JP2009108726A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2009108726A
JP2009108726A JP2007280332A JP2007280332A JP2009108726A JP 2009108726 A JP2009108726 A JP 2009108726A JP 2007280332 A JP2007280332 A JP 2007280332A JP 2007280332 A JP2007280332 A JP 2007280332A JP 2009108726 A JP2009108726 A JP 2009108726A
Authority
JP
Japan
Prior art keywords
exhaust gas
stirring member
reducing agent
duct
gas duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007280332A
Other languages
Japanese (ja)
Inventor
Masatoshi Katsuki
将利 勝木
Kazuki Nishizawa
和樹 西澤
Masazumi Taura
昌純 田浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007280332A priority Critical patent/JP2009108726A/en
Publication of JP2009108726A publication Critical patent/JP2009108726A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device capable of uniformly diffusing urea water of a reducing agent into exhaust emission, and efficiently reducing nitrogen oxides included in the exhaust emission for cleaning the exhaust emission. <P>SOLUTION: This device includes a urea injection nozzle 13 which adds urea water 12 to an exhaust emission duct 11, an SCR catalyst 14 placed downstream of the position where the urea water is added by the urea injection nozzle, in the exhaust emission flow direction, in the duct 11 and reduces the nitrogen oxides in the exhaust emission to nitrogen with the urea water, and a stirring member 15 placed between the nozzle 13 and catalyst 14 and gives swirl to the exhaust emission. The stirring member has swirling blades with inclination of 30-60° in relation to a flow direction to swirl the exhaust emission along the flow direction. Distance L1 between the stirring member and the nozzle 13 is set to a ratio of 1.8-6.3 to a diameter D1 of the duct 11. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、還元剤を排ガスに添加し当該排ガス中の窒素酸化物を還元して当該排ガスを浄化する排ガス浄化装置に関し、特にディーゼルエンジンやガスエンジンなど内燃機関から排出される排ガスや、廃棄物を焼却したり溶融したりする炉から排出される排ガス中の窒素酸化物を還元して排ガスを浄化する場合に適用すると有効である。   The present invention relates to an exhaust gas purification device that purifies the exhaust gas by adding a reducing agent to the exhaust gas and reducing nitrogen oxides in the exhaust gas, and in particular, exhaust gas discharged from an internal combustion engine such as a diesel engine or a gas engine, or waste It is effective when applied to purify exhaust gas by reducing nitrogen oxides in the exhaust gas discharged from a furnace that incinerates or melts.

エンジン等の内燃機関や廃棄物を焼却する炉などから排出される排ガスには窒素酸化物が含まれており、当該窒素酸化物を排ガス浄化装置で還元することにより当該排ガスを浄化して大気へ排出するようにしている。この排ガス浄化装置は、還元剤としてアンモニアを用い当該アンモニアと排ガス中の窒素酸化物を脱硝触媒で接触させて窒素に還元して排ガスを浄化している。このような排ガス浄化装置においては、アンモニアの原料として尿素を用いて、当該尿素を排ガス中に均一に拡散させることで触媒による窒素酸化物の還元除去を向上させることが検討されている。   Exhaust gas discharged from internal combustion engines such as engines and furnaces that incinerate waste contains nitrogen oxides. By reducing the nitrogen oxides with an exhaust gas purification device, the exhaust gas is purified to the atmosphere. It is trying to discharge. This exhaust gas purifying apparatus purifies exhaust gas by using ammonia as a reducing agent, bringing the ammonia and nitrogen oxides in the exhaust gas into contact with each other by a denitration catalyst and reducing them to nitrogen. In such an exhaust gas purifying apparatus, it has been studied to improve the reduction and removal of nitrogen oxides by a catalyst by using urea as a raw material of ammonia and uniformly diffusing the urea into the exhaust gas.

例えば、下記特許文献1には、尿素水噴射弁の近傍にヒータ付設の気化器を設けると共に、旋回翼を設けた排気ガス処理装置が開示されている。この排気ガス処理装置では、尿素水噴射装置から噴射された尿素水をヒータ付設の気化器で気化して尿素蒸気とし、旋回翼により尿素蒸気を排ガス中に拡散している。   For example, Patent Document 1 below discloses an exhaust gas treatment apparatus in which a carburetor with a heater is provided in the vicinity of a urea water injection valve and a swirl vane is provided. In this exhaust gas treatment device, urea water injected from a urea water injection device is vaporized by a vaporizer provided with a heater to form urea vapor, and urea vapor is diffused into the exhaust gas by swirl vanes.

また、排ガスダクトの一方の端面を閉止した円筒状の旋回室を設けると共に、旋回室の閉止端面に尿素水スプレノズルを設け、旋回室に接線方向から排ガスを導入するように排ガス入口ダクトをさらに設けた尿素水気化器が知られている。この尿素水気化器では、旋回室の排ガス流通方向下流側に配置された脱硝触媒の入口側でアンモニア濃度分布の偏りを防止している   In addition, a cylindrical swirl chamber with one end face of the exhaust gas duct closed is provided, a urea water spray nozzle is provided on the closed end face of the swirl chamber, and an exhaust gas inlet duct is further provided to introduce exhaust gas into the swirl chamber from a tangential direction. Urea water vaporizers are known. In this urea water vaporizer, an uneven ammonia concentration distribution is prevented on the inlet side of the denitration catalyst disposed downstream of the swirl chamber in the exhaust gas flow direction.

さらに、排ガスが流通する排ガス通路に尿素水を噴霧する尿素水噴霧ノズルと当該排ガス通路内に配置される脱硝触媒との間に、多孔板や混合板や遮蔽板などを設置した排ガス浄化装置が知られている。このような排ガス浄化装置では、前記部材の設置により、排ガスの流れに乱れを生じさせて排ガス通路の径断面にて尿素水を排ガス中で均一に拡散させている。   Further, there is an exhaust gas purification apparatus in which a porous plate, a mixing plate, a shielding plate, etc. are installed between a urea water spray nozzle that sprays urea water in an exhaust gas passage through which exhaust gas flows and a denitration catalyst disposed in the exhaust gas passage. Are known. In such an exhaust gas purification apparatus, the flow of the exhaust gas is disturbed by the installation of the member, and the urea water is uniformly diffused in the exhaust gas in the radial cross section of the exhaust gas passage.

特開2005−344597号公報(例えば、段落[0016]−[0041]、[図1]〜[図6]など参照)JP-A-2005-344597 (see, for example, paragraphs [0016]-[0041], [FIG. 1] to [FIG. 6], etc.)

上述した特許文献1記載の排気ガス処理装置では、尿素水噴射装置の他にヒータ付設の気化器を具備する装置であり、気化器の設置により装置自体が複雑になってしまう上に、装置の大型化および装置コストの増加を招いてしまう。   The exhaust gas treatment device described in Patent Document 1 described above is a device that includes a vaporizer with a heater in addition to the urea water injection device, and the device itself becomes complicated due to the installation of the vaporizer. This leads to an increase in size and an increase in equipment cost.

また、上述した尿素水気化器では、尿素水スプレノズルからの尿素水噴霧直後に排ガス流に旋回を与えているため、排ガス流量が多くなってノズルから噴霧された尿素水の液滴が旋回室による旋回が大きくなりすぎるとその影響を受け排ガスダクトの壁面などに衝突して脱硝触媒へ還元剤を均一に供給できなくなる。また逆に、排ガス流量が少なくなって旋回室による排ガスの旋回が小さくなりすぎると排ガス中に還元剤を均一拡散することができず脱硝触媒へ還元剤を均一に供給できなくなる。その結果、脱硝触媒の所定の脱硝性能を得ることができないおそれがあった。加えて、排ガス温度が低下すると固体物が析出して排ガスダクトの腐食および目詰まりなどを生じるおそれがあった。   Further, in the urea water vaporizer described above, since the exhaust gas flow is swirled immediately after the urea water spray from the urea water spray nozzle, the urea water droplets sprayed from the nozzle due to the increased exhaust gas flow rate are caused by the swirl chamber. If the swirl becomes too large, it will be affected by this and will collide with the wall surface of the exhaust gas duct, etc. and will not be able to supply the reducing agent uniformly to the denitration catalyst. Conversely, if the exhaust gas flow rate is reduced and the swirling of the exhaust gas in the swirl chamber becomes too small, the reducing agent cannot be uniformly diffused into the exhaust gas and the reducing agent cannot be uniformly supplied to the denitration catalyst. As a result, the predetermined denitration performance of the denitration catalyst may not be obtained. In addition, when the exhaust gas temperature is lowered, solid substances may be deposited, causing corrosion and clogging of the exhaust gas duct.

さらに、多孔板や混合板や遮蔽板などを設置した場合には、排ガスへの還元剤の混合度合いを高めるために排ガス流路を長くしなければならず、大型になってしまうおそれがあった。また逆に、排ガス流路を短くするとその径方向の断面において還元剤の濃度分布に偏りが生じて、脱硝触媒に対して還元剤が均一に接触せず当該脱硝触媒の所定の脱硝性能を得ることができないおそれがあった。加えて、排ガスの流量が変化すると排ガス中に還元剤が均一に分散しないおそれがあった。   Furthermore, when a perforated plate, a mixing plate, a shielding plate, or the like is installed, the exhaust gas flow path must be lengthened to increase the degree of mixing of the reducing agent with the exhaust gas, which may result in a large size. . Conversely, if the exhaust gas flow path is shortened, the concentration distribution of the reducing agent is biased in the radial cross section, and the reducing agent does not contact the NOx removal catalyst uniformly, thereby obtaining the predetermined NOx removal performance of the NOx removal catalyst. There was a risk of not being able to. In addition, if the flow rate of the exhaust gas changes, the reducing agent may not be uniformly dispersed in the exhaust gas.

そこで、本発明は、前述した問題に鑑み提案されたもので、簡易な構造にて、還元剤を排ガス中に均一拡散させて当該排ガス中の窒素酸化物を効率良く還元して排ガスを浄化できる排ガス浄化装置を提供することを目的とする。   Therefore, the present invention has been proposed in view of the above-mentioned problems, and with a simple structure, the reducing agent can be uniformly diffused in the exhaust gas to efficiently reduce the nitrogen oxides in the exhaust gas, thereby purifying the exhaust gas. An object is to provide an exhaust gas purification device.

上述した課題を解決する第1の発明に係る排ガス浄化装置は、排ガスダクト内を流通する排ガス中の窒素酸化物を還元して浄化する排ガス浄化装置であって、前記排ガスダクトに還元剤を添加する還元剤添加手段と、前記還元剤添加手段による前記還元剤の添加位置よりも前記排ガスの流通方向下流側に位置するように前記排ガスダクト内に配置され、前記排ガス中の窒素酸化物を前記還元剤によって窒素に還元させる還元触媒と、前記還元剤添加手段と前記還元触媒との間に配置され、前記排ガスに旋回流れを付与する攪拌部材とを具備し、前記攪拌部材が、前記排ガスを流通方向に沿って旋回させるように当該流通方向に対して30°以上60°以下の傾斜を有する旋回翼を備え、前記攪拌部材と前記還元触媒との距離L1が前記排ガスダクトの直径D1に対する割合で1.8以上6.3以下であることを特徴とする。   An exhaust gas purifying apparatus according to a first invention for solving the above-mentioned problem is an exhaust gas purifying apparatus that reduces and purifies nitrogen oxides in exhaust gas flowing through an exhaust gas duct, and adds a reducing agent to the exhaust gas duct. A reducing agent adding means that is disposed in the exhaust gas duct so as to be located downstream of the reducing agent addition position by the reducing agent adding means in the flow direction of the exhaust gas, and the nitrogen oxide in the exhaust gas is A reduction catalyst that reduces the nitrogen to a reducing agent; and a stirring member that is disposed between the reducing agent addition means and the reduction catalyst and that imparts a swirling flow to the exhaust gas. A swirl vane having an inclination of 30 ° or more and 60 ° or less with respect to the flow direction so as to swirl along the flow direction, and a distance L1 between the stirring member and the reduction catalyst is the exhaust gas The ratio is 1.8 to 6.3 in terms of the ratio of the cut to the diameter D1.

上述した課題を解決する第2の発明に係る排ガス浄化装置は、第1の発明に係る排ガス浄化装置であって、前記攪拌部材が、前記還元剤の蒸発を促進する蒸発部材であることを特徴とする。   An exhaust gas purifying apparatus according to a second invention that solves the above-described problem is the exhaust gas purifying apparatus according to the first invention, wherein the stirring member is an evaporation member that promotes evaporation of the reducing agent. And

上述した課題を解決する第3の発明に係る排ガス浄化装置は、第1または第2の発明に係る排ガス浄化装置であって、前記旋回翼が、孔または突起が複数形成されているものであることを特徴とする。   An exhaust gas purifying apparatus according to a third invention for solving the above-described problem is the exhaust gas purifying apparatus according to the first or second invention, wherein the swirl blade has a plurality of holes or protrusions. It is characterized by that.

上述した課題を解決する第4の発明に係る排ガス浄化装置は、第1乃至第3の発明の何れか一つに係る排ガス浄化装置であって、前記還元剤添加手段と前記攪拌部材との距離L2が前記排ガスダクトの直径D1に対する割合で7以下であることを特徴とする。   An exhaust gas purifying apparatus according to a fourth invention for solving the above-mentioned problem is an exhaust gas purifying apparatus according to any one of the first to third inventions, wherein a distance between the reducing agent adding means and the stirring member. L2 is 7 or less in a ratio to the diameter D1 of the exhaust gas duct.

上述した課題を解決する第5の発明に係る排ガス浄化装置は、第1乃至第4の発明の何れか一つに係る排ガス浄化装置であって、前記攪拌部材が、前記排ガスダクトとの間に隙間を有するように前記排ガスダクトに支持部材を介して支持されていることを特徴とする。   An exhaust gas purifying apparatus according to a fifth invention for solving the above-described problem is the exhaust gas purifying apparatus according to any one of the first to fourth inventions, wherein the stirring member is disposed between the exhaust duct and the exhaust gas purifying apparatus. The exhaust gas duct is supported via a support member so as to have a gap.

上述した課題を解決する第6の発明に係る排ガス浄化装置は、第1乃至第5の発明の何れか一つに係る排ガス浄化装置であって、前記攪拌部材と前記排ガスダクトとの間に断熱材が配置されていることを特徴とする。   An exhaust gas purification apparatus according to a sixth invention for solving the above-described problem is an exhaust gas purification apparatus according to any one of the first to fifth inventions, wherein heat insulation is provided between the stirring member and the exhaust gas duct. The material is arranged.

上述した課題を解決する第7の発明に係る排ガス浄化装置は、第1乃至第6の発明の何れか一つに係る排ガス浄化装置であって、前記攪拌部材が、加水分解触媒が塗布されたものであることを特徴とする。   An exhaust gas purifying apparatus according to a seventh invention for solving the above-mentioned problem is an exhaust gas purifying apparatus according to any one of the first to sixth inventions, wherein the stirring member is coated with a hydrolysis catalyst. It is characterized by being.

上述した課題を解決する第8の発明に係る排ガス浄化装置は、第1乃至第7の発明の何れか一つに係る排ガス浄化装置であって、前記攪拌部材が、排ガス流通方向に複数配置されていることを特徴とする。   An exhaust gas purifying apparatus according to an eighth invention for solving the above-described problem is an exhaust gas purifying apparatus according to any one of the first to seventh inventions, wherein a plurality of the agitating members are arranged in the exhaust gas circulation direction. It is characterized by.

上述した課題を解決する第9の発明に係る排ガス浄化装置は、第1乃至第8の発明の何れか一つに係る排ガス浄化装置であって、前記攪拌部材が、前記排ガスダクトに対して回転可能に支持する回転支持手段を有することを特徴とする。   An exhaust gas purification apparatus according to a ninth invention for solving the above-described problem is the exhaust gas purification apparatus according to any one of the first to eighth inventions, wherein the stirring member rotates with respect to the exhaust gas duct. It has the rotation support means which supports so that it is possible.

上述した課題を解決する第10の発明に係る排ガス浄化装置は、第1乃至第9の発明の何れか一つに係る排ガス浄化装置であって、前記還元剤添加手段が、前記還元剤を前記排ガスダクトの壁面近傍に添加するものであり、前記攪拌部材が、前記排ガスダクトの前記排ガス流通方向の中央部分に位置する箇所に穴を有するものであることを特徴とする。   An exhaust gas purifying apparatus according to a tenth invention for solving the above-described problem is an exhaust gas purifying apparatus according to any one of the first to ninth inventions, wherein the reducing agent adding means supplies the reducing agent to the reducing agent. The stirrer is added to the vicinity of the wall surface of the exhaust gas duct, and the stirring member has a hole at a position located in a central portion of the exhaust gas duct in the exhaust gas circulation direction.

第1の発明に係る排ガス浄化装置によれば、排ガスダクト内を流通する排ガス中の窒素酸化物を還元して浄化する排ガス浄化装置であって、前記排ガスダクトに還元剤を添加する還元剤添加手段と、前記還元剤添加手段による前記還元剤の添加位置よりも前記排ガスの流通方向下流側に位置するように前記排ガスダクト内に配置され、前記排ガス中の窒素酸化物を前記還元剤によって窒素に還元させる還元触媒と、前記還元剤添加手段と前記還元触媒との間に配置され、前記排ガスに旋回流れを付与する攪拌部材とを具備し、前記攪拌部材が、前記排ガスを流通方向に沿って旋回させるように当該流通方向に対して30°以上60°以下の傾斜を有する旋回翼を備え、前記攪拌部材と前記還元触媒との距離L1が前記排ガスダクトの直径D1に対する割合で1.8以上6.3以下であることにより、還元剤添加手段から添加された還元剤が完全に蒸発し、当該還元剤が攪拌部材により排ガス中に均一に拡散する。そして、還元触媒における排ガス流通方向に対する断面で還元剤が均一に接触することとなり、還元触媒で還元剤を有効に利用して排ガス中の窒素酸化物を還元して除去することができる。このように旋回翼の角度、および排ガスダクトの直径D1に対する攪拌部材と還元触媒との距離L1の調整という簡易な構成にて脱硝性能を向上できる。また、排ガスダクト長を最適化することができるので、排ガス浄化置自体のコンパクト化を図ることができる。   According to the exhaust gas purifying apparatus according to the first aspect of the present invention, there is provided an exhaust gas purifying apparatus for reducing and purifying nitrogen oxides in the exhaust gas flowing in the exhaust gas duct, wherein the reducing agent is added to the exhaust gas duct. And in the exhaust gas duct so as to be located on the downstream side in the flow direction of the exhaust gas from the addition position of the reducing agent by the reducing agent addition means, and nitrogen oxides in the exhaust gas are converted into nitrogen by the reducing agent. A reducing catalyst for reducing the exhaust gas, and a stirring member that is disposed between the reducing agent adding means and the reducing catalyst and imparts a swirling flow to the exhaust gas, and the stirring member passes the exhaust gas along a flow direction. Swirling blades having an inclination of 30 ° or more and 60 ° or less with respect to the flow direction so that the distance L1 between the stirring member and the reduction catalyst is equal to the diameter D1 of the exhaust gas duct. When the ratio is 1.8 or more and 6.3 or less, the reducing agent added from the reducing agent adding means is completely evaporated, and the reducing agent is uniformly diffused into the exhaust gas by the stirring member. And a reducing agent contacts uniformly in the cross section with respect to the exhaust gas distribution direction in a reduction catalyst, and it can reduce and remove the nitrogen oxide in exhaust gas effectively using a reducing agent with a reduction catalyst. Thus, the denitration performance can be improved with a simple configuration of adjusting the distance L1 between the stirring member and the reduction catalyst with respect to the angle of the swirl vane and the diameter D1 of the exhaust gas duct. Moreover, since the exhaust gas duct length can be optimized, the exhaust gas purification unit itself can be made compact.

第2の発明に係る排ガス浄化装置によれば、前記攪拌部材が、前記還元剤の蒸発を促進する蒸発部材であることにより、第1の発明に係る排ガス浄化装置と同様な作用効果を奏する他、還元剤の液滴が蒸発部材上で蒸発しガス化するため、液滴蒸発に必要となる排ガスダクト長(還元剤添加手段と蒸発部材との距離)を短くでき、装置のコンパクト化をさらに図ることができる。   According to the exhaust gas purification apparatus according to the second aspect of the invention, the stirring member is an evaporation member that promotes evaporation of the reducing agent, so that the same effects as the exhaust gas purification apparatus according to the first aspect of the invention can be achieved. Since the reducing agent droplets evaporate and gasify on the evaporation member, the exhaust gas duct length (distance between the reducing agent addition means and the evaporation member) required for droplet evaporation can be shortened, further reducing the size of the apparatus. Can be planned.

第3の発明に係る排ガス浄化装置によれば、前記旋回翼が、孔または突起が複数形成されているものであることにより、第1および第2の発明に係る排ガス浄化装置と同様な作用効果を奏する他、排ガスとの接触面積が広くなり、排ガスの熱をより効率良く還元剤の液滴に伝達して蒸発を促進することができる。よって、液滴蒸発に必要となる排ガスダクト長を短くでき、装置のコンパクト化をさらに図ることができる。   According to the exhaust gas purification apparatus according to the third aspect of the invention, the swirl vanes are formed with a plurality of holes or protrusions, so that the same effect as the exhaust gas purification apparatus according to the first and second aspects of the invention is achieved. In addition, the contact area with the exhaust gas is widened, and the heat of the exhaust gas can be more efficiently transferred to the reducing agent droplets to promote evaporation. Therefore, the length of the exhaust gas duct required for droplet evaporation can be shortened, and the apparatus can be further downsized.

第4の発明に係る排ガス浄化装置によれば、前記還元剤添加手段と前記攪拌部材との距離L2が前記排ガスダクトの直径D1に対する割合で7以下であることにより、第1乃至第3の発明に係る排ガス浄化装置と同様、液滴蒸発に必要となる排ガスダクト長を短くでき、装置のコンパクト化をさらに図ることができる。   According to the exhaust gas purification apparatus of the fourth invention, the distance L2 between the reducing agent addition means and the stirring member is 7 or less in terms of the ratio to the diameter D1 of the exhaust gas duct. As in the exhaust gas purifying apparatus according to the above, the exhaust gas duct length required for droplet evaporation can be shortened, and the apparatus can be further downsized.

第5の発明に係る排ガス浄化装置によれば、前記攪拌部材が、前記排ガスダクトとの間に隙間を有するように前記排ガスダクトに支持部材を介して支持されていることにより、第1乃至第4の発明に係る排ガス浄化装置と同様な作用効果を奏する他、攪拌部材と排ガスダクトの接触面積を減らすことができ、排ガスダクトへの放熱による攪拌部材の温度低下が無くなり、攪拌部材への還元剤などの固着を防止できる。   According to the exhaust gas purification apparatus of the fifth aspect of the invention, the stirring member is supported by the exhaust gas duct via the support member so as to have a gap with the exhaust gas duct. In addition to the same operational effects as the exhaust gas purifying apparatus according to the invention of 4, the contact area between the agitating member and the exhaust gas duct can be reduced, and the temperature of the agitating member is not lowered due to heat radiation to the exhaust gas duct, and the reduction to the agitating member is achieved. The sticking of the agent can be prevented.

第6の発明に係る排ガス浄化装置によれば、前記攪拌部材と前記排ガスダクトとの間に断熱材が配置されていることにより、第1乃至第5の発明に係る排ガス浄化装置と同様な作用効果を奏する他、排ガスダクトへの放熱による攪拌部材の温度低下が断熱材により抑制され、攪拌部材への還元剤などの固着や副生成物の析出をより確実に防止できる。   According to the exhaust gas purification apparatus according to the sixth aspect of the present invention, the same action as that of the exhaust gas purification apparatus according to the first to fifth aspects of the present invention is provided by disposing a heat insulating material between the stirring member and the exhaust gas duct. In addition to having an effect, the heat insulating material suppresses the temperature drop of the stirring member due to heat radiation to the exhaust gas duct, and can more reliably prevent sticking of a reducing agent or the like to the stirring member and precipitation of by-products.

第7の発明に係る排ガス浄化装置によれば、前記攪拌部材が、加水分解触媒が塗布されたものであることにより、第1乃至第6の発明に係る排ガス浄化装置と同様な作用効果を奏する他、還元剤が尿素水である場合に尿素水からアンモニアを生成する生成反応が促進されて、当該アンモニアを還元触媒に安定して供給でき、還元触媒での脱硝反応を促進できる。   According to the exhaust gas purification apparatus of the seventh invention, the stirring member is coated with a hydrolysis catalyst, so that the same operational effects as the exhaust gas purification apparatus of the first to sixth inventions are achieved. In addition, when the reducing agent is urea water, the generation reaction for generating ammonia from the urea water is promoted, and the ammonia can be stably supplied to the reduction catalyst, and the denitration reaction at the reduction catalyst can be promoted.

第8の発明に係る排ガス浄化装置によれば、前記攪拌部材が、排ガス流通方向に複数配置されていることにより、第1乃至第7の発明に係る排ガス浄化装置と同様な作用効果を奏する他、排ガスを確実に旋回できる上に、旋回による圧力損失を低減できる。さらに、一つの攪拌部材による排ガスへの旋回の付与よりも大きな旋回力を排ガス流通方向にて圧力損失せずに付与することができるため、排ガスダクト長をさらに短くすることができる。   According to the exhaust gas purifying apparatus according to the eighth aspect of the present invention, the plurality of stirring members are arranged in the exhaust gas circulation direction, thereby providing the same effects as the exhaust gas purifying apparatus according to the first to seventh aspects of the invention. The exhaust gas can be swirled reliably, and the pressure loss due to swirling can be reduced. Furthermore, since a larger turning force can be applied in the exhaust gas circulation direction without pressure loss than the turning of the exhaust gas by one stirring member, the exhaust gas duct length can be further shortened.

第9の発明に係る排ガス浄化装置によれば、前記攪拌部材が、前記排ガスダクトに対して回転可能に支持する回転支持手段を有することにより、第1乃至第8の発明に係る排ガス浄化装置と同様な作用効果を奏する他、攪拌部材の旋回翼が排ガスの流入により回転し、攪拌部材自体により排ガスへ旋回力を付与する上に、攪拌部材が回転することで前記排ガスの旋回をさらに大きくできる。よって、排ガスに添加される還元剤の蒸発を促進する上に、還元剤を排ガス内で均一に拡散させることができ、還元触媒による脱硝性能を向上させることができる。   According to the exhaust gas purification apparatus according to the ninth aspect of the invention, the stirring member has a rotation support means that rotatably supports the exhaust gas duct, so that the exhaust gas purification apparatus according to the first to eighth aspects of the invention can be achieved. In addition to having the same effect, the swirling blades of the stirring member rotate by the inflow of exhaust gas, and the stirring member itself imparts a turning force to the exhaust gas, and the swirling of the exhaust gas can be further increased by rotating the stirring member. . Therefore, in addition to promoting evaporation of the reducing agent added to the exhaust gas, the reducing agent can be uniformly diffused in the exhaust gas, and the denitration performance by the reduction catalyst can be improved.

第10の発明に係る排ガス浄化装置によれば、前記還元剤添加手段が、前記還元剤を前記排ガスダクトの壁面近傍に添加するものであり、前記攪拌部材が、前記排ガスダクトの前記排ガス流通方向の中央部分に位置する箇所に穴を有するものであることにより、第1乃至第9の発明に係る排ガス浄化装置と同様な作用効果を奏する他、排ガスに添加された還元剤を排ガス流通方向に対する断面にて均一に拡散させることができ、還元触媒での脱硝を効率良く行うことができる。すなわち、エンジンの負荷が変動したり、排ガスの流量が変動したりしても、排ガスダクトの周壁に沿って流通する排ガスの流れをそのまま利用して、還元剤添加手段から添加される還元剤を攪拌部材へ案内して通過させることができ、排ガス中に確実に還元剤を混合させて均一に拡散させることができる。さらに攪拌部材の中心部分が開いているため圧力損失を低減でき、エンジンの燃費向上や廃棄物焼却炉や廃棄物溶融炉でのファン動力低下が可能となる。   According to the exhaust gas purification apparatus of the tenth aspect of the invention, the reducing agent addition means adds the reducing agent to the vicinity of the wall surface of the exhaust gas duct, and the stirring member is the exhaust gas flow direction of the exhaust gas duct. In addition to having the same effect as the exhaust gas purifying apparatus according to the first to ninth inventions, the reducing agent added to the exhaust gas can be used with respect to the exhaust gas flow direction. It can be diffused uniformly in the cross section, and denitration with a reduction catalyst can be performed efficiently. That is, even if the engine load fluctuates or the flow rate of the exhaust gas fluctuates, the reducing agent added from the reducing agent addition means is used as it is by using the flow of the exhaust gas flowing along the peripheral wall of the exhaust gas duct. It can be guided and passed through the stirring member, and the reducing agent can be reliably mixed in the exhaust gas and diffused uniformly. Furthermore, since the central portion of the stirring member is open, pressure loss can be reduced, and the fuel efficiency of the engine can be improved and the fan power in the waste incinerator or waste melting furnace can be reduced.

本発明に係る排ガス浄化装置の実施形態について、図面に基づき具体的に説明する。   An embodiment of an exhaust gas purifying apparatus according to the present invention will be specifically described with reference to the drawings.

[第一の実施形態]
本発明に係る排ガス浄化装置の第一の実施形態につき図1〜5を用いて説明する。
図1は排ガス浄化装置の概略構成図である。図2は図1の排ガス浄化装置の旋回翼の模式図である。図3は選択還元触媒の入口側におけるアンモニアの濃度分布を示す図であり、図3(a)に排ガスダクトに攪拌部材を設置していない場合を示し、図3(b)に排ガスダクト内に設置した攪拌部材と還元触媒の距離を500mmとした場合を示し、図3(c)に排ガスダクト内に設置した攪拌部材と還元触媒の距離を2000mmとした場合を示す。図4は攪拌部材の配置による還元剤質量流量の標準偏差を示すグラフである。図5は排ガス流量と還元剤質量流量の標準偏差との関係を示すグラフである。なお、図3において、ドットの濃淡は還元剤質量流量(kg/s)の標準偏差の大小を示す。
[First embodiment]
A first embodiment of an exhaust gas purification apparatus according to the present invention will be described with reference to FIGS.
FIG. 1 is a schematic configuration diagram of an exhaust gas purification apparatus. FIG. 2 is a schematic view of a swirl vane of the exhaust gas purification apparatus of FIG. FIG. 3 is a view showing the concentration distribution of ammonia on the inlet side of the selective reduction catalyst. FIG. 3 (a) shows a case where no stirring member is installed in the exhaust gas duct, and FIG. 3 (b) shows the inside of the exhaust gas duct. The case where the distance between the installed stirring member and the reduction catalyst is 500 mm is shown, and FIG. 3C shows the case where the distance between the stirring member installed in the exhaust gas duct and the reduction catalyst is 2000 mm. FIG. 4 is a graph showing the standard deviation of the reducing agent mass flow rate according to the arrangement of the stirring members. FIG. 5 is a graph showing the relationship between the exhaust gas flow rate and the standard deviation of the reducing agent mass flow rate. In FIG. 3, the density of the dots indicates the standard deviation of the reducing agent mass flow rate (kg / s).

本実施形態に係る排ガス浄化装置は、ディーゼルエンジンやガソリンエンジン、ガスエンジンなどの内燃機関で燃料が燃焼されて排気される窒素酸化物含有の排ガス、廃棄物焼却炉や廃棄物溶融炉などから排気される窒素酸化物含有の排ガスの浄化処理に利用される。   The exhaust gas purifying apparatus according to the present embodiment is exhausted from exhaust gas containing nitrogen oxides, exhausted by combustion of fuel in an internal combustion engine such as a diesel engine, gasoline engine, or gas engine, a waste incinerator, a waste melting furnace, or the like. It is used for purification treatment of exhaust gas containing nitrogen oxide.

上述した排ガス浄化装置10は、図1に示すように、排ガス1が流通する排ガスダクト11と、排ガスダクト11内に還元剤である尿素水12を噴霧する尿素噴霧ノズル(還元剤添加手段)13と、排ガスダクト11内に配置され、尿素水12が排ガス1中の水と反応してなるアンモニアによって排ガス1中の窒素酸化物を窒素に還元して排ガスを浄化する選択型還元触媒(以下、SCR触媒と称す)14とを有する装置である。排ガスダクト11は、排ガス1の導入側と排ガス2の排出側にて円筒状の小径部11a,11bをなし、これら小径部11a,11bの間にて小径部11a,11bよりも径が大きく排ガス流通方向に対する断面で四角形状の大径部11cをなしており、小径部11a,11bと大径部11cとが接続部11d,11eにて接続されている。排ガスダクト11において、排ガス1の導入側の小径部11aには尿素噴霧ノズル13が配置され、大径部11cにはSCR触媒14が複数(図1中では二段二列(四個))配置されている。なお、SCR触媒14としては、ハニカム形状のものなどが挙げられる。   As shown in FIG. 1, the exhaust gas purifying apparatus 10 described above includes an exhaust gas duct 11 through which the exhaust gas 1 circulates, and a urea spray nozzle (reducing agent adding means) 13 that sprays urea water 12 as a reducing agent into the exhaust gas duct 11. And a selective reduction catalyst that purifies the exhaust gas by reducing nitrogen oxides in the exhaust gas 1 to nitrogen with ammonia formed by the urea water 12 reacting with the water in the exhaust gas 1 and disposed in the exhaust gas duct 11 (hereinafter, (Referred to as SCR catalyst) 14. The exhaust gas duct 11 has cylindrical small-diameter portions 11a and 11b on the introduction side of the exhaust gas 1 and the exhaust side of the exhaust gas 2, and the exhaust gas duct has a larger diameter than the small-diameter portions 11a and 11b between the small-diameter portions 11a and 11b. A rectangular large-diameter portion 11c is formed in a cross section with respect to the flow direction, and the small-diameter portions 11a and 11b and the large-diameter portion 11c are connected by connection portions 11d and 11e. In the exhaust gas duct 11, a urea spray nozzle 13 is disposed in the small diameter portion 11a on the introduction side of the exhaust gas 1, and a plurality of SCR catalysts 14 are disposed in the large diameter portion 11c (two stages and two rows (four) in FIG. 1). Has been. As the SCR catalyst 14, a honeycomb-shaped catalyst can be used.

上述した排ガスダクト11内には、尿素噴霧ノズル13とSCR触媒14との間に位置して攪拌部材15が配置される。よって、上述した排ガスダクト11においては、排ガス流通方向上流側から、尿素噴霧ノズル13、攪拌部材15、SCR触媒14の順序にて配置される。旋回部材15は、例えば図2に示すように、軸体16の周面16aに旋回翼17が複数取り付けられたものが挙げられる。ただし、旋回翼17は、排ガス流通方向に対して所定の角度θ傾斜するように配置されている。この攪拌部材15により排ガス1に旋回流れが付与される。   In the exhaust gas duct 11 described above, a stirring member 15 is disposed between the urea spray nozzle 13 and the SCR catalyst 14. Therefore, in the exhaust gas duct 11 described above, the urea spray nozzle 13, the stirring member 15, and the SCR catalyst 14 are arranged in this order from the upstream side in the exhaust gas circulation direction. For example, as shown in FIG. 2, the swivel member 15 may be one in which a plurality of swirl blades 17 are attached to the peripheral surface 16 a of the shaft body 16. However, the swirl vanes 17 are arranged so as to be inclined at a predetermined angle θ with respect to the exhaust gas circulation direction. A swirl flow is imparted to the exhaust gas 1 by the stirring member 15.

上述した排気ガス浄化装置10においては、尿素噴霧ノズル13から噴霧された尿素水12が気化し排ガス1中の水と反応してアンモニアとなり、当該アンモニアが攪拌部材15によりSCR触媒14の排ガス流通方向上流側の端面14aにて、排ガス流通方向に対して直角となる断面で旋回回転が1回転となるように、旋回翼17の角度θ、排ガスダクト11の小径部11aの直径D1、攪拌部材15とSCR触媒14との距離L1が設定されている。すなわち、旋回翼17は、排ガス流通方向に対して30°以上60°以下の範囲の角度に調整される。旋回翼17の角度θが60°より大きくなると圧力損失が大きくなってしまい、逆にこの角度θが30°より小さくなると排ガス1に添加された尿素水12が十分に蒸発しない上に排ガス中に均一に拡散せず排ガスダクト長を長くしなければならなくなってしまう。攪拌部材15とSCR触媒14との距離L1が排ガスダクト11の小径部11aの直径D1に対する割合(L1/D)で1.8以上6.3以下の範囲に調整される。この割合L1/D1を6.3より大きくすると排ガス1に添加された尿素水12が十分に蒸発し排ガス中に均一に拡散されるものの、排ガスダクト11が長くなりすぎてしまう。また逆にこの割合L1/D1を1.8未満とすると排ガス1に添加された尿素水12が十分に蒸発しない上に排ガス中に均一に拡散しなくなってしまう。具体的には、旋回翼17の角度を30°とした場合には、攪拌部材15とSCR触媒14との距離L1が排ガスダクト11の小径部11aの直径D1に対する割合(L1/D1)で6.3に設定される。旋回翼17の角度を60°とした場合には、攪拌部材15とSCR触媒14との距離L1が排ガスダクト11の小径部11aの直径D1に対する割合(L1/D1)で1.8に設定される。   In the exhaust gas purification apparatus 10 described above, the urea water 12 sprayed from the urea spray nozzle 13 is vaporized and reacts with the water in the exhaust gas 1 to become ammonia, and the ammonia is stirred by the stirring member 15 and the exhaust gas flow direction of the SCR catalyst 14. At the upstream end surface 14a, the angle θ of the swirl blade 17, the diameter D1 of the small diameter portion 11a of the exhaust gas duct 11, the stirring member 15 so that the rotational rotation is one rotation in a cross section perpendicular to the exhaust gas flow direction. A distance L1 between the SCR catalyst 14 and the SCR catalyst 14 is set. That is, the swirl vane 17 is adjusted to an angle in the range of 30 ° to 60 ° with respect to the exhaust gas flow direction. When the angle θ of the swirl vane 17 is larger than 60 °, the pressure loss increases. Conversely, when the angle θ is smaller than 30 °, the urea water 12 added to the exhaust gas 1 does not evaporate sufficiently, and the exhaust water 12 enters the exhaust gas. It does not diffuse uniformly and the exhaust duct length must be increased. The distance L1 between the stirring member 15 and the SCR catalyst 14 is adjusted to a range of 1.8 or more and 6.3 or less as a ratio (L1 / D) to the diameter D1 of the small diameter portion 11a of the exhaust gas duct 11. If this ratio L1 / D1 is larger than 6.3, the urea water 12 added to the exhaust gas 1 is sufficiently evaporated and uniformly diffused in the exhaust gas, but the exhaust gas duct 11 becomes too long. On the other hand, if the ratio L1 / D1 is less than 1.8, the urea water 12 added to the exhaust gas 1 does not sufficiently evaporate and does not diffuse uniformly into the exhaust gas. Specifically, when the angle of the swirl vane 17 is 30 °, the distance L1 between the stirring member 15 and the SCR catalyst 14 is 6 as a ratio (L1 / D1) to the diameter D1 of the small diameter portion 11a of the exhaust gas duct 11. .3. When the angle of the swirl vane 17 is 60 °, the distance L1 between the stirring member 15 and the SCR catalyst 14 is set to 1.8 as a ratio (L1 / D1) to the diameter D1 of the small diameter portion 11a of the exhaust gas duct 11. The

ここで、攪拌部材15とSCR触媒14との距離L1を調整したときの排ガスに添加された尿素水12が蒸発し排ガス中の水と反応してなるアンモニアの拡散について評価を行った結果を図3に示す。ただし、排ガスダクト11の小径部11aの直径D1を450mmとしたときの排ガス1に尿素水12を添加した場合を示すものである。なお、大径部11cの直径D2を1200mmとし、排ガス1の導入側の接続部11dは、小径部11aの延在方向から35°にて拡径して延在している。   Here, the results of evaluating the diffusion of ammonia formed by the urea water 12 added to the exhaust gas when the distance L1 between the stirring member 15 and the SCR catalyst 14 is adjusted and reacting with the water in the exhaust gas are evaluated. 3 shows. However, the case where the urea water 12 is added to the exhaust gas 1 when the diameter D1 of the small diameter part 11a of the exhaust gas duct 11 is 450 mm is shown. In addition, the diameter D2 of the large diameter part 11c is 1200 mm, and the connection part 11d on the introduction side of the exhaust gas 1 extends and extends at 35 ° from the extending direction of the small diameter part 11a.

図3(a)に示すように、排ガスダクト11において、尿素噴霧ノズル13とSCR触媒14の間に攪拌部材15を配置しない場合には、SCR触媒14における排ガス流通方向上流側の端面14aにて、アンモニアが図中右上の一部に片寄った濃度分布となっていることが分かる。図3(b)に示すように、排ガスダクト11において、攪拌部材15とSCR触媒14の距離L1を500mmとした場合には、SCR触媒14における排ガス流通方向上流側の端面14aにて、アンモニアが図中ほぼ中央から左下側で円弧をなし1/4回転で片寄った濃度分布となっていることが分かる。図3(c)に示すように、排ガスダクト11において、攪拌部材15とSCR触媒14の距離L1を2000mmとした場合には、SCR触媒14における排ガス流通方向上流側の端面14aにて、アンモニアが図中の中央で1回転してほぼ均一の濃度分布となっていることが分かる。よって、攪拌部材15とSCR触媒14との距離L1が排ガスダクト11の小径部11aの直径D1に対する割合(L1/D)で4.4となるときに、アンモニアは攪拌部材15により1回転以上旋回した状態にてSCR触媒14と接触することが分かった。   As shown in FIG. 3A, in the exhaust gas duct 11, when the stirring member 15 is not disposed between the urea spray nozzle 13 and the SCR catalyst 14, the end surface 14 a on the upstream side in the exhaust gas circulation direction of the SCR catalyst 14. It can be seen that the concentration distribution of ammonia is shifted to a part of the upper right in the figure. As shown in FIG. 3 (b), in the exhaust gas duct 11, when the distance L1 between the stirring member 15 and the SCR catalyst 14 is 500 mm, ammonia is present at the end surface 14a upstream of the SCR catalyst 14 in the exhaust gas flow direction. In the figure, it can be seen that the density distribution has a circular arc from the center to the lower left side and is offset by a quarter rotation. As shown in FIG. 3 (c), in the exhaust gas duct 11, when the distance L1 between the stirring member 15 and the SCR catalyst 14 is 2000 mm, ammonia is present at the end surface 14a upstream of the SCR catalyst 14 in the exhaust gas flow direction. It can be seen that the density distribution is almost uniform after one rotation at the center in the figure. Therefore, when the distance L1 between the stirring member 15 and the SCR catalyst 14 is 4.4 as a ratio (L1 / D) with respect to the diameter D1 of the small diameter portion 11a of the exhaust gas duct 11, the ammonia swirls one or more turns by the stirring member 15. It was found that the SCR catalyst 14 was in contact with the SCR catalyst.

ここで、排ガスダクト11内における攪拌部材15の配置と排ガスに添加された尿素水12が蒸発反応してなるアンモニアの拡散との関係について評価を行った結果を図4に示す。ただし、排ガスダクト11の小径部11aの直径D1を450mmとしたときの排ガス1に尿素水12を添加した場合を示すものである。なお、大径部11cの直径D2を1200mmとし、排ガス1の導入側の接続部11dは、小径部11aの延在方向から35°にて拡径して延在している。   Here, the result of evaluating the relationship between the arrangement of the stirring member 15 in the exhaust gas duct 11 and the diffusion of ammonia formed by the evaporation reaction of the urea water 12 added to the exhaust gas is shown in FIG. However, the case where the urea water 12 is added to the exhaust gas 1 when the diameter D1 of the small diameter part 11a of the exhaust gas duct 11 is 450 mm is shown. In addition, the diameter D2 of the large diameter part 11c is 1200 mm, and the connection part 11d on the introduction side of the exhaust gas 1 extends and extends at 35 ° from the extending direction of the small diameter part 11a.

図4に示すように、攪拌部材15とSCR触媒14との距離L1を0.5mとし、攪拌部材15と尿素噴霧ノズル13との距離L2を3.0mとした場合には、SCR触媒14における排ガス流通方向上流側の端面14aにて還元剤質量流量の標準偏差が約2.3E−06となり、攪拌部材15とSCR触媒14との距離L1を2.0mとし、攪拌部材15と尿素噴霧ノズル13との距離L2を1.5mとした場合には、SCR触媒14における排ガス流通方向上流側の端面14aにて還元剤質量流量の標準偏差が1.0E−06となることが分かった。すなわち、尿素噴霧ノズル13とSCR触媒14との距離(L1+L2)が同じ場合であっても、排ガスダクト11内における、尿素噴霧ノズル13から噴霧された尿素水12が蒸発した領域において、尿素噴霧ノズル13近傍に攪拌部材15を配置した方が、還元剤(アンモニア)を排ガス中により均一に拡散できることが分かった。   As shown in FIG. 4, when the distance L1 between the stirring member 15 and the SCR catalyst 14 is 0.5 m and the distance L2 between the stirring member 15 and the urea spray nozzle 13 is 3.0 m, The standard deviation of the reducing agent mass flow rate is about 2.3E-06 at the upstream end surface 14a in the exhaust gas flow direction, the distance L1 between the stirring member 15 and the SCR catalyst 14 is 2.0 m, and the stirring member 15 and the urea spray nozzle When the distance L2 with respect to 13 is 1.5 m, it has been found that the standard deviation of the reducing agent mass flow rate is 1.0E-06 at the end face 14a upstream of the SCR catalyst 14 in the exhaust gas flow direction. That is, even if the distance (L1 + L2) between the urea spray nozzle 13 and the SCR catalyst 14 is the same, the urea spray nozzle in the exhaust gas duct 11 in the region where the urea water 12 sprayed from the urea spray nozzle 13 has evaporated. It was found that the reducing member (ammonia) can diffuse more uniformly in the exhaust gas when the stirring member 15 is disposed in the vicinity of 13.

ここで、排ガス流量と還元剤質量流量の標準偏差との関係につき図5を用いて説明する。この図5におけるモード1、モード2、モード3、モード4として下記表1の条件とした。   Here, the relationship between the exhaust gas flow rate and the standard deviation of the reducing agent mass flow rate will be described with reference to FIG. The conditions shown in Table 1 below were set as mode 1, mode 2, mode 3, and mode 4 in FIG.

Figure 2009108726
Figure 2009108726

図5および表1に示すように、約6600Nm3/hから約1900Nm3/hの範囲にて排ガス流量が変わっても、SCR触媒14における排ガス流通方向上流側の端面14aにて還元剤質量流量の標準偏差が約3.0E−04以下になっており、排ガス流量に依存せずに還元剤を排ガス中に均一に拡散できることが分かった。 As shown in FIG. 5 and Table 1, even if the exhaust gas flow rate changes in the range of about 6600 Nm 3 / h to about 1900 Nm 3 / h, the reducing agent mass flow rate at the end face 14 a upstream of the SCR catalyst 14 in the exhaust gas flow direction. The standard deviation is about 3.0E-04 or less, and it was found that the reducing agent can be uniformly diffused into the exhaust gas without depending on the exhaust gas flow rate.

よって、排ガス浄化装置10では、排ガス1に噴霧された尿素水12が当該排ガス1の熱により蒸発すると共に、排ガス1中の水と反応してアンモニアとなり、前記アンモニアが攪拌部材15により排ガスダクト11の径方向で旋回して当該排ガスダクトの径方向の断面でほぼ均一に拡散する。そして、均一に拡散したアンモニアを含む排ガスがSCR触媒14と接触して当該排ガス中の窒素酸化物が還元して浄化し、窒素酸化物が除去された排ガス2が排ガスダクト11の小径部11bから排出される。   Therefore, in the exhaust gas purification device 10, the urea water 12 sprayed on the exhaust gas 1 evaporates due to the heat of the exhaust gas 1 and reacts with the water in the exhaust gas 1 to become ammonia, and the ammonia is discharged into the exhaust gas duct 11 by the stirring member 15. It turns in the radial direction and diffuses almost uniformly in the radial cross section of the exhaust gas duct. Then, the exhaust gas containing uniformly diffused ammonia comes into contact with the SCR catalyst 14 to reduce and purify the nitrogen oxides in the exhaust gas, and the exhaust gas 2 from which the nitrogen oxides have been removed is discharged from the small diameter portion 11 b of the exhaust gas duct 11. Discharged.

したがって、本実施形態に係る排ガス浄化装置10によれば、攪拌部材15が、排ガス1を流通方向に沿って旋回させるように当該流通方向に対して30°以上60°以下の傾斜を有する旋回翼17を備え、攪拌部材15とSCR触媒14との距離L1が排ガスダクト11の小径部11aの直径D1に対する割合(L1/D1)で1.8以上6.3以下であることで、尿素噴霧ノズル13から噴霧された尿素水12が完全に蒸発し、当該排ガス中の水と反応してアンモニアとなり、当該アンモニアが攪拌部材15により排ガス中に均一に拡散する。そして、SCR触媒14の排ガス流通方向に対する断面14aでアンモニアが均一に接触することとなり、SCR触媒14でアンモニアを有効に利用して排ガス中の窒素酸化物を還元して除去することができる。このように旋回翼17の角度、および排ガスダクト11の小径部の直径D1に対する攪拌部材15とSCR触媒14との距離L1の調整という簡易な構成にて脱硝性能を向上できる。また、排ガスダクト長を最適化することができるので、排ガス浄化置10自体のコンパクト化を図ることができる。   Therefore, according to the exhaust gas purification apparatus 10 according to the present embodiment, the agitating member 15 has a swirl blade having an inclination of 30 ° or more and 60 ° or less with respect to the flow direction so that the exhaust gas 1 is swung along the flow direction. 17 and the distance L1 between the stirring member 15 and the SCR catalyst 14 is 1.8 or more and 6.3 or less in a ratio (L1 / D1) to the diameter D1 of the small diameter portion 11a of the exhaust gas duct 11, so that the urea spray nozzle The urea water 12 sprayed from 13 completely evaporates, reacts with the water in the exhaust gas to become ammonia, and the ammonia is uniformly diffused into the exhaust gas by the stirring member 15. And ammonia will contact uniformly in the cross section 14a with respect to the exhaust gas distribution direction of the SCR catalyst 14, and the SCR catalyst 14 can effectively utilize ammonia to reduce and remove nitrogen oxides in the exhaust gas. Thus, the denitration performance can be improved with a simple configuration of adjusting the distance L1 between the stirring member 15 and the SCR catalyst 14 with respect to the angle of the swirl vane 17 and the diameter D1 of the small diameter portion of the exhaust gas duct 11. Further, since the exhaust gas duct length can be optimized, the exhaust gas purification unit 10 itself can be made compact.

さらに、上述したように尿素水12がSCR触媒14前で完全に蒸発してガス状となり、排ガスダクト11の流路断面で十分に混合均一拡散しており、過剰な尿素水12の供給やSCR触媒14を通過することによるリークアンモニアを抑制することができる。また、尿素噴霧ノズル13の噴霧圧力等を調整することなく、噴霧後に尿素水12の液滴の分布が存在しても(エンジンが非定常運転のように負荷変動がある場合にも)、排ガスダクト11の流路断面で十分に混合均一拡散しており、過剰な尿素水12の供給やSCR触媒14を通過することによるリークアンモニアを抑制することができる。攪拌部材15が低圧損にて十分な混合均一拡散が可能となり、エンジンの燃費が改善される。   Further, as described above, the urea water 12 completely evaporates in front of the SCR catalyst 14 to become a gas, and is sufficiently mixed and uniformly diffused in the cross section of the exhaust gas duct 11. Leak ammonia due to passing through the catalyst 14 can be suppressed. Even if there is a distribution of droplets of urea water 12 after spraying without adjusting the spraying pressure or the like of the urea spray nozzle 13 (even when the engine has a load fluctuation such as unsteady operation), the exhaust gas Mixing and diffusing sufficiently in the cross section of the flow path of the duct 11 can suppress leakage ammonia due to excessive supply of urea water 12 and passing through the SCR catalyst 14. The mixing member 15 can sufficiently mix and diffuse with low pressure loss, and the fuel efficiency of the engine is improved.

[第二の実施形態]
本発明に係る排ガス浄化装置の第二の実施形態につき図6を用いて説明する。
図6は、排ガス浄化装置の攪拌部材の模式図である。
[Second Embodiment]
A second embodiment of the exhaust gas purifying apparatus according to the present invention will be described with reference to FIG.
FIG. 6 is a schematic diagram of the stirring member of the exhaust gas purifying apparatus.

本実施形態に係る排ガス浄化装置は、上述した第一の実施形態に係る排ガス浄化装置10において、攪拌部材15に代えて尿素水12の液滴の蒸発を促進する蒸発部材を適用したものであり、それ以外は同一の機器を有している。   The exhaust gas purifying apparatus according to the present embodiment is obtained by applying an evaporation member that promotes evaporation of droplets of urea water 12 in place of the stirring member 15 in the exhaust gas purifying apparatus 10 according to the first embodiment described above. Other than that, it has the same equipment.

本実施形態に係る排ガス浄化装置は尿素噴霧ノズルから噴射された尿素水の液滴の蒸発を促進する蒸発部材(攪拌部材)を具備しており、蒸発部材に未蒸発の尿素液滴が衝突するように配置されている。この蒸発部材25は、例えば、図6に示すように、軸体16の周面16aに複数の旋回翼27が取り付けられたものであり、各旋回翼27には孔27aが複数形成されている。このように蒸発部材25の旋回翼27に複数の孔27aを設けることで、排ガスとの接触面積が広くなり、排ガスの熱をより効率良く尿素水の液滴に伝達して蒸発を促進することができる。よって、液滴蒸発に必要となる排ガスダクト長を短くでき、装置のコンパクト化をさらに図ることができる。具体的には、尿素噴霧ノズルと蒸発部材25との距離L2が排ガスダクト11の直径D1に対する割合(L1/D1)で7未満となるように当該蒸発部材25を配置することができる。   The exhaust gas purifying apparatus according to the present embodiment includes an evaporation member (agitating member) that promotes evaporation of urea water droplets injected from the urea spray nozzle, and non-evaporated urea droplets collide with the evaporation member. Are arranged as follows. For example, as shown in FIG. 6, the evaporation member 25 has a plurality of swirling blades 27 attached to the peripheral surface 16 a of the shaft body 16, and each swirling blade 27 has a plurality of holes 27 a. . By providing the plurality of holes 27a in the swirl vanes 27 of the evaporation member 25 in this way, the contact area with the exhaust gas is widened, and the heat of the exhaust gas is more efficiently transmitted to the droplets of urea water to promote evaporation. Can do. Therefore, the length of the exhaust gas duct required for droplet evaporation can be shortened, and the apparatus can be further downsized. Specifically, the evaporation member 25 can be arranged such that the distance L2 between the urea spray nozzle and the evaporation member 25 is less than 7 in a ratio (L1 / D1) to the diameter D1 of the exhaust gas duct 11.

したがって、本実施形態に係る排ガス浄化装置によれば、上述した第一の実施形態と同様な作用効果を奏する他、尿素液滴が蒸発部材25上で蒸発しガス化するため、液滴蒸発に必要となる排ガスダクト長(尿素噴霧ノズルと蒸発部材25の距離L2)を短くでき、装置のコンパクト化をさらに図ることができる。   Therefore, according to the exhaust gas purifying apparatus according to the present embodiment, the same effects as in the first embodiment described above can be obtained, and the urea droplets are evaporated and gasified on the evaporation member 25. The required exhaust gas duct length (distance L2 between the urea spray nozzle and the evaporation member 25) can be shortened, and the apparatus can be further downsized.

なお、本実施形態では、孔27aが複数形成された旋回翼27を具備する蒸発部材25を用いて説明したが、このような蒸発部材25に代えて、例えば、複数の突起部が設けられた旋回翼を有する蒸発部材を適用することも可能である。このような蒸発部材であっても、上述した蒸発部材25と同様な作用効果を奏する。   In addition, although this embodiment demonstrated using the evaporation member 25 which comprises the turning blade 27 in which the hole 27a was formed in multiple numbers, it replaced with such an evaporation member 25, for example, and several protrusion part was provided. It is also possible to apply an evaporation member having swirl vanes. Even such an evaporating member has the same effect as the evaporating member 25 described above.

[第三の実施形態]
本発明に係る排ガス浄化装置の第三の実施形態につき図7を用いて説明する。
図7は、排ガス浄化装置の概略構成図であり、(a)がその側面図であり、(b)が(a)におけるVII−VII線断面矢視図である。
[Third embodiment]
A third embodiment of the exhaust gas purifying apparatus according to the present invention will be described with reference to FIG.
FIG. 7 is a schematic configuration diagram of the exhaust gas purification device, in which (a) is a side view thereof, and (b) is a cross-sectional view taken along the line VII-VII in (a).

本実施形態に係る排ガス浄化装置は、上述した第一の実施形態に係る排ガス浄化装置の攪拌部材の支持構造を変えたものであり、それ以外は同じ構成を有する。
本実施形態に係る排ガス浄化装置において、上述した第一の実施形態に係る排ガス浄化装置と同一機器には同一符号を付記しその説明を省略する。
The exhaust gas purifying apparatus according to the present embodiment is obtained by changing the support structure of the stirring member of the exhaust gas purifying apparatus according to the first embodiment described above, and has the same configuration except that.
In the exhaust gas purification apparatus according to the present embodiment, the same components as those in the exhaust gas purification apparatus according to the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.

本実施形態に係る排ガス浄化装置30は、図7に示すように、排ガスダクト11の小径部11a内に第1,第2の支持部材31,32により攪拌部材35が取り付けられる。すなわち、攪拌部材35は、軸体36と、軸体36の周面に基端側が取り付けられた複数の旋回翼37を有するものである。旋回翼37の先端側に円筒状の第1の支持部材31が取り付けられる。第1の支持部材31は第2の支持部材32により排ガスダクト11の小径部11aに取り付けられる。よって、排ガスダクト11の小径部11aと攪拌部材35との間に隙間Sが介在することとなる。   As shown in FIG. 7, in the exhaust gas purifying apparatus 30 according to the present embodiment, the stirring member 35 is attached to the inside of the small diameter portion 11 a of the exhaust gas duct 11 by the first and second support members 31 and 32. That is, the agitating member 35 has a shaft body 36 and a plurality of swirl blades 37 whose proximal ends are attached to the peripheral surface of the shaft body 36. A cylindrical first support member 31 is attached to the tip end side of the swirl vane 37. The first support member 31 is attached to the small diameter portion 11 a of the exhaust gas duct 11 by the second support member 32. Therefore, the gap S is interposed between the small diameter portion 11 a of the exhaust gas duct 11 and the stirring member 35.

したがって、本実施形態に係る排ガス浄化装置30によれば、上述した第一および第二の実施形態と同様な作用効果を奏する他、攪拌部材35が、排ガスダクト11の小径部11aとの間に隙間Sを有するように排ガスダクト11に第1,第2の支持部材31,32を介して支持されていることで、攪拌部材35と排ガスダクト11の接触面積を減らすことができ、排ガスダクト11への放熱による攪拌部材35の温度低下が無くなり、攪拌部材35に尿素や副反応性生成であるシアヌル酸など析出物の固着を防止できる。   Therefore, according to the exhaust gas purifying apparatus 30 according to the present embodiment, the same effect as in the first and second embodiments described above can be obtained, and the stirring member 35 is disposed between the small diameter portion 11 a of the exhaust gas duct 11. Since the exhaust gas duct 11 is supported by the exhaust gas duct 11 via the first and second support members 31 and 32 so as to have the gap S, the contact area between the stirring member 35 and the exhaust gas duct 11 can be reduced. The temperature drop of the agitating member 35 due to heat radiation is eliminated, and it is possible to prevent adhesion of precipitates such as urea and cyanuric acid which is a side-reactive product to the agitating member 35.

なお、本実施形態では、第1,第2の支持部材31,32により攪拌部材35を排ガスダクト11に取り付けた排ガス浄化装置30を用いて説明したが、例えば、図8に示すように、攪拌部材35と排ガスダクト11の小径部11aとの間に熱伝導の小さい材料である断熱材(例えばセラミックやガラスなどのタイルやウールなど)41を配置することも可能である。このような構成の排ガス浄化装置であっても、排ガスダクトへの放熱による攪拌部材の温度低下が断熱材により抑制され、攪拌部材への還元剤などの固着を防止できる。   In the present embodiment, the exhaust gas purification device 30 in which the stirring member 35 is attached to the exhaust gas duct 11 by the first and second support members 31 and 32 has been described. For example, as shown in FIG. Between the member 35 and the small-diameter portion 11a of the exhaust gas duct 11, a heat insulating material (for example, a tile such as ceramic or glass, wool, or the like) 41 that is a material having low heat conduction can be disposed. Even in the exhaust gas purifying apparatus having such a configuration, a temperature decrease of the stirring member due to heat radiation to the exhaust gas duct is suppressed by the heat insulating material, and sticking of a reducing agent or the like to the stirring member can be prevented.

[第四の実施形態]
本発明に係る排ガス浄化装置の第四の実施形態につき具体的に説明する。
本実施形態に係る排ガス浄化装置は、上述した第一の実施形態に係る排ガス浄化装置において、攪拌部材に加水分解触媒をコートしたものであり、それ以外は同一の機器を有している。
[Fourth embodiment]
A fourth embodiment of the exhaust gas purifying apparatus according to the present invention will be specifically described.
The exhaust gas purifying apparatus according to the present embodiment is the same as the exhaust gas purifying apparatus according to the first embodiment described above, except that the stirring member is coated with a hydrolysis catalyst, and the other devices are the same.

本実施形態に係る排ガス浄化装置は、加水分解触媒を塗布した攪拌部材を具備する装置である。この触媒としては、アルミナ、チタニア、シリカ、ゼオライト、セリア、マグネシア、カルシア等の金属酸化物、またはその混合物が挙げられる。さらに、前記金属酸化物を担体とし、ニッケル(Ni)、タングステン(W)、バナジウム(V)、鉄(Fe)、モリブデン(Mo)、コバルト(Co)、マンガン(Mn)、銅(Cu)などの遷移金属、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)などの貴金属を混合若しくは担持させても良い。   The exhaust gas purifying apparatus according to this embodiment is an apparatus including a stirring member coated with a hydrolysis catalyst. Examples of the catalyst include metal oxides such as alumina, titania, silica, zeolite, ceria, magnesia, and calcia, or a mixture thereof. Furthermore, using the metal oxide as a carrier, nickel (Ni), tungsten (W), vanadium (V), iron (Fe), molybdenum (Mo), cobalt (Co), manganese (Mn), copper (Cu), etc. Transition metals, platinum (Pt), palladium (Pd), rhodium (Rh) and other precious metals may be mixed or supported.

したがって、本実施形態に係る排ガス浄化装置によれば、上述した第一乃至第三の実施形態と同様な作用効果を奏する他、攪拌部材に上述した触媒を塗布することで、尿素水からアンモニアを生成する生成反応が促進されて、ガス化した還元剤(アンモニア)をSCR触媒14に安定して供給でき、SCR触媒14での脱硝反応を促進できる。   Therefore, according to the exhaust gas purification apparatus according to the present embodiment, in addition to the same effects as the first to third embodiments described above, by applying the catalyst described above to the stirring member, ammonia can be obtained from the urea water. The production reaction to be generated is promoted, and the gasified reducing agent (ammonia) can be stably supplied to the SCR catalyst 14, and the denitration reaction at the SCR catalyst 14 can be promoted.

[第五の実施形態]
本発明に係る排ガス浄化装置の第五の実施形態につき図9を参照して具体的に説明する。
図9は、排ガス浄化装置の概略構成図である。
[Fifth embodiment]
With reference to FIG. 9, it demonstrates concretely about 5th embodiment of the exhaust gas purification apparatus which concerns on this invention.
FIG. 9 is a schematic configuration diagram of the exhaust gas purification apparatus.

本実施形態に係る排ガス浄化装置は、上述した第一の実施形態において、攪拌部材を排ガス流通方向で複数並列に配置した構成であり、それ以外は同一の機器を有している。
本実施形態に係る排ガス浄化装置において、上述した第一の実施形態に係る排ガス浄化装置と同一機器には同一符号を付記しその説明を省略する。
The exhaust gas purifying apparatus according to the present embodiment has a configuration in which a plurality of agitation members are arranged in parallel in the exhaust gas flow direction in the first embodiment described above, and the other components are the same.
In the exhaust gas purification apparatus according to the present embodiment, the same components as those in the exhaust gas purification apparatus according to the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.

本実施形態に係る排ガス浄化装置50では、図9に示すように、排ガスダクト11の小径部11aに攪拌部材55A,55B,55Cが並列に配置されている。ただし、攪拌部材55A,55B,55Cの各旋回角度(排ガス流通方向に対する傾斜角)θ1,θ2,θ3は、排ガス流通方向上流側から順番に大きくなっている。すなわち、旋回角度θ1<旋回角度θ2<旋回角度θ3となっている。これにより、排ガスに徐々に旋回が付与されていくことになり、圧力損失を低減できる。   In the exhaust gas purifying apparatus 50 according to the present embodiment, as shown in FIG. 9, stirring members 55A, 55B, and 55C are arranged in parallel on the small diameter portion 11a of the exhaust gas duct 11. However, the turning angles (inclination angles with respect to the exhaust gas circulation direction) θ1, θ2, and θ3 of the stirring members 55A, 55B, and 55C increase in order from the upstream side in the exhaust gas circulation direction. That is, the turning angle θ1 <the turning angle θ2 <the turning angle θ3. Thereby, turning will be given to exhaust gas gradually and pressure loss can be reduced.

したがって、本実施形態に係る排ガス浄化装置50によれば、複数の攪拌部材55A,55B,55Cを配置したことにより、排ガスを確実に旋回できる上に、旋回による圧力損失を低減できる。さらに、一つの攪拌部材による排ガスへの旋回の付与よりも大きな旋回力を排ガス流通方向にて圧力損失せずに付与することができるため、排ガスダクト長をさらに短くすることができる。   Therefore, according to the exhaust gas purifying apparatus 50 according to the present embodiment, by arranging the plurality of stirring members 55A, 55B, and 55C, the exhaust gas can be reliably swirled and pressure loss due to swirling can be reduced. Furthermore, since a larger turning force can be applied in the exhaust gas circulation direction without pressure loss than the turning of the exhaust gas by one stirring member, the exhaust gas duct length can be further shortened.

なお、本実施形態では、攪拌部材を三段設置すると共に、排ガス流通方向上流側から順番に各攪拌部材の旋回角度を大きくした排ガス浄化装置50を用いて説明したが、例えば攪拌部材を二段にて配置したり、四段以上にて配置したりした排ガス浄化装置とすることも可能である。このような排ガス浄化装置であっても、上述した排ガス浄化装置50と同様な作用効果を奏する。   In the present embodiment, the description has been given using the exhaust gas purifying apparatus 50 in which three stages of stirring members are installed and the turning angle of each stirring member is sequentially increased from the upstream side in the exhaust gas circulation direction. It is also possible to provide an exhaust gas purifying device that is arranged at 4 or more stages. Even such an exhaust gas purifying device has the same effects as the exhaust gas purifying device 50 described above.

また、本実施形態では、排ガスを同一方向に旋回させる攪拌部材を複数有する排ガス浄化装置50を用いて説明したが、例えば、複数の攪拌部材のうち一つは排ガスを一方へ旋回させるように配置し、それ以外は排ガスを他方へ旋回させるように配置した排ガス浄化装置とすることも可能である。このような排ガス浄化装置であっても、上述した排ガス浄化装置50と同様な作用効果を奏する。   In the present embodiment, the exhaust gas purification device 50 having a plurality of stirring members that swirl the exhaust gas in the same direction has been described. For example, one of the plurality of stirring members is arranged to swirl the exhaust gas to one side. However, other than that, it is also possible to provide an exhaust gas purifying device arranged so as to turn the exhaust gas to the other side. Even such an exhaust gas purifying device has the same effects as the exhaust gas purifying device 50 described above.

[第六の実施形態]
本発明に係る排ガス浄化装置の第六の実施形態につき図10を参照して具体的に説明する。
図10は、排ガス浄化装置の攪拌部材の模式図である。
[Sixth embodiment]
A sixth embodiment of the exhaust gas purifying apparatus according to the present invention will be specifically described with reference to FIG.
FIG. 10 is a schematic diagram of a stirring member of the exhaust gas purifying apparatus.

本実施形態に係る排ガス浄化装置は、上述した排ガス浄化装置の第一の実施形態において、攪拌部材を回転可能に排ガスダクトに配置した構成であり、それ以外は同一の機器を有している。
本実施形態に係る排ガス浄化装置において、上述した第一の実施形態に係る排ガス浄化装置と同一機器には同一符号を付記しその説明を省略する。
The exhaust gas purifying apparatus according to the present embodiment has a configuration in which, in the first embodiment of the exhaust gas purifying apparatus described above, the stirring member is rotatably disposed in the exhaust gas duct, and the other components are the same.
In the exhaust gas purification apparatus according to the present embodiment, the same components as those in the exhaust gas purification apparatus according to the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.

本実施形態に係る排ガス浄化装置では、図10に示すように、排ガスダクト11の小径部11aに攪拌部材65が回転可能に支持されている。すなわち、攪拌部材65は、軸体66と、軸体66に取り付けられた複数の旋回翼67を有するものである。軸体66は、軸受68に回転可能に支持されており、軸受68が支持部材69で排ガスダクト11の小径部11a内に取り付けられている。よって、排ガスダクト11の小径部11a内に排ガスが流入することにより、旋回翼67は回転して、排ガスダクトの流路断面にて排ガスを均一混合して拡散する。   In the exhaust gas purifying apparatus according to the present embodiment, as shown in FIG. 10, the stirring member 65 is rotatably supported by the small diameter portion 11 a of the exhaust gas duct 11. In other words, the stirring member 65 has a shaft body 66 and a plurality of swirl vanes 67 attached to the shaft body 66. The shaft body 66 is rotatably supported by a bearing 68, and the bearing 68 is attached to the small diameter portion 11 a of the exhaust gas duct 11 by a support member 69. Therefore, when the exhaust gas flows into the small diameter portion 11a of the exhaust gas duct 11, the swirl vane 67 rotates, and the exhaust gas is uniformly mixed and diffused in the flow passage cross section of the exhaust gas duct.

したがって、本実施形態に係る排ガス浄化装置によれば、上述した第一乃至第五の実施形態と同様な作用効果を奏する他、攪拌部材65の旋回翼67が排ガスの流入により回転することで、旋回翼67自体により排ガスへ旋回力を付与する上に、旋回翼67が回転することで前記排ガスの旋回をさらに大きくしている。よって、排ガスに噴霧される尿素水の蒸発を促進する上に、尿素水が排ガス中の水と反応してなるアンモニアを排ガス内で均一に拡散させることができ、SCR触媒による脱硝性能を向上させることができる。   Therefore, according to the exhaust gas purification apparatus according to the present embodiment, in addition to the same effects as the first to fifth embodiments described above, the swirl vanes 67 of the stirring member 65 are rotated by the inflow of exhaust gas, In addition to applying a turning force to the exhaust gas by the swirl vane 67 itself, the swirl vane 67 rotates to further increase the swirl of the exhaust gas. Therefore, in addition to promoting the evaporation of the urea water sprayed on the exhaust gas, ammonia formed by the reaction of the urea water with the water in the exhaust gas can be uniformly diffused in the exhaust gas, and the denitration performance by the SCR catalyst is improved. be able to.

[第七の実施形態]
本発明に係る排ガス浄化装置の第七の実施形態につき図11を用いて説明する。
図11は、排ガス浄化装置の概略構成図であり、(a)が側面図であり、(b)が(a)におけるXI−XI線断面矢視図である。
[Seventh embodiment]
A seventh embodiment of the exhaust gas purifying apparatus according to the present invention will be described with reference to FIG.
FIG. 11 is a schematic configuration diagram of the exhaust gas purification apparatus, in which (a) is a side view and (b) is a cross-sectional view taken along line XI-XI in (a).

本実施形態に係る排ガス浄化装置70は、上述した第一の実施形態に係る排ガス浄化装置において、尿素噴霧ノズルの位置を規定すると共に、攪拌部材の形状を変えたものであり、それ以外は同じ構成を有する。
本実施形態に係る排ガス浄化装置において、上述した本発明の第一の実施形態に係る排ガス浄化装置と同一機器には同一符号を付記しその説明を省略する。
The exhaust gas purifying apparatus 70 according to the present embodiment is the same as the exhaust gas purifying apparatus according to the first embodiment described above, except that the position of the urea spray nozzle is defined and the shape of the stirring member is changed. It has a configuration.
In the exhaust gas purifying apparatus according to this embodiment, the same components as those in the above-described exhaust gas purifying apparatus according to the first embodiment of the present invention are denoted by the same reference numerals, and description thereof is omitted.

本実施形態に係る排ガス浄化装置70では、図11に示すように、排ガスダクト11の小径部11aの壁面近傍に尿素水12を噴霧するように尿素噴霧ノズル73が配置されている。尿素噴霧ノズル73とSCR触媒14との間に攪拌部材75が配置される。ただし、攪拌部材75は、円筒状部材76と、その周面に基端側が取り付けられた複数の旋回翼77とを有するものである。旋回翼77の先端側は、排ガスダクト11の小径部11aの壁面と接触している。すなわち、攪拌部材75が、排ガスダクト11の排ガス流通方向の中央部分に位置する箇所に穴を有している。よって、尿素噴霧ノズル73から噴霧された尿素水12は、排ガスダクト11の周面近傍にて図中左側から右側へ流通しながら蒸発し、さらに排ガス中の水と反応してアンモニアとなり、このアンモニアが攪拌部材75を通過することで排ガスダクト11の径方向の断面にて均一に拡散した状態となる。その結果、前記アンモニア含有の排ガスがSCR触媒14における排ガス流通方向に対する断面にて均一に接触することとなり効率良く脱硝が行われる。   In the exhaust gas purification apparatus 70 according to the present embodiment, as shown in FIG. 11, a urea spray nozzle 73 is disposed so as to spray the urea water 12 in the vicinity of the wall surface of the small diameter portion 11 a of the exhaust gas duct 11. A stirring member 75 is disposed between the urea spray nozzle 73 and the SCR catalyst 14. However, the stirring member 75 has a cylindrical member 76 and a plurality of swirl vanes 77 each having a proximal end attached to the peripheral surface thereof. The tip end side of the swirl vane 77 is in contact with the wall surface of the small diameter portion 11 a of the exhaust gas duct 11. That is, the stirring member 75 has a hole at a position located in the central portion of the exhaust gas duct 11 in the exhaust gas circulation direction. Therefore, the urea water 12 sprayed from the urea spray nozzle 73 evaporates while flowing from the left side to the right side in the figure in the vicinity of the peripheral surface of the exhaust gas duct 11, and further reacts with the water in the exhaust gas to become ammonia. As a result of passing through the stirring member 75, the exhaust gas duct 11 is uniformly diffused in the radial cross section. As a result, the ammonia-containing exhaust gas comes into uniform contact with the cross section of the SCR catalyst 14 with respect to the exhaust gas flow direction, so that denitration is efficiently performed.

したがって、本実施形態に係る排ガス浄化装置70によれば、上述した第一乃至第六の実施形態と同様な作用効果を奏する他、尿素噴霧ノズル73が、尿素水12を排ガスダクト11の壁面近傍に添加するものであり、攪拌部材75が、排ガスダクト11の排ガス流通方向の中央部分に位置する箇所に穴を有するものであることにより、排ガス1に噴霧された尿素水12を効率良く蒸発させると共に、生成したアンモニアを排ガス流通方向に対する断面にて均一に拡散させることができ、SCR触媒14での脱硝を効率良く行うことができる。エンジンの負荷が変動したり、排ガスの流量が変動したりしても、排ガスダクト11の周壁に沿って流通する排ガスの流れをそのまま利用して、尿素噴霧ノズル13から噴霧される尿素水12が蒸発し、排ガス中の水と反応してなるアンモニアを攪拌部材75の旋回翼76へ案内して通過させることができ、排ガス中に確実にアンモニアを混合させて均一に拡散させることができる。さらに攪拌部材75の中心部分が開いているため圧力損失を低減でき、エンジンの燃費向上や廃棄物焼却炉や廃棄物溶融炉でのファン動力低下が可能となる。   Therefore, according to the exhaust gas purifying apparatus 70 according to the present embodiment, in addition to the same operational effects as the first to sixth embodiments described above, the urea spray nozzle 73 causes the urea water 12 to be in the vicinity of the wall surface of the exhaust gas duct 11. The stirring member 75 has a hole at a position located in the central portion of the exhaust gas duct 11 in the exhaust gas flow direction, so that the urea water 12 sprayed on the exhaust gas 1 is efficiently evaporated. At the same time, the generated ammonia can be uniformly diffused in a cross section with respect to the exhaust gas flow direction, and denitration with the SCR catalyst 14 can be performed efficiently. Even if the load of the engine fluctuates or the flow rate of the exhaust gas fluctuates, the urea water 12 sprayed from the urea spray nozzle 13 is used as it is by using the flow of the exhaust gas flowing along the peripheral wall of the exhaust gas duct 11. Ammonia that evaporates and reacts with water in the exhaust gas can be guided and passed to the swirl vanes 76 of the stirring member 75, and the ammonia can be reliably mixed and diffused uniformly in the exhaust gas. Further, since the central portion of the stirring member 75 is open, pressure loss can be reduced, and the fuel efficiency of the engine can be improved and the fan power in the waste incinerator or waste melting furnace can be reduced.

本発明に係る排ガス浄化装置の第一の実施形態の概略構成図である。It is a schematic block diagram of 1st embodiment of the exhaust gas purification apparatus which concerns on this invention. 本発明に係る排ガス浄化装置の第一の実施形態の攪拌部材の模式図である。It is a schematic diagram of the stirring member of 1st embodiment of the exhaust gas purification apparatus which concerns on this invention. 選択還元触媒の入口側におけるアンモニアの濃度分布を示す図である。It is a figure which shows the density | concentration distribution of ammonia in the inlet_port | entrance side of a selective reduction catalyst. 攪拌部材の配置による還元剤質量流量の標準偏差を示すグラフである。It is a graph which shows the standard deviation of the reducing agent mass flow rate by arrangement | positioning of a stirring member. 排ガス流量と還元剤質量流量の標準偏差との関係を示すグラフである。It is a graph which shows the relationship between the exhaust gas flow rate and the standard deviation of a reducing agent mass flow rate. 本発明に係る排ガス浄化装置の第二の実施形態の攪拌部材の模式図である。It is a schematic diagram of the stirring member of 2nd embodiment of the exhaust gas purification apparatus which concerns on this invention. 本発明に係る排ガス浄化装置の第三の実施形態の概略構成図である。It is a schematic block diagram of 3rd embodiment of the exhaust gas purification apparatus which concerns on this invention. 本発明に係る排ガス浄化装置の第三の実施形態の他例の攪拌部材の模式図である。It is a schematic diagram of the stirring member of other examples of 3rd embodiment of the exhaust gas purification apparatus which concerns on this invention. 本発明に係る排ガス浄化装置の第五の実施形態の概略構成図である。It is a schematic block diagram of 5th embodiment of the exhaust gas purification apparatus which concerns on this invention. 本発明に係る排ガス浄化装置の第六の実施形態攪拌部材の模式図である。It is a schematic diagram of 6th embodiment stirring member of the exhaust gas purification apparatus which concerns on this invention. 本発明に係る排ガス浄化装置の第七の実施形態の概略構成図である。It is a schematic block diagram of 7th embodiment of the exhaust gas purification apparatus which concerns on this invention.

符号の説明Explanation of symbols

1,2 排ガス
10,30,50,70 排ガス浄化装置
11 排ガスダクト
12 尿素水
13,73 尿素噴霧ノズル
14 選択還元触媒(SCR触媒)
15,35,55,65,75 攪拌部材
17,27,37,67,77 旋回翼
25 蒸発部材
68 軸受
1, 2, Exhaust gas 10, 30, 50, 70 Exhaust gas purification device 11 Exhaust gas duct 12 Urea water 13, 73 Urea spray nozzle 14 Selective reduction catalyst (SCR catalyst)
15, 35, 55, 65, 75 Stirring member 17, 27, 37, 67, 77 Swivel blade 25 Evaporating member 68 Bearing

Claims (10)

排ガスダクト内を流通する排ガス中の窒素酸化物を還元して浄化する排ガス浄化装置であって、
前記排ガスダクトに還元剤を添加する還元剤添加手段と、
前記還元剤添加手段による前記還元剤の添加位置よりも前記排ガスの流通方向下流側に位置するように前記排ガスダクト内に配置され、前記排ガス中の窒素酸化物を前記還元剤によって窒素に還元させる還元触媒と、
前記還元剤添加手段と前記還元触媒との間に配置され、前記排ガスに旋回流れを付与する攪拌部材とを具備し、
前記攪拌部材が、前記排ガスを流通方向に沿って旋回させるように当該流通方向に対して30°以上60°以下の傾斜を有する旋回翼を備え、
前記攪拌部材と前記還元触媒との距離L1が前記排ガスダクトの直径D1に対する割合で1.8以上6.3以下である
ことを特徴とする排ガス浄化装置。
An exhaust gas purification device that reduces and purifies nitrogen oxides in exhaust gas flowing through an exhaust gas duct,
Reducing agent addition means for adding a reducing agent to the exhaust gas duct;
It is arranged in the exhaust gas duct so as to be located downstream of the reducing agent addition position by the reducing agent addition means in the exhaust gas flow direction, and nitrogen oxides in the exhaust gas are reduced to nitrogen by the reducing agent. A reduction catalyst,
A stirring member that is disposed between the reducing agent addition means and the reduction catalyst and imparts a swirling flow to the exhaust gas;
The stirring member includes a swirl blade having an inclination of 30 ° or more and 60 ° or less with respect to the flow direction so as to swirl the exhaust gas along the flow direction;
An exhaust gas purification apparatus, wherein a distance L1 between the stirring member and the reduction catalyst is 1.8 to 6.3 in a ratio to a diameter D1 of the exhaust gas duct.
請求項1に記載された排ガス浄化装置であって、
前記攪拌部材は、前記還元剤の蒸発を促進する蒸発部材である
ことを特徴とする排ガス浄化装置。
An exhaust gas purification device according to claim 1,
The exhaust gas purification apparatus, wherein the stirring member is an evaporation member that promotes evaporation of the reducing agent.
請求項1または請求項2に記載された排ガス浄化装置であって、
前記旋回翼は、孔または突起が複数形成されているものである
ことを特徴とする排ガス浄化装置。
An exhaust gas purification device according to claim 1 or claim 2, wherein
2. The exhaust gas purifying apparatus according to claim 1, wherein the swirl blade has a plurality of holes or protrusions.
請求項1乃至請求項3の何れか一項に記載された排ガス浄化装置であって、
前記還元剤添加手段と前記攪拌部材との距離L2が前記排ガスダクトの直径D1に対する割合で7以下である
ことを特徴とする排ガス浄化装置。
An exhaust gas purification device according to any one of claims 1 to 3,
The exhaust gas purifying apparatus, wherein a distance L2 between the reducing agent adding means and the stirring member is 7 or less in proportion to the diameter D1 of the exhaust gas duct.
請求項1乃至請求項4の何れか一項に記載された排ガス浄化装置であって、
前記攪拌部材は、前記排ガスダクトとの間に隙間を有するように前記排ガスダクトに支持部材を介して支持されている
ことを特徴とする排ガス浄化装置。
An exhaust gas purification apparatus according to any one of claims 1 to 4,
The exhaust gas purifying apparatus, wherein the stirring member is supported by the exhaust gas duct via a support member so as to have a gap between the stirring member and the exhaust gas duct.
請求項1乃至請求項5の何れか一項に記載された排ガス浄化装置であって、
前記攪拌部材と前記排ガスダクトとの間に断熱材が配置されている
ことを特徴とする排ガス浄化装置。
An exhaust gas purification apparatus according to any one of claims 1 to 5,
An exhaust gas purification apparatus, wherein a heat insulating material is disposed between the stirring member and the exhaust gas duct.
請求項1乃至請求項6の何れか一項に記載された排ガス浄化装置であって、
前記攪拌部材は、加水分解触媒が塗布されたものである
ことを特徴とする排ガス浄化装置。
It is an exhaust gas purification apparatus as described in any one of Claim 1 thru | or 6, Comprising:
The exhaust gas purifying apparatus according to claim 1, wherein the stirring member is coated with a hydrolysis catalyst.
請求項1乃至請求項7の何れか一項に記載された排ガス浄化装置であって、
前記攪拌部材は、排ガス流通方向に複数配置されている
ことを特徴とする排ガス浄化装置。
An exhaust gas purifying device according to any one of claims 1 to 7,
An exhaust gas purification apparatus, wherein a plurality of the agitating members are arranged in the exhaust gas circulation direction.
請求項1乃至請求項8の何れか一項に記載された排ガス浄化装置であって、
前記攪拌部材は、前記排ガスダクトに対して回転可能に支持する回転支持手段を有する
ことを特徴とする排ガス浄化装置。
An exhaust gas purifying device according to any one of claims 1 to 8,
The exhaust gas purifying apparatus according to claim 1, wherein the agitating member includes a rotation support unit that rotatably supports the exhaust gas duct.
請求項1乃至請求項9の何れか一項に記載された排ガス浄化装置であって、
前記還元剤添加手段は、前記還元剤を前記排ガスダクトの壁面近傍に添加するものであり、
前記攪拌部材は、前記排ガスダクトの前記排ガス流通方向の中央部分に位置する箇所に穴を有するものである
ことを特徴とする排ガス浄化装置。
An exhaust gas purification apparatus according to any one of claims 1 to 9,
The reducing agent adding means is for adding the reducing agent to the vicinity of the wall surface of the exhaust gas duct,
The exhaust gas purifying apparatus according to claim 1, wherein the stirring member has a hole at a position located in a central portion of the exhaust gas duct in the exhaust gas circulation direction.
JP2007280332A 2007-10-29 2007-10-29 Exhaust emission control device Pending JP2009108726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007280332A JP2009108726A (en) 2007-10-29 2007-10-29 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007280332A JP2009108726A (en) 2007-10-29 2007-10-29 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2009108726A true JP2009108726A (en) 2009-05-21

Family

ID=40777469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007280332A Pending JP2009108726A (en) 2007-10-29 2007-10-29 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2009108726A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111927A (en) * 2009-11-25 2011-06-09 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2012127307A (en) * 2010-12-17 2012-07-05 Ud Trucks Corp Exhaust emission control device for engine
WO2012164748A1 (en) * 2011-06-03 2012-12-06 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
JPWO2012164722A1 (en) * 2011-06-02 2014-07-31 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2014148896A (en) * 2013-01-31 2014-08-21 Hino Motors Ltd Urea water mixing structure
JP2014224528A (en) * 2013-05-03 2014-12-04 エーバーシュペッヒャー・エグゾースト・テクノロジー・ゲーエムベーハー・ウント・コンパニー・カーゲー Exhaust system component
JP2015028312A (en) * 2013-07-30 2015-02-12 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
CN104564265A (en) * 2014-12-25 2015-04-29 厦门艾丹环保科技有限公司 Marine tail gas denitration device
CN105736095A (en) * 2014-12-29 2016-07-06 埃贝斯佩歇排气技术有限责任两合公司 Mixer for an exhaust gas duct system of an internal combustion engine
KR101666846B1 (en) * 2015-06-08 2016-10-19 주식회사 랩웍스 Device for Improving Flow Uniformity for Stack
WO2017024664A1 (en) * 2015-08-12 2017-02-16 广州特种承压设备检测研究院 Sncr denitrification system and waste incinerator
WO2017126120A1 (en) * 2016-01-22 2017-07-27 フタバ産業株式会社 Diffuser
CN108043193A (en) * 2018-01-31 2018-05-18 上海蓝科石化环保科技股份有限公司 A kind of ultra-clean discharge ammonia process of desulfurization dust-extraction unit and method
CN108404662A (en) * 2018-05-15 2018-08-17 大唐环境产业集团股份有限公司 A kind of rotary SCR dynamics mixing of aciculiform and accumulatingdust spray nozzle device
KR101910435B1 (en) 2017-04-03 2018-10-24 강준길 Muffler having Low Exhaust Back Pressure for Internal Combustion Engine
CN108895441A (en) * 2018-05-29 2018-11-27 邢明 A kind of large circulating fluidized bed boiler
WO2019194156A1 (en) * 2018-04-03 2019-10-10 いすゞ自動車株式会社 Exhaust pipe
JP2023085366A (en) * 2020-09-08 2023-06-20 株式会社三井E&S Urea vaporizer
JP2023088994A (en) * 2020-09-28 2023-06-27 株式会社三井E&S Denitration part blockage prevention device
WO2023228495A1 (en) * 2022-05-26 2023-11-30 三菱重工業株式会社 Denitration device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166410A (en) 1997-12-04 1999-06-22 Hino Motors Ltd Exhaust emission control device
JP2006167576A (en) 2004-12-15 2006-06-29 Babcock Hitachi Kk Exhaust gas cleaning apparatus for heat engines and its manufacturing method
JP2006183508A (en) 2004-12-27 2006-07-13 Mitsubishi Fuso Truck & Bus Corp Exhaust gas agitating device of internal combustion engine
JP2008280882A (en) 2007-05-09 2008-11-20 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166410A (en) 1997-12-04 1999-06-22 Hino Motors Ltd Exhaust emission control device
JP2006167576A (en) 2004-12-15 2006-06-29 Babcock Hitachi Kk Exhaust gas cleaning apparatus for heat engines and its manufacturing method
JP2006183508A (en) 2004-12-27 2006-07-13 Mitsubishi Fuso Truck & Bus Corp Exhaust gas agitating device of internal combustion engine
JP2008280882A (en) 2007-05-09 2008-11-20 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111927A (en) * 2009-11-25 2011-06-09 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2012127307A (en) * 2010-12-17 2012-07-05 Ud Trucks Corp Exhaust emission control device for engine
JPWO2012164722A1 (en) * 2011-06-02 2014-07-31 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2012164748A1 (en) * 2011-06-03 2012-12-06 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
JP2014148896A (en) * 2013-01-31 2014-08-21 Hino Motors Ltd Urea water mixing structure
JP2014224528A (en) * 2013-05-03 2014-12-04 エーバーシュペッヒャー・エグゾースト・テクノロジー・ゲーエムベーハー・ウント・コンパニー・カーゲー Exhaust system component
US9410471B2 (en) 2013-05-03 2016-08-09 Eberspächer Exhuast Technology GmbH & Co. KG Exhaust system component
JP2015028312A (en) * 2013-07-30 2015-02-12 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
CN104564265A (en) * 2014-12-25 2015-04-29 厦门艾丹环保科技有限公司 Marine tail gas denitration device
CN105736095A (en) * 2014-12-29 2016-07-06 埃贝斯佩歇排气技术有限责任两合公司 Mixer for an exhaust gas duct system of an internal combustion engine
JP2016125498A (en) * 2014-12-29 2016-07-11 エーバーシュペッヒャー・エグゾースト・テクノロジー・ゲーエムベーハー・ウント・コンパニー・カーゲー Mixer device for exhaust gas guiding system of internal combustion engine
KR101666846B1 (en) * 2015-06-08 2016-10-19 주식회사 랩웍스 Device for Improving Flow Uniformity for Stack
WO2017024664A1 (en) * 2015-08-12 2017-02-16 广州特种承压设备检测研究院 Sncr denitrification system and waste incinerator
WO2017126120A1 (en) * 2016-01-22 2017-07-27 フタバ産業株式会社 Diffuser
KR101910435B1 (en) 2017-04-03 2018-10-24 강준길 Muffler having Low Exhaust Back Pressure for Internal Combustion Engine
CN108043193A (en) * 2018-01-31 2018-05-18 上海蓝科石化环保科技股份有限公司 A kind of ultra-clean discharge ammonia process of desulfurization dust-extraction unit and method
JP2019183666A (en) * 2018-04-03 2019-10-24 いすゞ自動車株式会社 Exhaust pipe
WO2019194156A1 (en) * 2018-04-03 2019-10-10 いすゞ自動車株式会社 Exhaust pipe
CN108404662A (en) * 2018-05-15 2018-08-17 大唐环境产业集团股份有限公司 A kind of rotary SCR dynamics mixing of aciculiform and accumulatingdust spray nozzle device
CN108404662B (en) * 2018-05-15 2024-06-04 大唐环境产业集团股份有限公司 Needle-shaped rotary SCR dynamic mixing and ash deposition preventing nozzle device
CN108895441A (en) * 2018-05-29 2018-11-27 邢明 A kind of large circulating fluidized bed boiler
JP2023085366A (en) * 2020-09-08 2023-06-20 株式会社三井E&S Urea vaporizer
JP7402364B2 (en) 2020-09-08 2023-12-20 株式会社三井E&S urea vaporizer
JP2023088994A (en) * 2020-09-28 2023-06-27 株式会社三井E&S Denitration part blockage prevention device
JP7463587B2 (en) 2020-09-28 2024-04-08 株式会社三井E&S Denitrification section clogging prevention device
WO2023228495A1 (en) * 2022-05-26 2023-11-30 三菱重工業株式会社 Denitration device

Similar Documents

Publication Publication Date Title
JP2009108726A (en) Exhaust emission control device
EP1438491B1 (en) Gas treatment apparatus
CN101627190B (en) Exhaust gas purification apparatus for internal combustion engine
US20180001279A1 (en) Dosing and mixing arrangement for use in exhaust aftertreatment
US9856774B2 (en) Engine exhaust system
JP2009041371A (en) Exhaust emission control device and mixer unit of internal combustion engine
RU2386078C2 (en) System of delivery of catalytic aerosol and method of catalytic of fuel burning
WO2012008570A1 (en) Exhaust gas purification device
JP2006322327A (en) Exhaust emission control method and exhaust emission control system
WO2011136320A1 (en) Exhaust purification system for internal combustion engine
WO2006009056A1 (en) Exhaust purification apparatus for engine
WO2011126930A2 (en) Ring reductant mixer
JP4961847B2 (en) Exhaust gas purification method and exhaust gas purification system
JP6167031B2 (en) Exhaust gas purification device
JP2017512934A (en) Compact selective catalytic reduction system for reducing nitrogen oxides in oxygen rich exhaust of 500 to 4500 kW internal combustion engines
JP2017506304A (en) Compact selective catalytic reduction system for the reduction of nitrogen oxides in oxygen rich exhaust of 500 to 4500 KW internal combustion engines
JP4830570B2 (en) Exhaust gas purification system
JP2008240722A (en) Exhaust emission control device
WO2012147205A1 (en) Exhaust gas purifier for internal combustion engine
CN115135404A (en) Mixer for use in an aftertreatment system
JP3992083B2 (en) Method and apparatus for flue gas denitration using solid reducing agent
JP2009062860A (en) Exhaust treatment device for engine
JP4622903B2 (en) Additive supply device
JP2009030561A (en) Exhaust emission control device for internal combustion engine
JP2016109004A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111110

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120330