produced in this way. The mesh size of the metal wire mesh used in the filtration dehydration compression device 7 shown in FIG. 3A was 20 mesh as in the first embodiment.
[従来例1]
 スラリーを製造するために、短繊維投入時の濃度が4g/リットルとなる量の水を満たしたタンクを用意する。そしてこのタンク内に、樹脂成形体中の短繊維の繊維総量が40体積%となる量の短繊維を入れる。短繊維として用いる繊維チョップの種類及び混合比率は、実施例1に示したとおりである。次に攪拌機でタンク内の水を攪拌し繊維チョップを分散させる。
Conventional Example 1
In order to produce a slurry, prepare a tank filled with water in such an amount that the concentration when short fiber is charged is 4 g / liter. Then, in the tank, short fibers of an amount such that the total amount of short fibers in the resin molded body is 40% by volume are placed. The type and mixing ratio of the fiber chops used as the short fibers are as shown in Example 1. Next, the water in the tank is stirred with a stirrer to disperse the fiber chops.
 次に図3(A)に示す濾過脱水圧縮装置7を用いて、下側のブッシュ支持用金型12上に金属製ブッシュ2を位置決めする。使用する金属製ブッシュ2の形状は、実施例1に示したとおりである。そして、図3(B)に示すように、上側のブッシュ支持用金型11を下方向に移動して、一対のブッシュ支持用金型11及び12の間に金属製ブッシュを挟持する。ここで、下側の圧縮用金型14の位置は、金属製ブッシュ2の軸方向中央から底部材16上面までの距離が40mmとなる位置とした。この濾過脱水圧縮装置7内に、分散させた繊維チョップを含むスラリーを充填する。そして、真空吸引をして下側の圧縮用金型14に設けた複数の貫通孔15から水を排水することにより、繊維チョップと水を分離して円筒状の短繊維の集積体を得る。なお排水時に貫通孔15より繊維チョップが流出するのを防止するために、下側の圧縮用金型14上には底部材16を配置した。この底部材16としては金属製100メッシュの金網を用いた。 Next, the metal bush 2 is positioned on the lower bush supporting mold 12 using the filtration dewatering and compressing device 7 shown in FIG. 3 (A). The shape of the metal bush 2 used is as shown in the first embodiment. Then, as shown in FIG. 3B, the upper bush support mold 11 is moved downward to sandwich the metal bush between the pair of bush support molds 11 and 12. Here, the position of the lower compression mold 14 is a position at which the distance from the axial center of the metal bush 2 to the top surface of the bottom member 16 is 40 mm. In the filtration dewatering and compressing device 7, a slurry containing dispersed fiber chops is filled. Then, by vacuum suction and draining water from the plurality of through holes 15 provided in the lower compression mold 14, the fiber chops and the water are separated to obtain a cylindrical short fiber accumulation body. In addition, in order to prevent the fiber chops from flowing out from the through holes 15 at the time of drainage, the bottom member 16 is disposed on the lower compression mold 14. A metal mesh of 100 mesh was used as the bottom member 16.
 次に金属製ブッシュ2の回り止め部にさらに強固に繊維を喰い込ませるために圧縮を行う。まず図3(C)に示すように、150℃に加熱した上側の圧縮用金型13を、金属製ブッシュ2の軸方向中央から上側の圧縮用金型13下面までの距離が40mmとなる位置まで下降させる。この位置は、金属製ブッシュ2が一対の圧縮用金型13と14の間の中央に位置する状態となる位置である。そして、図3(D)に示すように、金属製ブッシュ2が一対の圧縮用金型13と14の間の中央に位置する状態で、一対の圧縮用金型13及び14をそれぞれ速度1~5mm/sで相互に近づく方向に移動させ、短繊維の集積体が厚み10mmとなるまで圧縮する。そして、加熱した状態で2分間圧縮することにより、金属製ブッシュ2と一体化した補強用繊維基材を得た。前記圧縮の際、下側の圧縮用金型14の貫通孔15から真空吸引した状態で圧縮している。 Next, the metal bush 2 is compressed in order to more firmly wick the fiber into the detent portion of the metal bush 2. First, as shown in FIG. 3C, a position at which the distance from the axial center of the metal bush 2 to the lower surface of the upper compression mold 13 becomes 40 mm, as the upper compression mold 13 heated to 150 ° C. Lower to This position is a position where the metal bush 2 is located at the center between the pair of compression dies 13 and 14. Then, as shown in FIG. 3 (D), with the metal bush 2 positioned at the center between the pair of compression dies 13 and 14, the pair of compression dies 13 and 14 are set to speed 1 to 5 respectively. It is moved in a direction approaching each other at 5 mm / s, and the short fiber aggregate is compressed to a thickness of 10 mm. And it compressed for 2 minutes in the heated state, and obtained the fiber base material for reinforcement integrated with metal bush 2. In the case of the said compression, it compresses in the state vacuum-sucked from the through-hole 15 of the lower mold 14 for compression.
 次に図4に示すように、上記の工程で得られた金属製ブッシュ2と一体化した補強用繊維基材を200℃に加熱した第1の可動金型27に配置して型締めする。そして、第1の可動金型27内部を圧力90kPa以下に減圧した後、2,2’-(1,3フェニレン)ビス2-オキサゾリン69質量部、4,4’-ジアミノジフェニルメタン31質量部を混合した樹脂を温度140℃で溶解し、オクチルブロマイド1質量部を加えて撹拌した樹脂を金型内部に注入して補強用繊維基材に含浸させ、第1の可動金型27内で加熱硬化し歯車素材を得る。この歯車素材を切削加工により歯を形成することにより樹脂製歯車を得る。 Next, as shown in FIG. 4, the reinforcing fiber base integrated with the metal bush 2 obtained in the above process is placed in a first movable mold 27 heated to 200 ° C. and clamped. Then, after the inside of the first movable mold 27 is depressurized to a pressure of 90 kPa or less, 69 parts by mass of 2,2 '-(1,3 phenylene) bis 2-oxazoline and 31 parts by mass of 4,4'-diaminodiphenylmethane are mixed. The melted resin is melted at a temperature of 140 ° C., 1 part by mass of octyl bromide is added, and the stirred resin is injected into the inside of the mold to impregnate the reinforcing fiber base and heat-cured in the first movable mold 27 Get the gear material. A resin gear is obtained by forming teeth by cutting this gear material.
[従来例2]
 水を満たしたタンクを用意し、従来例1と同様の繊維配合、濃度で繊維チョップを分散させる。図7(A)に示すように、抄造装置307は、底面部313及び角筒状の抄造用筒体309を備えている。なお底面部313のみを金網で構成した。使用した金網は、100メッシュのシート状金網であった。そして、前述の分散させた繊維チョップを含むスラリーを抄造装置307に導入して、集積物310を得た。集積物310を取り出して、これを脱水、乾燥した。その後、図7(B)に示すように、外径φ80mm×内径φ55mmのドーナツ状に打ち抜き、短繊維の集積体308を得た。
[Conventional example 2]
A tank filled with water is prepared, and fiber chops are dispersed at the same fiber composition and concentration as in Conventional Example 1. As shown in FIG. 7A, the papermaking apparatus 307 includes a bottom surface portion 313 and a rectangular cylindrical papermaking cylinder 309. In addition, only the bottom surface part 313 was comprised with the wire mesh. The wire mesh used was a sheet mesh of 100 mesh. Then, the slurry containing the dispersed fiber chops described above was introduced into the paper-making apparatus 307 to obtain an aggregate 310. The stack 310 was removed and dewatered and dried. Then, as shown to FIG. 7 (B), it pierce | punched in the doughnut shape of outer diameter (phi) 80 mm x internal diameter (phi) 55 mm, and obtained the accumulation | aggregation body 308 of short fibers.
 次に図8(A)に示すように、上記の工程で得られた短繊維の集積体308を2個使用して、金属製ブッシュ2に設けた突出部4Aを挟み込み、加熱した成形金型323内に配置して型締めをした。その後の工程は、従来例1と同様にして、樹脂製歯車を製造した。図8(B)は、このようにして製造した樹脂製回転体の概略縦断面図である。この樹脂製回転体の樹脂成形体306中にある2つの補強用繊維基材305の重ね合せ界面BSには、短繊維の絡み合いが殆どない。 Next, as shown in FIG. 8 (A), using the two staple fiber accumulations 308 obtained in the above step, the projecting portion 4A provided on the metal bush 2 is sandwiched and heated. Placed in H.323 and clamped. The subsequent steps were the same as in Conventional Example 1 to manufacture a resin gear. FIG. 8 (B) is a schematic longitudinal sectional view of the resin rotating body manufactured in this manner. There is almost no entanglement of short fibers at the superposed interface BS of the two reinforcing fiber bases 305 in the resin molded body 306 of the resin rotary body.
[評価1]
 上記実施例1に示す方法で作製した樹脂製回転体成形用半加工品、従来例1に示す方法で作製した金属製ブッシュと一体化した補強用繊維基材及び従来例2に示す方法で作製した短繊維の集積体を用いて歯車素材を作製する際にかかる実作業時間を測定した結果を表1に示す。また、実施例1及び従来例1~2で得られた樹脂製歯車について、ボス抜き強度を測定した結果を表1に示す。測定方法は以下に示すとおりである。
[Evaluation 1]
A semi-finished product for molding a resin-made rotational body manufactured by the method shown in Example 1 above, a reinforcing fiber base integrated with a metal bush manufactured by the method shown in Conventional Example 1 and a method shown in Conventional Example 2 Table 1 shows the results of measurement of the actual working time required for producing a gear material using the short fiber aggregate. Further, with respect to the resin gears obtained in Example 1 and Conventional Examples 1 and 2, the results of measuring the boss removal strength are shown in Table 1. The measurement method is as follows.
 ボス抜き強度:図9に示すように樹脂成形体部のみに接し、かつ金属製ブッシュ2の外径サイズより大きい内径の円筒形状の台55の上に樹脂製歯車51を配置する。上方より金属製ブッシュ2を押さえる金具56を取付け、金具56に荷重を加えて、樹脂製歯車51が破壊に至る最大荷重を測定した。
Figure JPOXMLDOC01-appb-T000001
Boss removal strength: As shown in FIG. 9, the resin gear 51 is disposed on a cylindrical base 55 having an inner diameter larger than the outer diameter of the metal bush 2 in contact with only the resin molded body. A metal fitting 56 for holding the metal bush 2 was attached from the upper side, a load was applied to the metal fitting 56, and the maximum load until the resin gear 51 was broken was measured.
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、本発明に係る樹脂製回転体成形用半加工品は、従来例のように、補強用繊維基材を軸方向から押圧しながら成形用金型内部を真空に減圧し、樹脂を流しこんで該補強用繊維基材に樹脂を含浸させる作業が省くことができ、実作業時間が短縮できる。 As is clear from Table 1, the semi-finished product for resin rotary body molding according to the present invention has a pressure reduction inside the mold for molding while pressing the reinforcing fiber base from the axial direction as in the conventional example. Then, the work of pouring the resin and impregnating the reinforcing fiber base with the resin can be omitted, and the actual working time can be shortened.
 また、本発明に係る樹脂製回転体は、成形素材の内部に繊維層の境界面を形成することがなく、また、樹脂成形体とブッシュの回り止め部との結合強度を向上させることができるため、ボス抜き強度が向上している。 In addition, the resin rotary body according to the present invention does not form the boundary surface of the fiber layer inside the molding material, and can improve the bonding strength between the resin molded body and the detent portion of the bush. Therefore, the boss removal strength is improved.
[評価2]
 上記実施例1~7に示す方法で樹脂製回転体成形用半加工品を作成した場合における、定着歩留りと排水時間について評価した結果を表2に示す。測定方法は以下に示すとおりである。
[Evaluation 2]
Table 2 shows the results of the evaluation of the fixing yield and the drainage time in the case where the resin rotary body molding semi-processed article was prepared by the method shown in the above-mentioned Examples 1 to 7. The measurement method is as follows.
 定着歩留り:スラリー中に入れた繊維チョップとフェノール樹脂粉末を100%として、脱水後に繊維チョップとフェノール樹脂粉末の合計質量で何%が残ったのかを示す指標である。この定着歩留まりは、実施例1~7に定める材料配合で、凝集剤を添加してスラリーを作製し、濾過脱水圧縮装置7を用いて作製した成形素材5の乾燥後の質量を測定することにより算出した。 Fixing yield: 100% of fiber chops and phenol resin powder contained in the slurry, which is an index showing how many% of fiber chops and phenol resin powder remain after dehydration. The fixing yield is determined by adding a coagulant and preparing a slurry with the material combination specified in Examples 1 to 7, and measuring the mass after drying of the formed material 5 produced using the filtration dehydration compression device 7. Calculated.
 排水時間:濾過脱水圧縮装置7内にスラリーを充填してから、スラリー液面が底部材16に達するまでの時間として測定した。
Figure JPOXMLDOC01-appb-T000002
Drainage time: It was measured as the time for the slurry liquid level to reach the bottom member 16 after the slurry was filled in the filter dewatering and compressing device 7.
Figure JPOXMLDOC01-appb-T000002
 実施例1は実施例2に比べて定着歩留りが高く、排水時間が実施例2とほぼ同じであることが判る。また実施例7は、定着歩留りは高いものの、排水時間が実施例1~6と比べて8倍近く長く、実用的でないことが判る。 It can be seen that Example 1 has a high fixing yield as compared to Example 2, and the drainage time is almost the same as Example 2. In addition, although the fixing yield is high in Example 7, the drainage time is nearly eight times longer than those in Examples 1 to 6, and it is understood that it is not practical.
 なお、実施例2~5は実施例1と比較し、特にフェノール樹脂粉末の定着歩留りが低く、樹脂製歯車の機械強度が低下する心配があるため、スラリー製造時に、定着歩留りを考慮してフェノール樹脂粉末を多めに配合している。 Examples 2 to 5 have a concern that the fixing yield of the phenol resin powder is particularly low and mechanical strength of the resin gear gear is reduced as compared with Example 1, and therefore phenol is taken into consideration in fixing production when slurry is produced. Resin powder is compounded in excess.
 本発明によれば、ブッシュの外周部に短繊維と粉末状樹脂の集合物を形成する過程で、短繊維と粉末状樹脂をブッシュの回り止めの周囲に必要な量集積させてブッシュの回り止め部を短繊維と粉末状樹脂の集合物で完全に囲むことができる。さらにこれを圧縮することによって、ブッシュの回り止め部への短繊維と粉末状樹脂の喰い込みを確実なものとするとともに、ブッシュの外周部近傍の短繊維の密度を高めることができる。このため、従来のように、補強用繊維基材の内部に繊維層の境界面を形成することなく、樹脂成形体とブッシュの回り止め部との結合強度を向上させることができて、樹脂製歯車などの樹脂製回転体の耐久性能を大幅に向上することができる利点が得られる。 According to the present invention, in the process of forming the aggregate of the short fiber and the powdery resin on the outer peripheral portion of the bush, the necessary amount of the short fiber and the powdery resin is accumulated around the detent of the bush and the bush is detented The part can be completely surrounded by a collection of short fibers and powdered resin. Further, by compressing this, it is possible to ensure penetration of the short fiber and the powdered resin into the detent portion of the bush and to increase the density of the short fiber in the vicinity of the outer periphery of the bush. For this reason, as in the conventional case, the bonding strength between the resin molded product and the detent portion of the bush can be improved without forming the boundary surface of the fiber layer inside the reinforcing fiber base material, and it is made of resin The advantage is obtained that the durability performance of the resin rotary body such as a gear can be greatly improved.
 また、成形素材を加熱加圧成形することによって、樹脂成形体を形成することができるので、従来のように、補強用繊維基材を軸方向から押圧しながら成形用金型内部を真空に減圧し、樹脂を流しこんで該補強用繊維基材に樹脂を含浸させる作業が省くことができ、工程数が少なくて済む。また成形用金型の構造も簡略化できる。 In addition, since a resin molded body can be formed by heating and pressure forming a forming material, as in the prior art, the pressure in the forming mold is reduced to a vacuum while the reinforcing fiber base material is pressed from the axial direction. Then, the work of pouring the resin and impregnating the reinforcing fiber base with the resin can be omitted, and the number of processes can be reduced. In addition, the structure of the molding die can be simplified.
 1 樹脂製回転体
 2 金属製ブッシュ
 3 貫通孔
 4 外周部
 4A 突出部(回り止め部)
 4B 凹部
 5 成形素材
 7 抄造圧縮装置
 8 短繊維と粉末状樹脂の集合物
 10 筒状金型
 11,12 ブッシュ支持用金型
 13,14 圧縮用金型
 15 貫通孔
 16 底部材
Reference Signs List 1 resin rotating body 2 metal bush 3 through hole 4 outer peripheral portion 4A protruding portion (rotation preventing portion)
DESCRIPTION OF SYMBOLS 4B Recess 5 Molding material 7 Paper-making compression device 8 A collection of short fiber and powdered resin 10 Tubular mold 11, 12 Bush support mold 13, 14 Compression mold 15 Through hole 16 Bottom member

Claims (15)

  1.  外周部に1以上の回り止め部が形成されて回転軸を中心にして回転することができるブッシュを用意するステップと、
     前記ブッシュの前記外周部に、短繊維と粉末状樹脂の集合物によって形成され且つ前記1以上の回り止め部を囲むように前記ブッシュに嵌った状態で配置された成形素材を形成するステップとからなり、
     前記成形素材を形成するステップが、
     前記短繊維と前記粉末状樹脂と水とを混合して調製したスラリーを用いて、濾過脱水法により、前記ブッシュの前記外周部の周囲に前記短繊維と前記粉末状樹脂を集合させて集合物を形成する第1のステップと、
     前記集合物を前記回転軸の軸線方向に圧縮して前記ブッシュの前記外周部上に前記成形素材を形成する第2のステップとからなることを特徴とする樹脂製回転体成形用半加工品の製造方法。
    Providing a bush having one or more detents formed on the outer periphery and capable of rotating about a rotation axis;
    Forming a forming material formed of an aggregate of short fibers and powdered resin on the outer peripheral portion of the bush and disposed in a state of being fitted to the bush so as to surround the one or more detents; Become
    The step of forming the molding material is
    Using a slurry prepared by mixing the short fiber, the powdery resin and water, the short fiber and the powdery resin are collected around the outer peripheral portion of the bush by a filter-dehydration method to obtain an aggregate A first step of forming
    A second step of compressing the aggregate in the axial direction of the rotary shaft to form the molding material on the outer peripheral portion of the bush; Production method.
  2.  前記第1のステップでは、前記短繊維と前記粉末状樹脂と水とを混合した混合液に、1種以上の静電引力凝集タイプの高分子凝集剤を添加して前記スラリーを調整する請求項1に記載の樹脂製回転体成形用半加工品の製造方法。 In the first step, the slurry is prepared by adding one or more types of electrostatic attraction aggregation type polymer coagulant to a mixed solution of the short fiber, the powdered resin and water. The manufacturing method of the half-processed goods for resin-made rotary body formation as described in 1.
  3.  前記1種以上の静電引力凝集タイプの高分子凝集剤として、前記混合液に、カチオン性高分子凝集剤を添加した後、アニオン性高分子凝集剤を添加する請求項2に記載の樹脂製回転体成形用半加工品の製造方法。 The resin according to claim 2, wherein a cationic polymer flocculant is added to the mixed solution as the one or more electrostatic attractive flocculation type polymer flocculants, and then an anionic polymer flocculant is added. A method of manufacturing a semi-finished product for forming a rotating body.
  4.  前記1種以上の静電引力凝集タイプの高分子凝集剤として、前記混合液に両性高分子凝集剤を添加することを特徴とする請求項2に記載の樹脂製回転体成形用半加工品の製造方法。 The semi-finished product for molding resin rotary body according to claim 2, wherein an amphoteric polymer coagulant is added to the mixed solution as the one or more kinds of electrostatic attractive force aggregation type polymer coagulants. Production method.
  5.  前記第1のステップでは、前記ブッシュを収容し且つ前記集合物を収容する空間を吸引濾過した状態で、前記ブッシュの前記外周部の周囲に前記短繊維と前記粉末状樹脂を集合させることを特徴とする請求項1に記載の樹脂製回転体成形用半加工品の製造方法。 In the first step, the short fibers and the powdered resin are gathered around the outer peripheral portion of the bush in a state where the space for housing the bush and the collection housing is suction-filtered. The manufacturing method of the resin-made rotational-body-formed semi-processed goods according to claim 1.
  6.  前記カチオン性高分子凝集剤はカチオン性スチレン系高分子水溶液であり、及びアニオン性高分子凝集剤はアニオン性アクリル系高分子水溶液である請求項3に記載の樹脂製回転体成形用半加工品の製造方法。 The semi-finished product for resin rotary body molding according to claim 3, wherein the cationic polymer flocculant is a cationic styrenic polymer aqueous solution, and the anionic polymer flocculant is an anionic acrylic polymer aqueous solution. Manufacturing method.
  7.  外周部に1以上の回り止め部が形成されて回転軸を中心にして回転することができるブッシュを用意するステップと、
     前記ブッシュの前記外周部に、短繊維と粉末状樹脂の集合物によって形成され且つ前記1以上の回り止め部を囲むように前記ブッシュに嵌った状態で配置された成形素材を形成するステップと、
     前記成形素材を加熱しながら加圧して前記粉末状樹脂を溶融させて生成した溶融樹脂を前記短繊維からなる補強繊維層に含浸させた後、前記溶融樹脂を硬化させて樹脂成形体を形成するステップとからなり、
     前記成形素材を形成するステップが、
     前記短繊維と前記粉末状樹脂と水とを混合して調製したスラリーを用いて、濾過脱水法により、前記ブッシュの前記外周部の周囲に前記短繊維と前記粉末状樹脂を集合させて集合物を形成する第1のステップと、
     前記集合物を前記回転軸の軸線方向に圧縮して前記ブッシュの前記外周部上に前記成形素材を形成する第2のステップとからなることを特徴とする樹脂製回転体の製造方法。
    Providing a bush having one or more detents formed on the outer periphery and capable of rotating about a rotation axis;
    Forming a forming material formed of an aggregate of short fibers and powdered resin on the outer peripheral portion of the bush and disposed in a state of being fitted to the bush so as to surround the one or more detents;
    The molded material is heated and pressurized to melt the powdered resin, and the molten resin produced is impregnated into the reinforcing fiber layer consisting of the short fibers, and then the molten resin is cured to form a resin molded body It consists of steps and
    The step of forming the molding material is
    Using a slurry prepared by mixing the short fiber, the powdery resin and water, the short fiber and the powdery resin are collected around the outer peripheral portion of the bush by a filter-dehydration method to obtain an aggregate A first step of forming
    A second step of compressing the aggregate in an axial direction of the rotation shaft to form the molding material on the outer peripheral portion of the bush.
  8.  前記短繊維は、長さが2乃至6mmのアラミド繊維と、アラミド繊維をフィブリル化処理した微細繊維及び/またはパルプ状繊維を含み、微細繊維のフリーネスが100ml以上400ml以下であって、微細繊維の含有量が短繊維中の30質量%以下となるものであることを特徴とする請求項7に記載の樹脂製回転体の製造方法。 The short fibers include aramid fibers having a length of 2 to 6 mm, and fine fibers and / or pulp fibers obtained by fibrillating the aramid fibers, and the freeness of the fine fibers is 100 ml or more and 400 ml or less. The method for producing a resin rotating body according to claim 7, wherein the content is 30% by mass or less in the short fibers.
  9.  前記短繊維は、熱分解温度或いは溶融温度が250℃以上の合成繊維からなり、
     前記粉末状樹脂は、成形可能温度が前記合成繊維の熱分解温度或いは溶融温度よりも低く且つ粒子径が50μm以下の熱硬化性樹脂または熱可塑性樹脂の粒子からなる請求項8に記載の樹脂製回転体の製造方法。
    The short fibers are made of synthetic fibers having a thermal decomposition temperature or melting temperature of 250 ° C. or higher,
    9. The resin according to claim 8, wherein the powdery resin comprises particles of thermosetting resin or thermoplastic resin having a moldable temperature lower than the thermal decomposition temperature or melting temperature of the synthetic fiber and having a particle diameter of 50 μm or less. Method of manufacturing rotating body.
  10.  前記第1のステップでは、前記短繊維と前記粉末状樹脂と水とを混合した混合液に、1種以上の高分子凝集剤を添加して前記スラリーを調整する請求項7に記載の樹脂製回転体の製造方法。 The resin product according to claim 7, wherein, in the first step, the slurry is prepared by adding one or more polymer coagulants to a mixed solution of the short fibers, the powdered resin, and water. Method of manufacturing rotating body.
  11.  前記混合液に、前記1種以上の高分子凝集剤として、カチオン性高分子凝集剤を添加した後、アニオン性高分子凝集剤を添加する請求項10に記載の樹脂製回転体の製造方法。 The method according to claim 10, wherein a cationic polymer flocculant is added to the liquid mixture as the one or more polymer flocculants, and then an anionic polymer flocculant is added.
  12.  前記1種以上の高分子凝集剤として、前記混合液に両性高分子凝集剤を添加することを特徴とする請求項10に記載の樹脂製回転体の製造方法。 The method for producing a resin rotating body according to claim 10, wherein an amphoteric polymer flocculant is added to the mixed liquid as the one or more polymer flocculants.
  13.  前記樹脂成形体に対する前記短繊維の割合は、30体積%以上60体積%以下である請求項7に記載の樹脂製回転体の製造方法。 The method for manufacturing a resin rotating body according to claim 7, wherein a ratio of the short fibers to the resin molded body is 30% by volume or more and 60% by volume or less.
  14.  請求項7の樹脂製回転体の製造方法において前記成形素材を加熱しながら加圧する加熱加圧装置であって、
     前記成形素材の径方向外側への広がりを規制するように前記ブッシュと一緒に前記成形素材を収容する凹部を備えた固定金型と、
     前記ブッシュを支持する支持部が前記固定金型の前記凹部内で変位するように固定金具対して変位可能に配置された第1の可動金型と、前記凹部内に挿入されて前記支持部に支持された前記ブッシュ及び前記成形素材を前記凹部の内底面に向かって押す押圧部を備えた第2の可動金型とを備えて、
     前記固定金型の前記内底面と、前記第2の可動金型の前記押圧部とを前記成形素材に接触させた状態で、前記固定金型、前記第1の可動金型及び第2の可動金型は前記粉末状樹脂の成形可能温度に加熱され、前記粉末状樹脂が溶融した状態で前記第2の可動金型が前記内底面に向かって移動するように構成されていることを特徴とする加熱加圧装置。
    A heating and pressurizing apparatus for heating and pressing the molding material in the method for manufacturing a resin rotary body according to claim 7, wherein
    A fixed mold provided with a recess for receiving the molding material together with the bush so as to restrict the radially outward expansion of the molding material;
    A support portion for supporting the bush is disposed in the recess of a first movable mold displaceably disposed relative to a fixing bracket so as to be displaced in the recess of the fixed mold, and is inserted into the recess to the support portion And a second movable mold provided with the supported bush and a pressing portion for pressing the molding material toward the inner bottom surface of the recess.
    The fixed mold, the first movable mold, and the second movable with the inner bottom surface of the fixed mold and the pressing portion of the second movable mold being in contact with the molding material. The mold is heated to a moldable temperature of the powdery resin, and the second movable mold is configured to move toward the inner bottom surface in a state where the powdery resin is melted. Heat and pressure device.
  15.  請求項7記載の方法により製造された樹脂製回転体の樹脂成形体に歯切り加工が施されて形成された樹脂製歯車。 A resin gear formed by subjecting a resin molded body of a resin rotary body manufactured by the method according to claim 7 to a gear cutting process.
PCT/JP2013/063413 2012-05-14 2013-05-14 Method for producing semi-processed product for molding rotating resin-body, method for producing rotating resin-body, and heating and pressurization device WO2013172340A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013551453A JP5794316B2 (en) 2012-05-14 2013-05-14 Method for manufacturing semi-finished product for molding resin rotating body and method for manufacturing resin rotating body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012110724 2012-05-14
JP2012-110724 2012-05-14

Publications (1)

Publication Number Publication Date
WO2013172340A1 true WO2013172340A1 (en) 2013-11-21

Family

ID=49583745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063413 WO2013172340A1 (en) 2012-05-14 2013-05-14 Method for producing semi-processed product for molding rotating resin-body, method for producing rotating resin-body, and heating and pressurization device

Country Status (2)

Country Link
JP (1) JP5794316B2 (en)
WO (1) WO2013172340A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015097867A1 (en) * 2013-12-27 2015-07-02 新神戸電機株式会社 Molding material manufacturing apparatus and resin gear manufacturing method
WO2015097866A1 (en) * 2013-12-27 2015-07-02 新神戸電機株式会社 Molding material manufacturing method, molding material manufacturing apparatus, and method for manufacturing resin gear
JP2015136828A (en) * 2014-01-21 2015-07-30 トヨタ自動車株式会社 insert molding
JP2016043578A (en) * 2014-08-22 2016-04-04 トヨタ自動車株式会社 Coupling structure between components, and coupling method between components
CN112595213A (en) * 2020-10-19 2021-04-02 江苏华永复合材料有限公司 Method for assembling axle differential

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211343A (en) * 1985-03-04 1986-09-19 ザ ダウ ケミカル カンパニ− Manufacture of random fiber reinforced thermosettable polymer composite matter
JPH04113829A (en) * 1990-09-04 1992-04-15 Unitika Ltd Manufacture of phenol resin composite
JPH09188767A (en) * 1995-08-03 1997-07-22 Nippon Aramido Kk Fluororesin-based sheet, sheet laminate, production and use thereof
WO2006126627A1 (en) * 2005-05-25 2006-11-30 Asahi Organic Chemicals Industry Co., Ltd. Resin gear for electric power steering system and electric power steering system comprising same
JP2011099171A (en) * 2009-11-05 2011-05-19 Shin Kobe Electric Mach Co Ltd Fiber base material and resin gear using the fiber base material
JP2011152729A (en) * 2010-01-28 2011-08-11 Shin Kobe Electric Mach Co Ltd Papermaking compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211343A (en) * 1985-03-04 1986-09-19 ザ ダウ ケミカル カンパニ− Manufacture of random fiber reinforced thermosettable polymer composite matter
JPH04113829A (en) * 1990-09-04 1992-04-15 Unitika Ltd Manufacture of phenol resin composite
JPH09188767A (en) * 1995-08-03 1997-07-22 Nippon Aramido Kk Fluororesin-based sheet, sheet laminate, production and use thereof
WO2006126627A1 (en) * 2005-05-25 2006-11-30 Asahi Organic Chemicals Industry Co., Ltd. Resin gear for electric power steering system and electric power steering system comprising same
JP2011099171A (en) * 2009-11-05 2011-05-19 Shin Kobe Electric Mach Co Ltd Fiber base material and resin gear using the fiber base material
JP2011152729A (en) * 2010-01-28 2011-08-11 Shin Kobe Electric Mach Co Ltd Papermaking compressor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015097867A1 (en) * 2013-12-27 2015-07-02 新神戸電機株式会社 Molding material manufacturing apparatus and resin gear manufacturing method
WO2015097866A1 (en) * 2013-12-27 2015-07-02 新神戸電機株式会社 Molding material manufacturing method, molding material manufacturing apparatus, and method for manufacturing resin gear
CN105492178A (en) * 2013-12-27 2016-04-13 日立化成株式会社 Molding material manufacturing apparatus and resin gear manufacturing method
CN105531090A (en) * 2013-12-27 2016-04-27 日立化成株式会社 Molding material manufacturing method, molding material manufacturing apparatus, and method for manufacturing resin gear
JP6007979B2 (en) * 2013-12-27 2016-10-19 日立化成株式会社 Molding material manufacturing method, molding material manufacturing apparatus, and resin gear manufacturing method
JP6065004B2 (en) * 2013-12-27 2017-01-25 日立化成株式会社 Molding material manufacturing apparatus and resin gear manufacturing method
US9925700B2 (en) 2013-12-27 2018-03-27 Hitachi Chemical Company, Ltd. Method and apparatus of manufacturing molding material, and method of manufacturing resin gear
US10307972B2 (en) 2013-12-27 2019-06-04 Hitachi Chemical Company, Ltd. Apparatus of manufacturing molding material and method of manufacturing resin gear
JP2015136828A (en) * 2014-01-21 2015-07-30 トヨタ自動車株式会社 insert molding
JP2016043578A (en) * 2014-08-22 2016-04-04 トヨタ自動車株式会社 Coupling structure between components, and coupling method between components
CN112595213A (en) * 2020-10-19 2021-04-02 江苏华永复合材料有限公司 Method for assembling axle differential
CN112595213B (en) * 2020-10-19 2022-06-21 江苏华永复合材料有限公司 Method for assembling axle differential

Also Published As

Publication number Publication date
JP5794316B2 (en) 2015-10-14
JPWO2013172340A1 (en) 2016-01-12

Similar Documents

Publication Publication Date Title
WO2013172340A1 (en) Method for producing semi-processed product for molding rotating resin-body, method for producing rotating resin-body, and heating and pressurization device
JP5163104B2 (en) Manufacturing method of resin rotating body and manufacturing method of semi-finished product for resin rotating body molding
JP5062009B2 (en) Method of manufacturing semi-finished product for molding resin rotating body, method of manufacturing resin rotating body, and resin gear
JP5621941B1 (en) Manufacturing method of molding material, molding die used in the manufacturing method, and manufacturing method of resin rotating body
JP5315917B2 (en) Manufacturing method of resin rotating body, resin gear, and manufacturing method of semi-processed part for molding resin rotating body
JP6007979B2 (en) Molding material manufacturing method, molding material manufacturing apparatus, and resin gear manufacturing method
JP5163105B2 (en) Resin rotating body and manufacturing method thereof, semi-processed product for resin rotating body molding and manufacturing method thereof, and mold for molding fiber base material for reinforcement
JP5769027B2 (en) Manufacturing method of fiber substrate and manufacturing method of resin rotating body
JP5445175B2 (en) Paper compressor
JP2017089778A (en) Process of manufacture of resin gear
JP2012167682A (en) Resin rotor, resin gear, and method of manufacturing resin rotor
JP2010115853A (en) Method for manufacturing semi-fabricated product for molding resin-made rotator, method for manufacturing resin-made rotator, and resin-made gear
JP5556477B2 (en) Manufacturing method of resin gears
JP2014213560A (en) Method of producing resin molding and method of producing resin-made gear using the resin molding produced
JP2017061059A (en) Manufacturing method of toothed gear semi-finished body and manufacturing method of toothed gear using the semi-finished body
JP5560663B2 (en) Manufacturing method of fiber substrate and manufacturing method of resin gear
JP6065004B2 (en) Molding material manufacturing apparatus and resin gear manufacturing method
JP6086234B2 (en) Manufacturing method of resin gears
JP5540820B2 (en) Resin gear
JP5818088B2 (en) Resin molded body and resin gear using the same
JP6156695B2 (en) Gear device
JP2019005984A (en) Production method for resin gear
JP2013221105A (en) Resin molded body and resin-made gear using the same
JP2012145161A (en) Resin gear
JP2017089779A (en) Resin gear

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013551453

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13790564

Country of ref document: EP

Kind code of ref document: A1