WO2017126120A1 - Diffuser - Google Patents

Diffuser Download PDF

Info

Publication number
WO2017126120A1
WO2017126120A1 PCT/JP2016/051916 JP2016051916W WO2017126120A1 WO 2017126120 A1 WO2017126120 A1 WO 2017126120A1 JP 2016051916 W JP2016051916 W JP 2016051916W WO 2017126120 A1 WO2017126120 A1 WO 2017126120A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
diffusion plate
exhaust
flow path
reducing agent
Prior art date
Application number
PCT/JP2016/051916
Other languages
French (fr)
Japanese (ja)
Inventor
稔和 波切
鈴木 誠
雄基 佐久間
Original Assignee
フタバ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フタバ産業株式会社 filed Critical フタバ産業株式会社
Priority to PCT/JP2016/051916 priority Critical patent/WO2017126120A1/en
Publication of WO2017126120A1 publication Critical patent/WO2017126120A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus

Definitions

  • the present disclosure relates to a diffusion plate that diffuses exhaust gas in an exhaust passage.
  • the exhaust gas discharged from an internal combustion engine such as a diesel engine contains nitrogen oxides (NO x ) that are air pollutants.
  • an exhaust gas purification system for purifying such exhaust gas an exhaust gas having a configuration in which an SCR (Selective Catalytic Reduction) type catalyst is provided in an exhaust flow path and urea water as a reducing agent is injected into the exhaust gas upstream thereof. Purification systems are known. The urea water injected into the exhaust gas is hydrolyzed by the heat of the exhaust gas, and ammonia (NH 3 ) generated by the hydrolysis is supplied to the catalyst together with the exhaust gas. Nitrogen oxides in the exhaust gas react with ammonia in the catalyst and are reduced and purified.
  • SCR Selective Catalytic Reduction
  • a diffusion plate for diffusing the exhaust gas flowing through the exhaust passage and the reducing agent is disposed upstream of the catalyst so that the distribution of the exhaust gas and reducing agent mixture flowing into the catalyst is less likely to be biased.
  • the diffusion plate for example, as described in Patent Document 1, a diffusion plate having a shape in which a plurality of blades protrude from a cylindrical tubular body has been proposed.
  • the exhaust gas flowing into the catalyst and the reducing agent can be diffused as homogeneously as possible, and further ingenuity is required to realize this.
  • One aspect of the present disclosure is a diffusion plate that is disposed in the exhaust passage and diffuses the reducing agent and exhaust gas injected into the exhaust passage, and includes a blade portion and at least one convex portion.
  • the blade portion is provided so as to be inclined and faced with respect to the flow direction of the exhaust gas in the exhaust passage.
  • a convex part is a shape which is provided in the upstream surface which is a surface of the blade
  • wing part which faced the upstream of the distribution direction of waste gas, and protrudes from an upstream surface.
  • a mixture of exhaust gas and reducing agent that has flowed into the diffusion plate (hereinafter referred to as an exhaust mixture) is first deflected along the upstream surface of the blade portion.
  • an exhaust mixture a mixture of exhaust gas and reducing agent that has flowed into the diffusion plate
  • the turbulence of the flow is promoted by the flow of the exhaust mixture along the upstream surface hitting the convex portion provided on the upstream surface.
  • the convex portion is provided on the upstream surface of the blade portion, the flow of the exhaust mixture can be disturbed at an early stage. Thereby, the flow of the exhaust mixture passing through the diffusion plate becomes more complicated, and the exhaust gas and the reducing agent can be diffused well.
  • a water repellent part having water repellency to the reducing agent droplets may be formed on at least a part of the surface of the blade part and the convex part.
  • the water repellent portion may be, for example, a rough surface having water repellency with respect to the reducing agent droplets.
  • the reducing agent droplets adhering to the water repellent blade surface and the convex portion are easily released into the air, and the reducing agent liquid is applied to the blade surface and the convex portion. It is possible to suppress the retention of droplets. Therefore, it can suppress that the solid component of a reducing agent accumulates on a diffusion plate.
  • a plurality of convex portions may be provided, and the plurality of convex portions may be arranged at intervals along the exhaust gas flow direction and the lateral direction on the upstream surface of the blade portion. Further, the plurality of convex portions may be arranged alternately with respect to the flow direction of the exhaust gas. According to such a configuration, the turbulence of the air flow created by the plurality of convex portions interferes with each other, thereby further complicating the flow of the exhaust mixture in the vicinity of the blade portion, and improving the exhaust gas and the reducing agent. Can diffuse.
  • FIG. 2A is a perspective view of the diffusion plate of the embodiment as viewed from the downstream side of the exhaust flow path
  • FIG. 2B is a perspective view of the diffusion plate of the embodiment as viewed from the upstream side of the exhaust flow path.
  • 3A is a side view of the diffuser plate of the embodiment as viewed from a direction orthogonal to the central axis
  • FIG. 3B is a front view of the diffuser plate of the embodiment as viewed from the upstream side of the exhaust passage along the central axis.
  • Explanatory drawing showing the change of the flow of the waste gas by the convex part formed in the upstream surface of a blade
  • FIG. 5A is a perspective view of the modified diffusion plate as viewed from the upstream side of the exhaust flow path
  • FIG. 5B is a front view of the modified diffusion plate as viewed from the upstream side of the exhaust flow path along its central axis. is there.
  • the exhaust gas purification system 1 is for purifying exhaust gas discharged from an internal combustion engine (for example, a diesel engine) of an automobile.
  • the exhaust purification system 1 includes a first flow path member 2, a second flow path member 3, a catalyst 4, a spray device 5, and a diffusion plate 10.
  • the vertical and horizontal directions that is, the vertical direction and the horizontal direction
  • the direction in which the exhaust purification system 1 is provided is not particularly limited.
  • the first flow path member 2 forms a part of the exhaust flow path for guiding the exhaust gas discharged from the internal combustion engine to the outside of the automobile, specifically, the exhaust flow path to the catalyst 4.
  • the first flow path member 2 includes a first pipe section 2A, a second pipe section 2B, and a third pipe section 2C in this order from the upstream side (that is, the left side in FIG. 1) in the exhaust flow path. And a fourth tube portion 2D and a fifth tube portion 2E.
  • These pipe portions 2A to 2E are sections for convenience of explanation.
  • the division of the parts constituting the first flow path member 2 is not particularly limited.
  • the first tube portion 2A is a straight circular tube portion.
  • the third tube portion 2C is a linear circular tube portion having the same inner diameter as the first tube portion 2A.
  • the third pipe 2C is different from the first pipe 2A in the direction in which the exhaust gas flows.
  • the first pipe portion 2A forms a flow path through which exhaust gas flows obliquely downward.
  • the third pipe portion 2C forms a flow path in which the exhaust gas flows in the horizontal direction.
  • the first tube portion 2A and the third tube portion 2C are gently connected by the second tube portion 2B which is a circular tube portion curved in an arc shape in a side view.
  • the first axis C1 that is the central axis of the first pipe portion 2A intersects with the second axis C2 that is the central axis of the third pipe portion 2C.
  • the fifth tube portion 2E is a straight circular tube portion that is coaxial with the third tube portion 2C (that is, with the second axis C2 as the central axis). However, the fifth tube portion 2E is formed to have an inner diameter larger than that of the third tube portion 2C in order to accommodate the columnar catalyst 4 having an outer diameter larger than the inner diameter of the third tube portion 2C. .
  • the 3rd pipe part 2C and the 5th pipe part 2E are the 4th pipe
  • the second flow path member 3 guides the reducing agent sprayed by the spray device 5 (that is, diffused from the spray hole 5A outside the exhaust flow path) to the exhaust flow path upstream of the catalyst 4.
  • the second flow path member 3 is a circular pipe section that is coaxial with the third pipe section 2C (that is, having the second axis C2 as a central axis).
  • the second flow path member 3 is slightly tapered toward the exhaust flow path. The diameter is expanded.
  • the 2nd flow path member 3 is connected to the 2nd pipe part 2B in the 1st flow path member 2, and the reducing agent sprayed by the spraying apparatus 5 is the waste gas which flows through the inside of the 2nd pipe part 2B. To join.
  • the catalyst 4 is an SCR-type catalyst having a function of reducing nitrogen oxides.
  • the catalyst 4 is provided downstream of the enlarged diameter passage in the exhaust passage, more specifically, in the fifth pipe portion 2E.
  • the spraying device 5 is a device that sprays a liquid reducing agent.
  • the reducing agent sprayed by the spraying device 5 passes through the second flow path member 3 and is upstream of the diffusion plate 10 provided in the exhaust flow path, specifically in the second pipe portion 2B. Supplied.
  • urea water is sprayed as a reducing agent. Strictly speaking, urea water sprayed in the exhaust gas is hydrolyzed by the heat of the exhaust gas to generate ammonia (NH 3 ), and the ammonia thus generated functions as a reducing agent.
  • urea water is also referred to as a reducing agent here.
  • the diffusion plate 10 is a metal (for example, stainless steel) member, and is provided upstream of the diameter-enlarging passage in the exhaust passage (specifically, in the third pipe portion 2C).
  • the diffusion plate 10 guides the exhaust mixture, which is a mixture of the exhaust gas and the reducing agent that has flowed in, to swirl (or stir) to flow out so as to diffuse into the enlarged diameter flow path, and flows into the catalyst 4. Is suppressed (that is, close to uniform).
  • the diffusion plate 10 includes a support portion 11 and a plurality of blade portions 12 for guiding the exhaust mixture to swirl.
  • the arrow F represents the flow direction of the exhaust gas at the position where it flows into the diffusion plate 10 (the direction along the second axis C2).
  • the support portion 11 has a portion that is joined and fixed to the inner peripheral surface of the first flow path member 2 (specifically, the third tube portion 2C) by welding or the like, and has an inner diameter of the third tube portion 2C. It is formed in a corresponding cylindrical shape (for example, the same or slightly smaller dimension than the inner diameter of the third tube portion 2C).
  • the support portion 11 is disposed so as to be coaxial with the third tube portion 2C (that is, the second axis C2 is the central axis).
  • the blade portion 12 is a plate-like member provided extending from the support portion 11 toward the downstream side in the exhaust gas flow direction, and is inclined with respect to the exhaust gas flow direction and faces the upstream side and the downstream side, respectively. It is provided so that Further, on each surface of the blade portion 12, as a structure for disturbing the flow of the exhaust mixture, a convex portion 13a protruding in a circular shape from the surface of the blade portion 12 and the surface of the blade portion 12 are recessed in a circular shape. A plurality of concave portions 13b are formed. These convex-shaped part 13a and concave-shaped part 13b are shape
  • the plurality of convex portions 13a are all provided on the upstream surface 12a, which is the surface of the blade portion 12 that faces the upstream side in the exhaust gas flow direction. These convex portions 13a are regularly arranged at intervals on the upstream surface 12a.
  • the concave portion 13b is a depression formed on the downstream surface 12b, which is the back surface of the upstream surface 12a, by forming the convex portion 13a on the upstream surface 12a by pressing. That is, all of the plurality of concave portions 13b are provided on the downstream surface 12b, which is the surface of the blade portion 12 that faces the downstream side in the exhaust gas flow direction.
  • a rough surface made of fine irregularities having water repellency with respect to the liquid reducing agent is formed on at least a part of the surface of the plate material constituting the diffusion plate 10.
  • the rough surface having water repellency is particularly preferably formed on the surfaces of the upstream surface 12a, the downstream surface 12b, the convex portion 13a, and the concave portion 13b of the blade portion 12.
  • the rough surface having water repellency may be formed on the surface in advance by shot blasting, embossing, or the like at the stage of the plate material before the shape of the diffusion plate 10 is molded by pressing or the like.
  • the rough surface having water repellency may be formed on the surface by shot blasting, embossing or the like at a stage after the shape of the diffusion plate 10 is formed by pressing or the like.
  • the surface of the diffusion plate 10 is given water repellency by setting the roughness of the rough surface so as to meet the above conditions according to the material of the plate material constituting the diffusion plate 10 and the nature of the reducing agent. can do.
  • the rough surface having water repellency may be uniformly formed on the entire surface of the diffusion plate 11, or may be formed only on a part of the blade portion 12 where the reducing agent is likely to stay.
  • a rough surface having water repellency may be formed only at a portion below the second axis C2.
  • a plurality of convex portions 13a are arranged at intervals along the flow direction of the exhaust gas indicated by the arrow F and the lateral direction thereof. Moreover, these several convex-shaped parts 13a are arranged alternately with respect to the distribution direction of exhaust gas.
  • the exhaust mixture that has flowed into the diffusion plate 10 flows in the downstream direction along the upstream surface 12 a of the blade 12 by being deflected against the upstream surface 12 a of the blade 12. At this time, the flow of the exhaust mixture is divided into a flow over the convex portion 13a and a flow detouring to the left and right by colliding with the plurality of convex portions 13a formed on the upstream surface 12a.
  • a plurality of convex portions 13 a are formed on the upstream surface 12 a of the blade portion 12.
  • disturbance can be promoted in the exhaust mixture flowing along the upstream surface 12 a of the blade portion 12.
  • the position where the convex portion 13a is provided is the blade portion 12, the flow of the exhaust mixture can be quickly disturbed.
  • the flow of the exhaust mixture passing through the diffusion plate 10 becomes more complicated, and the exhaust gas and the reducing agent can be diffused favorably.
  • the diffusing plate 10 is configured to be arranged on the upstream surface 12a of the blade portion 12 so as to be spaced apart from each other so that the plurality of convex portions 13a are staggered with respect to the flow direction of the exhaust gas. . Thereby, the turbulence of the air flow created by the plurality of convex portions 13a interferes with each other, and the flow of the exhaust mixture in the vicinity of the blade portion 12 is further complicated.
  • convex portion 13a and the concave portion 13b formed on the upstream surface 12a and the downstream surface 12b of the blade portion 12 are circular.
  • shape of convex-shaped part 13a and concave-shaped part 13b may be substituted by another shape.
  • the convex portion 13a and the concave portion 13b may be formed in a polygonal shape such as a substantially triangular shape or a substantially rectangular shape, or an oval shape.
  • convex portion 13a and the concave portion 13b formed in a rectangular shape or an oval shape may be arranged so that the longitudinal direction thereof is in the exhaust gas flow direction, and is long in the direction orthogonal to the exhaust gas flow direction. You may arrange
  • Other basic configurations and operations are the same as those in the above-described embodiment.
  • a plurality of convex portions 14 may be added to the portion where the support portion 11 and the blade portion 12 are connected.
  • an oval convex portion 14 is formed that protrudes toward the upstream surface 12a side of the boundary portion where the support portion 11 and each blade portion 12 are connected.
  • These convex-shaped parts 14 are arrange
  • the convex portion 14 is further added to the most upstream side of the blade portion 12, thereby improving the effect of promoting the disturbance of the exhaust flow.
  • the shape of the diffusing plate 10, for example, the number and shape of the convex portions 13 a and the concave portions 13 b is not limited to those exemplified in the above embodiments.
  • the shapes and sizes of the plurality of convex portions 13a and concave portions 13b may be unified into one type, or may be a combination of a plurality of types of shapes and sizes.
  • the water-repellent process applied to the surface of the plate material constituting the diffusion plate 10 is not limited to a three-dimensional structure such as a rough surface on which fine irregularities are formed.
  • the water repellency may be realized by coating the surface of the diffusion plate 10 with a material having high water repellency, heat resistance, and corrosion resistance.
  • the first flow path member 2 of the above embodiment is an example, and the present invention is not limited to this.
  • the 3rd pipe part 2C, the 5th pipe part 2E, and the 2nd flow path member 3 may be arrange
  • the first tube portion 2A and the third tube portion 2C may have different inner diameters.
  • the second flow path member 3 may be configured to protrude into the exhaust flow path.
  • the exhaust flow path formed by the first flow path member 2 may have a shape that does not have at least one of the curved flow path and the enlarged diameter flow path.
  • the cross-sectional shape of the 1st flow path member 2 and the 2nd flow path member 3 is not limited to circular shape, For example, elliptical shape, polygonal shape, etc. may be sufficient.
  • each of the above embodiments may be distributed as a plurality of constituent elements, or the functions of a plurality of constituent elements may be integrated into one constituent element. Moreover, you may abbreviate
  • at least a part of the configuration of each of the above embodiments may be added to or replaced with the configuration of another embodiment.
  • all the aspects included in the technical idea specified from the wording described in the claims are embodiments of the present disclosure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Provided is a diffuser which is positioned in an exhaust flow path and which diffuses exhaust gas and a reducing agent which has been injected within the exhaust flow path, said diffuser comprising a vane part and at least one protrusion part. The vane part is disposed to orient a surface obliquely with respect to the distribution direction of the exhaust gas in the exhaust flow path. The protrusion part is disposed on the upstream surface which is a surface of the vane part which is oriented toward the upstream side of the distribution direction of the exhaust gas, and has a shape which protrudes from said upstream surface.

Description

拡散板Diffusion plate
 本開示は、排気流路において排ガスを拡散させる拡散板に関する。 The present disclosure relates to a diffusion plate that diffuses exhaust gas in an exhaust passage.
 ディーゼルエンジン等の内燃機関から排出される排ガス中には、大気汚染物質である窒素酸化物(NOx)が含まれている。こうした排ガスを浄化するための排気浄化システムとして、SCR(Selective Catalytic Reduction:選択触媒還元)方式の触媒を排気流路に設け、その上流の排ガス中に還元剤である尿素水を噴射する構成の排気浄化システムが知られている。排ガス中に噴射された尿素水は、排ガスの熱により加水分解し、加水分解により生じたアンモニア(NH3)が排ガスとともに触媒へ供給される。排ガス中の窒素酸化物は、触媒においてアンモニアと反応し、還元浄化される。 The exhaust gas discharged from an internal combustion engine such as a diesel engine contains nitrogen oxides (NO x ) that are air pollutants. As an exhaust gas purification system for purifying such exhaust gas, an exhaust gas having a configuration in which an SCR (Selective Catalytic Reduction) type catalyst is provided in an exhaust flow path and urea water as a reducing agent is injected into the exhaust gas upstream thereof. Purification systems are known. The urea water injected into the exhaust gas is hydrolyzed by the heat of the exhaust gas, and ammonia (NH 3 ) generated by the hydrolysis is supplied to the catalyst together with the exhaust gas. Nitrogen oxides in the exhaust gas react with ammonia in the catalyst and are reduced and purified.
 この種の排気浄化システムでは、触媒に流入する排ガス及び還元剤の混合物の分布に偏りを生じにくくするため、排気流路を流れる排ガスと還元剤とを拡散させるための拡散板が触媒の上流に設けられる。拡散板は、例えば、特許文献1に記載のように、円筒状の筒状体から複数の羽根が突出した形状を有するものが提案されている。 In this type of exhaust purification system, a diffusion plate for diffusing the exhaust gas flowing through the exhaust passage and the reducing agent is disposed upstream of the catalyst so that the distribution of the exhaust gas and reducing agent mixture flowing into the catalyst is less likely to be biased. Provided. As the diffusion plate, for example, as described in Patent Document 1, a diffusion plate having a shape in which a plurality of blades protrude from a cylindrical tubular body has been proposed.
特開2008-274941号公報JP 2008-274951 A
 この種の拡散板においては、触媒に流入する排ガスと還元剤とを可能な限り均質に拡散できることが望ましく、それを実現するための更なる工夫が求められている。
 本開示の一局面は、排ガスと還元剤とを良好に拡散させることができる拡散板を提供することが望ましい。
In this type of diffusion plate, it is desirable that the exhaust gas flowing into the catalyst and the reducing agent can be diffused as homogeneously as possible, and further ingenuity is required to realize this.
In one aspect of the present disclosure, it is desirable to provide a diffusion plate that can favorably diffuse exhaust gas and a reducing agent.
 本開示の一態様は、排気流路に配設され、排気流路内に噴射された還元剤と排ガスとを拡散させる拡散板であって、羽根部と、少なくとも1つの凸状部と、を備える。羽根部は、排気流路における排ガスの流通方向に対して傾斜して面を向けるように設けられる。凸状部は、排ガスの流通方向の上流側に向いた羽根部の面である上流面に設けられ、上流面から突出する形状である。 One aspect of the present disclosure is a diffusion plate that is disposed in the exhaust passage and diffuses the reducing agent and exhaust gas injected into the exhaust passage, and includes a blade portion and at least one convex portion. Prepare. The blade portion is provided so as to be inclined and faced with respect to the flow direction of the exhaust gas in the exhaust passage. A convex part is a shape which is provided in the upstream surface which is a surface of the blade | wing part which faced the upstream of the distribution direction of waste gas, and protrudes from an upstream surface.
 このように構成された拡散板において、拡散板に流入してきた排ガスと還元剤との混合物(以下、排気混合物という)は、まず、羽根部の上流面に沿って偏向される。このとき、上流面に沿った排気混合物の流れが上流面に設けられた凸状部に当たることで、流れの乱れが促進される。特に、羽根部の上流面に凸状部が設けられているため、早い段階で排気混合物の流れを乱すことができる。これにより、拡散板を通過する排気混合物の流れがより複雑化し、排ガスと還元剤とを良好に拡散させることができる。 In the diffusion plate configured as described above, a mixture of exhaust gas and reducing agent that has flowed into the diffusion plate (hereinafter referred to as an exhaust mixture) is first deflected along the upstream surface of the blade portion. At this time, the turbulence of the flow is promoted by the flow of the exhaust mixture along the upstream surface hitting the convex portion provided on the upstream surface. In particular, since the convex portion is provided on the upstream surface of the blade portion, the flow of the exhaust mixture can be disturbed at an early stage. Thereby, the flow of the exhaust mixture passing through the diffusion plate becomes more complicated, and the exhaust gas and the reducing agent can be diffused well.
 ところで、拡散板に還元剤の液滴が付着したまま溶媒である水分が蒸発した場合、その固体成分(例えば、尿素)が析出して拡散板の表面に固着することがある。そして、固着した固体成分が次第に堆積することにより、拡散板の機能が低下するおそれがある。そこで、上記構成において、羽根部及び凸状部の少なくとも一部の表面に、還元剤の液滴に対して撥水性を有する撥水部が形成されていてもよい。この撥水部は、例えば、還元剤の液滴に対して撥水性を有する粗面であってもよい。このような構成によれば、撥水性を有する羽根部の表面及び凸状部に付着した還元剤の液滴が気中に放出されやすくなり、羽根部の表面及び凸状部に還元剤の液滴が滞留するのを抑制できる。そのため、還元剤の固体成分が拡散板に堆積することを抑制することができる。 By the way, when moisture as a solvent evaporates while the reducing agent droplets are attached to the diffusion plate, the solid component (for example, urea) may precipitate and adhere to the surface of the diffusion plate. And the function of a diffusion plate may fall because the solid component to which it adhered gradually accumulates. Therefore, in the above configuration, a water repellent part having water repellency to the reducing agent droplets may be formed on at least a part of the surface of the blade part and the convex part. The water repellent portion may be, for example, a rough surface having water repellency with respect to the reducing agent droplets. According to such a configuration, the reducing agent droplets adhering to the water repellent blade surface and the convex portion are easily released into the air, and the reducing agent liquid is applied to the blade surface and the convex portion. It is possible to suppress the retention of droplets. Therefore, it can suppress that the solid component of a reducing agent accumulates on a diffusion plate.
 また、上記構成において、凸状部を複数備え、複数の凸状部は、羽根部の上流面において、排ガスの流通方向及びその横方向に沿って間隔を空けて配列されていてもよい。さらに、複数の凸状部が、排ガスの流通方向に対して互い違いに配列されていてもよい。このような構成によれば、複数の凸状部によって作られた気流の乱れが相互に干渉し合うことで、羽根部付近における排気混合物の流れがより一層複雑化し、排ガスと還元剤とを良好に拡散させることができる。 Also, in the above configuration, a plurality of convex portions may be provided, and the plurality of convex portions may be arranged at intervals along the exhaust gas flow direction and the lateral direction on the upstream surface of the blade portion. Further, the plurality of convex portions may be arranged alternately with respect to the flow direction of the exhaust gas. According to such a configuration, the turbulence of the air flow created by the plurality of convex portions interferes with each other, thereby further complicating the flow of the exhaust mixture in the vicinity of the blade portion, and improving the exhaust gas and the reducing agent. Can diffuse.
実施形態の排気浄化システムの断面図。A sectional view of an exhaust purification system of an embodiment. 図2Aは、実施形態の拡散板を排気流路の下流側から見た斜視図、図2Bは、実施形態の拡散板を排気流路の上流側から見た斜視図。FIG. 2A is a perspective view of the diffusion plate of the embodiment as viewed from the downstream side of the exhaust flow path, and FIG. 2B is a perspective view of the diffusion plate of the embodiment as viewed from the upstream side of the exhaust flow path. 図3Aは、実施形態の拡散板をその中心軸と直交する方向から見た側面図、図3Bは、実施形態の拡散板をその中心軸に沿って排気流路の上流側から見た正面図。3A is a side view of the diffuser plate of the embodiment as viewed from a direction orthogonal to the central axis, and FIG. 3B is a front view of the diffuser plate of the embodiment as viewed from the upstream side of the exhaust passage along the central axis. . 羽根部の上流面に形成された凸状部による排ガスの流れの変化を表す説明図。Explanatory drawing showing the change of the flow of the waste gas by the convex part formed in the upstream surface of a blade | wing part. 図5Aは、変形例の拡散板を排気流路の上流側から見た斜視図、図5Bは、変形例の拡散板をその中心軸に沿って排気流路の上流側から見た正面図である。5A is a perspective view of the modified diffusion plate as viewed from the upstream side of the exhaust flow path, and FIG. 5B is a front view of the modified diffusion plate as viewed from the upstream side of the exhaust flow path along its central axis. is there.
 1…排気浄化システム、2…第1の流路部材、3…第2の流路部材、4…触媒、5…噴霧装置、10…拡散板、11…支持部、12…羽根部、12a…上流面、12b…下流面、13a,14…凸状部、13b…凹状部、C1…第1の軸線、C2…第2の軸線。 DESCRIPTION OF SYMBOLS 1 ... Exhaust gas purification system, 2 ... 1st flow path member, 3 ... 2nd flow path member, 4 ... Catalyst, 5 ... Spraying device, 10 ... Diffusion plate, 11 ... Support part, 12 ... Blade | wing part, 12a ... Upstream surface, 12b ... downstream surface, 13a, 14 ... convex portion, 13b ... concave portion, C1 ... first axis, C2 ... second axis.
 以下、本開示の例示的な実施形態について図面を参照しながら説明する。なお、本開示は下記の実施形態に限定されるものではなく様々な態様にて実施することが可能である。
 [構成]
 図1に例示されるように、排気浄化システム1は、自動車の内燃機関(例えば、ディーゼルエンジン)から排出された排ガスを浄化するためのものである。排気浄化システム1は、第1の流路部材2と、第2の流路部材3と、触媒4と、噴霧装置5と、拡散板10とを備える。なお、以下の説明では、図1を基準に上下左右方向(すなわち、鉛直方向及び水平方向)を表現するが、あくまでも説明の便宜上の表現である。排気浄化システム1が設けられる向きは、特に限定されない。
Hereinafter, exemplary embodiments of the present disclosure will be described with reference to the drawings. In addition, this indication is not limited to the following embodiment, It is possible to implement in various aspects.
[Constitution]
As illustrated in FIG. 1, the exhaust gas purification system 1 is for purifying exhaust gas discharged from an internal combustion engine (for example, a diesel engine) of an automobile. The exhaust purification system 1 includes a first flow path member 2, a second flow path member 3, a catalyst 4, a spray device 5, and a diffusion plate 10. In the following description, the vertical and horizontal directions (that is, the vertical direction and the horizontal direction) are expressed with reference to FIG. 1, but are merely expressed for convenience of description. The direction in which the exhaust purification system 1 is provided is not particularly limited.
 第1の流路部材2は、内燃機関から排出された排ガスを自動車の外部へ導くための排気流路の一部、具体的には触媒4へ至る排気流路を形成する。この第1の流路部材2は、排気流路における上流側(すなわち、図1でいう左側)から順に、第1の管部2Aと、第2の管部2Bと、第3の管部2Cと、第4の管部2Dと、第5の管部2Eとを備える。なお、これら各管部2A~2Eは説明の便宜上の区分である。第1の流路部材2を構成する部品の区分は、特に限定されない。 The first flow path member 2 forms a part of the exhaust flow path for guiding the exhaust gas discharged from the internal combustion engine to the outside of the automobile, specifically, the exhaust flow path to the catalyst 4. The first flow path member 2 includes a first pipe section 2A, a second pipe section 2B, and a third pipe section 2C in this order from the upstream side (that is, the left side in FIG. 1) in the exhaust flow path. And a fourth tube portion 2D and a fifth tube portion 2E. These pipe portions 2A to 2E are sections for convenience of explanation. The division of the parts constituting the first flow path member 2 is not particularly limited.
 第1の管部2Aは、直線状の円管部である。また、第3の管部2Cは、第1の管部2Aと内径が同じ直線状の円管部である。ただし、第3の管部2Cは、排ガスの流れる方向が第1の管部2Aと異なる。具体的には、第1の管部2Aは、排ガスが斜め下方へ流れる流路を形成する。一方、第3の管部2Cは、排ガスが水平方向へ流れる流路を形成する。このため、第1の管部2Aと第3の管部2Cとは、側面視において円弧状に湾曲した円管部である第2の管部2Bによって、なだらかに連結されている。なお、この例では、第1の管部2Aの中心軸線である第1の軸線C1と、第3の管部2Cの中心軸線である第2の軸線C2と、が交差している。 The first tube portion 2A is a straight circular tube portion. The third tube portion 2C is a linear circular tube portion having the same inner diameter as the first tube portion 2A. However, the third pipe 2C is different from the first pipe 2A in the direction in which the exhaust gas flows. Specifically, the first pipe portion 2A forms a flow path through which exhaust gas flows obliquely downward. On the other hand, the third pipe portion 2C forms a flow path in which the exhaust gas flows in the horizontal direction. For this reason, the first tube portion 2A and the third tube portion 2C are gently connected by the second tube portion 2B which is a circular tube portion curved in an arc shape in a side view. In this example, the first axis C1 that is the central axis of the first pipe portion 2A intersects with the second axis C2 that is the central axis of the third pipe portion 2C.
 第5の管部2Eは、第3の管部2Cと同軸の(すなわち、第2の軸線C2を中心軸線とする)直線状の円管部である。ただし、第5の管部2Eは、第3の管部2Cの内径よりも外径が大きい円柱状の触媒4を収容するために、第3の管部2Cよりも内径が大きく形成されている。このため、第3の管部2Cと第5の管部2Eとは、排気流路の内径を徐々に拡大するための拡径流路を形成する円錐台状の円管部である第4の管部2Dによって、なだらかに連結されている。つまり、触媒4へ至る排気流路として、湾曲流路及び拡径流路を有する排気流路が、第1の流路部材2によって形成されている。 The fifth tube portion 2E is a straight circular tube portion that is coaxial with the third tube portion 2C (that is, with the second axis C2 as the central axis). However, the fifth tube portion 2E is formed to have an inner diameter larger than that of the third tube portion 2C in order to accommodate the columnar catalyst 4 having an outer diameter larger than the inner diameter of the third tube portion 2C. . For this reason, the 3rd pipe part 2C and the 5th pipe part 2E are the 4th pipe | tubes which are a truncated cone-shaped circular pipe part which forms the diameter expansion flow path for enlarging the internal diameter of an exhaust flow path gradually. It is gently connected by the part 2D. That is, as the exhaust flow path reaching the catalyst 4, an exhaust flow path having a curved flow path and an enlarged diameter flow path is formed by the first flow path member 2.
 第2の流路部材3は、噴霧装置5により噴霧された(すなわち、排気流路外の噴霧孔5Aから拡散された)還元剤を触媒4よりも上流の排気流路へ導く還元剤流路を形成する。第2の流路部材3は、第3の管部2Cと同軸の(すなわち、第2の軸線C2を中心軸線とする)円管部であり、この例では、排気流路へ向かって若干テーパ状に拡径している。第2の流路部材3は、第1の流路部材2における第2の管部2Bに接続されており、噴霧装置5により噴霧された還元剤は、第2の管部2B内を流れる排ガスと合流する。 The second flow path member 3 guides the reducing agent sprayed by the spray device 5 (that is, diffused from the spray hole 5A outside the exhaust flow path) to the exhaust flow path upstream of the catalyst 4. Form. The second flow path member 3 is a circular pipe section that is coaxial with the third pipe section 2C (that is, having the second axis C2 as a central axis). In this example, the second flow path member 3 is slightly tapered toward the exhaust flow path. The diameter is expanded. The 2nd flow path member 3 is connected to the 2nd pipe part 2B in the 1st flow path member 2, and the reducing agent sprayed by the spraying apparatus 5 is the waste gas which flows through the inside of the 2nd pipe part 2B. To join.
 触媒4は、窒素酸化物を還元する機能を有するSCR方式の触媒である。この触媒4は、排気流路における拡径流路の下流、具体的には第5の管部2E内に設けられている。噴霧装置5は、液状の還元剤を噴霧する装置である。噴霧装置5により噴霧された還元剤は、第2の流路部材3を経由して、排気流路内に設けられた拡散板10よりも上流、具体的には第2の管部2B内に供給される。本実施形態では、還元剤として尿素水を噴霧する。なお、厳密には、排ガス中に噴霧された尿素水が、排ガスの熱により加水分解してアンモニア(NH3)が生じ、こうして生じたアンモニアが還元剤として機能する。ただし、ここでは加水分解前の状態(尿素水)についても還元剤と称する。 The catalyst 4 is an SCR-type catalyst having a function of reducing nitrogen oxides. The catalyst 4 is provided downstream of the enlarged diameter passage in the exhaust passage, more specifically, in the fifth pipe portion 2E. The spraying device 5 is a device that sprays a liquid reducing agent. The reducing agent sprayed by the spraying device 5 passes through the second flow path member 3 and is upstream of the diffusion plate 10 provided in the exhaust flow path, specifically in the second pipe portion 2B. Supplied. In this embodiment, urea water is sprayed as a reducing agent. Strictly speaking, urea water sprayed in the exhaust gas is hydrolyzed by the heat of the exhaust gas to generate ammonia (NH 3 ), and the ammonia thus generated functions as a reducing agent. However, the state before hydrolysis (urea water) is also referred to as a reducing agent here.
 拡散板10は、金属製(例えばステンレス製)の部材であり、排気流路における拡径流路の上流(具体的には、第3の管部2C内)に設けられている。この拡散板10は、流入した排ガスと還元剤との混合物である排気混合物を旋回(又は攪拌)するように案内することで拡径流路へ拡散させるように流出させ、触媒4に流入する排気混合物の偏りを抑制する(すなわち、均一に近づける)。 The diffusion plate 10 is a metal (for example, stainless steel) member, and is provided upstream of the diameter-enlarging passage in the exhaust passage (specifically, in the third pipe portion 2C). The diffusion plate 10 guides the exhaust mixture, which is a mixture of the exhaust gas and the reducing agent that has flowed in, to swirl (or stir) to flow out so as to diffuse into the enlarged diameter flow path, and flows into the catalyst 4. Is suppressed (that is, close to uniform).
 図2A、図2B、及び図3A、図3Bに例示されるとおり、拡散板10は、支持部11と、排気混合物を旋回するように案内するための複数の羽根部12とを備える。なお、矢印Fは、拡散板10への流入位置における排ガスの流通方向(第2の軸線C2に沿った方向)を表している。支持部11には、第1の流路部材2(具体的には第3の管部2C)の内周面に溶接等で接合固定される部分があり、第3の管部2Cの内径に対応した(例えば第3の管部2Cの内径と同じ又はやや小さい寸法の)外形の円筒状に形成されている。この支持部11は、第3の管部2Cと同軸となるように(すなわち第2の軸線C2が中心軸線となるように)配置される。 As illustrated in FIGS. 2A, 2B, 3A, and 3B, the diffusion plate 10 includes a support portion 11 and a plurality of blade portions 12 for guiding the exhaust mixture to swirl. Note that the arrow F represents the flow direction of the exhaust gas at the position where it flows into the diffusion plate 10 (the direction along the second axis C2). The support portion 11 has a portion that is joined and fixed to the inner peripheral surface of the first flow path member 2 (specifically, the third tube portion 2C) by welding or the like, and has an inner diameter of the third tube portion 2C. It is formed in a corresponding cylindrical shape (for example, the same or slightly smaller dimension than the inner diameter of the third tube portion 2C). The support portion 11 is disposed so as to be coaxial with the third tube portion 2C (that is, the second axis C2 is the central axis).
 羽根部12は、支持部11から排ガスの流通方向の下流側に向けて延伸して設けられた板状の部材であり、排ガスの流通方向に対して傾斜して上流側及び下流側それぞれに面を向けるように設けられている。また、羽根部12それぞれの表面には、排気混合物の流れを乱すための構造として、羽根部12の表面から円形状に突出した凸状部13aと、羽根部12の表面が円形状に窪んだ凹状部13bとが複数形成されている。これらの凸状部13a及び凹状部13bは、例えば、プレス加工により羽根部12を構成する板材を塑性加工することにより成型される。 The blade portion 12 is a plate-like member provided extending from the support portion 11 toward the downstream side in the exhaust gas flow direction, and is inclined with respect to the exhaust gas flow direction and faces the upstream side and the downstream side, respectively. It is provided so that Further, on each surface of the blade portion 12, as a structure for disturbing the flow of the exhaust mixture, a convex portion 13a protruding in a circular shape from the surface of the blade portion 12 and the surface of the blade portion 12 are recessed in a circular shape. A plurality of concave portions 13b are formed. These convex-shaped part 13a and concave-shaped part 13b are shape | molded by carrying out the plastic working of the board | plate material which comprises the blade | wing part 12 by press work, for example.
 図3Bに例示されるとおり、複数の凸状部13aは全て、羽根部12における、排ガスの流通方向の上流側に向けられた面である上流面12aに設けられている。これらの凸状部13aは、上流面12a上において互いに間隔を空けて規則的に配列されている。一方、凹状部13bは、プレス加工により上流面12aに凸状部13aが成型されることで、上流面12aの裏側の面である下流面12bにできる窪みである。つまり、複数の凹状部13bは全て、羽根部12における、排ガスの流通方向の下流側に向けられた面である下流面12bに設けられている。 As illustrated in FIG. 3B, the plurality of convex portions 13a are all provided on the upstream surface 12a, which is the surface of the blade portion 12 that faces the upstream side in the exhaust gas flow direction. These convex portions 13a are regularly arranged at intervals on the upstream surface 12a. On the other hand, the concave portion 13b is a depression formed on the downstream surface 12b, which is the back surface of the upstream surface 12a, by forming the convex portion 13a on the upstream surface 12a by pressing. That is, all of the plurality of concave portions 13b are provided on the downstream surface 12b, which is the surface of the blade portion 12 that faces the downstream side in the exhaust gas flow direction.
 また、拡散板10を構成する板材の少なくとも一部の表面には、液体の還元剤に対して撥水性を有する微細な凹凸からなる粗面が形成されている。撥水性を有する粗面は、特に、羽根部12の上流面12a、下流面12b、凸状部13a及び凹状部13bの表面に形成されているとよい。このように構成することで、凸状部13a及び凹状部13bにより生じる段差に還元剤の液滴が滞留することを抑制し、還元剤から析出する固体成分が羽根部12の表面に堆積することを抑制することができる。 Further, a rough surface made of fine irregularities having water repellency with respect to the liquid reducing agent is formed on at least a part of the surface of the plate material constituting the diffusion plate 10. The rough surface having water repellency is particularly preferably formed on the surfaces of the upstream surface 12a, the downstream surface 12b, the convex portion 13a, and the concave portion 13b of the blade portion 12. By comprising in this way, it is suppressed that the droplet of a reducing agent stays in the level | step difference produced by the convex-shaped part 13a and the concave-shaped part 13b, and the solid component which precipitates from a reducing agent accumulates on the surface of the blade | wing part 12. Can be suppressed.
 撥水性を有する粗面は、例えば、拡散板10の形状がプレス加工等により成型される前の板材の段階で、ショットブラストやエンボス加工等により予め表面に形成されてもよい。一方、撥水性を有する粗面は、例えば、プレス加工等により拡散板10の形状が成型された後の段階で、ショットブラストやエンボス加工等により表面に形成されてもよい。 The rough surface having water repellency may be formed on the surface in advance by shot blasting, embossing, or the like at the stage of the plate material before the shape of the diffusion plate 10 is molded by pressing or the like. On the other hand, the rough surface having water repellency may be formed on the surface by shot blasting, embossing or the like at a stage after the shape of the diffusion plate 10 is formed by pressing or the like.
 また、撥水性を有する粗面として好適な条件については、微細な凹凸によって空気をトラップする空隙の面積割合を大きくすることが例示される。つまり、拡散板10を構成する板材と液滴との接触面において、液滴と固体部分との接触面積を減らして空気との接触面積の割合を増やすことで良好な撥水性が得られる。そこで、拡散板10を構成する板材の材質や還元剤の性質に応じて、上記条件に適合するように粗面の凹凸の粗さを設定することで、拡散板10の表面に撥水性を付与することができる。 Further, as a condition suitable as a rough surface having water repellency, increasing the area ratio of the air gap for trapping air by fine unevenness is exemplified. That is, good water repellency can be obtained by reducing the contact area between the droplet and the solid part and increasing the ratio of the contact area with air on the contact surface between the plate material and the droplet constituting the diffusion plate 10. Therefore, the surface of the diffusion plate 10 is given water repellency by setting the roughness of the rough surface so as to meet the above conditions according to the material of the plate material constituting the diffusion plate 10 and the nature of the reducing agent. can do.
 また、撥水性を有する粗面については、拡散板11の全面に満遍なく形成されていてもよいし、羽根部12のうち特に還元剤が滞留しやすい一部のみに形成されていてもよい。例えば、排気浄化システム1が自動車に取付けられる姿勢において、第2の軸線C2よりも下側の部位にのみ撥水性を有する粗面が形成されていてもよい。このようにすることで、重力の影響により還元剤の液滴が拡散板10の下側に滞留しやすい場合において、還元剤の固体成分が堆積するのを効果的に抑制できる。 Further, the rough surface having water repellency may be uniformly formed on the entire surface of the diffusion plate 11, or may be formed only on a part of the blade portion 12 where the reducing agent is likely to stay. For example, in a posture in which the exhaust purification system 1 is attached to an automobile, a rough surface having water repellency may be formed only at a portion below the second axis C2. By doing in this way, when the droplet of a reducing agent tends to stay under the diffuser plate 10 due to the influence of gravity, it is possible to effectively suppress the deposition of the solid component of the reducing agent.
 [作用]
 つぎに、羽根部12の上流面12aに設けられた凸状部13aの作用について、図4を参照しながら説明する。
[Action]
Next, the operation of the convex portion 13a provided on the upstream surface 12a of the blade portion 12 will be described with reference to FIG.
 図4に例示されるとおり、羽根部12の上流面12aにおいて、矢印Fで示される排ガスの流通方向及びその横方向に沿って間隔を空けて複数の凸状部13aが配列されている。また、これら複数の凸状部13aは、排ガスの流通方向に対して互い違いに配列されている。 As illustrated in FIG. 4, on the upstream surface 12a of the blade portion 12, a plurality of convex portions 13a are arranged at intervals along the flow direction of the exhaust gas indicated by the arrow F and the lateral direction thereof. Moreover, these several convex-shaped parts 13a are arranged alternately with respect to the distribution direction of exhaust gas.
 拡散板10に流入してきた排気混合物は、羽根部12の上流面12aに当たって偏向されることで、羽根部12の上流面12aに沿って下流方向に流れる。このとき、排気混合物の流れは、上流面12aに形成されている複数の凸状部13aに衝突することで、凸状部13aを乗越える流れや左右に迂回する流れに分かれる。 The exhaust mixture that has flowed into the diffusion plate 10 flows in the downstream direction along the upstream surface 12 a of the blade 12 by being deflected against the upstream surface 12 a of the blade 12. At this time, the flow of the exhaust mixture is divided into a flow over the convex portion 13a and a flow detouring to the left and right by colliding with the plurality of convex portions 13a formed on the upstream surface 12a.
 そして、凸状部13aが排ガスの流通方向に対して複数列かつ互い違いに並んでいることで、1つの凸状部13aによって分けられた流れが、他の凸状部13aによって分けられた流れと相互に干渉したり、下流側の凸状部13aに再び衝突したりする。 And the flow divided by one convex-shaped part 13a and the flow divided by the other convex-shaped part 13a because the convex-shaped part 13a is arranged in multiple rows and staggered with respect to the distribution direction of exhaust gas. They interfere with each other or collide with the convex portion 13a on the downstream side again.
 また、上流面12aの裏側である下流面12bに回りこむ排ガスの流れについては、下流面12bに形成された複数の凹状部13bによって乱れが促進される。
 [効果]
 以上詳述した実施形態によれば、以下の効果が得られる。
Moreover, about the flow of the exhaust gas which wraps around the downstream surface 12b which is the back side of the upstream surface 12a, disorder is accelerated | stimulated by the several recessed part 13b formed in the downstream surface 12b.
[effect]
According to the embodiment detailed above, the following effects can be obtained.
 (1)拡散板10には、羽根部12の上流面12aに複数の凸状部13aが形成されている。これにより、羽根部12の上流面12aに沿って流れる排気混合物に乱れを促進できる。特に、凸状部13aを設ける位置を羽根部12としたことで、いち早く排気混合物の流れを乱すことができる。これにより、拡散板10を通過する排気混合物の流れがより複雑化し、排ガスと還元剤とを良好に拡散させることができる。 (1) In the diffusing plate 10, a plurality of convex portions 13 a are formed on the upstream surface 12 a of the blade portion 12. Thereby, disturbance can be promoted in the exhaust mixture flowing along the upstream surface 12 a of the blade portion 12. In particular, since the position where the convex portion 13a is provided is the blade portion 12, the flow of the exhaust mixture can be quickly disturbed. Thereby, the flow of the exhaust mixture passing through the diffusion plate 10 becomes more complicated, and the exhaust gas and the reducing agent can be diffused favorably.
 (2)拡散板10には、羽根部12の上流面12a、下流面12b、凸状部13a及び凹状部13bの表面に、還元剤の液滴に対して撥水性を有する粗面が形成されている。これにより、撥水性を有する部分に付着した還元剤の液滴が気中に放出されやすくなり、羽根部12に還元剤の液滴が滞留するのを抑制できる。そのため、還元剤の固体成分が拡散板10に堆積することを抑制することができる。 (2) On the diffusion plate 10, rough surfaces having water repellency to the reducing agent droplets are formed on the surfaces of the upstream surface 12 a, the downstream surface 12 b, the convex portion 13 a, and the concave portion 13 b of the blade 12. ing. Accordingly, the reducing agent droplets adhering to the water-repellent portion are easily released into the air, and the reducing agent droplets can be prevented from staying in the blade portion 12. Therefore, it is possible to suppress the solid component of the reducing agent from being deposited on the diffusion plate 10.
 (3)拡散板10は、羽根部12の上流面12aにおいて、複数の凸状部13aが排ガスの流通方向に対して互い違いになるように互いに間隔を空けて配列されるように構成されている。これにより、複数の凸状部13aによって作られた気流の乱れが相互に干渉し、羽根部12付近における排気混合物の流れがより一層複雑化する。 (3) The diffusing plate 10 is configured to be arranged on the upstream surface 12a of the blade portion 12 so as to be spaced apart from each other so that the plurality of convex portions 13a are staggered with respect to the flow direction of the exhaust gas. . Thereby, the turbulence of the air flow created by the plurality of convex portions 13a interferes with each other, and the flow of the exhaust mixture in the vicinity of the blade portion 12 is further complicated.
 [変形例]
 上述の実施形態では、羽根部12の上流面12a及び下流面12bそれぞれに形成される凸状部13a及び凹状部13bが円形である事例について説明した。これに限らず、凸状部13a及び凹状部13bの形状を他の形状に置換えてもよい。例えば、凸状部13a及び凹状部13bを、略三角形状や略四角形形状等の多角形状や長円形状といった形状にすることが挙げられる。また、長方形状あるいは長円形状に形成される凸状部13a及び凹状部13bについては、排ガスの流通方向に長手方向が向くように配置されてもよく、排ガスの流通方向に直交する向きに長手方向が向くように配置されてもよい。なお、その他の基本的な構成及び作用については、上述の実施形態と同様である。
[Modification]
In the above-described embodiment, the case where the convex portion 13a and the concave portion 13b formed on the upstream surface 12a and the downstream surface 12b of the blade portion 12 are circular has been described. Not only this but the shape of convex-shaped part 13a and concave-shaped part 13b may be substituted by another shape. For example, the convex portion 13a and the concave portion 13b may be formed in a polygonal shape such as a substantially triangular shape or a substantially rectangular shape, or an oval shape. Further, the convex portion 13a and the concave portion 13b formed in a rectangular shape or an oval shape may be arranged so that the longitudinal direction thereof is in the exhaust gas flow direction, and is long in the direction orthogonal to the exhaust gas flow direction. You may arrange | position so that a direction may face. Other basic configurations and operations are the same as those in the above-described embodiment.
 あるいは、図5A、図5Bに例示されるように、支持部11と羽根部12とが接続する部分に複数の凸状部14を追加してもよい。図5A、図5Bに例示される変形例においては、支持部11と各羽根部12とが接続する境界部分の上流面12a側に突出する長円形状の凸状部14が形成されている点で、上述の実施形態と異なる。これらの凸状部14は、排ガスの流通方向に長手方向が向くように配置されている。なお、その他の基本的な構成及び作用については、上述の実施形態と同様である。この変形例では、羽根部12の最も上流側に凸状部14を更に追加したことにより、排気流の乱れを促進する効果が向上する。 Alternatively, as illustrated in FIGS. 5A and 5B, a plurality of convex portions 14 may be added to the portion where the support portion 11 and the blade portion 12 are connected. In the modification illustrated in FIGS. 5A and 5B, an oval convex portion 14 is formed that protrudes toward the upstream surface 12a side of the boundary portion where the support portion 11 and each blade portion 12 are connected. This is different from the above-described embodiment. These convex-shaped parts 14 are arrange | positioned so that a longitudinal direction may face the distribution direction of waste gas. Other basic configurations and operations are the same as those in the above-described embodiment. In this modified example, the convex portion 14 is further added to the most upstream side of the blade portion 12, thereby improving the effect of promoting the disturbance of the exhaust flow.
 [その他の実施形態]
 (1)拡散板10の形状、例えば、凸状部13a及び凹状部13bの数や形状等は、上述の各実施形態で例示されたものに限定されない。また、複数の凸状部13a及び凹状部13bの形状や大きさは、1種類に統一されていてもよいし、複数種類の形状や大きさを組合せたものであってもよい。
[Other Embodiments]
(1) The shape of the diffusing plate 10, for example, the number and shape of the convex portions 13 a and the concave portions 13 b is not limited to those exemplified in the above embodiments. In addition, the shapes and sizes of the plurality of convex portions 13a and concave portions 13b may be unified into one type, or may be a combination of a plurality of types of shapes and sizes.
 (2)拡散板10を構成する板材の表面に施される撥水加工は、微細な凹凸が形成された粗面のような立体構造によるものに限らない。例えば、高い撥水性と耐熱性と耐腐食性とを備えた物質を拡散板10の表面にコーティングすることによって、撥水性を実現してもよい。 (2) The water-repellent process applied to the surface of the plate material constituting the diffusion plate 10 is not limited to a three-dimensional structure such as a rough surface on which fine irregularities are formed. For example, the water repellency may be realized by coating the surface of the diffusion plate 10 with a material having high water repellency, heat resistance, and corrosion resistance.
 (3)上記実施形態の第1の流路部材2は一例であり、これに限定されない。例えば、第3の管部2C、第5の管部2E及び第2の流路部材3が、残りの少なくとも1つと中心軸が重ならないように配置されていてもよい。また例えば、第1の管部2Aと第3の管部2Cとは、内径が異なっていてもよい。また例えば、第2の流路部材3が排気流路に突出するように構成されていてもよい。また例えば、第1の流路部材2によって形成される排気流路は、湾曲流路及び拡径流路のうち少なくとも一方を有しない形状であってもよい。また例えば、第1の流路部材2及び第2の流路部材3の断面形状は円形状に限定されるものではなく、例えば楕円形状や多角形状などであってもよい。 (3) The first flow path member 2 of the above embodiment is an example, and the present invention is not limited to this. For example, the 3rd pipe part 2C, the 5th pipe part 2E, and the 2nd flow path member 3 may be arrange | positioned so that a central axis may not overlap with at least one remaining. Further, for example, the first tube portion 2A and the third tube portion 2C may have different inner diameters. Further, for example, the second flow path member 3 may be configured to protrude into the exhaust flow path. Further, for example, the exhaust flow path formed by the first flow path member 2 may have a shape that does not have at least one of the curved flow path and the enlarged diameter flow path. For example, the cross-sectional shape of the 1st flow path member 2 and the 2nd flow path member 3 is not limited to circular shape, For example, elliptical shape, polygonal shape, etc. may be sufficient.
 (4)上記実施形態では、還元剤として尿素水を噴霧する構成を例示したが、これに限定されるものではなく、触媒における排ガスの浄化に寄与するものであれば、他の還元剤を噴霧してもよい。 (4) In the above embodiment, the configuration in which urea water is sprayed as the reducing agent is exemplified, but the present invention is not limited to this, and other reducing agents are sprayed as long as they contribute to the purification of exhaust gas in the catalyst. May be.
 (5)上記各実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合したりしてもよい。また、上記各実施形態の構成の一部を省略してもよい。また、上記各実施形態の構成の少なくとも一部を、他の実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 (5) The functions of one constituent element in each of the above embodiments may be distributed as a plurality of constituent elements, or the functions of a plurality of constituent elements may be integrated into one constituent element. Moreover, you may abbreviate | omit a part of structure of each said embodiment. In addition, at least a part of the configuration of each of the above embodiments may be added to or replaced with the configuration of another embodiment. In addition, all the aspects included in the technical idea specified from the wording described in the claims are embodiments of the present disclosure.

Claims (5)

  1.  排気流路に配設され、前記排気流路内に噴射された還元剤と排ガスとを拡散させる拡散板であって、
     前記排気流路における排ガスの流通方向に対して傾斜して面を向けるように設けられる羽根部と、
     排ガスの流通方向の上流側に向いた前記羽根部の面である上流面に設けられ、前記上流面から突出する形状の少なくとも1つの凸状部と、
     を備える拡散板。
    A diffusion plate disposed in the exhaust passage and diffusing the reducing agent and exhaust gas injected into the exhaust passage;
    A blade portion provided so as to face the inclined surface with respect to the flow direction of the exhaust gas in the exhaust flow path;
    Provided on the upstream surface which is the surface of the blade portion facing the upstream side in the flow direction of the exhaust gas, and at least one convex portion having a shape protruding from the upstream surface;
    Diffusion plate with
  2.  請求項1に記載の拡散板において、
     前記羽根部及び前記凸状部の少なくとも一部の表面に、前記還元剤の液滴に対して撥水性を有する撥水部が形成されている、
    拡散板。
    The diffusion plate according to claim 1,
    A water repellent part having water repellency with respect to the reducing agent droplet is formed on at least a part of the surface of the blade part and the convex part.
    Diffusion plate.
  3.  請求項2に記載の拡散板において、
     前記撥水部は、前記還元剤の液滴に対して撥水性を有する粗面である、
    拡散板。
    The diffusing plate according to claim 2,
    The water repellent portion is a rough surface having water repellency with respect to the droplet of the reducing agent.
    Diffusion plate.
  4.  請求項1ないし請求項3の何れか1項に記載の拡散板において、
     前記凸状部を複数備え、前記複数の凸状部は、前記上流面において、排ガスの流通方向及びその横方向に沿って間隔を空けて配列されている、
    拡散板。
    The diffusing plate according to any one of claims 1 to 3,
    A plurality of the convex portions are provided, and the plurality of convex portions are arranged at intervals along the flow direction and the lateral direction of the exhaust gas on the upstream surface.
    Diffusion plate.
  5.  請求項4に記載の拡散板において、
     前記複数の凸状部は、排ガスの流通方向に対して互い違いに配列されている、
    拡散板。
    The diffusing plate according to claim 4,
    The plurality of convex portions are arranged alternately with respect to the flow direction of the exhaust gas.
    Diffusion plate.
PCT/JP2016/051916 2016-01-22 2016-01-22 Diffuser WO2017126120A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051916 WO2017126120A1 (en) 2016-01-22 2016-01-22 Diffuser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051916 WO2017126120A1 (en) 2016-01-22 2016-01-22 Diffuser

Publications (1)

Publication Number Publication Date
WO2017126120A1 true WO2017126120A1 (en) 2017-07-27

Family

ID=59362513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051916 WO2017126120A1 (en) 2016-01-22 2016-01-22 Diffuser

Country Status (1)

Country Link
WO (1) WO2017126120A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019006621T5 (en) 2019-01-10 2021-09-23 Isuzu Motors Limited MIXING ELEMENT, EXHAUST GAS PURIFICATION DEVICE AND VEHICLE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197023U (en) * 1987-12-18 1989-06-28
JPH08323213A (en) * 1995-05-29 1996-12-10 Usui Internatl Ind Co Ltd Production of metal honeycomb member
JP3193010B2 (en) * 1997-12-31 2001-07-30 三星電子株式会社 Base device for wireless communication
JP2009108726A (en) * 2007-10-29 2009-05-21 Mitsubishi Heavy Ind Ltd Exhaust emission control device
JP2014202099A (en) * 2013-04-02 2014-10-27 株式会社日本自動車部品総合研究所 Exhaust emission control device for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197023U (en) * 1987-12-18 1989-06-28
JPH08323213A (en) * 1995-05-29 1996-12-10 Usui Internatl Ind Co Ltd Production of metal honeycomb member
JP3193010B2 (en) * 1997-12-31 2001-07-30 三星電子株式会社 Base device for wireless communication
JP2009108726A (en) * 2007-10-29 2009-05-21 Mitsubishi Heavy Ind Ltd Exhaust emission control device
JP2014202099A (en) * 2013-04-02 2014-10-27 株式会社日本自動車部品総合研究所 Exhaust emission control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019006621T5 (en) 2019-01-10 2021-09-23 Isuzu Motors Limited MIXING ELEMENT, EXHAUST GAS PURIFICATION DEVICE AND VEHICLE

Similar Documents

Publication Publication Date Title
US20190211733A1 (en) Exhaust Aftertreatment System Having Mixer Assembly
US8033101B2 (en) Exhaust-gas system having an injection nozzle
US9410464B2 (en) Perforated mixing pipe with swirler
JP6073659B2 (en) Exhaust gas purification device
JP5600787B2 (en) Exhaust system with mixing and / or evaporation device
US9429058B2 (en) Mixing devices for selective catalytic reduction systems
JP5977375B2 (en) Exhaust gas purification device
JP3715985B1 (en) Liquid reducing agent injection nozzle structure
US20120124983A1 (en) Exhaust system having reductant nozzle flow diverter
RU2669982C2 (en) Exhaust gas line section for supplying liquid additive
JP6306306B2 (en) Diffusion plate and manufacturing method thereof
JP6636907B2 (en) Exhaust gas purification device
JP2013133805A (en) Mixing device
JP6166468B2 (en) Exhaust stirrer
WO2017126120A1 (en) Diffuser
JP6166027B2 (en) Exhaust gas purification device
US10273849B2 (en) Injection module and exhaust system having an injection module
JP6756629B2 (en) Exhaust gas purification device
JP6894385B2 (en) Mixer
CN110073083B (en) Exhaust gas aftertreatment device for a motor vehicle
WO2018051503A1 (en) Reducing-agent mixing device
JP2020023953A (en) Exhaust emission control device
JP6916772B2 (en) Exhaust agitator
WO2020145101A1 (en) Mixing member, exhaust purifying device, and vehicle
JP2021025527A (en) Exhaust emission control device, flow path formation member, and cylindrical member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP