JP2009108155A - Fibrous hollow silica fine particle dispersion, fibrous hollow silica fine particles, antireflection film forming composition containing the fine particles, and substrate with antireflection film - Google Patents

Fibrous hollow silica fine particle dispersion, fibrous hollow silica fine particles, antireflection film forming composition containing the fine particles, and substrate with antireflection film Download PDF

Info

Publication number
JP2009108155A
JP2009108155A JP2007280233A JP2007280233A JP2009108155A JP 2009108155 A JP2009108155 A JP 2009108155A JP 2007280233 A JP2007280233 A JP 2007280233A JP 2007280233 A JP2007280233 A JP 2007280233A JP 2009108155 A JP2009108155 A JP 2009108155A
Authority
JP
Japan
Prior art keywords
fine particles
fibrous
silica fine
particle dispersion
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007280233A
Other languages
Japanese (ja)
Other versions
JP5241199B2 (en
Inventor
Hiroyasu Nishida
広泰 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2007280233A priority Critical patent/JP5241199B2/en
Publication of JP2009108155A publication Critical patent/JP2009108155A/en
Application granted granted Critical
Publication of JP5241199B2 publication Critical patent/JP5241199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dispersion prepared by dispersing fibrous hollow silica fine particles having a low refractive index and excellent film forming property in a dispersion medium, and an antireflection film forming composition containing the silica fine particles. <P>SOLUTION: The fibrous hollow silica fine particle dispersion is prepared by dispersing the fibrous hollow silica fine particles having an average particle diameter in a range of 5-500 nm, a fiber form and a hollow structure in the dispersion medium. The fibrous hollow silica fine particles preferably have (a) an average particle diameter in a range of 5-500 nm, (b) a major axis to minor axis ratio (major axis/minor axis) in a range of 1.5-10, (c) a BET specific surface area in a range of 5-600 m<SP>2</SP>/g, and a refractive index in a range of 1.20-1.40. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、繊維状中空シリカ微粒子分散液および繊維状中空シリカ微粒子に関する。また、該繊維状中空シリカ微粒子を含有する反射防止被膜形成用組成物および反射防止被膜付基材に関する。   The present invention relates to a fibrous hollow silica fine particle dispersion and fibrous hollow silica fine particles. The present invention also relates to a composition for forming an antireflection coating containing the fibrous hollow silica fine particles and a substrate with an antireflection coating.

陰極管表示装置(CRT)、液晶ディスプレー(LCD)等の表示装置の表示面は、一定の視認性を確保するために、外部光源から照射された光線の反射を抑制することが望ましい。この反射を抑制する方法として、従来、透明な前記表示装置の表面上に透明な低屈折率層を形成する方法が知られている。   The display surface of a display device such as a cathode ray tube display (CRT) or a liquid crystal display (LCD) desirably suppresses reflection of light emitted from an external light source in order to ensure a certain level of visibility. As a method of suppressing this reflection, a method of forming a transparent low refractive index layer on the surface of the transparent display device is conventionally known.

低屈折率層を形成する方法は、一般に気相法と塗布法とに大別される。
気相法には真空蒸着法、スパッタリング法等の物理的方法と、CVD法等の化学的方法とがある。塗布法にはロールコート法、グラビアコート法、スライドコート法、スプレー法、浸漬法、スクリーン印刷法等がある。
The method for forming the low refractive index layer is generally roughly divided into a vapor phase method and a coating method.
The vapor phase method includes a physical method such as a vacuum deposition method and a sputtering method, and a chemical method such as a CVD method. Examples of the coating method include a roll coating method, a gravure coating method, a slide coating method, a spray method, a dipping method, and a screen printing method.

気相法の場合には、高品質な透明薄膜形成が可能である一方で、高真空系での雰囲気制御が必要とされる。また、特殊な加熱装置またはイオン発生加速装置が必要とされるため、必然的にコストが増大するという問題がある。さらに、大面積の透明薄膜を形成したり、複雑な形状を有するフィルム等の表面に透明薄膜を均一に形成することが困難である。   In the case of the vapor phase method, a high-quality transparent thin film can be formed, while atmosphere control in a high vacuum system is required. Moreover, since a special heating apparatus or ion generation acceleration apparatus is required, there is a problem that the cost inevitably increases. Furthermore, it is difficult to form a transparent thin film having a large area or to form a transparent thin film uniformly on the surface of a film having a complicated shape.

一方、塗布法のうちスプレー法の場合には、塗工液の利用効率が悪く、成膜条件の制御が容易ではない等の問題がある。ロールコート法、グラビアコート法、スライドコート法、浸漬法、およびスクリーン印刷法等の場合には、原料の利用効率が良く大量生産や設備コスト面で優れているが、一般的に、これらの塗布法の場合は、気相法の場合よりも、得られる透明薄膜の品質が劣る場合があった。   On the other hand, in the case of the spray method among the application methods, there is a problem that the utilization efficiency of the coating liquid is poor and the film formation conditions are not easily controlled. In the case of the roll coating method, gravure coating method, slide coating method, dipping method, screen printing method, etc., the utilization efficiency of raw materials is good and the mass production and equipment cost are excellent. In the case of the method, the quality of the obtained transparent thin film may be inferior to the case of the gas phase method.

塗布法としては、例えば、分子中にフッ素原子を含むポリマーからなる塗工液を、基材の表面に塗布し乾燥させ、低屈折率層を形成する方法か、あるいは、分子中に電離放射線や熱で硬化する官能基を含むモノマーからなる塗工液を、基材の表面に塗布し、乾燥した後、UV照射や熱などによって該モノマーを硬化させて低屈折率層を形成する方法が知られている。   As the coating method, for example, a coating liquid composed of a polymer containing fluorine atoms in the molecule is applied to the surface of the substrate and dried to form a low refractive index layer, or ionizing radiation or A method of forming a low refractive index layer by applying a coating liquid comprising a monomer containing a functional group that is cured by heat to the surface of the substrate, drying, and then curing the monomer by UV irradiation or heat is known. It has been.

低屈折率層を形成する他の方法として、屈折率が1である気泡を、可視光線の波長以下の大きさにして、塗膜内部に含有させることによって、塗膜全体の屈折率を低下させる方法が知られている。   As another method for forming the low refractive index layer, the refractive index of the entire coating film is decreased by making bubbles having a refractive index of 1 smaller than the wavelength of visible light and containing the bubbles inside the coating film. The method is known.

特許文献1や特許文献2には、内部に空洞を有する中空シリカ等の中空微粒子を、アルコキシシランの加水分解重縮合物から得られる無機成分を含むバインダー中に分散させた低屈折率層が開示されている。この低屈折率層は、多数のミクロボイドを有する低屈折率層と同等の効果を有し、かつミクロボイドがシリカ等の硬い外殻に保護された形となっているため、ある程度の塗膜硬度を有する。しかしながら、無機成分を含むバインダーにより硬い塗膜が形成される反面、外部からの衝撃に対して脆いために、塗膜の機械強度、特に耐擦傷性が劣るといった問題があった。さらに、中空シリカ粒子の凝集効果により塗膜単独の場合に比べてより硬い塗膜が得られる反面、脆性も増すため、低屈折率でかつ機械強度に優れる塗膜の実現は困難であった。そして、シリカ粒子の添加量をある程度増やす
とシリカ粒子の凝集が起こり、塗膜の機械強度が一気に低下してしまうという問題点があった。
Patent Document 1 and Patent Document 2 disclose a low refractive index layer in which hollow fine particles such as hollow silica having cavities therein are dispersed in a binder containing an inorganic component obtained from a hydrolyzed polycondensate of alkoxysilane. Has been. This low refractive index layer has the same effect as a low refractive index layer having a large number of microvoids, and the microvoids are protected by a hard outer shell such as silica. Have. However, while a hard coating film is formed with a binder containing an inorganic component, there is a problem in that the mechanical strength of the coating film, particularly the scratch resistance, is inferior because it is brittle against external impacts. Furthermore, a harder coating film can be obtained than the case of the coating film alone due to the aggregation effect of the hollow silica particles. However, since the brittleness increases, it is difficult to realize a coating film having a low refractive index and excellent mechanical strength. And when the addition amount of the silica particles is increased to some extent, there is a problem that the aggregation of the silica particles occurs and the mechanical strength of the coating film decreases at a stretch.

したがって、低屈折率を有し、かつ機械強度に優れる反射防止被膜が求められている。
前記中空シリカ粒子について、粒径が0.1〜300μm程度の中空シリカ粒子は公知である(例えば、特許文献3、4参照)。また、特許文献5には、珪酸アルカリ金属水溶液から活性シリカをシリカ以外の材料からなるコア上に沈殿させ、該材料を、シリカシェルを破壊させることなく除去することによって、稠密なシリカシェルからなる中空粒子を製造する方法が開示されている。
Therefore, an antireflection coating having a low refractive index and excellent mechanical strength is required.
Regarding the hollow silica particles, hollow silica particles having a particle size of about 0.1 to 300 μm are known (for example, see Patent Documents 3 and 4). In Patent Document 5, active silica is precipitated from an aqueous alkali metal silicate solution on a core made of a material other than silica, and the material is removed without destroying the silica shell, thereby forming a dense silica shell. A method for producing hollow particles is disclosed.

さらに、特許文献6には、外周部が殻であり、中心部が中空であり、殻は外側が緻密で内側ほど粗な濃度傾斜構造をもったコア・シェル構造であるミクロンサイズの球状シリカ粒子が開示されている。   Further, Patent Document 6 discloses a micron-sized spherical silica particle having a core-shell structure in which the outer peripheral portion is a shell, the center portion is hollow, and the shell is denser on the outside and has a coarser concentration gradient structure on the inside. Is disclosed.

また、本発明者等は先に、多孔性の無機酸化物微粒子の表面をシリカ等で完全に被覆することにより、得られる低屈折率の複合酸化物微粒子を提案している(例えば、特許文献7参照)。   Further, the present inventors have previously proposed composite oxide fine particles having a low refractive index obtained by completely covering the surface of porous inorganic oxide fine particles with silica or the like (for example, Patent Documents). 7).

特許文献8には、球状以外の形状をとる中空シリカ粒子として、無機酸化物粒子が平均連結数で2〜30個鎖状に連結した無機酸化物粒子群であって、該無機酸化物粒子が、多孔質および/または内部に空洞を有する中空粒子であることを特徴とする無機酸化物微粒子群を含有してなるハードコート層付き基材に関する発明が開示されており、該粒子の組成がシリカである場合が記載されている。   Patent Document 8 discloses a group of inorganic oxide particles in which inorganic oxide particles are connected in a chain form with an average connection number of 2 to 30 as hollow silica particles having a shape other than a spherical shape. In addition, an invention relating to a substrate with a hard coat layer comprising a group of inorganic oxide fine particles, which is porous and / or hollow particles having a cavity inside is disclosed, and the composition of the particles is silica. The case is described.

上記中空シリカ粒子では、被膜中のシリカ粒子が球状であるために、特定量配合されないと被膜強度が発現出来ない。
特許文献9には、無機化合物を構成成分とし、繊維状であり、かつ中空構造を持ち、その数平均長さ(L)が10〜1000μm、数平均径(D)が0.1〜30μmであり、アスペクト比(L)/(D)が5〜100、中空穴の数平均外径が該数平均径の30〜95%の範囲にあることを特徴とする繊維状中空無機化合物粒子が記載されており、該粒子の組成がシリカである場合が記載されている。繊維状中空無機化合物粒子は、その配合量に比例して徐々に被膜強度が発現するために、強度が安定した被膜が得られるばかりでなく、クラックが入りにくいことから、信頼性の高い被膜が得られる。
In the hollow silica particles, since the silica particles in the coating are spherical, the coating strength cannot be expressed unless a specific amount is blended.
Patent Document 9 includes an inorganic compound as a constituent component, is fibrous, has a hollow structure, has a number average length (L) of 10 to 1000 μm, and a number average diameter (D) of 0.1 to 30 μm. A fibrous hollow inorganic compound particle characterized in that the aspect ratio (L) / (D) is 5 to 100 and the number average outer diameter of the hollow holes is in the range of 30 to 95% of the number average diameter. The case where the composition of the particles is silica is described. The fibrous hollow inorganic compound particles gradually develop the coating strength in proportion to the amount of the compound, so that not only a coating with a stable strength is obtained, but also a crack is difficult to occur. can get.

しかしながら、低屈折率で造膜性の優れたシリカ粒子は得られていなかった。
特開2001−167637号公報 特開2002−225866号公報 特開平6−330606号公報 特開平7−013137号公報 特表2000−500113号公報 特開平11−029318号公報 特開平7−133105号公報 特開2005−186435号 特開2005−289932号
However, silica particles having a low refractive index and excellent film forming properties have not been obtained.
Japanese Patent Laid-Open No. 2001-167637 JP 2002-225866 A JP-A-6-330606 Japanese Patent Laid-Open No. 7-013137 Special Table 2000-500113 JP-A-11-029318 JP 7-133105 A JP 2005-186435 A JP 2005-289932 A

本発明は、低屈折率で造膜性の優れた繊維状中空シリカ微粒子が分散媒に分散してなる分散液および該シリカ微粒子を含む反射防止被膜形成用組成物を提供することを目的とする。   An object of the present invention is to provide a dispersion in which fibrous hollow silica fine particles having a low refractive index and excellent film-forming properties are dispersed in a dispersion medium, and a composition for forming an antireflection coating containing the silica fine particles. .

本発明者は、上記従来技術の問題点を解決すべく鋭意検討した結果、微粒子が連結した構造ではなく、ひとつの粒子からなる繊維状中空シリカ微粒子であって、その長径の長さがnmオーダーにあるような繊維状中空シリカ微粒子が低屈折率で造膜性に優れていることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems of the prior art, the present inventor is not a structure in which the fine particles are connected, but is a fibrous hollow silica fine particle composed of one particle, and the length of the major axis is on the order of nm. The present inventors have found that the fibrous hollow silica fine particles as described in 1) have a low refractive index and excellent film-forming properties, and have completed the present invention.

すなわち、本発明の繊維状中空シリカ微粒子分散液は、平均粒子径が5〜500nmの範囲にあり、繊維状であり、中空構造を有する繊維状中空シリカ微粒子が、分散媒に分散してなることを特徴とする。   That is, the fibrous hollow silica fine particle dispersion of the present invention has an average particle diameter in the range of 5 to 500 nm, is fibrous, and is formed by dispersing fibrous hollow silica fine particles having a hollow structure in a dispersion medium. It is characterized by.

前記繊維状中空シリカ微粒子は、下記(a)、(b)、(c)および(d)の条件を満たすことが好ましい。
(a)平均粒子径が5〜500nmの範囲にあり、
(b)長径と短径との比(長径/短径)が1.5〜10の範囲にあり、
(c)BET法による比表面積が5〜600m2/gの範囲にあり、
(d)屈折率が1.20〜1.40の範囲にある。
The fibrous hollow silica fine particles preferably satisfy the following conditions (a), (b), (c) and (d).
(A) The average particle size is in the range of 5 to 500 nm,
(B) The ratio of the major axis to the minor axis (major axis / minor axis) is in the range of 1.5 to 10,
(C) The specific surface area according to the BET method is in the range of 5 to 600 m 2 / g,
(D) The refractive index is in the range of 1.20 to 1.40.

本発明の繊維状中空シリカ微粒子は、上記(a)、(b)、(c)および(d)の条件を満たすことを特徴とする。
本発明の繊維状中空シリカ微粒子分散液の製造方法は、
工程(I):長径と短径との比(長径/短径)が1.5〜10の範囲にあり、酸可溶性
である無機酸化物微粒子を核粒子として分散媒に分散させて、核粒子分散液を得る工程、
工程(II):前記核粒子分散液のpHを8〜13に調整する工程、
工程(III):前記核粒子の表面を、(1)シリカ、または(2)シリカおよび前記核
粒子と同じ成分を生成しうる無機酸化物で被覆する工程、
工程(IV):工程(III)の後、前記核粒子を構成する元素の一部または全部を除去し
、多孔質繊維状シリカ微粒子を得る工程、および
工程(V):前記多孔質繊維状シリカ微粒子表面を、更にシリカで被覆する工程
をこの順序で含むことを特徴とする繊維状中空シリカ微粒子分散液の製造方法。
The fibrous hollow silica fine particles of the present invention are characterized by satisfying the above conditions (a), (b), (c) and (d).
The method for producing the fibrous hollow silica fine particle dispersion of the present invention comprises:
Step (I): The ratio of the major axis to the minor axis (major axis / minor axis) is in the range of 1.5 to 10, and the acid-soluble inorganic oxide fine particles are dispersed as a core particle in a dispersion medium, thereby the core particle. Obtaining a dispersion;
Step (II): adjusting the pH of the core particle dispersion to 8 to 13,
Step (III): coating the surface of the core particle with (1) silica, or (2) an inorganic oxide capable of generating the same component as silica and the core particle,
Step (IV): After step (III), part or all of the elements constituting the core particles are removed to obtain porous fibrous silica fine particles, and step (V): the porous fibrous silica A method for producing a fibrous hollow silica fine particle dispersion, comprising a step of further coating the surface of the fine particles with silica in this order.

本発明の繊維状中空シリカ微粒子分散液の製造方法は、
工程(i):長径と短径との比(長径/短径)が1.5〜10であり、酸可溶性である
無機酸化物微粒子を核粒子として分散媒に分散させて核粒子分散液を得る工程、
工程(ii):前記核粒子分散液のpHを8〜13に調整する工程、
工程(iii):前記核粒子分散液の温度を60〜250℃に維持しながら、重合性珪素
化合物を添加することにより前記核粒子を成長させる工程、
工程(iv):酸性溶液を添加することにより、核粒子を構成する元素の一部または全部を除去し、多孔質繊維状シリカ微粒子分散液を得る工程、
工程(v):前記多孔質繊維状シリカ微粒子分散液に、更に重合性珪素化合物を添加す
る工程、および
工程(vi):前記重合性珪素化合物を含有する前記多孔質繊維状シリカ微粒子分散液を温度100℃〜270℃で熱処理する工程
をこの順序で含むことを特徴とする。
The method for producing the fibrous hollow silica fine particle dispersion of the present invention comprises:
Step (i): The ratio of major axis to minor axis (major axis / minor axis) is 1.5 to 10, and acid-soluble inorganic oxide fine particles are dispersed as a core particle in a dispersion medium to prepare a core particle dispersion. Obtaining step,
Step (ii): adjusting the pH of the core particle dispersion to 8 to 13,
Step (iii): A step of growing the core particles by adding a polymerizable silicon compound while maintaining the temperature of the core particle dispersion at 60 to 250 ° C.
Step (iv): A step of removing a part or all of the elements constituting the core particles by adding an acidic solution to obtain a porous fibrous silica fine particle dispersion,
Step (v): a step of further adding a polymerizable silicon compound to the porous fibrous silica fine particle dispersion; and step (vi): the porous fibrous silica fine particle dispersion containing the polymerizable silicon compound. It includes a step of heat treatment at a temperature of 100 ° C. to 270 ° C. in this order.

前記酸可溶性の無機酸化物微粒子は、繊維状アルミナ微粒子、繊維状酸化カルシウム微粒子および繊維状酸化鉄微粒子からなる群より選択される微粒子であることが好ましい。
本発明の反射防止被膜形成用組成物は、前記繊維状中空シリカ微粒子、反射防止被膜形成用成分および分散媒を含有することを特徴とする。
The acid-soluble inorganic oxide fine particles are preferably fine particles selected from the group consisting of fibrous alumina fine particles, fibrous calcium oxide fine particles, and fibrous iron oxide fine particles.
The composition for forming an antireflective coating according to the present invention comprises the fibrous hollow silica fine particles, a component for forming an antireflective coating, and a dispersion medium.

本発明の反射防止被膜付基材は、樹脂基材上に反射防止被膜が形成されてなる反射防止被膜付基材であって、該反射防止被膜が前記繊維状中空シリカ微粒子と反射防止被膜形成用成分を含有することを特徴とする。また、本発明の反射防止被膜付基材は、樹脂基材上にハードコート層を介して、前記反射防止被膜が設けられていてもよい。   The substrate with an antireflection coating of the present invention is a substrate with an antireflection coating in which an antireflection coating is formed on a resin substrate, and the antireflection coating forms the antireflection coating with the fibrous hollow silica fine particles. Ingredients are contained. Moreover, the base material with an antireflection coating of the present invention may be provided with the antireflection coating on a resin base via a hard coat layer.

本発明の繊維状中空シリカ微粒子は、低屈折率(例えば、屈折率1.20〜1.40の範囲にある)材料であり、その構造に起因して造膜性にも優れる。また、該微粒子が分散媒に分散してなる分散液は反射防止被膜の形成に好適に用いられる。   The fibrous hollow silica fine particle of the present invention is a material having a low refractive index (for example, a refractive index in the range of 1.20 to 1.40), and is excellent in film forming property due to its structure. Further, a dispersion liquid in which the fine particles are dispersed in a dispersion medium is suitably used for forming an antireflection coating.

さらに、該微粒子を含有する反射防止被膜形成用組成物によれば、基材上に平滑な膜を形成することができ、硬化後の膜の美観が優れる。
また、該微粒子を含有する反射防止用基材は、屈折率の低い優れた反射防止用基材となる。
Furthermore, according to the composition for forming an antireflection coating containing the fine particles, a smooth film can be formed on the substrate, and the aesthetic appearance of the film after curing is excellent.
The antireflection substrate containing the fine particles is an excellent antireflection substrate having a low refractive index.

本発明の製造方法によれば、平均粒子径が5〜500nmの範囲にある微小な繊維状中空シリカ微粒子を分散媒に分散させた分散液を実用的に調製することができる。   According to the production method of the present invention, a dispersion liquid in which fine fibrous hollow silica fine particles having an average particle diameter in the range of 5 to 500 nm are dispersed in a dispersion medium can be practically prepared.

[繊維状中空シリカ微粒子および繊維状中空シリカ微粒子分散液]
本発明の繊維状中空シリカ微粒子分散液は、平均粒子径が5〜500nmの範囲にあり、繊維状であり、中空構造を有する繊維状中空シリカ微粒子が、分散媒に分散してなることを特徴としている。なお、この繊維状中空シリカ微粒子分散液は、繊維状中空シリカ微粒子を分散質としたゾル状のものであり、繊維状中空シリカゾルと称することもできる。
[Fibrous hollow silica fine particles and fibrous hollow silica fine particle dispersion]
The fibrous hollow silica fine particle dispersion of the present invention has an average particle diameter in the range of 5 to 500 nm, is fibrous, and is obtained by dispersing fibrous hollow silica fine particles having a hollow structure in a dispersion medium. It is said. This fibrous hollow silica fine particle dispersion is a sol having a fibrous hollow silica fine particle as a dispersoid, and can also be referred to as a fibrous hollow silica sol.

前記繊維状中空シリカ微粒子の平均粒子径は、通常、5〜500nmの範囲にあり、好ましくは10〜200nmの範囲にあり、さらに好ましくは30〜80nmの範囲にある。平均粒子径が、前記範囲内にあると、繊維状中空シリカ微粒子が、例えば、後述する反射防止被膜形成用成分に分散し易いので、膜厚100nm〜0.5μmの反射防止被膜または反射防止被膜付基材を形成するうえで好適である。平均粒子径が5nm未満の場合は、本発明の効果は損なわれないが、本発明に係る製造方法によって調製することは容易ではない。また、平均粒子径が500nmを超える場合は、繊維状中空シリカ微粒子を配合した反射防止用被膜の膜厚によっては、平坦で均一な膜を形成できない場合がある。   The average particle diameter of the fibrous hollow silica fine particles is usually in the range of 5 to 500 nm, preferably in the range of 10 to 200 nm, and more preferably in the range of 30 to 80 nm. When the average particle diameter is within the above range, the fibrous hollow silica fine particles are easily dispersed, for example, in an antireflection coating forming component to be described later. Therefore, the antireflection coating or the antireflection coating with a film thickness of 100 nm to 0.5 μm is used. It is suitable for forming an attached substrate. When the average particle size is less than 5 nm, the effect of the present invention is not impaired, but it is not easy to prepare by the production method according to the present invention. Further, when the average particle diameter exceeds 500 nm, a flat and uniform film may not be formed depending on the film thickness of the antireflection coating containing the fibrous hollow silica fine particles.

前記繊維状中空シリカ微粒子は、繊維状(または針状)の形状を有し、球状シリカ粒子とは構造上、区別される。本発明において、繊維状中空シリカ微粒子とは、該繊維状中空シリカ微粒子の画像解析法により測定される長径と短径との比(長径/短径)が1.5〜10の範囲にあるシリカ微粒子をいう。長径と短径との比(長径/短径)が1.5以上の場合、外見上も明らかに球状ではない。   The fibrous hollow silica fine particles have a fibrous (or needle-like) shape, and are distinguished from the spherical silica particles in terms of structure. In the present invention, the fibrous hollow silica fine particles are silica having a ratio of a major axis to a minor axis (major axis / minor axis) measured by an image analysis method of the fibrous hollow silica fine particles in a range of 1.5 to 10. Refers to fine particles. When the ratio of the major axis to the minor axis (major axis / minor axis) is 1.5 or more, it is clearly not spherical in appearance.

長径と短径との比(長径/短径)は、通常1.5〜10の範囲にあり、好ましくは2.0〜8.0の範囲にあり、さらに好ましくは2.5〜5.0の範囲にある。長径と短径との比(長径/短径)が前記範囲内にあると、繊維状中空シリカ微粒子を含有する反射防止被膜形成用組成物は、優れた造膜性を示す。長径と短径との比(長径/短径)が1.5未満の場合は、前記組成物の造膜性が低下する傾向がある。長径と短径との比(長径/短径)が10を超える場合は、本発明の効果を損なわれないが、そのような繊維状中空シリカ微粒子を、本発明に係る製造方法によって調製することは容易ではない。   The ratio of the major axis to the minor axis (major axis / minor axis) is usually in the range of 1.5 to 10, preferably in the range of 2.0 to 8.0, more preferably 2.5 to 5.0. It is in the range. When the ratio of the major axis to the minor axis (major axis / minor axis) is within the above range, the composition for forming an antireflection film containing fibrous hollow silica fine particles exhibits excellent film-forming properties. When the ratio of the major axis to the minor axis (major axis / minor axis) is less than 1.5, the film forming property of the composition tends to be lowered. When the ratio of the major axis to the minor axis (major axis / minor axis) exceeds 10, the effect of the present invention is not impaired, but such fibrous hollow silica fine particles are prepared by the production method according to the present invention. Is not easy.

なお、前記平均粒子径および前記長径と短径との比(長径/短径)は、それぞれ後述する実施例に記載の方法(画像解析法)で測定された場合の値である。
本発明に係る繊維状中空シリカ微粒子のBET法による比表面積は、通常5〜600m2/gの範囲であり、好ましくは15〜400m2/gの範囲であり、さらに好ましくは20〜250m2/gの範囲である。
The average particle diameter and the ratio of the major axis to the minor axis (major axis / minor axis) are values when measured by the method (image analysis method) described in Examples described later.
BET specific surface area of the fibrous hollow fine silica particles according to the present invention is usually in the range of 5~600m 2 / g, preferably in the range of 15~400m 2 / g, more preferably 20~250m 2 / The range of g.

BET法による比表面積が前記範囲内であると、被膜形成能が良好である点で好ましい。BET法による比表面積が5m2/g未満の場合は、中空構造を有さないシリカ微粒子が含まれる場合がある。また、BET法による比表面積が600m2/gを超える場合は、微粒子内部の空孔が小さく屈折率が大きくなる傾向がある。 When the specific surface area by the BET method is within the above range, it is preferable in that the film forming ability is good. When the specific surface area by the BET method is less than 5 m 2 / g, silica fine particles having no hollow structure may be contained. Moreover, when the specific surface area by BET method exceeds 600 m < 2 > / g, the void | hole inside microparticles | fine-particles tends to become small and a refractive index becomes large.

なお、前記BET法による比表面積は、後述する実施例に記載の方法で測定された場合の値である。
本発明に係る繊維状中空シリカ微粒子は、中空構造を有するため、中空構造を有さないシリカ微粒子に比べて、その屈折率が小さくなる傾向がある。一般にシリカの屈折率は、その製造方法によるが、通常1.45〜1.46の範囲にある。これに対し、本発明に係る繊維状中空シリカ微粒子の屈折率は、通常1.20〜1.40の範囲となる。このことから本発明に係る繊維状中空シリカ微粒子は、粒子内に空孔構造を有する繊維状中空シリカ微粒子であることがわかる。
In addition, the specific surface area by the said BET method is a value at the time of measuring by the method as described in the Example mentioned later.
Since the fibrous hollow silica fine particles according to the present invention have a hollow structure, the refractive index tends to be smaller than silica fine particles not having a hollow structure. In general, the refractive index of silica is usually in the range of 1.45 to 1.46, although it depends on the production method. On the other hand, the refractive index of the fibrous hollow silica fine particles according to the present invention is usually in the range of 1.20 to 1.40. This shows that the fibrous hollow silica fine particles according to the present invention are fibrous hollow silica fine particles having a pore structure in the particles.

本発明に係る繊維状中空シリカ微粒子の屈折率の範囲については、好ましくは1.25〜1.39の範囲にあり、さらに好ましくは1.28〜1.38の範囲にある。繊維状中空シリカ微粒子の屈折率については、核粒子の平均粒子径と、核粒子に被覆される(1)シリカまたは(2)シリカおよび核粒子と同じ成分を生成しうる無機酸化物の量により調整される。   The range of the refractive index of the fibrous hollow silica fine particles according to the present invention is preferably in the range of 1.25 to 1.39, more preferably in the range of 1.28 to 1.38. The refractive index of the fibrous hollow silica fine particles depends on the average particle diameter of the core particles and the amount of (1) silica or (2) silica and the inorganic oxide that can produce the same components as the core particles. Adjusted.

屈折率が前記範囲内にあると、被膜の反射率の点で好ましい。屈折率が1.20未満の場合は、本発明の効果を損なうものではないが、屈折率を1.20未満とするためには、微粒子内部の空孔構造の占める割合を大きくしなければならず、本発明に係る製造方法によって、調製することは容易ではない。また、微粒子自体の強度にも悪影響を与える場合がある。また、屈折率が1.40を超える場合は、本発明が予定する反射防止被膜または反射防止被膜付基材の反射防止効果を達し難い場合がある。   When the refractive index is within the above range, it is preferable in terms of the reflectance of the coating. When the refractive index is less than 1.20, the effect of the present invention is not impaired, but in order to make the refractive index less than 1.20, the proportion of the pore structure in the fine particles must be increased. However, it is not easy to prepare by the manufacturing method according to the present invention. In addition, the strength of the fine particles themselves may be adversely affected. When the refractive index exceeds 1.40, it may be difficult to achieve the antireflection effect of the antireflection coating or the substrate with the antireflection coating as planned by the present invention.

なお、前記屈折率は、後述する実施例に記載の方法で測定された場合の値である。
本発明に係る繊維状中空シリカ微粒子分散液に用いられる分散媒としては、通常、水または有機溶媒が用いられる。有機溶媒の例としては、例えば、メタノール、エタノール、イソプロパノール、ブタノールなどのアルコール類、アセトン、MEK、MIBKなどのケトン類、酢酸エチル、酢酸ブチルなどのエステル類、トルエン、キシレンなどの芳香族類、メチルセロソルブ、エチルセロソルブなどのエーテル類などが挙げられる。これらの有機溶媒は、単独で、あるいは2種以上を混合して用いることができる。または、これらの有機溶媒と水との混合溶媒であっても構わない。なお、前記繊維状中空シリカ微粒子分散液を反射防止被膜形成用組成物に適用する場合においては、実用上、揮発性が反射防止被膜の形成に支障が生じない程度の有機溶媒を使用することが望ましい。
In addition, the said refractive index is a value at the time of measuring by the method as described in the Example mentioned later.
As the dispersion medium used in the fibrous hollow silica fine particle dispersion according to the present invention, water or an organic solvent is usually used. Examples of the organic solvent include, for example, alcohols such as methanol, ethanol, isopropanol and butanol, ketones such as acetone, MEK and MIBK, esters such as ethyl acetate and butyl acetate, aromatics such as toluene and xylene, Examples thereof include ethers such as methyl cellosolve and ethyl cellosolve. These organic solvents can be used alone or in admixture of two or more. Alternatively, a mixed solvent of these organic solvents and water may be used. In the case where the fibrous hollow silica fine particle dispersion is applied to the composition for forming an antireflection coating, it is practical to use an organic solvent whose volatility does not interfere with the formation of the antireflection coating. desirable.

前記分散媒中の前記繊維状中空シリカ微粒子の固形分濃度は、通常5〜50質量%の範囲であり、好ましくは10〜40質量%の範囲であり、さらに好ましくは20〜30質量%の範囲である。固形分濃度が5質量%未満の場合、実用上は濃度が希薄過ぎるため、濃縮処理が必要となる場合がある。また、固形分濃度が50質量%を超える場合、シリカ微粒子間の凝集が生じやすくなるため実用性が低下する場合がある。   The solid content concentration of the fibrous hollow silica fine particles in the dispersion medium is usually in the range of 5 to 50% by mass, preferably in the range of 10 to 40% by mass, and more preferably in the range of 20 to 30% by mass. It is. When the solid content concentration is less than 5% by mass, the concentration is practically too dilute, and thus a concentration treatment may be necessary. Moreover, when solid content concentration exceeds 50 mass%, since it becomes easy to produce aggregation between silica fine particles, practicality may fall.

[繊維状中空シリカ微粒子分散液の製造方法]
本発明の繊維状中空シリカ微粒子分散液の製造方法は、工程(I):長径と短径との比
(長径/短径)が1.5〜10の範囲にあり、酸可溶性である無機酸化物微粒子を核粒子として分散媒に分散させて、核粒子分散液を得る工程、工程(II):前記核粒子分散液のpHを8〜13に調整する工程、工程(III):前記核粒子の表面を、(1)シリカ、ま
たは(2)シリカおよび前記核粒子と同じ成分を生成しうる無機酸化物で被覆する工程、工程(IV):工程(III)の後、前記核粒子を構成する元素の一部または全部を除去し、
多孔質繊維状シリカ微粒子を得る工程、および工程(V):前記多孔質繊維状シリカ微粒
子表面を、更にシリカで被覆する工程をこの順序で含むことを特徴とする。
[Method for producing fibrous hollow silica fine particle dispersion]
In the method for producing a fibrous hollow silica fine particle dispersion of the present invention, the step (I): the ratio of the major axis to the minor axis (major axis / minor axis) is in the range of 1.5 to 10, and the inorganic oxidation is acid-soluble. A step of dispersing fine particles as core particles in a dispersion medium to obtain a core particle dispersion, step (II): a step of adjusting the pH of the core particle dispersion to 8 to 13, step (III): the core particles (1) Silica, or (2) Step of coating silica and inorganic oxide capable of producing the same components as the core particles, Step (IV): After the step (III), the core particles are constituted Remove some or all of the elements
A step of obtaining porous fibrous silica fine particles and a step (V): a step of further covering the surface of the porous fibrous silica fine particles with silica in this order.

核粒子の原料となる無機酸化物微粒子としては、後の工程にて、酸で該無機酸化物微粒子を除去する必要があるので、酸可溶性の無機酸化物微粒子が使用される。酸可溶性に無機酸化物微粒子の種類については、長径/短径比が1.5〜10の範囲にある繊維状の形状をもつ物であれば格別に制限されるものではないが、酸による除去のし易さを考慮すると、繊維状アルミナ微粒子、繊維状酸化カルシウム微粒子または繊維状酸化鉄微粒子などの繊維状の無機酸化物微粒子が好ましい。ただし、シリカ微粒子は、核粒子の原料となる無機酸化物微粒子から除かれる。酸可溶性の無機酸化物微粒子のうち、実用上、繊維状アルミナ微粒子の使用が推奨される。   As the inorganic oxide fine particles used as the raw material of the core particles, since it is necessary to remove the inorganic oxide fine particles with an acid in a later step, acid-soluble inorganic oxide fine particles are used. The kind of inorganic oxide fine particles soluble in acid is not particularly limited as long as it has a fibrous shape with a major axis / minor axis ratio of 1.5 to 10, but it is removed by acid. In view of ease of treatment, fibrous inorganic oxide fine particles such as fibrous alumina fine particles, fibrous calcium oxide fine particles, or fibrous iron oxide fine particles are preferable. However, the silica fine particles are excluded from the inorganic oxide fine particles used as the raw material for the core particles. Of the acid-soluble inorganic oxide fine particles, the use of fibrous alumina fine particles is recommended for practical use.

前記繊維状アルミナ微粒子としては、例えば、特開昭60−166220号、特開平4−42809号などに記載された製造方法で得られる繊維状アルミナを用いてもよく、市販の繊維状アルミナを用いても構わない。   As the fibrous alumina fine particles, for example, fibrous alumina obtained by a production method described in JP-A-60-166220, JP-A-4-42809 or the like may be used, and commercially available fibrous alumina is used. It doesn't matter.

原料となる酸可溶性の無機酸化物微粒子の長径と短径との比(長径/短径比)は、目的とする繊維状中空シリカ微粒子の大きさに応じて選択されるものであるが、通常1.5〜10の範囲にあり、好ましくは2.0〜8.0の範囲にあり、さらに好ましくは2.5〜6.0の範囲にある。
本発明に係る繊維状中空シリカ微粒子分散液の分散質である繊維状中空シリカ微粒子の長径/短径比は、概ね原料として使用する無機酸化物微粒子の長径/短径比と同等となるため、繊維状中空シリカ微粒子分散液の適用用途に応じて、原料として使用する無機酸化物微粒子の長径/短径比を選定することが望ましい。一般に、繊維状中空シリカ微粒子の長径/短径比が大きいほど、その様な繊維状中空シリカ微粒子は、造膜性が優れる傾向にある。
The ratio of the major axis to the minor axis (major axis / minor axis ratio) of the acid-soluble inorganic oxide fine particles used as a raw material is selected according to the size of the target fibrous hollow silica fine particles. It exists in the range of 1.5-10, Preferably it exists in the range of 2.0-8.0, More preferably, it exists in the range of 2.5-6.0.
The major axis / minor axis ratio of the fibrous hollow silica fine particles, which is the dispersoid of the fibrous hollow silica fine particle dispersion according to the present invention, is approximately equal to the major axis / minor axis ratio of the inorganic oxide fine particles used as a raw material. It is desirable to select the major axis / minor axis ratio of the inorganic oxide fine particles used as a raw material in accordance with the application of the fibrous hollow silica fine particle dispersion. In general, the larger the long diameter / short diameter ratio of the fibrous hollow silica fine particles, the more the fibrous hollow silica fine particles tend to have better film-forming properties.

また、原料となる無機酸化物微粒子の平均粒子径も、目的とする繊維状中空シリカ微粒子の大きさに応じて選択されるものであるが、通常5nm以上、500nm未満の範囲であり、好ましくは10〜300nmの範囲であり、さらに好ましくは30〜250nmの範囲である。   Further, the average particle size of the inorganic oxide fine particles used as a raw material is also selected according to the size of the target fibrous hollow silica fine particles, but is usually in the range of 5 nm or more and less than 500 nm, preferably It is the range of 10-300 nm, More preferably, it is the range of 30-250 nm.

本発明の繊維状中空シリカ微粒子分散液の製造方法は、前記無機酸化物微粒子を核粒子として分散媒に分散させて核粒子分散液を得る工程を含む。
前記無機酸化物微粒子を核粒子として分散媒に分散させる方法にとしては、ホモジナイザーを使用する方法など、公知の方法が適用される。
The method for producing a fibrous hollow silica fine particle dispersion of the present invention includes a step of obtaining a nuclear particle dispersion by dispersing the inorganic oxide fine particles as core particles in a dispersion medium.
As a method for dispersing the inorganic oxide fine particles as core particles in a dispersion medium, a known method such as a method using a homogenizer is applied.

前記分散媒としては、通常は純水または水と水溶性有機溶媒との混合溶媒などが使用される。水溶性有機溶媒の例としては、実用上はエタノールなどを挙げることができる。また、分散性を助長するために、分散助剤として界面活性剤などを適宜添加しても構わない。   As the dispersion medium, usually pure water or a mixed solvent of water and a water-soluble organic solvent is used. As an example of a water-soluble organic solvent, ethanol etc. can be mentioned practically. In order to promote dispersibility, a surfactant or the like may be added as a dispersion aid.

前記分散媒中における前記繊維状の無機酸化物の固形分濃度は、通常5〜50質量%の範囲であり、好ましくは10〜40質量%の範囲であり、さらに好ましくは20〜30質量%の範囲である。前記固形分濃度が5.0質量%未満では、工程上の効率が実用的では
ない場合がある。前記固形分濃度が50質量%を超える場合は、良好な分散状態とすることが容易ではない。
The solid content concentration of the fibrous inorganic oxide in the dispersion medium is usually in the range of 5 to 50% by mass, preferably in the range of 10 to 40% by mass, more preferably 20 to 30% by mass. It is a range. If the solid content concentration is less than 5.0% by mass, the efficiency in the process may not be practical. When the solid content concentration exceeds 50% by mass, it is not easy to obtain a good dispersion state.

本発明の繊維状中空シリカ微粒子分散液の製造方法は、次に前記核粒子分散液をpH8〜13、好ましくはpH9〜12、さらに好ましくはpH10〜11に調整する工程を含む。   The method for producing a fibrous hollow silica fine particle dispersion of the present invention includes a step of adjusting the core particle dispersion to pH 8-13, preferably pH 9-12, more preferably pH 10-11.

pHが8未満の場合は核粒子の凝集が生じやすく不安定であり好ましくない。pH13を超える場合はシリカの溶解性が大きいため、後の工程で行う、シリカ等での被覆処理に好ましくない。   When the pH is less than 8, the aggregation of the core particles tends to occur and is unstable, which is not preferable. When the pH is higher than 13, the solubility of silica is large, which is not preferable for the coating treatment with silica or the like performed in a later step.

pHの調整は、前記核粒子分散液が酸性である場合、該核粒子分散液を塩基性陰イオン交換体などでイオン交換処理し、必要に応じて、アルカリ成分を添加する方法により行われる。   When the core particle dispersion is acidic, the pH is adjusted by subjecting the core particle dispersion to ion exchange treatment with a basic anion exchanger or the like, and adding an alkali component as necessary.

上記方法で使用するアルカリ成分としては、水酸化ナトリウム、水酸化カリウムもしくは水酸化リチウムなどのアルカリ金属元素の水酸化物、またはアンモニア、テトラメチルアンモニウムハイドロオキサイド、N−メチル−2−ピロリドンもしくはトリメチルアミンなどの窒素化合物を挙げることができる。また、これらのアルカリ成分は、1種単独でまたは2種以上を混合して用いることができる。   Examples of the alkali component used in the above method include hydroxides of alkali metal elements such as sodium hydroxide, potassium hydroxide or lithium hydroxide, or ammonia, tetramethylammonium hydroxide, N-methyl-2-pyrrolidone or trimethylamine. Can be mentioned. Moreover, these alkali components can be used individually by 1 type or in mixture of 2 or more types.

前記陰イオン交換体としては、陰イオン交換能を有するものであれば使用可能であり、強塩基性または弱塩基性陰イオン交換樹脂の他、キレート樹脂、イオン交換膜、イオン交換フィルターなどが例示される。これらの陰イオン交換体は、1種単独でまたは2種以上を混合して用いることができる。前記陰イオン交換体の使用量は、pHに応じて適宜調整される。   The anion exchanger can be used as long as it has anion exchange ability, and examples thereof include chelate resins, ion exchange membranes, ion exchange filters, in addition to strong or weakly basic anion exchange resins. Is done. These anion exchangers can be used singly or in combination of two or more. The amount of the anion exchanger used is appropriately adjusted according to the pH.

上記pHの調整方法を酸性アルミナゾルに適用した場合について、以下に例示する。
まず、酸性アルミナゾルの安定化剤である酸が陰イオン交換体により除去され、アルミナの等電点(pH7〜9)を通過する際、アルミナ微粒子は凝集する。アルカリ側では、アルミナとアルカリ成分とが反応してアルミニウム塩を生成する。このアルミニウム塩のアルミン酸イオンが陰イオン交換体により除去されてアルカリ成分が再生される。このアルカリ成分とアルミナとの反応が繰り返され、アルミナ微粒子は解膠されてコロイド粒子(微粒子)になる。
The case where the pH adjusting method is applied to acidic alumina sol is exemplified below.
First, the acid which is a stabilizer of acidic alumina sol is removed by the anion exchanger, and when passing through the isoelectric point (pH 7 to 9) of alumina, the alumina fine particles aggregate. On the alkali side, the alumina and the alkali component react to produce an aluminum salt. The aluminate ions in the aluminum salt are removed by the anion exchanger to regenerate the alkali component. This reaction between the alkali component and alumina is repeated, and the alumina fine particles are peptized into colloidal particles (fine particles).

この方法では、アルミナに対するアルカリ成分の量が少なくても、アルカリ成分が再生され繰り返しアルミナに作用するため、アルミナ微粒子の解膠を十分に行うことができる。また、得られるアルミナゾル中に含まれるアルミン酸塩が非常に少ないため、即ち、ゾル中の塩の含有量が少ないため、コロイド粒子は電気二重層を十分に形成し、ゾルの安定性が高くなる。   In this method, even if the amount of the alkali component relative to alumina is small, the alkali component is regenerated and repeatedly acts on the alumina, so that the alumina fine particles can be sufficiently peptized. Moreover, since the aluminate contained in the resulting alumina sol is very small, that is, the content of the salt in the sol is small, the colloidal particles sufficiently form an electric double layer, and the stability of the sol is increased. .

前記核粒子分散液がアルカリ性である場合、通常イオン交換などの処理を必要としない。
本発明の繊維状中空シリカ微粒子分散液の製造方法は、pH調整を終えた前記核粒子分散液に、温度60〜250℃で、重合性珪素化合物を添加することにより核粒子を成長させる工程を含む。
When the core particle dispersion is alkaline, treatment such as ion exchange is usually unnecessary.
The method for producing a fibrous hollow silica fine particle dispersion of the present invention comprises a step of growing core particles by adding a polymerizable silicon compound at a temperature of 60 to 250 ° C. to the core particle dispersion after pH adjustment. Including.

重合性珪素化合物を添加する際の温度は、通常60〜250℃の範囲であり、好ましくは70〜220℃の範囲であり、さらに好ましくは70〜210℃の範囲である。前記温度が60℃未満では、核粒子の成長が遅いため実用的ではない場合がある。また、前記温
度が250℃を超える場合、重合性珪素化合物同士の反応が進行し易くなる傾向がある。
The temperature at which the polymerizable silicon compound is added is usually in the range of 60 to 250 ° C, preferably in the range of 70 to 220 ° C, and more preferably in the range of 70 to 210 ° C. If the temperature is less than 60 ° C., the growth of the core particles is slow, which may not be practical. Moreover, when the said temperature exceeds 250 degreeC, there exists a tendency for reaction of polymerizable silicon compounds to advance easily.

前記重合性珪素化合物としては、アルカリ珪酸塩、または、アルカリ珪酸塩の希薄水溶液を陽イオン交換樹脂で脱アルカリして得られる珪酸液、メタ珪酸ナトリウム、オルト珪酸ナトリウム、珪素のアルコキシドまたはその誘導体が挙げられる。具体例としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、トリフェニルメトキシシラン、ビニルトリメトキシシランまたはトリビニルメトキシシランなどのアルコキシシランが挙げられる。   Examples of the polymerizable silicon compound include alkali silicates or silicic acid solutions obtained by dealkalizing dilute aqueous solutions of alkali silicates with a cation exchange resin, sodium metasilicate, sodium orthosilicate, silicon alkoxide or derivatives thereof. Can be mentioned. Specific examples include alkoxysilanes such as tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, triphenylmethoxysilane, vinyltrimethoxysilane, and trivinylmethoxysilane.

これらの珪素化合物は、1種単独でまたは2種以上を混合して用いることができる。
これらの珪素化合物のうち、珪酸液(または酸性珪酸液)、アルカリ珪酸塩水溶液(珪酸ナトリウム水溶液または珪酸カリウム水溶液)またはテトラエトキシシランなどが特に好ましい。
These silicon compounds can be used individually by 1 type or in mixture of 2 or more types.
Among these silicon compounds, silicic acid liquid (or acidic silicic acid liquid), alkaline silicate aqueous solution (sodium silicate aqueous solution or potassium silicate aqueous solution), tetraethoxysilane, or the like is particularly preferable.

なお、例えば、酸性アルミナゾルに重合性珪素化合物を添加しても、酸性領域ではシリカの重合が起きないのでアルミナ粒子の表面をシリカで被覆することができない。
前記重合性珪素化合物の使用量は、前記核粒子100質量部に対して、通常0.1〜45質量部の範囲であり、好ましくは3〜43質量部の範囲であり、さらに好ましくは5〜35質量部の範囲である。0.1質量部未満では、脱アルミナの際に粒子が崩壊し、目的とする低屈折率粒子が得られない。45質量部を超える場合は、脱アルミナ処理を行っても、粒子に占めるシリカ層の割合が多く、空隙の割合が過少になるため、粒子の屈折率が過大になるため、反射防止効果が低下する場合がある。
For example, even when a polymerizable silicon compound is added to the acidic alumina sol, silica is not polymerized in the acidic region, so that the surface of the alumina particles cannot be coated with silica.
The amount of the polymerizable silicon compound used is usually in the range of 0.1 to 45 parts by weight, preferably in the range of 3 to 43 parts by weight, more preferably 5 to 5 parts by weight with respect to 100 parts by weight of the core particles. The range is 35 parts by mass. If the amount is less than 0.1 parts by mass, the particles are disintegrated during dealumination and target low refractive index particles cannot be obtained. When the amount exceeds 45 parts by mass, the silica layer occupies a large proportion of the particles even after dealumination treatment, and the proportion of voids becomes too small, so that the refractive index of the particles becomes too large and the antireflection effect decreases. There is a case.

pH調整を終えた前記核粒子分散液に、前記重合性珪素化合物を添加する際に、核粒子である前記繊維状の無機酸化物微粒子と同じ成分を生成し得る化合物を併せて添加しても構わない。例えば、核粒子がアルミナの場合、重合性珪素化合物とともにアルミン酸ナトリウムを添加することができる。これは、後の工程で、核粒子を除去する際に、除去効果を助長する目的で添加される。   When the polymerizable silicon compound is added to the core particle dispersion after the pH adjustment, a compound capable of generating the same component as the fibrous inorganic oxide fine particles as the core particles may be added together. I do not care. For example, when the core particle is alumina, sodium aluminate can be added together with the polymerizable silicon compound. This is added for the purpose of promoting the removal effect when the core particles are removed in a later step.

核粒子と同じ成分を含有する化合物の添加量は、添加する重合性珪素化合物のシリカ1モルに対して、酸化物換算で0.1〜0.5モルの範囲であることが好ましい。前記添加量が0.1モル未満では、前記助長効果が見られない傾向がある。前記添加量が0.5モルを超える場合は、後の工程で除去される成分が過剰となり、適当な粒子形状を維持できない場合がある。   The amount of the compound containing the same component as the core particle is preferably in the range of 0.1 to 0.5 mol in terms of oxide with respect to 1 mol of silica of the polymerizable silicon compound to be added. When the addition amount is less than 0.1 mol, the promoting effect tends not to be observed. When the addition amount exceeds 0.5 mol, there are cases where components removed in a later step are excessive and an appropriate particle shape cannot be maintained.

本発明の繊維状中空シリカ微粒子分散液の製造方法は、次に酸性溶液などを添加することにより、核粒子を構成する元素の一部または全部を除去し、多孔質繊維状シリカ微粒子分散液を得る工程を含む。   In the method for producing a fibrous hollow silica fine particle dispersion of the present invention, an acidic solution or the like is then added to remove part or all of the elements constituting the core particles, and a porous fibrous silica fine particle dispersion is obtained. A obtaining step.

シリカ被覆層を有した前記核粒子から、核粒子を構成する元素の一部または全部を除去することにより、多孔質繊維状シリカ微粒子を調製する。
核粒子を構成する元素の一部または全部を除去する方法としては、該核粒子分散液に鉱酸や有機酸を添加することによって、核粒子を構成する元素の一部または全部を溶解除去する方法、あるいは、該核粒子分散液と陽イオン交換樹脂とを接触させてイオン交換により除去する方法を例示することができる。
Porous fibrous silica fine particles are prepared by removing part or all of the elements constituting the core particles from the core particles having the silica coating layer.
As a method for removing a part or all of the elements constituting the core particles, a part or all of the elements constituting the core particles are dissolved and removed by adding a mineral acid or an organic acid to the core particle dispersion. Examples thereof include a method or a method in which the nuclear particle dispersion is brought into contact with a cation exchange resin and removed by ion exchange.

シリカ被覆層を有した核粒子分散液における核粒子の固形分濃度は、処理温度によっても異なるが、酸化物に換算して0.1〜50質量%、特に0.5〜25質量%の範囲にあることが好ましい。前記濃度が0.1質量%未満では、シリカ被覆層の溶解が起きる可能性がある。また、低濃度であるため、処理効率が低下する傾向がある。また、前記濃度が
50質量%を超えると、核粒子を構成する元素の所望量を少ない回数で除去し難くなる傾向がある。一般にシリカ以外の酸に可溶な無機酸化物微粒子は、酸の添加により溶解し、除去することができる。これに対し、シリカの場合は、酸に対する溶解度が低いために、例えば、酸添加により、低分子量のシリカ成分が溶出した場合であっても、シリカは直ちに析出するので、結果的に、多孔質繊維状シリカ微粒子の構造が維持される。なお、核粒子を構成する元素の一部または全部を除去してなる多孔質繊維状シリカ微粒子については、多孔質構造の他に内部に中空構造を有する場合も含まれる。
The solid content concentration of the core particles in the core particle dispersion having the silica coating layer varies depending on the treatment temperature, but is in the range of 0.1 to 50% by mass, particularly 0.5 to 25% by mass in terms of oxide. It is preferable that it exists in. When the concentration is less than 0.1% by mass, the silica coating layer may be dissolved. Further, since the concentration is low, the processing efficiency tends to decrease. On the other hand, if the concentration exceeds 50% by mass, it tends to be difficult to remove the desired amount of the elements constituting the core particles with a small number of times. In general, inorganic oxide fine particles soluble in an acid other than silica can be dissolved and removed by addition of an acid. On the other hand, in the case of silica, since the solubility in acid is low, for example, even when a low molecular weight silica component is eluted by addition of an acid, silica is immediately precipitated. The structure of the fibrous silica fine particles is maintained. Note that the porous fibrous silica fine particles obtained by removing some or all of the elements constituting the core particles include a case where the inside has a hollow structure in addition to the porous structure.

本発明の繊維状中空シリカ微粒子分散液の製造方法は、得られた多孔質繊維状シリカ微粒子の分散液に、更に重合性珪素化合物を添加する工程を含む。
前記多孔質繊維状シリカ微粒子をシリカで更に被覆することにより、多孔質構造を有するシリカ微粒子の表面が封鎖され、繊維状中空シリカ微粒子が得られる。
The method for producing a fibrous hollow silica fine particle dispersion of the present invention includes a step of further adding a polymerizable silicon compound to the obtained dispersion of porous fibrous silica fine particles.
By further covering the porous fibrous silica fine particles with silica, the surface of the silica fine particles having a porous structure is blocked to obtain fibrous hollow silica fine particles.

ここでシリカ被覆として使用する重合性珪素化合物は、前述した重合性珪素化合物と同様な重合性珪素化合物を使用することができる。
重合性珪素化合物の添加量は、多孔質繊維状シリカ微粒子100質量部に対して、通常0.1〜30質量部の範囲であり、好ましくは1〜20質量部の範囲であり、さらに好ましくは3〜15質量部の範囲である。重合性珪素化合物の添加時の温度は、10〜90℃の範囲が好ましい。前記重合性珪素化合物の使用量が、0.1質量部未満の場合は、多孔質繊維状シリカ微粒子表面の封鎖が不十分となり、シリカ微粒子が空洞構造を有する繊維状中空シリカ微粒子になり難い。前記重合性珪素化合物の使用量が30質量部を超える場合は、繊維状中空シリカ微粒子において、重合性珪素化合物により設けられた層の割合が相対的に高まり、空隙の占める割合が低下するため、中空構造に基づく特性、例えば、屈折率の低減などの効果が生じ難くなる。
Here, as the polymerizable silicon compound used as the silica coating, a polymerizable silicon compound similar to the polymerizable silicon compound described above can be used.
The addition amount of the polymerizable silicon compound is usually in the range of 0.1 to 30 parts by mass, preferably in the range of 1 to 20 parts by mass, more preferably 100 parts by mass of the porous fibrous silica fine particles. It is the range of 3-15 mass parts. The temperature at the time of addition of the polymerizable silicon compound is preferably in the range of 10 to 90 ° C. When the amount of the polymerizable silicon compound used is less than 0.1 parts by mass, the surface of the porous fibrous silica fine particles is not sufficiently blocked, and the silica fine particles are unlikely to become fibrous hollow silica fine particles having a hollow structure. When the amount of the polymerizable silicon compound used exceeds 30 parts by mass, in the fibrous hollow silica fine particles, the proportion of the layer provided by the polymerizable silicon compound is relatively increased, and the proportion of voids is decreased. Characteristics based on the hollow structure, for example, effects such as a reduction in refractive index are less likely to occur.

重合性珪素化合物の添加終了後、熱処理を行うことにより繊維状中空シリカ微粒子が分散媒に分散してなる繊維状中空シリカ微粒子分散液が得られる。
前記熱処理温度は、通常100℃〜270℃であり、130〜240℃であることが好ましく、150〜230℃であることがさらに好ましい。
After completion of the addition of the polymerizable silicon compound, a fibrous hollow silica fine particle dispersion in which the fibrous hollow silica fine particles are dispersed in a dispersion medium is obtained by heat treatment.
The said heat processing temperature is 100 to 270 degreeC normally, it is preferable that it is 130 to 240 degreeC, and it is more preferable that it is 150 to 230 degreeC.

前記温度範囲内で加熱した場合、多孔質シリカ粒子表面と重合有機珪素化合物との縮合反応がより進行するため、多孔質シリカ粒子表面の封鎖が充分に行われ、粒子内部に中空構造が形成される。この様な外部から充分に封鎖された中空構造内には空気が存在するため、シリカより低い屈折率を示すことができる。   When heated within the above temperature range, the condensation reaction between the porous silica particle surface and the polymerized organosilicon compound proceeds further, so that the porous silica particle surface is sufficiently blocked and a hollow structure is formed inside the particle. The Since air exists in such a hollow structure sufficiently sealed from the outside, it can exhibit a refractive index lower than that of silica.

なお、前記繊維状中空シリカ微粒子分散液から分散媒を除去すると繊維状中空シリカ微粒子が得られる。
また、該分散液中に、繊維状中空シリカ微粒子および分散媒以外に不純物として、Al、Na、Clが残存していても構わない。
When the dispersion medium is removed from the fibrous hollow silica fine particle dispersion, fibrous hollow silica fine particles are obtained.
Further, in the dispersion liquid, Al, Na, and Cl may remain as impurities in addition to the fibrous hollow silica fine particles and the dispersion medium.

本発明に係る繊維状中空シリカ微粒子分散液が水溶媒からなる場合は、有機溶媒で置換することによってオルガノゾルを製造することができる。置換方法としては従来公知の方法を採用することができ、有機溶媒の沸点が概ね水より高い場合には、有機溶媒を加えて蒸留することによって得ることができる。また、有機溶媒の沸点が低い場合には本願出願人の出願による特開昭59−8614号公報に開示した限外濾過膜法などによって得ることができる。得られるオルガノゾルの濃度はSiO2に換算して10〜50重量%の範囲
が好ましい。また、このオルガノゾルは、使用に際して適宜希釈して、あるいはさらに濃縮して用いることができる。
When the fibrous hollow silica fine particle dispersion according to the present invention comprises an aqueous solvent, an organosol can be produced by substituting with an organic solvent. A conventionally known method can be employed as the substitution method. When the boiling point of the organic solvent is generally higher than that of water, it can be obtained by adding an organic solvent and performing distillation. When the boiling point of the organic solvent is low, it can be obtained by the ultrafiltration membrane method disclosed in Japanese Patent Application Laid-Open No. 59-8614 filed by the present applicant. The concentration of the resulting organosol from 10 to 50% by weight in terms of SiO 2 is preferred. In addition, this organosol can be used after being appropriately diluted or further concentrated.

[反射防止被膜形成用組成物]
本発明の反射防止被膜形成用組成物は、前記繊維状中空シリカ微粒子、反射防止被膜形成用成分および分散媒を含有することを特徴としている。
[Antireflection coating composition]
The composition for forming an antireflective coating according to the present invention is characterized by containing the fibrous hollow silica fine particles, a component for forming an antireflective coating, and a dispersion medium.

反射防止被膜形成用成分としては、公知の熱硬化性樹脂または熱可塑性樹脂のいずれも採用することが可能である。具体的には、ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、熱可塑性アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂もしくはシリコーンゴムなどの熱可塑性樹脂、またはウレタン樹脂、メラミン樹脂、ケイ素樹脂、ブチラール樹脂、反応性シリコーン樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂もしくは熱硬化性アクリル樹脂などの熱硬化性樹脂などが挙げられる。さらにこれら樹脂の2種以上の共重合体や変性体であってもよい。   As a component for forming an antireflection coating, any of known thermosetting resins or thermoplastic resins can be employed. Specifically, polyester resin, polycarbonate resin, polyamide resin, polyphenylene oxide resin, thermoplastic acrylic resin, vinyl chloride resin, fluororesin, vinyl acetate resin or silicone rubber or other thermoplastic resin, or urethane resin, melamine resin, silicon Examples thereof include thermosetting resins such as resins, butyral resins, reactive silicone resins, phenol resins, epoxy resins, unsaturated polyester resins, and thermosetting acrylic resins. Further, two or more kinds of copolymers or modified products of these resins may be used.

これらの樹脂は、エマルジョン樹脂、水溶性樹脂または親水性樹脂であってもよい。さらに熱硬化性樹脂の場合、紫外線硬化型であっても、電子線硬化型であってもよく、硬化触媒が含まれていてもよい。   These resins may be emulsion resins, water-soluble resins or hydrophilic resins. Further, in the case of a thermosetting resin, it may be an ultraviolet curable type or an electron beam curable type, and may contain a curing catalyst.

本発明では、熱硬化性樹脂または紫外線硬化タイプを用いると、前記無機酸化物微粒子の配合量が少なくても硬度の高い反射防止被膜付基材が得られる傾向があるので特に好ましい。   In the present invention, it is particularly preferable to use a thermosetting resin or an ultraviolet curable type because a substrate with an antireflection coating having a high hardness tends to be obtained even if the amount of the inorganic oxide fine particles is small.

また、反射防止被膜形成用成分として加水分解性有機珪素化合物を用いることも可能である。具体例として、アルコキシシランとアルコールの混合液に、水および触媒としての酸またはアルカリを加えることによって得られたアルコキシシランの部分加水分解物などが挙げられる。   It is also possible to use a hydrolyzable organosilicon compound as a component for forming an antireflection coating. Specific examples include a partial hydrolyzate of alkoxysilane obtained by adding water and an acid or alkali as a catalyst to a mixture of alkoxysilane and alcohol.

加水分解性有機珪素化合物としては、一般式RnSi(OR')4-n[RおよびR'は、それぞれ独立にアルキル基、アリール基、ビニル基、アクリル基等の炭化水素基であり、n=0,1,2,または3である。]で表されるアルコキシシランを用いることができる。特にテトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシランなどのテトラアルコキシシランが好ましく用いられる。これらの反射防止被膜形成用成分は、1種単独で、あるいは2種以上を混合して用いられる。   As the hydrolyzable organosilicon compound, the general formula RnSi (OR ') 4-n [R and R' are each independently a hydrocarbon group such as an alkyl group, an aryl group, a vinyl group, an acrylic group, and n = 0, 1, 2, or 3. Can be used. In particular, tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane are preferably used. These antireflection coating forming components are used singly or in combination of two or more.

本発明に係る反射防止被膜形成用組成物においては、繊維状中空シリカ微粒子100質量部に対して、反射防止被膜形成用成分が10〜400質量部であることが好ましい。
前記反射防止被膜形成用組成物に使用される溶媒としては、いずれも容易に揮発し、得られる反射防止被膜に悪影響を及ぼすことがなければ特に制限されない。具体的には、メタノール、エタノール、イソプロパノール、ブタノールなどのアルコール類、アセトン、MEK、MIBKなどのケトン類、酢酸エチル、酢酸ブチルなどのエステル類、トルエン、キシレンなどの芳香族類、メチルセロソルブ、エチルセロソルブなどのエーテル類などが挙げられる。これらの有機溶媒は、単独で、あるいは2種以上を混合して用いられる。
In the composition for forming an antireflection coating according to the present invention, the component for forming an antireflection coating is preferably 10 to 400 parts by mass with respect to 100 parts by mass of the fibrous hollow silica fine particles.
The solvent used in the composition for forming an antireflection coating is not particularly limited as long as it easily volatilizes and does not adversely affect the resulting antireflection coating. Specifically, alcohols such as methanol, ethanol, isopropanol and butanol, ketones such as acetone, MEK and MIBK, esters such as ethyl acetate and butyl acetate, aromatics such as toluene and xylene, methyl cellosolve and ethyl Examples include ethers such as cellosolve. These organic solvents are used alone or in admixture of two or more.

本発明に係る反射防止被膜形成用塗布液は、本発明の目的を損なわない範囲で、たとえば、染料、顔料などの着色剤を加えても良い。溶媒の使用量については、反射防止被膜の形成にとって、好適な範囲であれば格別に限定されるものではないが、通常は、繊維状中空シリカ微粒子および反射防止被膜形成用成分の合計100質量部に対して、10〜10000質量部の範囲である。   For example, a coloring agent such as a dye or a pigment may be added to the coating liquid for forming an antireflection coating according to the present invention as long as the object of the present invention is not impaired. The amount of the solvent used is not particularly limited as long as it is in a suitable range for the formation of the antireflection coating, but usually 100 parts by mass in total of the fibrous hollow silica fine particles and the components for forming the antireflection coating. The range is 10 to 10,000 parts by mass.

反射防止被膜は、前記反射防止被膜形成用組成物を樹脂基材上またはハードコート層上に塗布することで形成される。
反射防止被膜形成用組成物を樹脂基材上またはハードコート層上に塗布する方法として
は、特に制限されるものではなく、ディップ法、スプレー法、スピナー法またはロールコート法などの周知の方法が挙げられる。塗布後、乾燥すれば反射防止被膜を形成できる。
The antireflection coating is formed by applying the antireflection coating forming composition on a resin substrate or a hard coat layer.
The method for applying the composition for forming an antireflective coating on the resin substrate or the hard coat layer is not particularly limited, and a known method such as a dipping method, a spray method, a spinner method, or a roll coating method can be used. Can be mentioned. An antireflection coating can be formed by drying after application.

反射防止被膜形成用成分が熱硬化性樹脂の場合は、加熱処理、紫外線照射処理または電子線照射処理などにより、前述したハードコート層の硬化を促進させてもよい。また反射防止被膜形成用成分に加水分解性有機ケイ素化合物が含まれている場合は、加熱処理により、加水分解性有機ケイ素化合物の加水分解・重縮合を促進させてもよい。   When the component for forming an antireflection coating is a thermosetting resin, curing of the hard coat layer described above may be promoted by heat treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, or the like. Moreover, when the hydrolyzable organosilicon compound is contained in the component for forming an antireflection coating, hydrolysis and polycondensation of the hydrolyzable organosilicon compound may be promoted by heat treatment.

反射防止被膜中の前記繊維状中空シリカ微粒子の含有量は、通常90質量%以下、好ましくは50質量%以下が推奨される。下限は、通常20質量%程度である。
低屈折率成分である繊維状中空シリカ微粒子の含有量が、90質量%を越えると反射防止被膜の強度や、ハードコート層等の基材との密着性が不足して実用性に欠けることがある。20質量%未満では、膜の屈折率が大きくなり、反射率が高くなり、実用的でない。
The content of the fibrous hollow silica fine particles in the antireflection coating is usually 90% by mass or less, preferably 50% by mass or less. The lower limit is usually about 20% by mass.
When the content of the fibrous hollow silica fine particles, which are low refractive index components, exceeds 90% by mass, the strength of the antireflection coating and the adhesion to a substrate such as a hard coat layer may be insufficient, resulting in lack of practicality. is there. If it is less than 20% by mass, the refractive index of the film increases and the reflectance increases, which is not practical.

反射防止被膜の厚さは、通常50〜300nm、好ましくは80〜200nmの範囲である。
反射防止被膜の厚さが50nm未満の場合は、膜の強度、反射防止性能等が劣ることがある。反射防止被膜の厚さが300nmを越えると、膜にクラックが発生したり、このため膜の強度が低下したり、また膜が厚すぎて反射防止性能が不充分となることがある。
The thickness of the antireflection coating is usually 50 to 300 nm, preferably 80 to 200 nm.
When the thickness of the antireflection coating is less than 50 nm, the strength of the film, the antireflection performance, etc. may be inferior. If the thickness of the antireflection coating exceeds 300 nm, cracks may occur in the film, resulting in a decrease in film strength, and the film may be too thick, resulting in insufficient antireflection performance.

反射防止被膜の屈折率は、低屈折率成分である繊維状中空シリカ微粒子と反射防止被膜形成用成分との混合比率によっても異なるが、通常1.28〜1.50の範囲にあり、好ましくは1.35〜1.45の範囲にあり、さらに好ましくは1.36〜1.42の範囲にある。   The refractive index of the antireflection coating varies depending on the mixing ratio of the fibrous hollow silica fine particles, which are low refractive index components, and the antireflection coating forming component, but is usually in the range of 1.28 to 1.50, preferably It exists in the range of 1.35-1.45, More preferably, it exists in the range of 1.36-1.42.

反射防止被膜の屈折率が1.50を越えると、基材の屈折率にもよるが、反射防止性能
が不充分となることがある。屈折率が1.28未満の反射防止被膜は得ることは容易では
ない。
When the refractive index of the antireflection coating exceeds 1.50, the antireflection performance may be insufficient depending on the refractive index of the substrate. It is not easy to obtain an antireflection coating having a refractive index of less than 1.28.

[反射防止被膜付基材]
本発明に係る反射防止被膜付基材は、樹脂基材上に反射防止被膜が形成されてなる反射防止被膜付基材であって、該反射防止被膜が、前記繊維状中空シリカ微粒子と反射防止被膜形成用成分を含有することを特徴とする。また、本発明に係る反射防止被膜は、前記樹脂基材上にハードコート層を介して、前記反射防止被膜が設けられてなる反射防止被膜付基材であってもよい。
[Base material with antireflection coating]
The substrate with an antireflection coating according to the present invention is a substrate with an antireflection coating in which an antireflection coating is formed on a resin substrate, and the antireflection coating comprises the fibrous hollow silica fine particles and the antireflection coating. It contains a film-forming component. The antireflection coating according to the present invention may be a substrate with an antireflection coating in which the antireflection coating is provided on the resin substrate via a hard coat layer.

本発明に係る反射防止被膜付基材における樹脂基材としては、プラスチックシート、プラスチックフィルムまたはプラスチックパネル等が挙げられる。前記樹脂基材を構成する材料としては、ポリカーボネート、アクリル樹脂、PETまたはトリアセチルセルロース(TAC)等が挙げられる。   Examples of the resin substrate in the substrate with an antireflection coating according to the present invention include a plastic sheet, a plastic film, and a plastic panel. Examples of the material constituting the resin substrate include polycarbonate, acrylic resin, PET, and triacetyl cellulose (TAC).

本発明におけるハードコート層は、無機物粒子と被膜形成用成分とを含むものである。
ここで無機物粒子としては、SiO2、Al23、TiO2、ZrO2等の酸化物の粒子、SiO2・Al23、SiO2・ZrO2等の複合酸化物の粒子、さらに表面を樹脂で被覆し
た酸化物の粒子、複合酸化物の粒子、金、銀、白金などの金属コロイド粒子、カーボンブラック、黒鉛などの炭素材料の粒子、フッ化マグネシウム、フッ化アルミニウムナトリウムなどの無機化合物の粒子などが用いられる。
The hard coat layer in the present invention contains inorganic particles and a film-forming component.
Here, as inorganic particles, particles of oxides such as SiO 2 , Al 2 O 3 , TiO 2 , ZrO 2 , particles of composite oxides such as SiO 2 · Al 2 O 3 , SiO 2 · ZrO 2 , and surface Oxide particles coated with resin, composite oxide particles, metal colloidal particles such as gold, silver and platinum, carbon material particles such as carbon black and graphite, inorganic compounds such as magnesium fluoride and sodium aluminum fluoride Particles are used.

無機物粒子の形状は、特に制限されるものではないが、球状であるものが基材状に緻密に配列することができるため好適である。これらの中でもSiO2、SiO2・Al23、S
iO2・ZrO2等のシリカ系粒子は、真球状の粒子が得られやすく、ハードコート層と基
材との密着性に優れたハードコート層を形成することができるため好適である。
The shape of the inorganic particles is not particularly limited, but spherical particles are suitable because they can be densely arranged in a base material. Among these, SiO 2 , SiO 2 .Al 2 O 3 , S
Silica-based particles such as iO 2 / ZrO 2 are suitable because it is easy to obtain spherical particles and a hard coat layer having excellent adhesion between the hard coat layer and the substrate can be formed.

また、無機物粒子の表面をシランカップリング剤で処理してもよい。前記処理をすると、後述の樹脂に対する分散性が向上する傾向がある。このような無機物粒子の平均粒子径は、後述するハードコート層の厚さとの関係が特定の関係を満たしていれば特に制限されるものではなく、通常、0.2〜20μm、さらには1〜10μmの範囲にあるものが好適である。   Further, the surface of the inorganic particles may be treated with a silane coupling agent. When the said process is performed, there exists a tendency for the dispersibility with respect to the below-mentioned resin to improve. The average particle diameter of such inorganic particles is not particularly limited as long as the relationship with the thickness of the hard coat layer described later satisfies a specific relationship, and is usually 0.2 to 20 μm, and more preferably 1 to What is in the range of 10 micrometers is suitable.

無機物粒子の平均粒子径が前記範囲下限未満の場合は、無機物粒子の分散性が低下したり、ハードコート層の厚さに対して粒子が小さすぎるので、最終的に得られるハードコート層付反射防止被膜の強度が不充分となる傾向がある。また、平均粒子径が前記範囲の上限を越えていると、後述するハードコート層形成用成分との密着性が低下し、クラックが発生し易くなり、また、ハードコート層の厚さより大きい場合はハードコート層上に形成される反射防止被膜表面に凹凸が残り、表面硬度が不均一になることがある。   When the average particle diameter of the inorganic particles is less than the lower limit of the above range, the dispersibility of the inorganic particles is reduced or the particles are too small with respect to the thickness of the hard coat layer, so that the finally obtained reflection with a hard coat layer There is a tendency for the strength of the protective coating to be insufficient. In addition, if the average particle diameter exceeds the upper limit of the above range, the adhesion with the component for forming a hard coat layer to be described later is reduced, cracks are likely to occur, and if the thickness is larger than the thickness of the hard coat layer Unevenness may remain on the surface of the antireflection coating formed on the hard coat layer, resulting in uneven surface hardness.

ハードコート層には、基材との密着性や塗工性などの点からハードコート層形成用成分が含まれている。ハードコート層形成用成分としては、樹脂成分が好適である。このような樹脂成分として、具体的には、塗料用樹脂として公知の熱硬化性樹脂、熱可塑性樹脂のいずれも採用することが可能であり、具体的には、ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、熱可塑性アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂もしくはシリコーンゴムなどの熱可塑性樹脂、またはウレタン樹脂、メラミン樹脂、ケイ素樹脂、ブチラール樹脂、反応性シリコーン樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂もしくは熱硬化性アクリル樹脂などの熱硬化性樹脂などが挙げられる。さらにこれら樹脂の2種以上の共重合体や変性体であってもよい。   The hard coat layer contains a component for forming a hard coat layer from the viewpoints of adhesion to the base material and coating properties. As the hard coat layer forming component, a resin component is suitable. As such a resin component, specifically, any of known thermosetting resins and thermoplastic resins can be employed as coating resins. Specifically, polyester resins, polycarbonate resins, polyamide resins can be used. , Polyphenylene oxide resin, thermoplastic acrylic resin, vinyl chloride resin, fluorine resin, vinyl acetate resin or silicone rubber or other thermoplastic resin, or urethane resin, melamine resin, silicon resin, butyral resin, reactive silicone resin, phenol resin, Examples thereof include a thermosetting resin such as an epoxy resin, an unsaturated polyester resin, or a thermosetting acrylic resin. Further, two or more kinds of copolymers or modified products of these resins may be used.

これらの樹脂は、エマルジョン樹脂、水溶性樹脂または親水性樹脂であってもよい。さらに熱硬化性樹脂の場合、紫外線硬化型であっても、電子線硬化型であってもよく、硬化触媒が含まれていてもよい。   These resins may be emulsion resins, water-soluble resins or hydrophilic resins. Further, in the case of a thermosetting resin, it may be an ultraviolet curable type or an electron beam curable type, and may contain a curing catalyst.

本発明では、熱硬化性樹脂または紫外線硬化タイプを用いると、前記無機酸化物微粒子の配合量が少なくても硬度の高い反射防止被膜付基材が得られる傾向があるので特に好ましい。   In the present invention, it is particularly preferable to use a thermosetting resin or an ultraviolet curable type because a substrate with an antireflection coating having a high hardness tends to be obtained even if the amount of the inorganic oxide fine particles is small.

ハードコート層の厚さ(Th)は、特に制限されるものではないが、本発明では前記無
機物粒子の平均粒子径(Dp)と形成されるハードコート層の厚さ(Th)との比(Dp/
Th)が、通常0.2〜1.0の範囲にあり、好ましくは0.5〜0.98の範囲にある。
The thickness (Th) of the hard coat layer is not particularly limited, but in the present invention, the ratio between the average particle diameter (Dp) of the inorganic particles and the thickness (Th) of the hard coat layer to be formed ( Dp /
Th) is usually in the range of 0.2 to 1.0, preferably in the range of 0.5 to 0.98.

前記した無機物粒子のうち、シリカ系粒子を使用すると、透明性を有するハードコート層が得られる。前記シリカ系粒子の屈折率は低く、ハードコート層形成用成分の屈折率との屈折率差が小さいため、透明性やヘーズに優れた反射防止被膜付基材を得ることができる。前記シリカ系粒子として、具体的には、特開昭63−210016号公報、特開平11−228699号公報に開示されたシリカ系粒子、オルガノポリシロキサン系粒子等が好適に用いられる。オルガノポリシロキサン系粒子は粒子中に有機基を含むため、ハードコート層形成用成分として用いる樹脂に対する分散性がよい。このため密着性に優れたハードコート層を形成することができる。   Of the inorganic particles described above, when silica-based particles are used, a transparent hard coat layer can be obtained. Since the silica-based particles have a low refractive index and a small difference in refractive index from the refractive index of the hard coat layer forming component, a substrate with an antireflection coating excellent in transparency and haze can be obtained. Specifically, silica-based particles, organopolysiloxane-based particles and the like disclosed in JP-A-63-110016 and JP-A-11-228699 are preferably used as the silica-based particles. Since the organopolysiloxane-based particles contain organic groups in the particles, the dispersibility with respect to the resin used as the component for forming the hard coat layer is good. For this reason, the hard-coat layer excellent in adhesiveness can be formed.

透明性を有するハードコート層を得るためには、前記無機物粒子の屈折率とハードコート層形成用成分の屈折率との屈折率差を、通常0.2以下、さらに好ましくは0.1以下と
する。前記屈折率差が0.2を超えると、可視光の散乱が顕著になる傾向があり、ハード
コート層や、最終的に得られる反射防止被膜の透明性が低下することがある。
In order to obtain a hard coat layer having transparency, the refractive index difference between the refractive index of the inorganic particles and the refractive index of the component for forming the hard coat layer is usually 0.2 or less, more preferably 0.1 or less. To do. When the refractive index difference exceeds 0.2, visible light scattering tends to be remarkable, and the transparency of the hard coat layer and the finally obtained antireflection coating may be lowered.

さらに必要に応じて、ハードコート層には、無機物粒子とともに、硬度の高いポリスチレン、ポリカーボネートなどからなる粒子が含有されていてもよい。なお、このようなポリスチレン、ポリカーボネートからなる粒子は無機物粒子と併用せずともハードコート層に配合することができる。このようなハードコート層は、ハードコート層形成用成分および無機物粒子と、着色粒子などの任意成分とを含む塗布液を塗布することで形成することができる。   Further, if necessary, the hard coat layer may contain particles made of high hardness polystyrene, polycarbonate, or the like together with inorganic particles. Such particles made of polystyrene or polycarbonate can be blended in the hard coat layer without being used in combination with inorganic particles. Such a hard coat layer can be formed by applying a coating liquid containing hard coat layer forming components and inorganic particles, and optional components such as colored particles.

また、塗布液には、ハードコート層形成用成分を溶解するとともに、容易に揮発しうる溶剤が含まれていてもよい。ハードコート層形成用成分が熱硬化性樹脂の場合は、必要に応じて塗布液に硬化剤を配合することができる。   Further, the coating liquid may contain a solvent that dissolves the hard coat layer forming component and can easily volatilize. When the hard coat layer forming component is a thermosetting resin, a curing agent can be blended in the coating solution as necessary.

このような塗布液をディップ法、スプレー法、スピナー法、ロールコート法などの周知の方法で基材に塗布し、乾燥することによって、ハードコート層を形成することができる。ハードコート層形成用成分が熱硬化性樹脂の場合は、さらに硬化させることによってハードコート層を形成することができる。ハードコート層形成用成分が熱可塑性樹脂の場合は、さらに必要に応じて基材の軟化点未満の温度で加熱処理することによってハードコート層を形成することができる。   A hard coat layer can be formed by applying such a coating solution to a substrate by a known method such as a dipping method, a spray method, a spinner method, or a roll coating method, and drying. When the hard coat layer forming component is a thermosetting resin, the hard coat layer can be formed by further curing. When the component for forming the hard coat layer is a thermoplastic resin, the hard coat layer can be formed by further heat treatment at a temperature lower than the softening point of the base material as necessary.

[実施例]
以下、本発明を実施例によって説明するが、本発明はこれら実施例によって限定されるものではない。
[Example]
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited by these Examples.

[実施例および比較例で用いた測定方法または分析方法]
実施例及び比較例における測定方法または分析方法については、以下の通りである。
[1]画像解析法による長径と短径との比の測定
透過型電子顕微鏡(株式会社日立製作所製、H−800)により、試料シリカゾルを倍率25万倍で写真撮影して写真投影図を得た。該写真投影図において、50個の粒子を任意に選び、各粒子の最大径(DL)および、これと直交する径(DS)を測定した。DLを長径、DSを短径とし、長径と短径との比(DL/DS)を算出した。それらの平均値を試料の長径と短径との比とした。
[Measurement method or analysis method used in Examples and Comparative Examples]
About the measuring method or analysis method in an Example and a comparative example, it is as follows.
[1] Measurement of ratio of major axis to minor axis by image analysis method Using a transmission electron microscope (H-800, manufactured by Hitachi, Ltd.), the sample silica sol was photographed at a magnification of 250,000 times to obtain a photographic projection drawing. It was. In the photographic projection view, 50 particles were arbitrarily selected, and the maximum diameter (DL) of each particle and the diameter (DS) orthogonal thereto were measured. The major axis was DL and the minor axis was DS, and the ratio of the major axis to the minor axis (DL / DS) was calculated. The average value was taken as the ratio of the major axis to the minor axis of the sample.

[2]動的光散乱法による平均粒子径測定
試料を0.58質量%アンモニア水にて希釈し、pH11、シリカ濃度0.1質量%に調整し、下記の粒度分布測定装置を用いて平均粒子径を測定した。
[2] Average particle size measurement by dynamic light scattering method The sample was diluted with 0.58% by mass aqueous ammonia, adjusted to pH 11 and silica concentration of 0.1% by mass, and averaged using the following particle size distribution measuring device. The particle size was measured.

〔粒度分布測定装置〕
型番 NICOMP 380、製造元 PARTICLE SIZING SYSTEMS Co.Ltd,、測定原理:動的光散乱法(ホモダイン/粒度分布)、光源:5mW
He−Ne レーザー(標準)、検出器:フォトカウント用光電子増倍管、コーリレーター:32bitデジタルオートコーリレーター(DSP搭載)、測定セル:四面透過型角セル(ディスポーザブル)、温度制御方式:ペルチエ素子(コンピュータ制御)、設定範囲:5℃〜80℃、測定粒度分布範囲:1nm〜5μm、測定対象:コロイド粒子。
(Particle size distribution measuring device)
Model number NICOMP 380, manufacturer PARTICLE SIZING SYSTEMS Co. Ltd., Measurement principle: Dynamic light scattering method (homodyne / particle size distribution), Light source: 5 mW
He-Ne laser (standard), detector: photomultiplier tube for photocounting, correlator: 32-bit digital autocorrelator (with DSP), measuring cell: four-plane transmission type angular cell (disposable), temperature control method: Peltier element (Computer control), setting range: 5 ° C. to 80 ° C., measurement particle size distribution range: 1 nm to 5 μm, measurement object: colloidal particles.

[3]粒子の屈折率の測定
(1)試料(ゾル)をエバポレーターに採り、分散媒を蒸発させた。
(2)分散媒を蒸発させた試料を120℃で乾燥し、粉末とした。
(3)屈折率が既知の標準屈折率液を2,3滴ガラス基板上に滴下し、これにシリカ粒子
を混合し、混合液を得た。
(4)上記(3)の操作を種々の標準屈折率液で行い、前記混合液が透明になったときの標準屈折率液の屈折率をシリカ粒子の屈折率とした。
[3] Measurement of Refractive Index of Particle (1) A sample (sol) was taken in an evaporator and the dispersion medium was evaporated.
(2) The sample obtained by evaporating the dispersion medium was dried at 120 ° C. to obtain a powder.
(3) A standard refractive index liquid having a known refractive index was dropped onto a glass substrate in a few drops, and silica particles were mixed therewith to obtain a mixed liquid.
(4) The operation of (3) above was performed with various standard refractive index liquids, and the refractive index of the standard refractive index liquid when the mixed liquid became transparent was defined as the refractive index of the silica particles.

[4]BET法による比表面積測定
シリカゾル50mlをHNO3でpH3.5に調整し、1−プロパノール40mlを加
え、110℃で16時間乾燥した。この乾燥した固形分を、乳鉢で粉砕し、マッフル炉で500℃、1時間焼成し、測定用試料とした。この測定用試料を用いて、窒素吸着法(BET法)によりシリカゾルの比表面積を測定した。
測定装置には、比表面積測定装置(ユアサアイオニクス製、型番マルチソーブ12)を用いた。
以下、BET法による比表面積測定について具体的に説明する。
[4] Specific surface area measurement by BET method 50 ml of silica sol was adjusted to pH 3.5 with HNO 3 , 40 ml of 1-propanol was added, and the mixture was dried at 110 ° C. for 16 hours. This dried solid was pulverized in a mortar and baked in a muffle furnace at 500 ° C. for 1 hour to obtain a measurement sample. Using this measurement sample, the specific surface area of the silica sol was measured by a nitrogen adsorption method (BET method).
As the measuring device, a specific surface area measuring device (manufactured by Yuasa Ionics, model number Multisorb 12) was used.
Hereinafter, specific surface area measurement by the BET method will be described in detail.

まず、測定用試料0.5gを測定セルに入れ、窒素30容量%とヘリウム70容量%との混合ガス気流中、300℃で20分間脱ガス処理を行った。そして、試料を上記混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させた。次に、上記混合ガスを流しながら試料温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により、シリカゾルの比表面積(SA1)を測定した。
シリカゾルの平均粒子径(D1)は、下記(1)式から算定した。
First, 0.5 g of a measurement sample was put in a measurement cell, and degassing was performed at 300 ° C. for 20 minutes in a mixed gas stream of 30% by volume of nitrogen and 70% by volume of helium. Then, the sample was kept at the liquid nitrogen temperature in the above mixed gas stream, and nitrogen was adsorbed on the sample in an equilibrium manner. Next, the sample temperature was gradually raised to room temperature while flowing the above mixed gas, the amount of nitrogen desorbed during that time was detected, and the specific surface area (SA1) of silica sol was measured with a calibration curve prepared in advance.
The average particle diameter (D1) of the silica sol was calculated from the following formula (1).

D1=6000/(ρ×SA1)・・・(1)
D:平均粒子径(nm)
ρ:試料の密度(g/cm3
SA1:比表面積(m2/g)
なお、以下の実施例及び比較例における平均粒子径は、特に説明のない限り前記[2]動的光散乱法により測定された値を意味する。
D1 = 6000 / (ρ × SA1) (1)
D: Average particle diameter (nm)
ρ: Sample density (g / cm 3 )
SA1: Specific surface area (m 2 / g)
In addition, the average particle diameter in a following example and a comparative example means the value measured by said [2] dynamic light-scattering method unless there is particular description.

〔原料1〕
酸性アルミナ微粒子分散液(製品名カタロイド(登録商標)AS−3、触媒化成工業株式会社製、繊維状、平均粒子径200nm、比表面積200m2/g、長径/短径比=5
.0、酢酸含有量0.3質量%、pH4.0、アルミナ固形分7質量%)
〔シリカ被覆〕
前記原料1の酸性アルミナ微粒子分散液1710gと純水540gとを室温で撹拌しながら、1質量%水酸化ナトリウム水溶液60gを加えた。その後、強塩基性陰イオン交換樹脂(三菱化成製、DAIAION、SA−20A)600ccを徐々に添加し、20時間撹拌を続けた。攪拌後、イオン交換樹脂を取り除き、安定なアルカリ性アルミナ微粒子分散液(pH10.0)2100gを調製した。
[Raw material 1]
Acidic alumina fine particle dispersion (product name: Cataloid (registered trademark) AS-3, manufactured by Catalytic Chemical Industry Co., Ltd., fibrous, average particle size: 200 nm, specific surface area: 200 m 2 / g, major axis / minor axis ratio = 5
. 0, acetic acid content 0.3 mass%, pH 4.0, alumina solid content 7 mass%)
[Silica coating]
While stirring 1710 g of the acidic alumina fine particle dispersion of the raw material 1 and 540 g of pure water at room temperature, 60 g of a 1% by mass sodium hydroxide aqueous solution was added. Thereafter, 600 cc of a strongly basic anion exchange resin (manufactured by Mitsubishi Kasei, DAIAION, SA-20A) was gradually added, and stirring was continued for 20 hours. After the stirring, the ion exchange resin was removed, and 2100 g of a stable alkaline alumina fine particle dispersion (pH 10.0) was prepared.

次に、調製したアルカリ性アルミナ微粒子分散液2100gに珪酸ナトリウム水溶液(シリカ濃度:5質量%)60gを加え、さらに、150℃に加温して1質量%珪酸液1200gを5時間かけて添加した。温度を150℃に維持しながら、さらに1時間撹拌を続けた後、該溶液を常温まで冷却した。続いて限外濾過膜(旭化成製、SIP−1013)で純水を加えながら洗浄した。洗浄後、濃縮し、固形分として5質量%のシリカ被覆アルミナ微粒子分散液2400gを得た。この分散液の分散質であるシリカ被覆アルミナ微粒子の平均粒子径は、201nmであった。   Next, 60 g of an aqueous sodium silicate solution (silica concentration: 5 mass%) was added to 2100 g of the prepared alkaline alumina fine particle dispersion, and further heated to 150 ° C. and 1200 g of a 1 mass% silicic acid solution was added over 5 hours. Stirring was continued for another hour while maintaining the temperature at 150 ° C., and then the solution was cooled to room temperature. Subsequently, it was washed with an ultrafiltration membrane (Asahi Kasei, SIP-1013) while adding pure water. After washing, the mixture was concentrated to obtain 2400 g of a silica-coated alumina fine particle dispersion having a solid content of 5% by mass. The average particle diameter of the silica-coated alumina fine particles as the dispersoid of this dispersion was 201 nm.

〔脱アルミニウム処理〕
前記シリカ被覆アルミナ微粒子分散液2400gに、濃塩酸水溶液(濃度35.5質量%)100gを滴下して、pH1.0に調整することにより、脱アルミニウム処理を行った。次いで、濃塩酸水溶液(濃度35.5質量%)10Lと純水5Lを加えながら、pH3になるまで限外濾過を行い、溶解したアルミニウム塩を分離した。
[Dealuminization]
1002 g of concentrated hydrochloric acid aqueous solution (concentration: 35.5% by mass) was added dropwise to 2400 g of the silica-coated alumina fine particle dispersion to adjust the pH to 1.0, thereby performing dealumination treatment. Subsequently, while adding 10 L of concentrated hydrochloric acid aqueous solution (concentration 35.5% by mass) and 5 L of pure water, ultrafiltration was performed until the pH reached 3, and the dissolved aluminum salt was separated.

〔濃縮、希釈、封止処理および加熱処理〕
アルミナを除去した後のシリカ微粒子分散液800gを固形分5質量%まで濃縮した。その後、該分散液80gに、アンモニア水溶液(濃度15質量%)30gとメタノール50gとを加えて、固形分濃度2.5質量%まで希釈した。次に攪拌機付き装置保温槽で、80℃まで加温し、シリカ換算濃度5質量%のテトラエチルオルソシリケート溶液(メタノール溶媒)6gを16時間かけて添加した。
[Concentration, dilution, sealing treatment and heat treatment]
After removing alumina, 800 g of the silica fine particle dispersion was concentrated to a solid content of 5% by mass. Thereafter, 30 g of an aqueous ammonia solution (concentration: 15% by mass) and 50 g of methanol were added to 80 g of the dispersion to dilute to a solid content concentration of 2.5% by mass. Next, it heated up to 80 degreeC with the apparatus heat retention tank with a stirrer, and 6 g of tetraethyl orthosilicate solutions (methanol solvent) with a silica conversion density | concentration of 5 mass% were added over 16 hours.

その後、ロータリーエバポレータで溶媒を除いた後、アンモニアを添加して、pH10とした。その後、150℃で1時間加熱処理し、繊維状中空シリカ微粒子分散液20gを得た。得られた繊維状中空シリカ微粒子分散液中の分散質であるシリカ微粒子は、屈折率が1.34であったことから中空構造を有することが分かった。
得られた繊維状中空シリカ微粒子分散液に関する分析結果を表1に示す。
Then, after removing the solvent with a rotary evaporator, ammonia was added to adjust the pH to 10. Thereafter, heat treatment was performed at 150 ° C. for 1 hour to obtain 20 g of a fibrous hollow silica fine particle dispersion. The silica fine particles, which is a dispersoid in the obtained fibrous hollow silica fine particle dispersion, had a refractive index of 1.34, and thus was found to have a hollow structure.
Table 1 shows the analysis results for the obtained fibrous hollow silica fine particle dispersion.

[合成例1]
市販の酸化アルミニウム粉末(比表面積:110m2/g、粉末の平均粒子径:0.6
μm、主結晶形:δ形、塩酸含有量(HClとして換算した値):0.4質量%)100gと純水400gとを混合し、室温で撹拌しながら、これに強酸性陽イオン交換樹脂(三菱化成製、DAIAION、SK−1B)400ccを徐々に添加し、20時間撹拌を続けた後、イオン交換樹脂を取り除き、酸性アルミナ微粒子分散液500gを得た。このアルミナ微粒子分散液中に分散したアルミナ微粒子の平均粒子径は50nmであり、長径/短径比は5.0であった。このアルミナ微粒子分散液を濃縮し、固形分として20質量%の酸性アルミナ微粒子分散液とした。
[Synthesis Example 1]
Commercially available aluminum oxide powder (specific surface area: 110 m 2 / g, average particle diameter of powder: 0.6
μm, main crystal form: δ form, hydrochloric acid content (value converted to HCl): 0.4% by mass) and 400 g of pure water were mixed and stirred at room temperature with strong acid cation exchange resin. (Mitsubishi Kasei Co., DIAION, SK-1B) After gradually adding 400 cc and stirring for 20 hours, the ion exchange resin was removed to obtain 500 g of acidic alumina fine particle dispersion. The average particle diameter of the alumina fine particles dispersed in this alumina fine particle dispersion was 50 nm, and the major axis / minor axis ratio was 5.0. This alumina fine particle dispersion was concentrated to give an acidic alumina fine particle dispersion having a solid content of 20% by mass.

〔シリカ被覆〕
合成例1で得られた酸性アルミナ微粒子分散液(固形分濃度20質量%)200gと純水180gとを室温で撹拌しながら、これに1質量%水酸化ナトリウム20gを加え、強塩基性陰イオン交換樹脂(三菱化成製、DAIAION、SA−20A)200ccを徐々に添加し、20時間撹拌を続けた後、イオン交換樹脂を取り除き、安定なアルカリ性アルミナ微粒子分散液(pH10.1)360gを得た。
[Silica coating]
While stirring 200 g of acidic alumina fine particle dispersion (solid content concentration 20% by mass) obtained in Synthesis Example 1 and 180 g of pure water at room temperature, 20 g of 1% by mass sodium hydroxide was added thereto, and a strongly basic anion was added. 200 cc of an exchange resin (Mitsubishi Kasei, DAIAION, SA-20A) was gradually added and stirring was continued for 20 hours. Then, the ion exchange resin was removed to obtain 360 g of a stable alkaline alumina fine particle dispersion (pH 10.1). .

このアルミナ微粒子分散液に珪酸ナトリウム水溶液(シリカ濃度:5質量%)20gを加えた後、200℃に加温して1質量%珪酸液400gを5時間かけて添加し、温度を200℃に維持しながら、更に撹拌を1時間続行した後、常温まで冷却した。続いて限外濾過膜(旭化成製、SIP−1013)にて純水を加えながら洗浄した後に濃縮し、固形分20質量%のシリカ被覆アルミナ微粒子分散液220gを得た。このシリカ被覆アルミナ微粒子分散液に分散したシリカ被覆アルミナ微粒子の平均粒子径は52nmであった。   After adding 20 g of an aqueous sodium silicate solution (silica concentration: 5% by mass) to this alumina fine particle dispersion, the mixture was heated to 200 ° C. and 400 g of a 1% by mass silicic acid solution was added over 5 hours, and the temperature was maintained at 200 ° C. While further stirring was continued for 1 hour, the mixture was cooled to room temperature. Subsequently, the resultant was washed while adding pure water with an ultrafiltration membrane (Asahi Kasei, SIP-1013) and then concentrated to obtain 220 g of a silica-coated alumina fine particle dispersion having a solid content of 20% by mass. The average particle diameter of the silica-coated alumina fine particles dispersed in this silica-coated alumina fine particle dispersion was 52 nm.

〔脱アルミニウム処理〕
前記シリカ被覆アルミナ微粒子を水で希釈し、固形分濃度5%とした分散液800gに、濃塩酸水溶液(濃度35.5質量%)100gを滴下して、pH1.0に調整することにより、脱アルミニウム処理を行った。次いで、濃塩酸水溶液(濃度35.5質量%)10Lと純水5Lを加えながら、pH3になるまで限外濾過を行い、溶解したアルミニウム塩を分離した。
[Dealuminization]
The silica-coated alumina fine particles were diluted with water, and 100 g of concentrated hydrochloric acid aqueous solution (concentration 35.5% by mass) was added dropwise to 800 g of a dispersion having a solid content concentration of 5% to adjust the pH to 1.0. Aluminum treatment was performed. Subsequently, while adding 10 L of concentrated hydrochloric acid aqueous solution (concentration 35.5% by mass) and 5 L of pure water, ultrafiltration was performed until the pH reached 3, and the dissolved aluminum salt was separated.

〔濃縮、希釈、封止および加熱処理〕
アルミナを除去した後のシリカ微粒子分散液800gを固形分5質量%まで濃縮した。
その後、該分散液80gに、アンモニア水溶液(濃度15質量%)30gとメタノール50gとを加えて、固形分濃度2.5質量%まで希釈した。次に攪拌機付き装置保温槽で、80℃まで加温し、シリカ換算濃度5質量%のテトラエチルオルソシリケート溶液(メタノール溶媒)6gを16時間かけて添加した。
[Concentration, dilution, sealing and heat treatment]
After removing alumina, 800 g of the silica fine particle dispersion was concentrated to a solid content of 5% by mass.
Thereafter, 30 g of an aqueous ammonia solution (concentration: 15% by mass) and 50 g of methanol were added to 80 g of the dispersion to dilute to a solid content concentration of 2.5% by mass. Next, it heated up to 80 degreeC with the apparatus heat retention tank with a stirrer, and 6 g of tetraethyl orthosilicate solutions (methanol solvent) with a silica conversion density | concentration of 5 mass% were added over 16 hours.

その後、ロータリーエバポレータで溶媒を除いた後、アンモニアを添加して、pH10とした。次に、150℃で1時間加熱処理し、繊維状中空シリカ微粒子分散液20gを得た。得られた繊維状中空シリカ微粒子分散液中の分散質であるシリカ微粒子は、屈折率が1.37であったことから中空構造を有することが確認された。得られた繊維状中空シリカ微粒子分散液に関する分析結果を表1に示す。   Then, after removing the solvent with a rotary evaporator, ammonia was added to adjust the pH to 10. Next, heat treatment was performed at 150 ° C. for 1 hour to obtain 20 g of a fibrous hollow silica fine particle dispersion. The silica fine particles, which are the dispersoid in the obtained fibrous hollow silica fine particle dispersion, had a refractive index of 1.37, and thus were confirmed to have a hollow structure. Table 1 shows the analysis results for the obtained fibrous hollow silica fine particle dispersion.

〔シリカ被覆〕
合成例1と同様な方法で調製した酸性アルミナ微粒子分散液(固形分濃度:20質量%、平均粒子径:50nm、長径/短径比:5.0)1000gと純水2950gと1質量%水酸化カリウム50gとを加え、更に50℃で撹拌しながら、これに強塩基性陰イオン交換樹脂(三菱化成製、DAIAION、SA−10A)1000ccを徐々に添加し、20時間撹拌を行った。続いて、室温まで冷却した後、イオン交換樹脂を取り除き、アルカリ性アルミナ微粒子分散液(pH10.7)3600gを得た。このアルカリ性アルミナ微粒子分散液に珪酸ナトリウム水溶液(シリカ濃度:5質量%)20gを加えた後、80℃に加温して5質量%珪酸液1200gを10時間かけて添加し、実施例1と同様に処理して、固形分20質量%のシリカ被覆アルミナ微粒子分散液1050gを得た。このシリカ被覆アルミナ微粒子分散液に分散したシリカ被覆アルミナ微粒子の平均粒子径は55nmであった。
[Silica coating]
Acid alumina fine particle dispersion prepared in the same manner as in Synthesis Example 1 (solid content concentration: 20% by mass, average particle size: 50 nm, major axis / minor axis ratio: 5.0), 1000 g, 2950 g of pure water, and 1% by mass of water Potassium oxide (50 g) was added, and while further stirring at 50 ° C., 1000 cc of a strongly basic anion exchange resin (manufactured by Mitsubishi Kasei, DAIAION, SA-10A) was gradually added thereto, followed by stirring for 20 hours. Subsequently, after cooling to room temperature, the ion exchange resin was removed to obtain 3600 g of an alkaline alumina fine particle dispersion (pH 10.7). After adding 20 g of a sodium silicate aqueous solution (silica concentration: 5 mass%) to this alkaline alumina fine particle dispersion, the mixture was heated to 80 ° C. and 1200 g of a 5 mass% silicic acid solution was added over 10 hours. To obtain 1050 g of a silica-coated alumina fine particle dispersion having a solid content of 20% by mass. The average particle diameter of the silica-coated alumina fine particles dispersed in this silica-coated alumina fine particle dispersion was 55 nm.

〔脱アルミニウム処理〕
前記シリカ被覆アルミナ微粒子分散液800gに、濃塩酸水溶液(濃度35.5質量%)100gを滴下して、pH1.0に調整することにより、脱アルミニウム処理を行った。次いで、濃塩酸水溶液(濃度35.5質量%)10Lと純水5Lを加えながら、pH3になるまで限外濾過を行い、溶解したアルミニウム塩を分離した。
[Dealuminization]
100 g of concentrated hydrochloric acid aqueous solution (concentration: 35.5% by mass) was added dropwise to 800 g of the silica-coated alumina fine particle dispersion to adjust the pH to 1.0, thereby performing dealumination treatment. Subsequently, while adding 10 L of concentrated hydrochloric acid aqueous solution (concentration 35.5% by mass) and 5 L of pure water, ultrafiltration was performed until the pH reached 3, and the dissolved aluminum salt was separated.

〔濃縮、希釈、封止および加熱処理〕
アルミナを除去した後のシリカ微粒子分散液800gを固形分5質量%まで濃縮した。その後、該分散液80gに、アンモニア水溶液(濃度15質量%)30gとメタノール50gとを加えて、固形分濃度2.5質量%まで希釈した。次に攪拌機付き装置保温槽で、80℃まで加温し、シリカ換算濃度5質量%のテトラエチルオルソシリケート溶液(メタノール溶媒)6gを16時間かけて添加した。
[Concentration, dilution, sealing and heat treatment]
After removing alumina, 800 g of the silica fine particle dispersion was concentrated to a solid content of 5% by mass. Thereafter, 30 g of an aqueous ammonia solution (concentration: 15% by mass) and 50 g of methanol were added to 80 g of the dispersion to dilute to a solid content concentration of 2.5% by mass. Next, it heated up to 80 degreeC with the apparatus heat retention tank with a stirrer, and 6 g of tetraethyl orthosilicate solutions (methanol solvent) with a silica conversion density | concentration of 5 mass% were added over 16 hours.

その後、ロータリーエバポレータで溶媒を除いた後、アンモニアを添加して、pH10とした。次に、150℃で1時間加熱処理し、繊維状中空シリカ微粒子分散液20gを得た。得られた繊維状中空シリカ微粒子分散液中の分散質であるシリカ微粒子は、屈折率が1.36であったことから中空構造を有することが確認された。得られた繊維状中空シリカ微粒子分散液に関する分析結果を表1に示す。   Then, after removing the solvent with a rotary evaporator, ammonia was added to adjust the pH to 10. Next, heat treatment was performed at 150 ° C. for 1 hour to obtain 20 g of a fibrous hollow silica fine particle dispersion. The silica fine particles, which are the dispersoid in the obtained fibrous hollow silica fine particle dispersion, had a refractive index of 1.36, and thus were confirmed to have a hollow structure. Table 1 shows the analysis results for the obtained fibrous hollow silica fine particle dispersion.

〔シリカ被覆〕
市販の酸性アルミナ微粒子分散液(触媒化成工業製、固形分濃度:10質量%、平均粒子径:20nm、長径/短径比:5.0、結晶形:擬ベーマイト型)2000gと純水5990gとを室温で撹拌しながら、これに1質量%水酸化ナトリウム10gを加えた後、強塩基性陰イオン交換樹脂(三菱化成製、DAIAION、SA−30A)2000ccを徐々に添加し、20時間撹拌を行った後、イオン交換樹脂を取り除き、アルカリ性アルミナ微粒子分散液(pH10.5)7200gを得た。このアルミナ微粒子分散液に珪酸ナトリウム水溶液(シリカ濃度:5質量%)30.3gを加えた後、98℃に加温して5質量%珪酸液1600gを10時間かけて添加した後、実施例1と同様に処理して、酸化物として10質量%のシリカ被覆アルミナ微粒子分散液1002gを得た。このシリカ被覆アルミナ微粒子分散液に分散したシリカ被覆アルミナ微粒子の平均粒子径は22nmであった。
[Silica coating]
2000 g of commercially available acidic alumina fine particle dispersion (manufactured by Catalyst Chemical Industry, solid content concentration: 10% by mass, average particle size: 20 nm, major axis / minor axis ratio: 5.0, crystal form: pseudoboehmite type) and 5990 g of pure water To this, 10 g of 1 mass% sodium hydroxide was added, and then 2000 cc of a strongly basic anion exchange resin (Mitsubishi Kasei, DAIAION, SA-30A) was gradually added and stirred for 20 hours. Thereafter, the ion exchange resin was removed to obtain 7200 g of an alkaline alumina fine particle dispersion (pH 10.5). Example 3 After adding 30.3 g of an aqueous sodium silicate solution (silica concentration: 5% by mass) to this alumina fine particle dispersion, heating to 98 ° C. and adding 1600 g of a 5% by mass silicic acid solution over 10 hours, Example 1 In the same manner as above, 1002 g of 10% by mass silica-coated alumina fine particle dispersion was obtained as an oxide. The average particle diameter of the silica-coated alumina fine particles dispersed in this silica-coated alumina fine particle dispersion was 22 nm.

〔脱アルミニウム処理〕
前記シリカ被覆アルミナ微粒子分散液800gに、濃塩酸水溶液(濃度35.5質量%)100gを滴下して、pH1.0に調整することにより、脱アルミニウム処理を行った。次いで、濃塩酸水溶液(濃度35.5質量%)10Lと純水5Lを加えながら、pH3になるまで限外濾過を行い、溶解したアルミニウム塩を分離した。
[Dealuminization]
100 g of concentrated hydrochloric acid aqueous solution (concentration: 35.5% by mass) was added dropwise to 800 g of the silica-coated alumina fine particle dispersion to adjust the pH to 1.0, thereby performing dealumination treatment. Subsequently, while adding 10 L of concentrated hydrochloric acid aqueous solution (concentration 35.5% by mass) and 5 L of pure water, ultrafiltration was performed until the pH reached 3, and the dissolved aluminum salt was separated.

〔濃縮、希釈、封止および加熱処理〕
アルミナを除去した後のシリカ微粒子分散液800gを固形分5質量%まで濃縮した。その後、該分散液80gに、アンモニア水溶液(濃度15質量%)30gとメタノール50gとを加えて、固形分濃度2.5質量%まで希釈した。次に攪拌機付き装置保温槽で、80℃まで加温し、シリカ換算濃度5質量%のテトラエチルオルソシリケート溶液(メタノール溶媒)6gを16時間かけて添加した。
[Concentration, dilution, sealing and heat treatment]
After removing alumina, 800 g of the silica fine particle dispersion was concentrated to a solid content of 5% by mass. Thereafter, 30 g of an aqueous ammonia solution (concentration: 15% by mass) and 50 g of methanol were added to 80 g of the dispersion to dilute to a solid content concentration of 2.5% by mass. Next, it heated up to 80 degreeC with the apparatus heat retention tank with a stirrer, and 6 g of tetraethyl orthosilicate solutions (methanol solvent) with a silica conversion density | concentration of 5 mass% were added over 16 hours.

その後、ロータリーエバポレータで溶媒を除いた後、アンモニアを添加して、pH10とした。次に、150℃で1時間加熱処理し、繊維状中空シリカ微粒子分散液20gを得た。得られた繊維状中空シリカ微粒子分散液中の分散質であるシリカ微粒子は、屈折率が1.34であったことから中空構造を有することが確認された。得られた繊維状中空シリカ微粒子分散液に関する分析結果を表1に示す。   Then, after removing the solvent with a rotary evaporator, ammonia was added to adjust the pH to 10. Next, heat treatment was performed at 150 ° C. for 1 hour to obtain 20 g of a fibrous hollow silica fine particle dispersion. The silica fine particles, which are the dispersoid in the obtained fibrous hollow silica fine particle dispersion, had a refractive index of 1.34, and thus were confirmed to have a hollow structure. Table 1 shows the analysis results for the obtained fibrous hollow silica fine particle dispersion.

実施例4で調製した繊維状中空シリカ微粒子分散液(固形分濃度20質量%)と紫外線硬化樹脂(大日本インキ社製ユニデック 17−824)を2%含むイソプロパノール/
ブタノール混合溶液(イソプロパノール/ブタノール混合比=1/1(wt/wt))とを混合し、固形分濃度4重量%(繊維状中空シリカ微粒子100質量部に対して、紫外線硬化樹脂100質量部配合)の反射防止被膜形成用組成物を調製した。
Isopropanol / containing 2% of a fibrous hollow silica fine particle dispersion (solid content concentration 20% by mass) prepared in Example 4 and an ultraviolet curable resin (Unidec 17-824, manufactured by Dainippon Ink Co., Ltd.)
A butanol mixed solution (isopropanol / butanol mixing ratio = 1/1 (wt / wt)) was mixed, and a solid content concentration of 4% by weight (100 parts by mass of UV curable resin was added to 100 parts by mass of fibrous hollow silica fine particles). ) Was prepared.

この反射防止被膜形成用組成物をNo.5のバーコーターで偏光フィルム(日東電工社製NPF105DU)に塗布し、乾燥後、80W/cmの紫外線(高圧水銀ランプ)を照射して反射防止被膜付基材(反射防止被膜の膜厚は50nm)を得た。得られた反射防止被膜付基材の波長550nmにおける反射率を分光光度計(日本分光社製)で測定したところ、反射率は1.0%、鉛筆硬度はHであった。   This composition for antireflection coating formation was designated 5 is applied to a polarizing film (NPF105DU manufactured by Nitto Denko Corporation) with a bar coater of 5, and after drying, irradiated with 80 W / cm ultraviolet rays (high pressure mercury lamp) to form a substrate with an antireflection coating (the thickness of the antireflection coating is 50 nm) ) When the reflectance at a wavelength of 550 nm of the obtained substrate with antireflection coating was measured with a spectrophotometer (manufactured by JASCO Corporation), the reflectance was 1.0% and the pencil hardness was H.

[比較例1]
実施例4で調製した中空シリカ微粒子分散液(固形分濃度20質量%、平均粒子径20nm)と紫外線硬化樹脂(大日本インキ社製ユニデック 17−824)を2%含むイソ
プロパノール/ブタノール混合溶液(イソプロパノール/ブタノール混合比=1/1(wt/wt))とを混合し、固形分濃度4重量%(繊維状中空シリカ微粒子100質量部に対して、紫外線硬化樹脂100質量部配合)の反射防止被膜形成用組成物を調製した。
[Comparative Example 1]
An isopropanol / butanol mixed solution (isopropanol) containing 2% of the hollow silica fine particle dispersion (solid content concentration 20% by mass, average particle size 20 nm) prepared in Example 4 and an ultraviolet curable resin (Unidec 17-824, manufactured by Dainippon Ink Co., Ltd.). / Butanol mixing ratio = 1/1 (wt / wt)), and an antireflection coating having a solid content concentration of 4% by weight (100 parts by mass of UV curable resin is added to 100 parts by mass of fibrous hollow silica fine particles). A forming composition was prepared.

この反射防止被膜形成用組成物をNo.5のバーコーターで偏光フィルム(日東電工社製NPF105DU)に塗布し、乾燥後、80W/cmの紫外線(高圧水銀ランプ)を照射して反射防止被膜付基材(反射防止被膜の膜厚は50nm)を得た。得られた反射防止
被膜付基材の波長550nmにおける反射率を分光光度計(日本分光社製)で測定したところ、反射率は2.5%、鉛筆硬度はFであった。
This composition for antireflection coating formation was designated 5 applied to a polarizing film (NPF105DU manufactured by Nitto Denko Corporation) with a bar coater of 5, and after drying, irradiated with 80 W / cm ultraviolet rays (high pressure mercury lamp) to form a substrate with an antireflection coating (the thickness of the antireflection coating is 50 nm) ) When the reflectance at a wavelength of 550 nm of the obtained substrate with antireflection coating was measured with a spectrophotometer (manufactured by JASCO Corporation), the reflectance was 2.5% and the pencil hardness was F.

Figure 2009108155
Figure 2009108155

本発明に係る繊維状中空シリカ微粒子は、低屈折率で造膜性が特に優れている。そのため、該シリカ微粒子を分散媒に分散させてなる繊維状中空シリカ微粒子分散液は、反射防止被膜や反射防止被膜用基材を好適に形成することができる。また、本発明に係る繊維状中空シリカ微粒子を含有する反射防止被膜や反射防止被膜基材は、陰極管表示装置(CRT)、液晶ディスプレー(LCD)等の表示面の視認性を確保するために好適に用いることができる。   The fibrous hollow silica fine particles according to the present invention have a particularly low film forming property and a low refractive index. Therefore, a fibrous hollow silica fine particle dispersion obtained by dispersing the silica fine particles in a dispersion medium can suitably form an antireflection coating or an antireflection coating substrate. In addition, the antireflection coating or the antireflection coating substrate containing the fibrous hollow silica fine particles according to the present invention is used for ensuring the visibility of display surfaces of cathode ray tube display devices (CRT), liquid crystal displays (LCD) and the like. It can be used suitably.

Claims (9)

平均粒子径が5〜500nmの範囲にあり、繊維状であり、中空構造を有する繊維状中空シリカ微粒子が分散媒に分散してなることを特徴とする繊維状中空シリカ微粒子分散液。   A fibrous hollow silica fine particle dispersion liquid comprising fibrous hollow silica fine particles having an average particle diameter in a range of 5 to 500 nm, fibrous and having a hollow structure, dispersed in a dispersion medium. 前記繊維状中空シリカ微粒子が、下記(a)、(b)、(c)および(d)の条件を満たすことを特徴とする請求項1に記載の繊維状中空シリカ微粒子分散液;
(a)平均粒子径が5〜500nmの範囲にある、
(b)長径と短径との比(長径/短径)が1.5〜10の範囲にある、
(c)BET法による比表面積が5〜600m2/gの範囲にある、
(d)屈折率が1.20〜1.40の範囲にある。
The fibrous hollow silica fine particle dispersion according to claim 1, wherein the fibrous hollow silica fine particles satisfy the following conditions (a), (b), (c) and (d):
(A) The average particle size is in the range of 5 to 500 nm.
(B) The ratio of the major axis to the minor axis (major axis / minor axis) is in the range of 1.5-10.
(C) The specific surface area according to the BET method is in the range of 5 to 600 m 2 / g.
(D) The refractive index is in the range of 1.20 to 1.40.
下記(a)、(b)、(c)および(d)の条件を満たすことを特徴とする繊維状中空シリカ微粒子;
(a)平均粒子径が5〜500nmの範囲にある、
(b)長径と短径との比(長径/短径)が1.5〜10の範囲にある、
(c)BET法による比表面積が5〜600m2/gの範囲にある、
(d)屈折率が1.20〜1.40の範囲にある。
Fibrous hollow silica fine particles characterized by satisfying the following conditions (a), (b), (c) and (d);
(A) The average particle size is in the range of 5 to 500 nm.
(B) The ratio of the major axis to the minor axis (major axis / minor axis) is in the range of 1.5-10.
(C) The specific surface area according to the BET method is in the range of 5 to 600 m 2 / g.
(D) The refractive index is in the range of 1.20 to 1.40.
工程(I):長径と短径との比(長径/短径)が1.5〜10の範囲にあり、酸可溶性
である無機酸化物微粒子を核粒子として分散媒に分散させて、核粒子分散液を得る工程、
工程(II):前記核粒子分散液のpHを8〜13に調整する工程、
工程(III):前記核粒子の表面を、(1)シリカ、または(2)シリカおよび前記核
粒子と同じ成分を生成しうる無機酸化物で被覆する工程、
工程(IV):工程(III)の後、前記核粒子を構成する元素の一部または全部を除去し
、多孔質繊維状シリカ微粒子を得る工程、および
工程(V):前記多孔質繊維状シリカ微粒子表面を、更にシリカで被覆する工程
をこの順序で含むことを特徴とする繊維状中空シリカ微粒子分散液の製造方法。
Step (I): The ratio of the major axis to the minor axis (major axis / minor axis) is in the range of 1.5 to 10, and the acid-soluble inorganic oxide fine particles are dispersed as a core particle in a dispersion medium, thereby the core particle. Obtaining a dispersion;
Step (II): adjusting the pH of the core particle dispersion to 8 to 13,
Step (III): coating the surface of the core particle with (1) silica, or (2) an inorganic oxide capable of generating the same component as silica and the core particle,
Step (IV): After step (III), part or all of the elements constituting the core particles are removed to obtain porous fibrous silica fine particles, and step (V): the porous fibrous silica A method for producing a fibrous hollow silica fine particle dispersion, comprising a step of further coating the surface of the fine particles with silica in this order.
工程(i):長径と短径との比(長径/短径)が1.5〜10であり、酸可溶性である
無機酸化物微粒子を核粒子として分散媒に分散させて核粒子分散液を得る工程、
工程(ii):前記核粒子分散液のpHを8〜13に調整する工程、
工程(iii):前記核粒子分散液の温度を60〜250℃に維持しながら、重合性珪素
化合物を添加することにより前記核粒子を成長させる工程、
工程(iv):酸性溶液を添加することにより、核粒子を構成する元素の一部または全部を除去し、多孔質繊維状シリカ微粒子分散液を得る工程、
工程(v):前記多孔質繊維状シリカ微粒子分散液に、更に重合性珪素化合物を添加す
る工程、および
工程(vi):前記重合性珪素化合物を含有する前記多孔質繊維状シリカ微粒子分散液を温度100℃〜270℃で熱処理する工程
をこの順序で含むことを特徴とする繊維状中空シリカ微粒子分散液の製造方法。
Step (i): The ratio of major axis to minor axis (major axis / minor axis) is 1.5 to 10, and acid-soluble inorganic oxide fine particles are dispersed as a core particle in a dispersion medium to prepare a core particle dispersion. Obtaining step,
Step (ii): adjusting the pH of the core particle dispersion to 8 to 13,
Step (iii): A step of growing the core particles by adding a polymerizable silicon compound while maintaining the temperature of the core particle dispersion at 60 to 250 ° C.
Step (iv): A step of removing a part or all of the elements constituting the core particles by adding an acidic solution to obtain a porous fibrous silica fine particle dispersion,
Step (v): a step of further adding a polymerizable silicon compound to the porous fibrous silica fine particle dispersion; and step (vi): the porous fibrous silica fine particle dispersion containing the polymerizable silicon compound. The manufacturing method of the fibrous hollow silica fine particle dispersion characterized by including the process heat-processed at the temperature of 100 to 270 degreeC in this order.
前記酸可溶性の無機酸化物微粒子が、繊維状アルミナ微粒子、繊維状酸化カルシウム微粒子および繊維状酸化鉄微粒子からなる群より選択される微粒子であることを特徴とする請求項5に記載の繊維状中空シリカ微粒子分散液の製造方法。   The fibrous hollow according to claim 5, wherein the acid-soluble inorganic oxide fine particles are fine particles selected from the group consisting of fibrous alumina fine particles, fibrous calcium oxide fine particles, and fibrous iron oxide fine particles. A method for producing a silica fine particle dispersion. 請求項3に記載の繊維状中空シリカ微粒子、反射防止被膜形成用成分および分散媒を含有することを特徴とする反射防止被膜形成用組成物。   A composition for forming an antireflective coating, comprising the fibrous hollow silica fine particles according to claim 3, a component for forming an antireflective coating, and a dispersion medium. 樹脂基材上に反射防止被膜が形成されてなる反射防止被膜付基材であって、該反射防止被膜が、請求項3に記載の繊維状中空シリカ微粒子と反射防止被膜形成用成分を含有することを特徴とする反射防止被膜付基材。   A base material with an antireflection coating formed by forming an antireflection coating on a resin substrate, wherein the antireflection coating contains the fibrous hollow silica fine particles according to claim 3 and an antireflection coating forming component. A base material with an antireflection coating characterized by the above. 樹脂基材上にハードコート層を介して、前記反射防止被膜が設けられていることを特徴とする請求項8記載の反射防止被膜付基材。   The substrate with an antireflection coating according to claim 8, wherein the antireflection coating is provided on a resin substrate via a hard coat layer.
JP2007280233A 2007-10-29 2007-10-29 Method for producing fibrous hollow silica fine particles and substrate with antireflection coating Active JP5241199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007280233A JP5241199B2 (en) 2007-10-29 2007-10-29 Method for producing fibrous hollow silica fine particles and substrate with antireflection coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007280233A JP5241199B2 (en) 2007-10-29 2007-10-29 Method for producing fibrous hollow silica fine particles and substrate with antireflection coating

Publications (2)

Publication Number Publication Date
JP2009108155A true JP2009108155A (en) 2009-05-21
JP5241199B2 JP5241199B2 (en) 2013-07-17

Family

ID=40777003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007280233A Active JP5241199B2 (en) 2007-10-29 2007-10-29 Method for producing fibrous hollow silica fine particles and substrate with antireflection coating

Country Status (1)

Country Link
JP (1) JP5241199B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009143754A (en) * 2007-12-12 2009-07-02 Jgc Catalysts & Chemicals Ltd Conductive, fibrous, hollow silica particulate dispersoid and method for producing the same
CN103210045A (en) * 2010-11-17 2013-07-17 佳能株式会社 Antireflection film and method of producing the same
JP2013245289A (en) * 2012-05-25 2013-12-09 Dic Corp Anti-reflection coating composition and anti-reflection film
JP2015155373A (en) * 2010-05-11 2015-08-27 日揮触媒化成株式会社 Silica-based particle and use of the same
US10678091B2 (en) 2017-10-25 2020-06-09 Samsung Display Co., Ltd. Color conversion element and display device including the same
KR20210001946A (en) 2019-06-28 2021-01-06 도오꾜오까고오교 가부시끼가이샤 Curable resin composition and cured product
WO2022210919A1 (en) * 2021-03-31 2022-10-06 日揮触媒化成株式会社 Powder, production method therefor, and resin composition production method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241929A (en) * 1996-03-07 1997-09-16 Nikkiso Co Ltd Hollow inorganic fiber and production of the same
JP2000220036A (en) * 1999-01-29 2000-08-08 Japan Science & Technology Corp Hollow fibrous silica and its production
JP2001233611A (en) * 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd Silica-based microparticle, method for producing dispersion with the same, and base material with coating film
JP2005266231A (en) * 2004-03-18 2005-09-29 Konica Minolta Opto Inc Optical film, polarizing plate, and image display device
JP2005289932A (en) * 2004-04-02 2005-10-20 Pola Chem Ind Inc Fibrous hollow inorganic compound particle and cosmetic containing the same
JP2005352121A (en) * 2004-06-10 2005-12-22 Asahi Kasei Corp Anti-reflection film
WO2006009132A1 (en) * 2004-07-21 2006-01-26 Catalysts & Chemicals Industries Co., Ltd. Silica-based fine particles, method for production thereof, coating for forming coating film and base material having coating film formed thereon
WO2008041681A1 (en) * 2006-10-02 2008-04-10 Asahi Glass Company, Limited Coating composition for formation of antireflective film, and article having antireflective film formed therein

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241929A (en) * 1996-03-07 1997-09-16 Nikkiso Co Ltd Hollow inorganic fiber and production of the same
JP2000220036A (en) * 1999-01-29 2000-08-08 Japan Science & Technology Corp Hollow fibrous silica and its production
JP2001233611A (en) * 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd Silica-based microparticle, method for producing dispersion with the same, and base material with coating film
JP2005266231A (en) * 2004-03-18 2005-09-29 Konica Minolta Opto Inc Optical film, polarizing plate, and image display device
JP2005289932A (en) * 2004-04-02 2005-10-20 Pola Chem Ind Inc Fibrous hollow inorganic compound particle and cosmetic containing the same
JP2005352121A (en) * 2004-06-10 2005-12-22 Asahi Kasei Corp Anti-reflection film
WO2006009132A1 (en) * 2004-07-21 2006-01-26 Catalysts & Chemicals Industries Co., Ltd. Silica-based fine particles, method for production thereof, coating for forming coating film and base material having coating film formed thereon
WO2008041681A1 (en) * 2006-10-02 2008-04-10 Asahi Glass Company, Limited Coating composition for formation of antireflective film, and article having antireflective film formed therein

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009143754A (en) * 2007-12-12 2009-07-02 Jgc Catalysts & Chemicals Ltd Conductive, fibrous, hollow silica particulate dispersoid and method for producing the same
JP2015155373A (en) * 2010-05-11 2015-08-27 日揮触媒化成株式会社 Silica-based particle and use of the same
CN103210045A (en) * 2010-11-17 2013-07-17 佳能株式会社 Antireflection film and method of producing the same
CN103210045B (en) * 2010-11-17 2015-05-20 佳能株式会社 Antireflection film and method of producing the same
US9798045B2 (en) 2010-11-17 2017-10-24 Canon Kabushiki Kaisha Antireflection film and method of producing the same
JP2013245289A (en) * 2012-05-25 2013-12-09 Dic Corp Anti-reflection coating composition and anti-reflection film
US10678091B2 (en) 2017-10-25 2020-06-09 Samsung Display Co., Ltd. Color conversion element and display device including the same
US11042059B2 (en) 2017-10-25 2021-06-22 Samsung Display Co., Ltd. Color conversion element and display device including the same
US11281045B2 (en) 2017-10-25 2022-03-22 Samsung Display Co., Ltd. Color conversion element and display device including the same
KR20210001946A (en) 2019-06-28 2021-01-06 도오꾜오까고오교 가부시끼가이샤 Curable resin composition and cured product
WO2022210919A1 (en) * 2021-03-31 2022-10-06 日揮触媒化成株式会社 Powder, production method therefor, and resin composition production method

Also Published As

Publication number Publication date
JP5241199B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
US9834663B2 (en) Composition for forming a transparent coating film including hollow silica particles
JP5700458B2 (en) Silica-based fine particles, coating material for coating formation and substrate with coating
JP5057199B2 (en) Method for producing hollow SiO2 fine particle dispersion, coating composition, and substrate with antireflection coating
JP5241199B2 (en) Method for producing fibrous hollow silica fine particles and substrate with antireflection coating
JP5247753B2 (en) Fine particles, fine particle dispersed sol, and coated substrate
JP4428923B2 (en) Method for producing silica-based hollow fine particles
JP5757673B2 (en) Substrate with transparent film and paint for forming transparent film
WO2006129411A1 (en) DISPERSION CONTAINING HOLLOW SiO2, COATING COMPOSITION, AND SUBSTRATE WITH ANTIREFLECTION COATING FILM
WO2010050263A1 (en) Hollow particle, method for producing the same, coating composition and article
JP6895760B2 (en) Method for producing silica-based particle dispersion liquid, silica-based particle dispersion liquid, coating liquid for forming a transparent film, and base material with a transparent film
JP2009066965A (en) Transparent coat applied base material, and transparent coat forming paint
JP5284632B2 (en) Conductive fibrous hollow silica fine particle dispersoid and process for producing the same
JP4540979B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP5480743B2 (en) Substrate with transparent film and paint for forming transparent film
JP5642535B2 (en) Novel silica-based hollow fine particles, base material with transparent film, and paint for forming transparent film
JP5084122B2 (en) Film-coated substrate and coating solution for film formation
JP6451424B2 (en) High durability low refractive index film
JP5766251B2 (en) Method for producing a coating for forming a transparent film
JP5404568B2 (en) Silica-based fine particles, coating material for coating formation and substrate with coating
JP2013043791A (en) Modified hollow silica microparticle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100825

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5241199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250