JP6156695B2 - Gear device - Google Patents

Gear device Download PDF

Info

Publication number
JP6156695B2
JP6156695B2 JP2013186828A JP2013186828A JP6156695B2 JP 6156695 B2 JP6156695 B2 JP 6156695B2 JP 2013186828 A JP2013186828 A JP 2013186828A JP 2013186828 A JP2013186828 A JP 2013186828A JP 6156695 B2 JP6156695 B2 JP 6156695B2
Authority
JP
Japan
Prior art keywords
resin
gear
fiber
tooth surface
worm wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013186828A
Other languages
Japanese (ja)
Other versions
JP2014077541A (en
Inventor
木村 隆
隆 木村
洋一 森尾
洋一 森尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2013186828A priority Critical patent/JP6156695B2/en
Publication of JP2014077541A publication Critical patent/JP2014077541A/en
Application granted granted Critical
Publication of JP6156695B2 publication Critical patent/JP6156695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ギヤ装置に関する。   The present invention relates to a gear device.

従来、自動車で使用される歯車の多くは、強度及び耐熱性の面より金属部品が使用されていたが、近年では、環境対応自動車の開発が進み、燃費向上やCO削減に対応する軽量化、更には、金属製ギヤ同士の噛み合い音の静粛性の観点から、樹脂製ギヤを用いることが提言されている。 Conventionally, many of the gears used in automobiles have been made of metal parts in terms of strength and heat resistance. However, in recent years, the development of environment-friendly automobiles has progressed, and the weight has been reduced to improve fuel economy and reduce CO 2 emissions. Furthermore, from the viewpoint of quietness of the meshing sound between the metal gears, it is suggested to use a resin gear.

樹脂製ギヤの具体的構成としては、補強繊維基材としてアラミド繊維を使用するものがあり、図1に示すようにドーナツ状に形成した補強繊維基材1を金属製ブッシュ2にはめ込み、補強繊維基材1に樹脂を含浸・硬化させ、円形素材3を作製する。この円形素材3の周囲に歯切り加工を行い、樹脂製ギヤを作製する方法が特許文献1に記載されている。
しかしこの技術では、ドーナツ状に形成した補強繊維基材1を、金属製ブッシュ2の厚み方向に対して2個重ねて用いることで、金属製ブッシュ2の外周に設けた突出部を挟み込み、金属製ブッシュ2の抜け止めを行っているが、補強繊維基材の重ね合せ界面では繊維の絡み合いは弱く、使用用途によっては樹脂製ギヤの耐久性が不足する場合がある。
As a specific configuration of the resin gear, there is one using an aramid fiber as a reinforcing fiber base, and a reinforcing fiber base 1 formed in a donut shape as shown in FIG. The base material 1 is impregnated with resin and cured to produce a circular material 3. Patent Document 1 describes a method of cutting gears around the circular material 3 to produce a resin gear.
However, in this technique, two reinforcing fiber bases 1 formed in a donut shape are used so as to overlap each other in the thickness direction of the metal bush 2, thereby sandwiching a protrusion provided on the outer periphery of the metal bush 2. The bush 2 is prevented from coming off, but the fiber entanglement is weak at the overlapping interface of the reinforcing fiber base, and the durability of the resin gear may be insufficient depending on the usage.

これらの問題解決のために、短繊維を用いた抄造法による短繊維の集積体を作製し、補強繊維基材を作製する方法が特許文献2に記載されている。これは、短繊維の集積体を抄造する際に前記金属製ブッシュを抄造のための筒状金型内に配置しておき、金属製ブッシュ外周に設けた突出部を短繊維の集積体中に埋設している。
この技術によれば、短繊維集積体からなる補強繊維基材と金属製ブッシュとが予め一体化されており、以下、特許文献1に開示された技術と同様に円形素材を作製する工程を経て樹脂製ギヤを作製している。
また、樹脂製ギヤは、静粛性改善のため歯車形態としてヘリカルギヤを用いることが多く、噛み合い率を向上させることで静粛性を向上させている。
In order to solve these problems, Patent Document 2 describes a method of producing a reinforcing fiber base material by producing a short fiber aggregate by a papermaking method using short fibers. This is because the metal bush is placed in a cylindrical mold for paper making when the short fiber aggregate is made, and the protrusion provided on the outer periphery of the metal bush is placed in the short fiber aggregate. Buried.
According to this technique, the reinforcing fiber base made of the short fiber aggregate and the metal bush are integrated in advance, and thereafter, through a process of producing a circular material in the same manner as the technique disclosed in Patent Document 1. Resin gears are produced.
In addition, the resin gear often uses a helical gear as a gear form to improve the quietness, and the quietness is improved by improving the meshing rate.

特開2001−295913号公報JP 2001-295913 A 特開2009−250364号公報JP 2009-250364 A

しかしながら、抄造法により短繊維を集積し補強繊維基材を作製した場合、大半の短繊維は短繊維の長さ方向が短繊維の分散媒を排出する方向と交差する方向に堆積する。例えば、抄造装置の下側から排出した場合、短繊維の長さ方向は、水平方向(排出する方向に対して直交する方向)にランダムに配向する。従って、短繊維は、その径方向が垂直方向(排出する方向)に積み重なって堆積する。   However, when short fibers are accumulated by a papermaking method to produce a reinforcing fiber substrate, most of the short fibers are deposited in a direction in which the length direction of the short fibers intersects the direction in which the dispersion medium of the short fibers is discharged. For example, when discharged from the lower side of the papermaking apparatus, the length direction of the short fibers is randomly oriented in the horizontal direction (direction orthogonal to the discharge direction). Accordingly, the short fibers are accumulated while the radial direction thereof is stacked in the vertical direction (the discharge direction).

このため、特許文献2に開示される樹脂製ギヤでは、図2に示すように、短繊維が一定方向に集積した繊維集積層4が歯部に存在することになる。すなわち、図2は、樹脂製ギヤの回転軸方向の断面図であり、繊維集積層4における横方向の直線が、短繊維の長さ方向を表している。勿論、繊維集積層4を構成する短繊維は、前記横方向だけではなく、樹脂製ギヤの回転軸方向と直交する関係にあるランダムな方向に存在するわけであるが、図2では、便宜的に横方向だけを示している。   For this reason, in the resin gear disclosed in Patent Document 2, as shown in FIG. 2, the fiber accumulation layer 4 in which short fibers are accumulated in a certain direction is present in the tooth portion. That is, FIG. 2 is a cross-sectional view of the resin gear in the rotational axis direction, and the horizontal straight line in the fiber accumulation layer 4 represents the length direction of the short fibers. Of course, the short fibers constituting the fiber accumulation layer 4 are present not only in the lateral direction but also in a random direction that is orthogonal to the rotational axis direction of the resin gear. Shows only the horizontal direction.

従来の歯車形態であるヘリカルギヤ又はスパーギヤでは、図3に示すように、樹脂製ギヤ5の歯面と金属製ギヤ6の歯面の接触形態は転がり接触であり、金属製ギヤ6の歯面は、樹脂製ギヤ5の歯面に当接し、互いに押圧し合う。そのため、樹脂製ギヤの耐久寿命は、繊維集積層の影響を受けずにいた。   In the conventional helical gear or spur gear, as shown in FIG. 3, the contact form of the tooth surface of the resin gear 5 and the tooth surface of the metal gear 6 is rolling contact, and the tooth surface of the metal gear 6 is Then, they abut against the tooth surfaces of the resin gear 5 and press each other. Therefore, the durable life of the resin gear was not affected by the fiber accumulation layer.

一方、ウォームホイールギヤの場合、図4に示すように、樹脂製ウォームホイールギヤ7の歯面と金属製ウォームギヤ8の歯面の接触形態は滑り接触であり、金属製ウォームギヤ8の歯面は、樹脂製ウォームホイールギヤ7の歯面の上を滑っていくことになる。
このとき、微視的にみると、樹脂製ウォームホイールギヤ7の歯面の任意の箇所では、相手金属製ウォームギヤ8の歯面が当接した状態と、当接していない状態とが現れる。また、さらに微視的にみると、抄造法により作製した補強繊維基材を用いた樹脂製ウォームホイールギヤ7に、切削加工により歯を形成した場合、図4のa部を拡大した図5(A)に示すように、樹脂製ウォームホイールギヤ歯面9には、凸部(例えば、短繊維の突出等)が存在する。そして、前記凸部に金属製ウォームギヤ歯面10が当接し、矢印の方向(図5(A)において左側)へ動くと、前記凸部に応力が集中し、繊維集積層4に剥離が発生し易くなるという問題がある。そのため、樹脂製ギヤの耐久寿命は、繊維集積層の影響を受けやすくなる。
On the other hand, in the case of the worm wheel gear, as shown in FIG. 4, the contact form between the tooth surface of the resin worm wheel gear 7 and the tooth surface of the metal worm gear 8 is a sliding contact, and the tooth surface of the metal worm gear 8 is It slides on the tooth surface of the resin worm wheel gear 7.
At this time, when viewed microscopically, a state in which the tooth surface of the mating metal worm gear 8 abuts and a state in which the tooth surface of the mating metal worm gear 8 abuts appear at an arbitrary position on the tooth surface of the resin worm wheel gear 7. Further, microscopically, when teeth are formed by cutting on a resin worm wheel gear 7 using a reinforcing fiber base material produced by a papermaking method, FIG. As shown to A), the resin worm wheel gear tooth surface 9 has a convex part (for example, protrusion of a short fiber). When the metal worm gear tooth surface 10 comes into contact with the convex portion and moves in the direction of the arrow (left side in FIG. 5A), stress concentrates on the convex portion, and peeling occurs in the fiber accumulation layer 4. There is a problem that it becomes easy. Therefore, the durable life of the resin gear is easily affected by the fiber accumulation layer.

本発明は、抄造法により作製した繊維集積層に樹脂硬化物が保持された樹脂製ギヤを、ウォームホイールギヤとして用いた場合であっても、樹脂製ギヤの耐久寿命を縮めることがないギヤ装置を、提供することを目的とする。   The present invention provides a gear device that does not shorten the durable life of a resin gear even when a resin gear in which a cured resin is held on a fiber accumulation layer manufactured by a papermaking method is used as a worm wheel gear. Is intended to provide.

本発明は、以下のものに関する。
(1)抄造法により作製した繊維集積層に樹脂硬化物が保持された樹脂製ギヤをウォームホイールギヤとし、これをウォームギヤと組み合せたギヤ装置である。歯面が金属製であるウォームギヤと、歯面が樹脂製であるウォームホイールギヤとを備え、前記ウォームホイールギヤが、その外周に配置される樹脂製ギヤ部を有し、この樹脂製ギヤ部が、短繊維が集積した繊維集積層に樹脂硬化物が保持されたものであり、この繊維集積層の層方向が、前記ウォームギヤ歯面の進み方向に対し、90度未満の角度をなす、ギヤ装置。ここで、繊維集積層の層方向とは、集積した大半の短繊維の繊維長方向が含まれる面の方向をいう。
The present invention relates to the following.
(1) A gear device in which a resin gear in which a cured resin is held on a fiber accumulation layer produced by a papermaking method is used as a worm wheel gear and is combined with a worm gear. A worm gear having a tooth surface made of metal and a worm wheel gear having a tooth surface made of resin, the worm wheel gear having a resin gear portion disposed on an outer periphery thereof, the resin gear portion being A gear device in which a cured resin is held in a fiber accumulation layer in which short fibers are accumulated, and the layer direction of the fiber accumulation layer forms an angle of less than 90 degrees with respect to the advancing direction of the worm gear tooth surface. . Here, the layer direction of the fiber accumulation layer refers to the direction of the surface including the fiber length direction of most of the accumulated short fibers.

本発明では、図5(B)(C)に示すように、金属製ウォームギヤ歯面10の進み方向に対して繊維集積層4の層方向がなす角度11を90度未満(鋭角)とする。これにより、樹脂製ウォームホイールギヤ歯面9に凸部(例えば、短繊維の突出等)があっても、金属製ウォームギヤ歯面10を受け流すようになるため、繊維集積層の剥離の発生を抑制することができる。
そのため、本発明のギヤ装置では、歯面の摩耗を減少することができ、樹脂製ウォームホイールギヤの耐久寿命を向上することができる。
In the present invention, as shown in FIGS. 5B and 5C, the angle 11 formed by the layer direction of the fiber accumulation layer 4 with respect to the advancing direction of the metal worm gear tooth surface 10 is less than 90 degrees (acute angle). As a result, even if the resin worm wheel gear tooth surface 9 has a convex portion (for example, a short fiber protrusion), the metal worm gear tooth surface 10 is swept away, so that the occurrence of peeling of the fiber accumulation layer is suppressed. can do.
Therefore, in the gear device of the present invention, tooth surface wear can be reduced, and the durable life of the resin worm wheel gear can be improved.

従来例である樹脂製ギヤの概略斜視図。The schematic perspective view of the resin gears which are a prior art example. 図1に示す樹脂製ギヤの繊維集積層を示す縦断面図。The longitudinal cross-sectional view which shows the fiber integration layer of the resin gears shown in FIG. ヘリカルギヤにおける歯面の噛合い方向の説明図。Explanatory drawing of the meshing direction of the tooth surface in a helical gear. ウォームホイールギヤにおける歯面の噛合い方向の説明図。Explanatory drawing of the meshing direction of the tooth surface in a worm wheel gear. 繊維集積層の剥離の発生の説明図。Explanatory drawing of generation | occurrence | production of peeling of a fiber accumulation layer. 繊維集積層の作製の概要図。The schematic diagram of preparation of a fiber accumulation layer. 成形金型の概要図。Schematic diagram of the molding die.

<ウォームギヤ>
本発明にて述べるウォームギヤは、少なくとも相手ウォームホイールギヤと接触する歯面が、金属製であれば他に限定されるものではなく、その全てを金属製とするものでも、歯面以外の一部を非金属製とすることもできる。
歯面の金属は、特に限定されるものではないが、焼入れ炭素鋼、ステンレス鋼、クロムモリブデン鋼又は銅合金鋳物等を用いることができ、特に焼入れ炭素鋼を用いることが、加工性に優れ、高水準の歯形精度を得ることができることにより好ましい。
<Worm gear>
The worm gear described in the present invention is not limited to the other as long as at least the tooth surface in contact with the mating worm wheel gear is made of metal. Can be made of non-metal.
Although the tooth surface metal is not particularly limited, it is possible to use a hardened carbon steel, stainless steel, chromium molybdenum steel, a copper alloy casting, etc., and particularly using a hardened carbon steel is excellent in workability, It is preferable because a high level of tooth profile accuracy can be obtained.

<ウォームホイールギヤ>
本発明にて述べるウォームホイールギヤは、その外周に配置される樹脂製ギヤ部を有するものであり、この樹脂製ギヤ部に歯面が形成される。なお、ウォームホイールギヤを回転軸に取り付ける際の強度や精度の観点から、ウォームホイールギヤの中心部分には金属製ブッシュが配置され、その周囲に樹脂製ギヤ部が設けられることが好ましい。
<Worm wheel gear>
The worm wheel gear described in the present invention has a resin gear portion disposed on the outer periphery thereof, and a tooth surface is formed on the resin gear portion. From the viewpoint of strength and accuracy when the worm wheel gear is attached to the rotating shaft, it is preferable that a metal bush is disposed at the center of the worm wheel gear and a resin gear portion is provided around the metal bush.

また、樹脂製ギヤ部は、短繊維が集積した繊維集積層に樹脂硬化物が保持されたものであり、この繊維集積層の層方向が、ウォームギヤ歯面の進み方向に対し、90度未満の角度をなす。
角度について、更に詳細に述べると、本発明では、図5(B)(C)に示すように、金属製ウォームギヤ歯面10の進み方向(図5(B)(C)において左側)に対して、樹脂製ギヤ部の繊維集積層4の層方向がなす角度11を、90度未満にする必要がある。このようにすることで、樹脂製ギヤ部の繊維集積層により形成される凸部があっても、ウォームギヤ歯面を受け流すようになり、歯面の摩耗を最小限にすることができる。
逆に、この角度11が、90度以上であると、図5(A)に示すように、樹脂製ギヤ部の繊維集積層により形成される凸部に、ウォームギヤ歯面が引っ掛かるように移動するため、歯面の摩耗を増大させて、短寿命化してしまう。
Further, the resin gear portion is obtained by holding a cured resin in a fiber accumulation layer in which short fibers are accumulated, and the layer direction of the fiber accumulation layer is less than 90 degrees with respect to the advancing direction of the worm gear tooth surface. Make an angle.
The angle will be described in more detail. In the present invention, as shown in FIGS. 5B and 5C, with respect to the advance direction of the metal worm gear tooth surface 10 (left side in FIGS. 5B and 5C). The angle 11 formed by the layer direction of the fiber accumulation layer 4 of the resin gear portion needs to be less than 90 degrees. By doing in this way, even if there is a convex part formed by the fiber accumulation layer of the resin gear part, the worm gear tooth surface can be received and wear of the tooth surface can be minimized.
On the other hand, when the angle 11 is 90 degrees or more, as shown in FIG. 5A, the worm gear tooth surface moves so as to be caught by the convex portion formed by the fiber accumulation layer of the resin gear portion. Therefore, the wear of the tooth surface is increased and the life is shortened.

<金属製ブッシュ>
金属製ブッシュは、ウォームホイールギヤの中心部に配置することができ、ウォームホイールギヤを回転させるためのモーター等の駆動源から伝達動力を伝える回転軸に固定されるものである。
金属の材質は、特に限定されるものではないが、焼結合金、炭素鋼、ステンレス鋼等を用いることができ、特に焼結合金を用いることが形状自由度や生産性の面により好ましい。
<Metal bushing>
The metal bush can be disposed at the center of the worm wheel gear, and is fixed to a rotating shaft that transmits transmission power from a drive source such as a motor for rotating the worm wheel gear.
The material of the metal is not particularly limited, but a sintered alloy, carbon steel, stainless steel, or the like can be used. In particular, it is preferable to use a sintered alloy in terms of the degree of freedom in shape and productivity.

<樹脂製ギヤ部>
本発明にて述べる樹脂製ギヤ部は、先に述べたウォームホイールギヤの外周に配置されるものであり、抄造法により作製した補強繊維基材に対し樹脂を含浸硬化させて作製することができる。
<Resin gear part>
The resin gear portion described in the present invention is disposed on the outer periphery of the worm wheel gear described above, and can be produced by impregnating and curing a resin to a reinforcing fiber base produced by a papermaking method. .

抄造法に用いる短繊維としては、特に限定されるものではないが、綿や麻等の天然繊維、アラミド繊維(芳香族ポリアミド繊維)、ポリアミド繊維等の有機繊維や、炭素繊維、ガラス繊維、金属繊維等の無機繊維を使用用途により適宜に用いることができ、これらの短繊維は、用途により単独及び複数種類を用いても良い。特にアラミド繊維を用いることが、高強度かつ軽量、高耐熱性であることにより好ましい。
また、抄造する際の分散媒は、特に限定されるものではないが、後処理の行い易さから、水を用いることが好ましい。
上記の短繊維と分散媒とを混合して調製したスラリーを抄造し、短繊維の集積体を作製する。そして、この集積体を厚さ方向に圧縮して、繊維集積層からなる補強繊維基材を作製する。
The short fibers used in the papermaking method are not particularly limited, but natural fibers such as cotton and hemp, organic fibers such as aramid fibers (aromatic polyamide fibers) and polyamide fibers, carbon fibers, glass fibers and metals. Inorganic fibers such as fibers can be appropriately used depending on the intended use, and these short fibers may be used alone or in a plurality of types depending on the intended use. It is particularly preferable to use an aramid fiber because of its high strength, light weight, and high heat resistance.
Moreover, the dispersion medium at the time of papermaking is not particularly limited, but water is preferably used from the viewpoint of ease of post-treatment.
The slurry prepared by mixing the above short fibers and the dispersion medium is made into a paper, and a short fiber aggregate is produced. Then, the aggregate is compressed in the thickness direction to produce a reinforcing fiber base made of a fiber accumulation layer.

抄造法により作製した補強繊維基材に対して含浸硬化させる樹脂は、特に限定されるものではないが、ポリアミノアミド樹脂、エポキシ樹脂、ポリイミド樹脂、フェノール樹脂等の液状樹脂を用いることができ、特にポリアミノアミド樹脂を用いることが樹脂製ギヤの製造性、耐熱性、強度等の面より好ましい。
樹脂製ギヤ部の層構造は、抄造を行う際の分散媒を排出する方向に対して直交する方向に形成されるものであり、必ずしも抄造工程を複数回行って形成するものばかりではない。
The resin to be impregnated and cured with respect to the reinforcing fiber base produced by the papermaking method is not particularly limited, but liquid resins such as polyaminoamide resin, epoxy resin, polyimide resin, phenol resin can be used, It is preferable to use a polyaminoamide resin from the viewpoints of manufacturability, heat resistance, strength and the like of the resin gear.
The layer structure of the resin gear portion is formed in a direction orthogonal to the direction in which the dispersion medium is discharged during papermaking, and is not necessarily formed by performing the papermaking process a plurality of times.

また、樹脂製ギヤ部は、短繊維と粉末状樹脂と分散媒とを混合して調製したスラリーから抄造法により作製した成形素材を加熱加圧して前記樹脂を溶融させ、短繊維からなる繊維集積層に含浸硬化させて作製することができる。
抄造法に用いる短繊維としては、前述した補強繊維基材の場合と同様のものを用いることができ、これらの短繊維は、用途により単独及び複数種類を用いても良い。特にアラミド繊維を用いることが、高強度かつ軽量、高耐熱性であることにより好ましい。
また、抄造する際の分散媒は、特に限定されるものではないが、後処理の行い易さから、水を用いることが好ましい。
Further, the resin gear portion is a fiber assembly made of short fibers by heating and pressing a molding material prepared by a papermaking method from a slurry prepared by mixing short fibers, a powdered resin, and a dispersion medium to melt the resin. It can be produced by impregnating and curing the laminate.
As the short fibers used in the papermaking method, the same fibers as those of the reinforcing fiber base described above can be used, and these short fibers may be used alone or in plural types depending on the application. It is particularly preferable to use an aramid fiber because of its high strength, light weight, and high heat resistance.
Moreover, the dispersion medium at the time of papermaking is not particularly limited, but water is preferably used from the viewpoint of ease of post-treatment.

抄造法に用いる粉末状樹脂(粉末状は粒子状形態を含む)は、熱硬化性樹脂、熱可塑性樹脂など種々の材質のものを用いることができる。例えば、エポキシ樹脂、ポリアミノアミド樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ポリエーテルサルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンサルファイド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂から選ばれた1以上の樹脂を組み合わせたものが使用できる。これらの中でも樹脂硬化物の強度、耐熱性等の点からフェノール樹脂が好ましい。   Various materials such as a thermosetting resin and a thermoplastic resin can be used as the powdered resin used in the papermaking method (the powdery form includes a particulate form). For example, epoxy resin, polyaminoamide resin, phenol resin, unsaturated polyester resin, polyimide resin, polyethersulfone resin, polyetheretherketone resin, polyamideimide resin, polyamide resin, polyester resin, polyphenylene sulfide resin, polyethylene resin, polypropylene A combination of one or more resins selected from resins can be used. Among these, a phenol resin is preferable from the viewpoints of the strength and heat resistance of the cured resin.

粉末状樹脂の粒子形状は任意であるが、粒状のものを用いるのが好ましい。また、粒子径は、短繊維の繊維径により異なるが、50μm以下が好ましい。これにより、短繊維の集積体の短繊維同士の間隙に粉末状樹脂を均一に分布させることができる。
少なくとも上記の短繊維と粉末状樹脂と分散媒とを混合して調製したスラリーを抄造し、短繊維と粉末状樹脂の集積体を作製する。そして、この集積体を厚さ方向に圧縮して、成形素材を作製する。
The particle shape of the powdery resin is arbitrary, but a granular resin is preferably used. Moreover, although a particle diameter changes with fiber diameters of a short fiber, 50 micrometers or less are preferable. Thereby, the powdered resin can be uniformly distributed in the gaps between the short fibers of the short fiber aggregate.
A slurry prepared by mixing at least the above-described short fibers, powdered resin, and dispersion medium is made into a paper, and an aggregate of short fibers and powdered resin is produced. Then, the aggregate is compressed in the thickness direction to produce a molding material.

<ウォームホイールギヤの製造方法1>
本発明のウォームホイールギヤは、特に限定するものではないが、例えば、図6、図7に示すような機能を有する装置を用い、補強繊維基材製造工程、樹脂製ギヤ作成工程の2つの工程で製造することができる。
<Method 1 for producing worm wheel gear>
Although the worm wheel gear of the present invention is not particularly limited, for example, using a device having a function as shown in FIGS. 6 and 7, two steps of a reinforcing fiber base material manufacturing step and a resin gear manufacturing step Can be manufactured.

先ず、補強繊維基材製造工程に関して、必要な短繊維の質量を測定し、繊維を準備する。繊維を規定量の水(分散媒)に入れて短繊維を攪拌し、スラリーを作製する。そして、図6に示すように、短繊維の集積体を作製するため、予め金属製ブッシュ2をセットした予備成形金型に作製したスラリーを流し込み、短繊維を予備成形金型内に集積させ、集積層12を作製する。   First, regarding the reinforcing fiber substrate manufacturing process, the mass of necessary short fibers is measured to prepare the fibers. The fibers are put into a specified amount of water (dispersion medium) and the short fibers are stirred to prepare a slurry. Then, as shown in FIG. 6, in order to produce an aggregate of short fibers, the slurry prepared in a preforming mold in which the metal bush 2 is set in advance is poured, the short fibers are accumulated in the preforming mold, The integrated layer 12 is produced.

予備成形金型は、補強繊維基材の外径寸法を決めるための筒状金型13と、筒状金型13の内側に金属製ブッシュ2を固定するためのブッシュ支持部14、15及び集積した短繊維を圧縮するための圧縮用金型16、17を有している装置とする。
尚、圧縮用金型17には、スラリーの水分のみを排水するための貫通穴18を設けておき、圧縮用金型17の上には短繊維が貫通穴18から抜けなくするためのメッシュ19を置いておき、メッシュ19上に短繊維を集積させながら水分のみを排水していく。
The preforming mold includes a cylindrical mold 13 for determining the outer diameter size of the reinforcing fiber base, bush support portions 14 and 15 for fixing the metal bush 2 inside the cylindrical mold 13, and integration. The apparatus has compression molds 16 and 17 for compressing the short fibers.
The compression mold 17 is provided with a through hole 18 for draining only the water of the slurry, and a mesh 19 for preventing the short fibers from coming out of the through hole 18 on the compression mold 17. Then, only the moisture is drained while collecting the short fibers on the mesh 19.

短繊維を予備成形金型内に集積させた後に、予備成形金型に搭載されている圧縮用金型16、17で集積層を圧縮して脱水及び形状形成を行い、補強繊維基材20を作製する。   After the short fibers are accumulated in the preforming mold, the accumulation layer is compressed by the compression molds 16 and 17 mounted on the preforming mold to perform dehydration and shape formation. Make it.

次に、樹脂製ギヤ作成工程として、図7に示すように、作製した補強繊維基材20を成形用金型にセットし、樹脂を補強繊維基材に含浸させて加熱加圧成形を行い、円形素材を作製する。この円形素材に切削により加工を行って歯を形成し、樹脂製ウォームホイールギヤを作製する。   Next, as a resin gear creation step, as shown in FIG. 7, the produced reinforcing fiber base material 20 is set in a molding die, the resin is impregnated into the reinforcing fiber base material, and heat pressure molding is performed. Create a circular material. This circular material is processed by cutting to form teeth, thereby producing a resin worm wheel gear.

<ウォームホイールギヤの製造方法2>
また、本発明のウォームホイールギヤは、例えば、図6、図7に示すような機能を有する装置を用い、成形素材製造工程、樹脂製ギヤ作成工程の2つの工程で製造することができる。
<Method 2 for producing worm wheel gear>
Moreover, the worm wheel gear of the present invention can be manufactured in two processes, for example, a molding material manufacturing process and a resin gear manufacturing process, using an apparatus having functions as shown in FIGS.

先ず、成形素材製造工程に関して、必要な短繊維と粉末状樹脂の質量を測定し、繊維と樹脂を準備する。繊維と樹脂を規定量の水(分散媒)に入れて短繊維と粉末状樹脂を攪拌し、スラリーを作製する。そして、図6に示すように、短繊維と粉末状樹脂の集積体を作製するため、予め金属製ブッシュ2をセットした予備成形金型に作製したスラリーを流し込み、短繊維と粉末状樹脂を予備成形金型内に集積させ、集積層12’を作製する。   First, regarding the molding material manufacturing process, necessary short fibers and powdered resin are measured to prepare fibers and a resin. The fibers and the resin are put into a specified amount of water (dispersion medium), and the short fibers and the powdered resin are stirred to prepare a slurry. Then, as shown in FIG. 6, in order to produce an aggregate of short fibers and powdered resin, the prepared slurry is poured into a preforming mold in which a metal bush 2 is set in advance, and the short fibers and powdered resin are preliminarily prepared. An integrated layer 12 ′ is produced by integrating in a molding die.

予備成形金型は、成形素材の外径寸法を決めるための筒状金型13と、筒状金型13の内側に金属製ブッシュ2を固定するためのブッシュ支持部14、15及び集積した短繊維と粉末状樹脂を圧縮するための圧縮用金型16、17を有している装置とする。
尚、圧縮用金型17には、スラリーの水分を排水するための貫通穴18を設けておき、圧縮用金型17の上には短繊維と粉末状樹脂が貫通穴18から抜けなくするためのメッシュ19を置いておき、メッシュ19上に短繊維と粉末状樹脂を集積させながら水分を排水していく。
The preforming mold includes a cylindrical mold 13 for determining the outer diameter of the molding material, bush support portions 14 and 15 for fixing the metal bush 2 inside the cylindrical mold 13, and an integrated short. The apparatus has compression molds 16 and 17 for compressing fibers and powdered resin.
The compression mold 17 is provided with a through hole 18 for draining the water of the slurry so that the short fibers and the powdered resin do not come out of the through hole 18 on the compression mold 17. The mesh 19 is placed, and moisture is drained while collecting the short fibers and the powdered resin on the mesh 19.

短繊維と粉末状樹脂を予備成形金型内に集積させた後に、予備成形金型に搭載されている圧縮用金型16、17で集積層を圧縮して脱水及び形状形成を行い、成形素材20’を作製する。   After the short fibers and the powdery resin are accumulated in the preforming mold, the accumulation layer is compressed by the compression molds 16 and 17 mounted on the preforming mold to perform dehydration and shape formation, and the molding material 20 ′ is produced.

次に、樹脂製ギヤ作成工程として、図7に示すように、作製した成形素材20’を成形用金型にセットし、加熱加圧して樹脂を溶融させ、短繊維からなる繊維集積層に含浸硬化させて、円形素材を作製する。この円形素材に切削により加工を行って歯を形成し、樹脂製ウォームホイールギヤを作製する。   Next, as shown in FIG. 7, as a resin gear production process, the produced molding material 20 ′ is set in a molding die, heated and pressed to melt the resin, and impregnated into a fiber accumulation layer composed of short fibers. Curing to make a circular material. This circular material is processed by cutting to form teeth, thereby producing a resin worm wheel gear.

以下、本発明の実施例について、図面を用いて説明を行う。   Embodiments of the present invention will be described below with reference to the drawings.

(実施例1)
本実施例1においては、樹脂製ギヤ部を構成する補強繊維基材20として、有機繊維であるメタ系アラミド繊維とパラ系アラミド繊維を含有したものを用いる。
補強繊維基材20は、メタ系アラミド繊維A(繊維長:3mm、繊維径:10μm)を50質量%、パラ系アラミド繊維B(繊維長:3mm、繊維径:10μm)を45質量%、パラ系アラミド繊維C(繊維長:6mm、繊維径:10μm)を5質量%、混合して用いた。
前述した繊維を水に入れて攪拌し、スラリーを作製する。このときのスラリー濃度は繊維質量に対して4g/リットルとなるように水量を調整した。
Example 1
In the present Example 1, as the reinforcing fiber base 20 constituting the resin gear portion, a material containing a meta-aramid fiber and a para-aramid fiber which are organic fibers is used.
The reinforcing fiber base 20 is composed of 50% by mass of meta-aramid fiber A (fiber length: 3 mm, fiber diameter: 10 μm), 45% by mass of para-aramid fiber B (fiber length: 3 mm, fiber diameter: 10 μm), para The system aramid fiber C (fiber length: 6 mm, fiber diameter: 10 μm) was mixed and used in an amount of 5 mass%.
The above-mentioned fiber is put in water and stirred to prepare a slurry. The amount of water was adjusted so that the slurry concentration at this time was 4 g / liter with respect to the fiber mass.

次に、図6に示す予備成形金型のブッシュ支持部15に金属製ブッシュ2をセットし、先程作製したスラリーを予備成形金型内に投入する。予備成形金型を構成している筒状金型13とブッシュ支持部14及び15は、集積層の外径及び内径形状を構成するもので、本実施例においては筒状金型13の内径部を直径:90mm、ブッシュ支持部14及び15の外径を直径:58mmとした。また、貫通穴18の下側から真空吸引を行い、水分を排出して繊維と水分を分離させ、集積層12を作製する。   Next, the metal bush 2 is set on the bush support portion 15 of the preforming mold shown in FIG. 6, and the previously prepared slurry is put into the preforming mold. The cylindrical mold 13 and the bush support portions 14 and 15 constituting the preforming mold constitute the outer diameter and inner diameter shape of the integrated layer. In this embodiment, the inner diameter portion of the cylindrical mold 13 is used. The diameter was 90 mm, and the outer diameters of the bush support portions 14 and 15 were 58 mm. Moreover, vacuum suction is performed from the lower side of the through-hole 18 to discharge moisture and separate fibers and moisture, thereby producing the integrated layer 12.

集積層12を作製後、金属製ブッシュ2の軸方向に、150℃に加熱した圧縮用金型16、17を、その間隔が18mmとなるまで、上側の圧縮用金型16を下降させる。このとき、ブッシュ支持部14、15は連動して動き、金属製ブッシュ2の中心部が、圧縮用金型16、17の中央となるように維持させる。加熱・加圧状態を2分間継続させることで、補強繊維基材20を作製する。   After the integrated layer 12 is fabricated, the upper compression mold 16 is lowered in the axial direction of the metal bush 2 until the compression molds 16 and 17 heated to 150 ° C. have a distance of 18 mm. At this time, the bush support portions 14 and 15 move in conjunction with each other, and the center portion of the metal bush 2 is maintained at the center of the compression molds 16 and 17. The reinforcing fiber base 20 is produced by continuing the heating and pressurizing state for 2 minutes.

次に、図7(A)に示す200℃に加熱した成形金型21内に、作製した補強繊維基材20を配置し、図7(B)のように成形金型21を閉じ、金型内圧力を1.3kPa以下に減圧させるために真空吸引を5分間行う。減圧完了後、2,2’−(1,3フェニレン)ビス2−オキサゾリン:69質量%、4,4’−ジアミノジフェニルメタン:31質量%を混合した樹脂を、温度:140℃で溶解し、オクチルブロマイド:1質量%(外数)を加えて撹拌した樹脂を、金型内部に注入して補強用繊維基材20に含浸させ、成形金型21内で3分間加熱硬化し、円形素材を得る。この円形素材を、図5(C)で示した角度11が45度となるような歯を形成するようにホブ盤を用いて切削加工をすることにより樹脂製ウォームホイールギヤを得た。   Next, the produced reinforcing fiber substrate 20 is placed in a molding die 21 heated to 200 ° C. shown in FIG. 7A, and the molding die 21 is closed as shown in FIG. In order to reduce the internal pressure to 1.3 kPa or less, vacuum suction is performed for 5 minutes. After completion of the decompression, a resin in which 2,2 ′-(1,3-phenylene) bis-2-oxazoline: 69% by mass and 4,4′-diaminodiphenylmethane: 31% by mass was dissolved at a temperature of 140 ° C. and octyl was dissolved. Bromide: 1% by mass (external number) of agitated resin is injected into the mold, impregnated into the reinforcing fiber base 20, and heated and cured in the mold 21 for 3 minutes to obtain a circular material. . The circular material was cut using a hobbing machine so as to form teeth with an angle 11 shown in FIG. 5C of 45 degrees to obtain a resin worm wheel gear.

(比較例1)
実施例1にて得られた樹脂製ウォームホイールギヤを使用し、摩耗性評価において、実施例1とは回転方向を逆にして評価を行った。このとき、図5(C)で示した角度11は、135度である。
(Comparative Example 1)
The resin worm wheel gear obtained in Example 1 was used, and in the wear evaluation, the rotation direction was reversed from that in Example 1, and the evaluation was performed. At this time, the angle 11 shown in FIG. 5C is 135 degrees.

(摩耗性評価)
実施例1で作製した樹脂製ウォームホイールギヤを用いて歯面の摩耗性評価を実施した。方法として、試験機に作製した樹脂製ウォームホイールギヤを取り付け、金属製ウォームギヤ(材質:焼入れ炭素鋼、歯面研磨仕上げ品)を噛み合わせ、評価条件(回転数:60rpm、ウォームホイール負荷:84.8N・m)で評価し、歯面の摩耗量及びギヤ寿命を測定した。なお、比較例1は、実施例1と回転方向を逆にして評価を行ったものである。
本評価における摩耗量測定方法として、評価開始から所定時間経過後のバックラッシを測定し、評価開始前のバックラッシと比較して、その変化量を摩耗量とした。
(Abrasion evaluation)
Using the resin worm wheel gear produced in Example 1, the tooth surface was evaluated for wear resistance. As a method, a resin worm wheel gear produced in a test machine was attached, a metal worm gear (material: hardened carbon steel, tooth surface polished product) was meshed, and evaluation conditions (rotation speed: 60 rpm, worm wheel load: 84. 8N · m), and the tooth surface wear and gear life were measured. Comparative Example 1 was evaluated by reversing the rotation direction from Example 1.
As a method for measuring the amount of wear in this evaluation, the backlash after a predetermined time elapsed from the start of the evaluation was measured, and the amount of change was compared with the backlash before the start of the evaluation.

(ギヤ耐久寿命評価)
本評価におけるギヤ耐久寿命測定方法として、先に述べた評価条件で耐久試験を行い、樹脂製ウォームホイールギヤが破損したときの総回転数をギヤ耐久寿命とした。
(Gear durability life evaluation)
As a method for measuring the gear durability in this evaluation, a durability test was performed under the evaluation conditions described above, and the total number of revolutions when the resin worm wheel gear was damaged was defined as the gear durability life.

試験結果は、以下に示す表1及び表2のように得られ、金属製ウォームギヤ歯面の進み方向と樹脂製ギヤ部の繊維集積層とのなす角度が90度未満(鋭角)となる実施例1を1とした場合、比較例1は歯面の摩耗量が増加し、ギヤ耐久寿命が低下する結果が得られた。これは角度11が90度以上(鈍角)となることで繊維集積層が剥離しやすくなっていることが要因であると推測する。   Test results are obtained as shown in Table 1 and Table 2 below, and the angle formed by the advance direction of the metal worm gear tooth surface and the fiber accumulation layer of the resin gear portion is less than 90 degrees (acute angle). When 1 was set to 1, Comparative Example 1 resulted in an increase in tooth surface wear and a reduction in gear durability life. This is presumed to be caused by the fact that the fiber integrated layer is easily peeled off when the angle 11 is 90 degrees or more (obtuse angle).

上記の実施例1は、前述したウォームホイールギヤの製造方法1による補強繊維基材20を用いる場合について説明した。前述したウォームホイールギヤの製造方法2による成形素材20’を用いる場合は、実施例1の如く成形金型21内に樹脂を注入する必要はなく、成形素材20’を加熱加圧成形すればよい。この場合も、実施例1に準じた効果を確認した。   In the above-described first embodiment, the case where the reinforcing fiber base 20 according to the above-described worm wheel gear manufacturing method 1 is used has been described. In the case of using the molding material 20 ′ according to the worm wheel gear manufacturing method 2 described above, it is not necessary to inject the resin into the molding die 21 as in the first embodiment, and the molding material 20 ′ may be formed by heating and pressing. . Also in this case, the effect according to Example 1 was confirmed.

1…補強繊維基材、2…金属製ブッシュ、3…円形素材、4…繊維集積層、5…樹脂製ギヤ、6…金属製ギヤ、7…樹脂製ウォームホイールギヤ、8…金属製ウォームギヤ、9…樹脂製ウォームホイールギヤ歯面、10…金属製ウォームギヤ歯面、11…角度、12、12’…集積層、13…筒状金型、14、15…ブッシュ支持部、16、17…圧縮用金型、18…貫通穴、19…メッシュ、20…補強繊維基材、20’…成形素材、21…成形金型 DESCRIPTION OF SYMBOLS 1 ... Reinforcement fiber base material, 2 ... Metal bush, 3 ... Circular material, 4 ... Fiber accumulation layer, 5 ... Resin gear, 6 ... Metal gear, 7 ... Resin worm wheel gear, 8 ... Metal worm gear, DESCRIPTION OF SYMBOLS 9 ... Resin worm wheel gear tooth surface, 10 ... Metal worm gear tooth surface, 11 ... Angle, 12, 12 '... Accumulation layer, 13 ... Cylindrical metal mold, 14, 15 ... Bush support part, 16, 17 ... Compression 18 ... through hole, 19 ... mesh, 20 ... reinforcing fiber substrate, 20 '... molding material, 21 ... molding die

Claims (1)

抄造法により作製した繊維集積層に樹脂硬化物が保持された樹脂製ギヤをウォームホイールギヤとし、これをウォームギヤと組み合せたギヤ装置であって、
歯面が金属製であるウォームギヤと、歯面が樹脂製であるウォームホイールギヤとを備え、前記ウォームホイールギヤが、その外周に配置される樹脂製ギヤ部を有し、この樹脂製ギヤ部が、短繊維が集積した繊維集積層に樹脂硬化物が保持されたものであり、この繊維集積層の層方向(集積した大半の短繊維の繊維長方向が含まれる面の方向をいう)が、前記ウォームギヤ歯面の進み方向に対し、90度未満の角度をなす、ギヤ装置。
A gear device in which a resin gear in which a cured resin is held in a fiber accumulation layer produced by a papermaking method is used as a worm wheel gear, and this is combined with a worm gear,
A worm gear having a tooth surface made of metal and a worm wheel gear having a tooth surface made of resin, the worm wheel gear having a resin gear portion disposed on an outer periphery thereof, the resin gear portion being The cured resin is held in a fiber accumulation layer in which short fibers are accumulated, and the layer direction of this fiber accumulation layer (refers to the direction of the surface including the fiber length direction of most of the accumulated short fibers), A gear device that forms an angle of less than 90 degrees with respect to the advancing direction of the worm gear tooth surface.
JP2013186828A 2012-09-20 2013-09-10 Gear device Active JP6156695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013186828A JP6156695B2 (en) 2012-09-20 2013-09-10 Gear device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012206499 2012-09-20
JP2012206499 2012-09-20
JP2013186828A JP6156695B2 (en) 2012-09-20 2013-09-10 Gear device

Publications (2)

Publication Number Publication Date
JP2014077541A JP2014077541A (en) 2014-05-01
JP6156695B2 true JP6156695B2 (en) 2017-07-05

Family

ID=50782990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013186828A Active JP6156695B2 (en) 2012-09-20 2013-09-10 Gear device

Country Status (1)

Country Link
JP (1) JP6156695B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3765208B2 (en) * 1999-09-08 2006-04-12 株式会社ジェイテクト Electric steering device
JP2003139220A (en) * 2001-11-02 2003-05-14 Nsk Ltd Worm wheel and its manufacturing method
CN101180360B (en) * 2005-05-25 2010-12-15 旭有机材工业株式会社 Resin gear for electric power steering system and electric power steering system comprising same
JP2007331662A (en) * 2006-06-16 2007-12-27 Nsk Ltd Electric power steering device
JP5648377B2 (en) * 2010-09-03 2015-01-07 日本ガスケット株式会社 Resin gear and manufacturing method thereof

Also Published As

Publication number Publication date
JP2014077541A (en) 2014-05-01

Similar Documents

Publication Publication Date Title
JP5062009B2 (en) Method of manufacturing semi-finished product for molding resin rotating body, method of manufacturing resin rotating body, and resin gear
JP5163104B2 (en) Manufacturing method of resin rotating body and manufacturing method of semi-finished product for resin rotating body molding
CN105546092A (en) Gear and manufacturing method thereof
JP5163105B2 (en) Resin rotating body and manufacturing method thereof, semi-processed product for resin rotating body molding and manufacturing method thereof, and mold for molding fiber base material for reinforcement
JP5445175B2 (en) Paper compressor
JP5315917B2 (en) Manufacturing method of resin rotating body, resin gear, and manufacturing method of semi-processed part for molding resin rotating body
JP5556477B2 (en) Manufacturing method of resin gears
JP5769027B2 (en) Manufacturing method of fiber substrate and manufacturing method of resin rotating body
JP5794316B2 (en) Method for manufacturing semi-finished product for molding resin rotating body and method for manufacturing resin rotating body
JP6156695B2 (en) Gear device
JP2010115853A (en) Method for manufacturing semi-fabricated product for molding resin-made rotator, method for manufacturing resin-made rotator, and resin-made gear
JP2012167682A (en) Resin rotor, resin gear, and method of manufacturing resin rotor
JP6103299B2 (en) Manufacturing method of resin molded body and manufacturing method of resin gear
JP2013127282A (en) Resin gear
JP5540820B2 (en) Resin gear
JP2018162854A (en) Resin gear
JP5560663B2 (en) Manufacturing method of fiber substrate and manufacturing method of resin gear
JP2014213560A (en) Method of producing resin molding and method of producing resin-made gear using the resin molding produced
JP2017061059A (en) Manufacturing method of toothed gear semi-finished body and manufacturing method of toothed gear using the semi-finished body
JP6086234B2 (en) Manufacturing method of resin gears
JP2012145161A (en) Resin gear
JP5620936B2 (en) Manufacturing method of resin gear
JP2011220463A (en) Resin gear
JP5664451B2 (en) Manufacturing method of resin rotating body forming material and manufacturing method of resin rotating body
JP2022164242A (en) Method for manufacturing resin gear and resin gear

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150421

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170524

R151 Written notification of patent or utility model registration

Ref document number: 6156695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350