JP2009106018A - Charging device and charging method - Google Patents

Charging device and charging method Download PDF

Info

Publication number
JP2009106018A
JP2009106018A JP2007273487A JP2007273487A JP2009106018A JP 2009106018 A JP2009106018 A JP 2009106018A JP 2007273487 A JP2007273487 A JP 2007273487A JP 2007273487 A JP2007273487 A JP 2007273487A JP 2009106018 A JP2009106018 A JP 2009106018A
Authority
JP
Japan
Prior art keywords
charging
target
charge
storage element
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007273487A
Other languages
Japanese (ja)
Other versions
JP4986806B2 (en
Inventor
Tamotsu Fukazawa
保 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PUES Corp
Original Assignee
PUES Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PUES Corp filed Critical PUES Corp
Priority to JP2007273487A priority Critical patent/JP4986806B2/en
Publication of JP2009106018A publication Critical patent/JP2009106018A/en
Application granted granted Critical
Publication of JP4986806B2 publication Critical patent/JP4986806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charging device which can reduce voltage variation at the completion of charging of power storing elements constituting a battery pack, even at rapid charging, without enlarging the circuits or increasing the cost. <P>SOLUTION: The charging device 1 comprises an ECU 40, wherein a voltage detection part 42 for detecting the voltage values of the power storing elements B1 to Bn; a charging characteristics acquisition part 44 for acquiring the charging characteristics of the power storing elements B1 to Bn, based on the voltage value change during charging of the power storing elements B1 to Bn; and a charging start state setting part 46 for setting a target charging start voltage for each power storing element B1 to Bn, based on a preset target charging completion voltage and the charging characteristics of the power storing elements B1 to Bn, are constructed functionally; a DC-DC converter 20 for supplementally charging the power storing elements B1 to Bn so that the voltage values of the power storing elements B1 to Bn agree with the target charging start voltage; and a charger 30 for rapidly charging the battery pack 10, after the supplemental charging of the power storing elements B1 to Bn. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、充電装置及び充電方法に関し、特に、複数の蓄電素子が直列に接続されて構成される組電池の充電装置及び充電方法に関する。   The present invention relates to a charging device and a charging method, and more particularly, to an assembled battery charging device and a charging method in which a plurality of power storage elements are connected in series.

近年、ハイブリッド自動車や電気自動車では、例えばリチウムイオン電池などの二次電池(蓄電素子)を複数直列に接続した組電池が用いられている。ここで、二次電池の長寿命化や電力の利用効率向上のためには各二次電池の電圧値が所定の範囲内に維持されるように使用することが重要である。しかしながら、内部抵抗や周囲温度などのばらつきにより各二次電池の電圧値にばらつきが生じるため、複数の二次電池が接続されて構成される組電池では、組電池全体の電圧値が管理/制御されるとともに、各二次電池の電圧値のばらつきを抑えるように各二次電池の電圧値が管理/制御(以下「均等化」ともいう)されている(例えば下記特許文献1参照)。
特開2003−289630号公報
In recent years, in hybrid vehicles and electric vehicles, an assembled battery in which a plurality of secondary batteries (storage elements) such as lithium ion batteries are connected in series is used. Here, it is important to use the secondary battery so that the voltage value of the secondary battery is maintained within a predetermined range in order to extend the life of the secondary battery and improve the utilization efficiency of electric power. However, since the voltage value of each secondary battery varies due to variations in internal resistance, ambient temperature, etc., in an assembled battery configured by connecting a plurality of secondary batteries, the voltage value of the entire assembled battery is managed / controlled. In addition, the voltage value of each secondary battery is managed / controlled (hereinafter also referred to as “equalization”) so as to suppress variations in the voltage value of each secondary battery (see, for example, Patent Document 1 below).
JP 2003-289630 A

二次電池の均等化を行いつつ組電池を充電する場合、均等化回路に流すことができる電流値によって充電電流が制限されるため、充電時間が長くなるおそれがある。または、充電終了までに均等化が終わらないことが起こり得る。この傾向は、特に二次電池の電圧ばらつきが大きい場合や急速充電を行うときに顕著となる。ここで、均等化回路に流すことができる電流値をアップし、急速充電に適用しようとすると、均等化回路の大型化や高コスト化を招くこととなる。一方、二次電池の電圧を均等化した後に組電池を充電する場合、内部抵抗のばらつきなどに起因する充電特性のばらつきにより、充電終了時の各二次電池の電圧値が揃わないおそれがある。   When charging the battery pack while equalizing the secondary batteries, the charging current is limited by the current value that can be passed through the equalizing circuit, and thus the charging time may be long. Or, equalization may not end before the end of charging. This tendency is particularly remarkable when the voltage variation of the secondary battery is large or when quick charging is performed. Here, if the value of the current that can be passed through the equalization circuit is increased and applied to rapid charging, the equalization circuit is increased in size and cost. On the other hand, when charging the assembled battery after equalizing the voltage of the secondary battery, there is a risk that the voltage value of each secondary battery at the end of charging may not be uniform due to variations in charging characteristics due to variations in internal resistance, etc. .

本発明は、上記問題点を解消する為になされたものであり、回路の大型化や高コスト化を招くことなく、急速充電時にも、組電池を構成する各蓄電素子の充電終了時の電圧ばらつきを低減することが可能な充電装置及び充電方法を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and without causing an increase in circuit size and cost, a voltage at the end of charging of each storage element constituting the assembled battery even during rapid charging. It is an object of the present invention to provide a charging device and a charging method capable of reducing variations.

本発明に係る充電装置は、複数の蓄電素子が直列に接続されて構成される組電池の充電装置であって、蓄電素子それぞれの電圧値を検出する電圧検出手段と、電圧検出手段により検出された各蓄電素子の充電中の電圧値変化に基づいて、各蓄電素子の充電特性を取得する充電特性取得手段と、予め設定されている充電終了時の目標充電状態、及び充電特性取得手段により取得された充電特性に基づいて、蓄電素子毎に充電開始時の目標充電状態を設定する充電開始状態設定手段と、充電開始状態設定手段により設定された充電開始時の目標充電状態に基づいて、各蓄電素子の充電状態を調節する充電状態調節手段と、充電状態調節手段により各蓄電素子の充電状態が調節された後、組電池の充電を実行する充電手段とを備えることを特徴とする。   A charging device according to the present invention is an assembled battery charging device configured by connecting a plurality of power storage elements in series, and is detected by a voltage detection means that detects a voltage value of each of the power storage elements, and the voltage detection means. Based on the voltage value change during charging of each storage element, the charging characteristic acquisition means for acquiring the charging characteristic of each storage element, the preset target charge state at the end of charging, and the charging characteristic acquisition means Based on the charging characteristics, charging start state setting means for setting the target charging state at the start of charging for each power storage element, and based on the target charging state at the start of charging set by the charging start state setting means, Charge state adjustment means for adjusting the charge state of the storage element, and charging means for executing charging of the assembled battery after the charge state of each storage element is adjusted by the charge state adjustment means. .

また、本発明に係る充電方法は、複数の蓄電素子が直列に接続されて構成される組電池の充電方法であって、蓄電素子それぞれの電圧値を検出する電圧検出ステップと、電圧検出ステップにおいて検出された各蓄電素子の充電中の電圧値変化に基づいて、各蓄電素子の充電特性を取得する充電特性取得ステップと、予め設定されている充電終了時の目標充電状態、及び充電特性取得ステップにおいて取得された充電特性に基づいて、蓄電素子毎に充電開始時の目標充電状態を設定する充電開始状態設定ステップと、充電開始状態設定ステップにおいて設定された充電開始時の目標充電状態に基づいて、各蓄電素子の充電状態を調節する充電状態調節ステップと、充電状態調節ステップにおいて各蓄電素子の充電状態が調節された後、組電池の充電を実行する充電ステップとを備えることを特徴とする。   The charging method according to the present invention is a method for charging an assembled battery configured by connecting a plurality of power storage elements in series, and includes a voltage detection step for detecting a voltage value of each power storage element, and a voltage detection step. Based on the detected voltage value change during charging of each storage element, a charging characteristic acquisition step for acquiring the charging characteristic of each storage element, a preset target charging state at the end of charging, and a charging characteristic acquisition step Based on the charge characteristics acquired in step 1, the charge start state setting step for setting the target charge state at the start of charge for each power storage element, and the target charge state at the start of charge set in the charge start state setting step A charge state adjustment step for adjusting a charge state of each power storage element; and after a charge state of each power storage element is adjusted in the charge state adjustment step, Characterized in that it comprises a charging step of performing electrodeposition.

本発明に係る充電装置又は充電方法によれば、充電終了時の目標充電状態(以下「目標充電終了状態」ともいう)、及び充電中の電圧値変化から求められた各蓄電素子の充電特性に基づいて、蓄電素子毎に充電開始時の目標充電状態(以下「目標充電開始状態」ともいう)が設定されるとともに、設定された目標充電開始状態に基づいて各蓄電素子の充電状態が調節された後に組電池が充電される。すなわち、目標充電終了状態及び各蓄電素子の充電特性を考慮して、各蓄電素子の充電状態が予め(充電開始前に)調節される。そのため、充電終了時点において全ての蓄電素子の充電状態を目標充電終了状態に揃えることが可能となる。また、本発明に係る充電装置又は充電方法によれば、組電池の充電に先立ち各蓄電素子の充電状態の調節が独立して行われるため、回路の大型化や高コスト化を招くことなく急速充電にも対応することができる。   According to the charging device or the charging method of the present invention, the charging characteristics of each storage element obtained from the target charging state at the end of charging (hereinafter also referred to as “target charging end state”) and the voltage value change during charging are obtained. Based on this, a target charge state at the start of charging (hereinafter also referred to as “target charge start state”) is set for each power storage element, and the charge state of each power storage element is adjusted based on the set target charge start state. After that, the battery pack is charged. That is, the charging state of each power storage element is adjusted in advance (before charging is started) in consideration of the target charging end state and the charging characteristics of each power storage element. For this reason, it is possible to align the state of charge of all the storage elements to the target charge end state at the end of charge. In addition, according to the charging device or the charging method of the present invention, the charging state of each power storage element is adjusted independently prior to charging the assembled battery. It can also handle charging.

本発明に係る充電装置では、充電開始状態設定手段が、組電池の充電終了時に該組電池を構成する全ての蓄電素子の充電状態が充電終了時の目標充電状態と一致するように、充電開始時の目標充電状態を設定することが好ましい。   In the charging device according to the present invention, the charging start state setting means starts charging so that the charging state of all the power storage elements constituting the assembled battery coincides with the target charging state at the end of charging when the charging of the assembled battery ends. It is preferable to set a target charging state for the hour.

また、本発明に係る充電方法では、充電開始状態設定ステップにおいて、組電池の充電終了時に該組電池を構成する全ての蓄電素子の充電状態が充電終了時の目標充電状態と一致するように、充電開始時の目標充電状態を設定することが好ましい。   Further, in the charging method according to the present invention, in the charging start state setting step, at the end of charging of the assembled battery, the charging state of all the power storage elements constituting the assembled battery matches the target charging state at the end of charging. It is preferable to set a target charging state at the start of charging.

このようにすれば、充電終了時点において全ての蓄電素子の充電状態を目標充電終了状態に確実に揃えることが可能となる。   In this way, it is possible to reliably align the state of charge of all power storage elements to the target charge end state at the end of charge.

本発明に係る充電装置では、充電開始状態設定手段が、充電終了時の目標電圧値、及び充電特性に基づいて、蓄電素子毎に充電開始時の目標電圧値を設定し、充電状態調節手段が、各蓄電素子の実電圧値と、充電開始時の目標電圧値とが一致するように各蓄電素子の補充電又は放電を行うことが好適である。   In the charging device according to the present invention, the charging start state setting means sets the target voltage value at the start of charging for each power storage element based on the target voltage value at the end of charging and the charging characteristics, and the charging state adjustment means It is preferable to perform supplementary charging or discharging of each storage element so that the actual voltage value of each storage element matches the target voltage value at the start of charging.

また、本発明に係る充電方法では、充電開始状態設定ステップにおいて、充電終了時の目標電圧値、及び充電特性に基づいて、蓄電素子毎に充電開始時の目標電圧値を設定し、充電状態調節ステップにおいて、各蓄電素子の実電圧値と、充電開始時の目標電圧値とが一致するように各蓄電素子の補充電又は放電を行うことが好適である。   Further, in the charging method according to the present invention, in the charging start state setting step, the target voltage value at the start of charging is set for each power storage element based on the target voltage value at the end of charging and the charging characteristics, and the charging state adjustment is performed. In the step, it is preferable to perform supplementary charging or discharging of each power storage element so that the actual voltage value of each power storage element matches the target voltage value at the start of charging.

この場合、充電終了時の目標電圧値(以下「目標充電終了電圧」ともいう)及び各蓄電素子の充電特性を考慮して、各蓄電素子の実電圧値と充電開始時の目標電圧値(以下「目標充電開始電圧」ともいう)とが一致するように、予め(充電開始前に)各蓄電素子の補充電又は放電が行われる。そのため、充電終了時点において全ての蓄電素子の電圧値を目標充電終了電圧に揃えることが可能となる。   In this case, considering the target voltage value at the end of charging (hereinafter also referred to as “target charging end voltage”) and the charging characteristics of each power storage element, the actual voltage value of each power storage element and the target voltage value at the start of charging (hereinafter referred to as “charge target voltage”) Each storage element is precharged or discharged in advance (before charging is started) so that the “target charging start voltage” also matches. Therefore, it is possible to make the voltage values of all the storage elements equal to the target charging end voltage at the end of charging.

一方、本発明に係る充電装置では、充電開始状態設定手段が、充電終了時の目標電圧値、及び充電特性に基づいて、蓄電素子毎に充電開始前の目標補充電量を設定し、充電状態調節手段が、目標補充電量に応じて、各蓄電素子の補充電又は放電を行う構成とすることも好ましい。   On the other hand, in the charging device according to the present invention, the charging start state setting means sets the target supplementary charging amount before starting charging for each power storage element based on the target voltage value at the end of charging and the charging characteristics, and adjusts the charging state. It is also preferable that the means perform a supplementary charge or discharge of each power storage element according to the target supplementary charge amount.

また、本発明に係る充電方法では、充電開始状態設定ステップにおいて、充電終了時の目標電圧値、及び充電特性に基づいて、蓄電素子毎に充電開始前の目標補充電量を設定し、充電状態調節ステップにおいて、目標補充電量に応じて、各蓄電素子の補充電又は放電を行う構成とすることも好ましい。   Further, in the charging method according to the present invention, in the charging start state setting step, based on the target voltage value at the end of charging and the charging characteristics, a target supplementary charging amount before starting charging is set for each power storage element, and the charging state adjustment is performed. In the step, it is also preferable to perform a supplementary charge or discharge of each power storage element according to the target supplementary charge amount.

この場合、目標充電終了電圧及び各蓄電素子の充電特性を考慮し、予め(充電開始前に)各蓄電素子の目標補充電量に応じて補充電又は放電が行われる。そのため、充電終了時点において全ての蓄電素子の電圧値を目標充電終了電圧に揃えることが可能となる。   In this case, in consideration of the target charging end voltage and the charging characteristics of each power storage element, supplementary charging or discharging is performed in advance (before starting charging) according to the target supplementary charging amount of each power storage element. Therefore, it is possible to make the voltage values of all the storage elements equal to the target charging end voltage at the end of charging.

上記蓄電素子は、リチウムイオン電池であることが好適である。この場合、リチウムイオン電池の過充電を防止し、適切な電圧管理を行うことができるため、該リチウムイオン電池の劣化ばらつきを抑制することが可能となる。   The power storage element is preferably a lithium ion battery. In this case, since overcharge of the lithium ion battery can be prevented and appropriate voltage management can be performed, variation in deterioration of the lithium ion battery can be suppressed.

本発明によれば、充電終了時の目標充電状態及び各蓄電素子の充電特性に基づいて、蓄電素子毎に充電開始時の目標充電状態を設定するとともに、設定された充電開始時の目標充電状態に基づいて、各蓄電素子の充電状態を調節した後に組電池の充電を実行する構成としたので、回路の大型化や高コスト化を招くことなく、急速充電時にも、組電池を構成する各蓄電素子の充電終了時の電圧ばらつきを低減することが可能となる。   According to the present invention, the target charge state at the start of charging is set for each power storage element based on the target charge state at the end of charging and the charging characteristics of each power storage element, and the set target charge state at the start of charging is set. Therefore, the battery pack is charged after adjusting the state of charge of each power storage element, so that each of the batteries constituting the battery pack can be quickly charged without increasing the size and cost of the circuit. It is possible to reduce voltage variation at the end of charging of the storage element.

以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、各図において、同一要素には同一符号を付して重複する説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same element and the overlapping description is abbreviate | omitted.

まず、図1,図2を併せて用いて、実施形態に係る充電装置1の構成について説明する。図1は、充電装置1の全体構成を示す図である。また、図2は、充電装置1を構成する電子制御装置が有する電圧検出回路の構成を示す図である。   First, the structure of the charging device 1 which concerns on embodiment is demonstrated using FIG. 1, FIG. 2 collectively. FIG. 1 is a diagram illustrating an overall configuration of the charging device 1. FIG. 2 is a diagram illustrating a configuration of a voltage detection circuit included in the electronic control device that constitutes the charging device 1.

充電装置1は、複数の蓄電素子B1,B2,B3,B4〜Bn−3,Bn−2,Bn−1,Bn(ただし、nは自然数である)が直列に接続されて構成された組電池10を充電するものであり、より具体的には、組電池10を構成する各蓄電素子B1〜Bnの電圧値が、充電終了時において、予め設定されている目標充電終了電圧(例えば4.2V)と一致するように組電池10を充電するものである。   The battery charger 1 is an assembled battery in which a plurality of power storage elements B1, B2, B3, B4 to Bn-3, Bn-2, Bn-1, and Bn (where n is a natural number) are connected in series. More specifically, the voltage value of each of the power storage elements B1 to Bn constituting the assembled battery 10 is set to a target charge end voltage (for example, 4.2 V) set in advance at the end of charging. ) To charge the battery pack 10 so as to match.

そのため、充電装置1は、主として、組電池10を構成する複数の蓄電素子B1〜Bnの中から電圧検出対象並びに補充電対象となる蓄電素子を選択するスイッチマトリックス12、充電前に蓄電素子B1〜Bnを補充電するDC−DCコンバータ20、蓄電素子B1〜Bnが補充電された後に組電池10を急速充電する充電器30、及び、スイッチマトリックス12、DC−DCコンバータ20、充電器30の制御を総合的に司る電子制御装置(以下「ECU(Electric Control Unit)」という)40を備えている。ここで、DC−DCコンバータ20は、特許請求の範囲に記載された充電状態調節手段として機能し、充電器30は、特許請求の範囲に記載された充電手段として機能する。   Therefore, the charging device 1 mainly includes a switch matrix 12 for selecting a voltage detection target and a power storage element to be supplemented from among the plurality of power storage elements B1 to Bn constituting the assembled battery 10, and the power storage elements B1 to B1 before charging. Control of the DC-DC converter 20 that supplementarily charges Bn, the charger 30 that rapidly charges the assembled battery 10 after the storage elements B1 to Bn are supplementally charged, and the switch matrix 12, the DC-DC converter 20, and the charger 30 Is provided with an electronic control device (hereinafter referred to as “ECU (Electric Control Unit)”) 40. Here, the DC-DC converter 20 functions as a charging state adjusting unit described in the claims, and the charger 30 functions as a charging unit described in the claims.

蓄電素子B1〜Bnとしては、リチウムイオン電池が好適に用いられる。ただし、リチウムイオン電池に代えて、ニッケルカドミウム電池などの充放電可能な二次電池、大容量コンデンサ(ウルトラキャパシタ)、複数の二次電池又は大容量コンデンサが並列に接続されて構成されたモジュール等を用いることもできる。   As the electricity storage elements B1 to Bn, lithium ion batteries are preferably used. However, instead of lithium ion batteries, secondary batteries that can be charged / discharged, such as nickel cadmium batteries, large-capacity capacitors (ultracapacitors), modules that are configured by connecting multiple secondary batteries or large-capacity capacitors in parallel, etc. Can also be used.

スイッチマトリックス12は、蓄電素子B1〜Bnの中から電圧検出対象並びに補充電対象となる蓄電素子を選択するフォトリレーR1,R2,R3,R4〜Rn−2,Rn−1,Rn,Rn+1を有している。   The switch matrix 12 has photorelays R1, R2, R3, R4 to Rn-2, Rn-1, Rn, and Rn + 1 that select a power storage element that is a voltage detection target and an auxiliary charge target from among the power storage elements B1 to Bn. is doing.

フォトリレーR1の一端は蓄電素子B1の−極に接続されており、他端は第2母線16に接続されている。フォトリレーR2の一端は蓄電素子B1の+極(蓄電素子B2の−極)に接続されており、他端は第1母線14に接続されている。また、フォトリレーR3の一端は蓄電素子B2の+極(蓄電素子B3の−極)に接続されており、他端は第2母線16に接続されている。フォトリレーR4の一端は蓄電素子B3の+極(蓄電素子B4の−極)に接続されており、他端は第1母線14に接続されている。同様にして、フォトリレーRnの一端は蓄電素子Bn−1の+極(蓄電素子Bnの−極)に接続されており、他端は第1母線14に接続されている。フォトリレーRn+1の一端は蓄電素子Bnの+極に接続されており、他端は第2母線16に接続されている。   One end of the photorelay R <b> 1 is connected to the negative electrode of the power storage element B <b> 1, and the other end is connected to the second bus 16. One end of the photorelay R <b> 2 is connected to the positive electrode of the electric storage element B <b> 1 (the negative electrode of the electric storage element B <b> 2), and the other end is connected to the first bus 14. In addition, one end of the photorelay R3 is connected to the positive electrode of the electric storage element B2 (the negative electrode of the electric storage element B3), and the other end is connected to the second bus 16. One end of the photorelay R4 is connected to the positive electrode of the electric storage element B3 (the negative electrode of the electric storage element B4), and the other end is connected to the first bus bar 14. Similarly, one end of the photorelay Rn is connected to the + pole of the storage element Bn-1 (the −pole of the storage element Bn), and the other end is connected to the first bus 14. One end of the photorelay Rn + 1 is connected to the positive electrode of the power storage element Bn, and the other end is connected to the second bus 16.

蓄電素子B1が電圧検出対象(又は補充電対象)として選択される場合には、フォトリレーR1及びフォトリレーR2がONされる。また、蓄電素子B2が選択される場合にはフォトリレーR2及びフォトリレーR3がONされる。同様に、蓄電素子Bnが選択されるときにはフォトリレーRn及びフォトリレーRn+1がONされる。   When the storage element B1 is selected as a voltage detection target (or auxiliary charge target), the photorelay R1 and the photorelay R2 are turned on. Further, when the storage element B2 is selected, the photorelay R2 and the photorelay R3 are turned on. Similarly, when power storage element Bn is selected, photorelay Rn and photorelay Rn + 1 are turned on.

第1母線14はフォトリレーR11を介して、第2母線16はフォトリレーR12を介してECU40の電圧検出部42に接続されている。なお、電圧検出部42の詳細は後述する。フォトリレーR11,R12は蓄電素子B1〜Bnの電圧検出を実行/停止する機能を有しており、選択された蓄電素子B1〜Bnの電圧値を読み込む場合には、フォトリレーR11及びフォトリレーR12がONされ、電圧値の読み込みを停止するときには、フォトリレーR11及びフォトリレーR12がOFFされる。   The first bus 14 is connected to the voltage detector 42 of the ECU 40 via the photorelay R11, and the second bus 16 is connected to the voltage detector 42 of the ECU 40 via the photorelay R12. Details of the voltage detector 42 will be described later. The photorelays R11 and R12 have a function of executing / stopping voltage detection of the storage elements B1 to Bn. When reading the voltage values of the selected storage elements B1 to Bn, the photorelays R11 and R12 Is turned on and when the voltage value reading is stopped, the photorelay R11 and the photorelay R12 are turned off.

すなわち、電圧検出対象の蓄電素子の両極に接続されているフォトリレー、及びフォトリレーR11,R12がONされることにより、選択された蓄電素子の電圧が第1母線14,第2母線16上に出力され、第1母線14,第2母線16、フォトリレーR11,R12を介して電圧検出部42に入力される。この動作を全ての蓄電素子B1〜Bnについて順次繰り返すことにより、全ての蓄電素子B1〜Bnの電圧値がECU40に読み込まれる。なお、フォトリレーR1〜Rn+1、及びフォトリレーR11,R12のON/OFFはECU40により制御される。   That is, when the photorelay connected to both electrodes of the voltage detection target storage element and the photorelays R11 and R12 are turned on, the voltage of the selected storage element is placed on the first busbar 14 and the second busbar 16. The voltage is output and input to the voltage detection unit 42 via the first bus 14, the second bus 16, and the photorelays R11 and R12. By sequentially repeating this operation for all the power storage elements B1 to Bn, the voltage values of all the power storage elements B1 to Bn are read into the ECU 40. In addition, ON / OFF of photorelay R1-Rn + 1 and photorelay R11, R12 is controlled by ECU40.

スイッチマトリックス12は、電圧検出対象となる蓄電素子を選択する機能に加え、補充電対象となる蓄電素子を選択する機能も有している。第1母線14,第2母線16には、極性転換マトリックス22を介して、絶縁型のDC−DCコンバータ20が接続されている。なお、DC−DCコンバータ20には公知のものを使用することができる。   The switch matrix 12 has a function of selecting a storage element that is a target for supplementary charging in addition to a function of selecting a storage element that is a target for voltage detection. An insulating DC-DC converter 20 is connected to the first bus bar 14 and the second bus bar 16 via a polarity conversion matrix 22. A known DC-DC converter 20 can be used.

極性転換マトリックス22は、4つのフォトリレーR21,R22,R23,R24により構成されており、第1母線14,第2母線16に出力される電圧の極性を切換える機能を有している。フォトリレーR21,R23の一端は第2母線16に接続されており、フォトリレーR21の他端はDC−DCコンバータ20の+端子に、フォトリレーR23の他端はDC−DCコンバータ20の−端子にそれぞれ接続されている。一方、フォトリレーR22,R24の一端は第1母線14に接続されており、フォトリレーR22の他端はDC−DCコンバータ20の−端子に、フォトリレーR24の他端はDC−DCコンバータ20の+端子にそれぞれ接続されている。なお、フォトリレーR21,R22,R23,R24のON/OFFもECU40により制御される。   The polarity conversion matrix 22 is composed of four photorelays R21, R22, R23, and R24, and has a function of switching the polarity of the voltage output to the first bus bar 14 and the second bus bar 16. One end of each of the photorelays R21 and R23 is connected to the second bus 16. The other end of the photorelay R21 is connected to the + terminal of the DC-DC converter 20, and the other end of the photorelay R23 is connected to the-terminal of the DC-DC converter 20. Are connected to each. On the other hand, one end of each of the photorelays R22 and R24 is connected to the first bus 14, the other end of the photorelay R22 is connected to the negative terminal of the DC-DC converter 20, and the other end of the photorelay R24 is connected to the DC-DC converter 20. Each is connected to the + terminal. In addition, ON / OFF of photorelay R21, R22, R23, R24 is also controlled by ECU40.

ここで、例えば、蓄電素子B1に対して補充電を行う場合には、フォトリレーR1,R2がONされるとともに、フォトリレーR23,24がON、フォトリレーR21,22がOFFされることにより、蓄電素子B1の+極とDC−DCコンバータ20の+端子とが接続され、蓄電素子B1の−極とDC−DCコンバータ20の−端子とが接続される。また、例えば、蓄電素子B2に対して補充電を行う場合には、フォトリレーR2,R3がONされるとともに、フォトリレーR21,22がON、フォトリレーR23,24がOFFされることにより、蓄電素子B2の+極とDC−DCコンバータ20の+端子とが接続され、蓄電素子B2の−極とDC−DCコンバータ20の−端子とが接続される。このようにして、蓄電素子B1〜Bn毎に補充電が行われる。なお、蓄電素子B1〜Bnへの補充電を行わないときには、フォトリレーR21,R22,R23,R24が全てOFFされる。   Here, for example, when performing supplementary charging for the storage element B1, the photorelays R1 and R2 are turned on, the photorelays R23 and 24 are turned on, and the photorelays R21 and 22 are turned off. The positive pole of power storage element B1 and the positive terminal of DC-DC converter 20 are connected, and the negative pole of power storage element B1 and the negative terminal of DC-DC converter 20 are connected. Further, for example, in the case where auxiliary charging is performed on the storage element B2, the photorelays R2 and R3 are turned on, the photorelays R21 and 22 are turned on, and the photorelays R23 and 24 are turned off, thereby storing power. The positive pole of element B2 and the positive terminal of DC-DC converter 20 are connected, and the negative pole of power storage element B2 and the negative terminal of DC-DC converter 20 are connected. In this manner, supplementary charging is performed for each of the power storage elements B1 to Bn. It should be noted that all of photorelays R21, R22, R23, and R24 are turned off when auxiliary charging is not performed for power storage elements B1 to Bn.

組電池10の両端(すなわち、蓄電素子B1の−極と蓄電素子Bnの+極)には、組電池10を急速に充電する充電器30が並列に接続されている。なお、充電器30には公知の急速充電器を使用することができる。   A charger 30 that rapidly charges the assembled battery 10 is connected in parallel to both ends of the assembled battery 10 (that is, the negative electrode of the electric storage element B1 and the positive electrode of the electric storage element Bn). A known quick charger can be used as the charger 30.

ECU40は、演算を行うCPU(Central Processing Unit)、該CPUに各処理を実行させるためのプログラム等を記憶するROM(Read Only Memory)、演算結果などの各種データを記憶するRAM(Random Access Memory)、フォトリレーR1〜Rn,R11,R12,R21〜R24をON/OFFするドライバ回路等を有して構成されている。   The ECU 40 includes a CPU (Central Processing Unit) that performs calculations, a ROM (Read Only Memory) that stores programs for causing the CPU to execute each process, and a RAM (Random Access Memory) that stores various data such as calculation results. The photorelays R1 to Rn, R11, R12, and R21 to R24 are configured to have a driver circuit and the like.

このような構成により、ECU40には、各蓄電素子B1〜Bnの電圧値を検出する電圧検出部42、各蓄電素子B1〜Bnの充電中の電圧値変化に基づいて、各蓄電素子B1〜Bnの充電特性を取得する充電特性取得部44、及び、予め設定されている目標充電終了電圧、並びに各蓄電素子B1〜Bnの充電特性に基づいて、蓄電素子B1〜Bn毎に目標充電開始電圧(又は目標補充電量)を設定する充電開始状態設定部46が機能的に構築されている。ここで、電圧検出部42は特許請求の範囲に記載された電圧検出手段として機能し、充電特性取得部44は充電特性取得手段として機能する。また、充電開始状態設定部46は、特許請求の範囲に記載された充電開始状態設定手段として機能する。   With such a configuration, the ECU 40 has the voltage detection unit 42 that detects the voltage value of each of the power storage elements B1 to Bn, and each power storage element B1 to Bn based on the voltage value change during charging of each power storage element B1 to Bn. Based on the charge characteristic acquisition unit 44 that acquires the charge characteristics of the battery, the preset target charge end voltage, and the charge characteristics of the power storage elements B1 to Bn, the target charge start voltage (for each of the power storage elements B1 to Bn ( Alternatively, the charging start state setting unit 46 for setting the target supplementary charging amount) is functionally constructed. Here, the voltage detection unit 42 functions as a voltage detection unit described in the claims, and the charging characteristic acquisition unit 44 functions as a charging characteristic acquisition unit. Moreover, the charge start state setting part 46 functions as a charge start state setting means described in the claims.

電圧検出部42は、蓄電素子B1〜Bnの電圧値を検出する電圧検出回路を有しており、上述したように、フォトリレーR1〜RnのON/OFF状態を順次切換えることにより、選択された各蓄電素子B1〜Bnの電圧値を読み込む。ここで、電圧検出部42が有する電圧検出回路の構成を図2に示す。中点タップ付パルストランス(以下、単に「パルストランス」という)PTの一次側コイルの両端子は、それぞれ第1母線14及び第2母線16に接続されている。一方、パルストランスPTの二次側コイルの両端子は、それぞれダイオードD1及びダイオードD2を介してA/D変換器ADの入力端子に接続されている。また、パルストランスPTの中点タップは、A/D変換器ADのGND端子に接続されている。パルストランスPTを介して入力される蓄電素子B1〜Bnの電圧は、A/D変換器ADによってアナログ値からディジタル値に変換されて充電特性取得部44に出力される。   The voltage detection unit 42 has a voltage detection circuit that detects the voltage values of the storage elements B1 to Bn, and is selected by sequentially switching the ON / OFF states of the photorelays R1 to Rn as described above. The voltage value of each electrical storage element B1-Bn is read. Here, the configuration of the voltage detection circuit included in the voltage detection unit 42 is shown in FIG. Both terminals of the primary coil of the pulse transformer with a midpoint tap (hereinafter simply referred to as “pulse transformer”) PT are connected to the first bus 14 and the second bus 16, respectively. On the other hand, both terminals of the secondary coil of the pulse transformer PT are connected to the input terminal of the A / D converter AD via the diode D1 and the diode D2, respectively. The midpoint tap of the pulse transformer PT is connected to the GND terminal of the A / D converter AD. The voltages of the storage elements B1 to Bn input via the pulse transformer PT are converted from analog values to digital values by the A / D converter AD and output to the charging characteristic acquisition unit 44.

充電特性取得部44は、充電開始からの経過時間と蓄電素子B1〜Bnの電圧値との関係に基づいて、各蓄電素子B1〜Bnの充電特性を取得する。例えば、所定時間毎に電圧値を検出することにより、図3中に実線で示されるような電圧変化が充電中に検出された場合、該実線を近似式で近似することによって、蓄電素子B1〜Bnの充電特性を取得する。なお、近似アルゴリズムとしては、例えば、直線近似、指数近似、対数近似等の公知のアルゴリズムを用いることができる。なお、充電特性取得部44で取得された各蓄電素子B1〜Bnの充電特性は、充電開始状態設定部46に出力される。   The charging characteristic acquisition unit 44 acquires the charging characteristics of each of the power storage elements B1 to Bn based on the relationship between the elapsed time from the start of charging and the voltage values of the power storage elements B1 to Bn. For example, when a voltage change as shown by a solid line in FIG. 3 is detected during charging by detecting a voltage value at predetermined time intervals, the power storage elements B1 to B1 are approximated by approximating the solid line with an approximate expression. Obtain the charge characteristics of Bn. In addition, as an approximation algorithm, well-known algorithms, such as a linear approximation, an exponential approximation, a logarithmic approximation, can be used, for example. Note that the charging characteristics of each of the power storage elements B <b> 1 to Bn acquired by the charging characteristics acquisition unit 44 are output to the charging start state setting unit 46.

充電開始状態設定部46は、予め設定されている目標充電終了電圧(例えば4.2V)、及び充電特性取得部44で取得された充電特性に基づいて、蓄電素子毎に目標充電開始電圧を設定する。すなわち、充電開始状態設定部46は、組電池10の充電終了時に該組電池10を構成する全ての蓄電素子B1〜Bnの実電圧値が目標充電終了電圧と一致するように、蓄電素子B1〜Bn毎に目標充電開始電圧を設定する。より具体的には、所定の時間率(例えば3C)で充電した場合に充電特性(近似式)から予測される充電終了電圧と、目標充電終了電圧との偏差を充電前の電圧値に加算した値が目標充電開始電圧として設定される。   The charge start state setting unit 46 sets a target charge start voltage for each power storage element based on a preset target charge end voltage (for example, 4.2 V) and the charge characteristic acquired by the charge characteristic acquisition unit 44. To do. That is, the charging start state setting unit 46 is configured to store the storage elements B1 to B1 so that the actual voltage values of all the storage elements B1 to Bn constituting the assembled battery 10 coincide with the target charging end voltage when the charging of the assembled battery 10 is completed. A target charging start voltage is set for each Bn. More specifically, when charging is performed at a predetermined time rate (for example, 3C), the deviation between the charging end voltage predicted from the charging characteristics (approximate expression) and the target charging end voltage is added to the voltage value before charging. The value is set as the target charging start voltage.

図3に示される例では、充電前の電圧値が3.5(V)であり、時間率3Cで充電した場合に推定される充電終了電圧が4.0(V)であるため、目標充電終了電圧との偏差0.2(V)を充電前の電圧値3.5(V)に加算した値3.7(V)が目標充電開始電圧となる。なお、近似式を積分することにより求められる充電量と、目標充電終了電圧まで充電するために必要とされる充電量との偏差、すなわち充電終了時点で不足すると予測される充電量(図3中の斜線部の面積に相当)を目標補充電量として設定する構成としてもよい。   In the example shown in FIG. 3, the voltage value before charging is 3.5 (V), and the charging end voltage estimated when charging at a time rate of 3C is 4.0 (V). A value 3.7 (V) obtained by adding a deviation 0.2 (V) from the end voltage to a voltage value 3.5 (V) before charging is the target charging start voltage. Note that the deviation between the charge amount obtained by integrating the approximate expression and the charge amount required to charge up to the target charge end voltage, that is, the charge amount predicted to be insufficient at the end of charge (in FIG. 3 May be set as the target supplementary charge amount.

そして、ECU40は、フォトリレーR1〜Rn,R21〜R24、及びDC−DCコンバータ20を駆動し、各蓄電素子B1〜Bnの実電圧値が目標充電開始電圧と一致するように各蓄電素子B1〜Bnの補充電を行う。ここで、充電開始状態設定部46において、目標充電開始電圧に代えて目標補充電量が設定された場合には、該目標補充電量に応じて蓄電素子B1〜Bnに対する補充電が行われる。なお、各蓄電素子B1〜Bnを補充電することに代えて、各蓄電素子B1〜Bnを放電することにより、各蓄電素子B1〜Bnの実電圧値を目標充電開始電圧と一致させる構成としてもよい。補充電が終了した後、ECU40は、充電器30を駆動し、蓄電素子B1〜Bnの実電圧が目標充電終了電圧と一致するまで組電池10を充電する。   ECU 40 drives photorelays R1 to Rn, R21 to R24, and DC-DC converter 20, and each power storage element B1 to B1 so that the actual voltage value of each power storage element B1 to Bn matches the target charging start voltage. Supplementary charging of Bn is performed. Here, in the charge start state setting unit 46, when the target supplementary charge amount is set instead of the target charge start voltage, supplementary charging is performed on the storage elements B1 to Bn according to the target supplemental charge amount. In addition, instead of supplementarily charging each power storage element B1 to Bn, by discharging each power storage element B1 to Bn, the actual voltage value of each power storage element B1 to Bn may be matched with the target charging start voltage. Good. After the completion of the auxiliary charging, the ECU 40 drives the charger 30 and charges the assembled battery 10 until the actual voltages of the power storage elements B1 to Bn match the target charging end voltage.

次に、図4を参照して充電装置1の動作及び充電方法について説明する。図4は、充電装置1による充電処理の処理手順を示すフローチャートである。この処理は、主としてECU40によって行われるものであり、充電装置1の電源がオンされてからオフされるまでの間、所定のタイミングで繰り返し実行される。   Next, the operation of the charging device 1 and the charging method will be described with reference to FIG. FIG. 4 is a flowchart showing the processing procedure of the charging process by the charging apparatus 1. This process is mainly performed by the ECU 40, and is repeatedly executed at a predetermined timing from when the power supply of the charging apparatus 1 is turned on to when it is turned off.

ステップS100では、充電器30が駆動され、組電池10の充電が開始される。ここで、蓄電素子B1〜Bnの電圧検出値を安定させるため、充電方式としてはCC(定電流充電)が好ましい。   In step S100, the charger 30 is driven, and charging of the assembled battery 10 is started. Here, CC (constant current charging) is preferable as the charging method in order to stabilize the voltage detection values of the power storage elements B1 to Bn.

続くステップS102では、フォトリレーR1〜Rn+1、及びフォトリレーR11,R12が駆動され、各蓄電素子B1〜Bnの電圧値が順次検出される。なお、検出結果はメモリ(RAM)に記憶される。そして、いずれかの蓄電素子B1〜Bnの電圧値が予め定められている目標充電終了電圧と一致するまで充電が行われると、充電器30の駆動が停止され、組電池10の充電が終了する(ステップS104)。   In subsequent step S102, the photorelays R1 to Rn + 1 and the photorelays R11 and R12 are driven, and the voltage values of the power storage elements B1 to Bn are sequentially detected. The detection result is stored in a memory (RAM). Then, when charging is performed until the voltage value of any one of the power storage elements B1 to Bn matches a predetermined target charging end voltage, driving of the charger 30 is stopped and charging of the assembled battery 10 is ended. (Step S104).

組電池10の充電が終了した後、ステップS106では、充電開始からの経過時間と蓄電素子B1〜Bnの電圧値との関係に基づいて、各蓄電素子B1〜Bnの充電特性(近似式)が取得される。取得された各蓄電素子B1〜Bnの充電特性(近似式)はメモリに記憶される(ステップS108)。   After the charging of the assembled battery 10 is completed, in step S106, the charging characteristics (approximate expression) of each of the power storage elements B1 to Bn are based on the relationship between the elapsed time from the start of charging and the voltage values of the power storage elements B1 to Bn. To be acquired. The acquired charging characteristics (approximate equations) of the respective storage elements B1 to Bn are stored in the memory (step S108).

続いて、ステップS110では、組電池10に接続されている電動モータ等の電気負荷に対する放電が開始される。組電池10の放電が終了(ステップS112)した後、充電終了時の蓄電素子間の電圧偏差が所定のしきい値以上であるか否かについての判断が行われる(ステップS114)。ここで、電圧偏差がしきい値未満である場合には、補充電が行われることなく、ステップ100に処理が移動し、再び組電池10の充電が開始される。一方、電圧偏差がしきい値以上であるときには、ステップS116に処理が移行する。   Subsequently, in step S110, discharge for an electric load such as an electric motor connected to the assembled battery 10 is started. After the discharge of the assembled battery 10 is completed (step S112), a determination is made as to whether or not the voltage deviation between the storage elements at the end of charging is greater than or equal to a predetermined threshold value (step S114). Here, if the voltage deviation is less than the threshold value, the auxiliary battery is not charged, the process moves to step 100, and charging of the assembled battery 10 is started again. On the other hand, when the voltage deviation is equal to or greater than the threshold value, the process proceeds to step S116.

ステップS116では、組電池10の充電終了時に該組電池10を構成する全ての蓄電素子B1〜Bnの実電圧値が目標充電終了電圧と一致するように、予め設定されている目標充電終了電圧及びステップS106で取得された充電特性(近似式)に基づいて、蓄電素子B1〜Bn毎に目標充電開始電圧が設定される。より具体的には、所定の時間率で充電した場合に充電特性(近似式)から予測される充電終了電圧と、目標充電終了電圧との偏差を充電前の電圧値に加算した値が目標充電開始電圧として設定される。なお、ステップS116では、近似式を積分することにより求められる充電量と、目標充電終了電圧まで充電するために必要とされる充電量との偏差、すなわち充電終了時点で不足すると予測される充電量を目標補充電量として設定してもよい。   In step S116, when the charging of the assembled battery 10 is finished, the target charging end voltage that is set in advance so that the actual voltage values of all the power storage elements B1 to Bn constituting the assembled battery 10 match the target charging end voltage, and Based on the charging characteristics (approximate expression) acquired in step S106, a target charging start voltage is set for each of the power storage elements B1 to Bn. More specifically, the target charge is a value obtained by adding a deviation between the charge end voltage predicted from the charge characteristics (approximate expression) and the target charge end voltage to the voltage value before charging when charging at a predetermined time rate. Set as starting voltage. In step S116, the deviation between the charge amount obtained by integrating the approximate expression and the charge amount required for charging up to the target charge end voltage, that is, the charge amount predicted to be insufficient at the end of charge. May be set as the target supplementary charge amount.

次に、ステップS118では、フォトリレーR1〜Rn+1,R21〜R24、及びDC−DCコンバータ20が駆動され、各蓄電素子B1〜Bnの実電圧値がそれぞれの目標充電開始電圧と一致するまで蓄電素子B1〜Bn毎に補充電が行われる。なお、ステップS116において、目標充電開始電圧に代えて目標補充電量が設定された場合、ステップS118,S120では、目標補充電量に応じて蓄電素子B1〜Bnに対する補充電が行われる。   Next, in step S118, the photorelays R1 to Rn + 1, R21 to R24, and the DC-DC converter 20 are driven, and the storage elements until the actual voltage values of the storage elements B1 to Bn match the respective target charging start voltages. Supplementary charging is performed for each of B1 to Bn. In step S116, when the target supplementary charge amount is set instead of the target charge start voltage, in steps S118 and S120, supplementary charging is performed on power storage elements B1 to Bn according to the target supplementary charge amount.

各蓄電素子B1〜Bnの実電圧値が目標充電開始電圧と一致することにより補充電が終了(ステップS120)した後、ステップS100に処理が移動し、再び組電池10の充電が開始される。そして、上述したように、蓄電素子B1〜Bnの電圧値が目標充電終了電圧と一致するまで組電池10の充電が行われる。その後、上述したステップS100〜S120が繰り返して実行される。   After the supplementary charging is completed (step S120) when the actual voltage values of the storage elements B1 to Bn match the target charging start voltage, the process moves to step S100, and charging of the assembled battery 10 is started again. And as above-mentioned, the assembled battery 10 is charged until the voltage value of electrical storage element B1-Bn corresponds with the target charge end voltage. Thereafter, the above-described steps S100 to S120 are repeatedly executed.

ここで、蓄電素子の補充電を行わずに組電池を充電したときの各蓄電素子の充電特性及び目標補充電量の一例を図5に示す。この例では、いずれかの蓄電素子の電圧値が4.15(V)となるまで時間率3Cで組電池の定電流充電を行った。図5の上部に示されるように、蓄電素子の補充電を行っていない場合、充電開始時の電圧値が揃っているにもかかわらず、充電終了時における各蓄電素子の電圧値にばらつきが生じている。また、図5の下部に示される目標補充電量は、20秒毎に各蓄電素子の充電特性を直線近似して近似式を得るとともに、この近似式から求められる蓄電素子の最大電圧値と同じ電圧値とするために必要な充電量をプロットしたものである。このようにして取得された充電終了時点での各蓄電素子の目標補充電量(すなわち、目標充電終了電圧に対する目標補充電量)は、0.00(Ah)、約0.055(Ah)、約0.091(Ah)であった。   Here, FIG. 5 shows an example of the charging characteristics and the target supplementary charge amount of each storage element when the assembled battery is charged without performing the auxiliary charge of the storage element. In this example, the battery pack was subjected to constant current charging at a time rate of 3 C until the voltage value of any of the power storage elements reached 4.15 (V). As shown in the upper part of FIG. 5, when the charging of the storage element is not performed, the voltage value of each storage element at the end of charging varies even though the voltage value at the start of charging is uniform. ing. Further, the target supplementary charge amount shown in the lower part of FIG. 5 is obtained by approximating the charging characteristics of each storage element linearly every 20 seconds to obtain an approximate expression, and the same voltage as the maximum voltage value of the storage element obtained from this approximate expression. This is a plot of the amount of charge required to obtain a value. The target supplementary charge amount (that is, the target supplementary charge amount with respect to the target charge end voltage) of each power storage element at the end of charge acquired in this way is 0.00 (Ah), about 0.055 (Ah), and about 0. 091 (Ah).

次に、図5に示された目標補充電量だけ各蓄電素子に補充電を行った後に組電池を充電したときの充電結果を図6に示す。ここでは、200mAの定電流で各蓄電素子に対して補充電を行った。すなわち、目標補充電量が0.055(Ah)である蓄電素子に対しては、0.055/0.2×3600=990秒間、補充電を行った。また、目標補充電量が0.091(Ah)である蓄電素子に対しては、0.091/0.2×3600=1638秒間、補充電を行った。このように組電池の充電前に補充電を行った場合には、充電終了時点において全ての蓄電素子の電圧値が4.15V(目標充電終了電圧)で揃った。以上のことから、本実施形態の有効性が確認された。   Next, FIG. 6 shows a charging result when the assembled battery is charged after the auxiliary charging is performed on each power storage element by the target auxiliary charging amount shown in FIG. Here, supplementary charging was performed on each power storage element with a constant current of 200 mA. That is, the auxiliary charge was performed for 0.055 / 0.2 × 3600 = 990 seconds for the power storage element with the target auxiliary charge amount of 0.055 (Ah). Further, for the power storage element having a target supplementary charge amount of 0.091 (Ah), supplementary charge was performed for 0.091 / 0.2 × 3600 = 1638 seconds. When supplementary charging was performed before charging the assembled battery in this way, the voltage values of all the storage elements were aligned at 4.15 V (target charging end voltage) at the end of charging. From the above, the effectiveness of the present embodiment was confirmed.

本実施形態によれば、目標充電終了電圧、及び充電中の電圧値変化から求められた各蓄電素子B1〜Bnの充電特性に基づいて、蓄電素子B1〜Bn毎に目標充電開始電圧(又は目標補充電量)が設定されるとともに、設定された目標充電開始電圧(又は目標補充電量)に基づいて各蓄電素子B1〜Bnの電圧値(又は充電量)が調節された後に組電池10が充電される。すなわち、目標充電終了状態及び各蓄電素子B1〜Bnの充電特性を考慮して、各蓄電素子B1〜Bnの電圧値(又は充電量)が組電池10の充電開始前に調節される。そのため、充電終了時点において全ての蓄電素子B1〜Bnの電圧値を目標充電終了電圧に揃えることが可能となる。また、本実施形態によれば、組電池10の充電に先立ち各蓄電素子B1〜Bnの電圧値(又は充電量)の調節が独立して行われるため、回路の大型化や高コスト化を招くことなく急速充電にも対応することができる。   According to the present embodiment, based on the target charging end voltage and the charging characteristics of each of the storage elements B1 to Bn obtained from the change in voltage value during charging, the target charge start voltage (or target) for each of the storage elements B1 to Bn. And the battery pack 10 is charged after the voltage values (or charge amounts) of the respective storage elements B1 to Bn are adjusted based on the set target charge start voltage (or target supplement charge amount). The That is, the voltage value (or charge amount) of each power storage element B1 to Bn is adjusted before the battery pack 10 starts charging in consideration of the target charging end state and the charging characteristics of each power storage element B1 to Bn. Therefore, the voltage values of all the storage elements B1 to Bn can be made equal to the target charging end voltage at the end of charging. Further, according to the present embodiment, the voltage values (or charge amounts) of the respective storage elements B1 to Bn are independently adjusted prior to the charging of the assembled battery 10, which leads to an increase in circuit size and cost. It can also handle quick charging without any problems.

以上のように、本実施形態によれば、回路の大型化や高コスト化を招くことなく、急速充電にも、組電池10を構成する各蓄電素子B1〜Bnの電圧ばらつきを低減することが可能となるため、組電池10の寿命向上が図られる。   As described above, according to the present embodiment, it is possible to reduce the voltage variation of each of the power storage elements B1 to Bn constituting the assembled battery 10 even for rapid charging without causing an increase in circuit size and cost. Therefore, the life of the assembled battery 10 can be improved.

以上、本発明の実施の形態について説明したが、本発明は、上記実施形態に限定されるものではなく種々の変形が可能である。例えば、上記実施形態では、極性転換マトリックス22を用いて第1母線14,第2母線16に出力される電圧の極性を切換えたが、ECU40からの制御信号により出力極性が切換えられる絶縁型DC−DCコンバータを用いることにより第1母線14,第2母線16に出力される電圧の極性を切換える構成とすることもできる。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made. For example, in the above embodiment, the polarity of the voltage output to the first bus bar 14 and the second bus bar 16 is switched using the polarity conversion matrix 22, but the insulation type DC− whose output polarity is switched by the control signal from the ECU 40. A configuration in which the polarity of the voltage output to the first bus bar 14 and the second bus bar 16 is switched by using a DC converter can also be employed.

また、上記実施形態では、スイッチング素子としてフォトリレーを用いたが、フォトリレーに代えて、例えば、トランジスタやFETなどの半導体スイッチング素子や機械式リレー等を用いることもできる。   Moreover, in the said embodiment, although the photo relay was used as a switching element, it replaces with a photo relay and can also use semiconductor switching elements, a mechanical relay, etc., such as a transistor and FET, for example.

実施形態に係る充電装置の全体構成を示す図である。It is a figure which shows the whole structure of the charging device which concerns on embodiment. 実施形態に係る充電装置を構成する電子制御装置が有する電圧検出回路の構成を示す図である。It is a figure which shows the structure of the voltage detection circuit which the electronic control apparatus which comprises the charging device which concerns on embodiment has. 蓄電素子の充電特性の取得方法、及び補充電方法を説明するための図である。It is a figure for demonstrating the acquisition method of the charge characteristic of an electrical storage element, and an auxiliary charge method. 実施形態に係る充電装置による充電処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the charging process by the charging device which concerns on embodiment. 蓄電素子の補充電を行わずに組電池を充電したときの各蓄電素子の充電特性及び目標補充電量の一例を示すグラフである。It is a graph which shows an example of the charge characteristic and target supplementary charge amount of each electrical storage element when an assembled battery is charged, without performing an auxiliary charge of an electrical storage element. 蓄電素子の補充電を行った後に組電池を充電したときの充電結果の一例を示すグラフである。It is a graph which shows an example of a charge result when charging an assembled battery after performing auxiliary charge of an electrical storage element.

符号の説明Explanation of symbols

1・充電装置、10・組電池、12・スイッチマトリックス、20・DC−DCコンバータ、22・極性転換マトリックス、30・充電器、40・ECU、42・電圧検出部、44・充電特性取得部、46・充電開始状態設定部、B1,B2,B3,B4,Bn−3,Bn−2,Bn−1,Bn・蓄電素子、R1,R2,R3,R4,Rn−2,Rn−1,Rn,Rn+1・フォトリレー、R11,R12,R21,R22,R23,R24・フォトリレー。   1. Charger, 10. Battery pack, 12. Switch matrix, 20. DC-DC converter, 22. Polarity conversion matrix, 30. Charger, 40. ECU, 42. Voltage detector, 44. Charge characteristics acquisition unit, 46. Charging start state setting section, B1, B2, B3, B4, Bn-3, Bn-2, Bn-1, Bn, storage element, R1, R2, R3, R4, Rn-2, Rn-1, Rn Rn + 1, photo relay, R11, R12, R21, R22, R23, R24, photo relay.

Claims (10)

複数の蓄電素子が直列に接続されて構成される組電池の充電装置であって、
前記蓄電素子それぞれの電圧値を検出する電圧検出手段と、
前記電圧検出手段により検出された各蓄電素子の充電中の電圧値変化に基づいて、各蓄電素子の充電特性を取得する充電特性取得手段と、
予め設定されている充電終了時の目標充電状態、及び前記充電特性取得手段により取得された充電特性に基づいて、前記蓄電素子毎に充電開始時の目標充電状態を設定する充電開始状態設定手段と、
前記充電開始状態設定手段により設定された充電開始時の目標充電状態に基づいて、前記各蓄電素子の充電状態を調節する充電状態調節手段と、
前記充電状態調節手段により前記各蓄電素子の充電状態が調節された後、前記組電池の充電を実行する充電手段と、を備えることを特徴とする充電装置。
A battery pack charging device configured by connecting a plurality of power storage elements in series,
Voltage detection means for detecting the voltage value of each of the storage elements;
Based on the voltage value change during charging of each storage element detected by the voltage detection means, charging characteristic acquisition means for acquiring the charging characteristics of each storage element;
A charge start state setting means for setting a target charge state at the start of charging for each power storage element based on a preset target charge state at the end of charge and a charge characteristic acquired by the charge characteristic acquisition means; ,
Based on the target charging state at the start of charging set by the charging start state setting unit, the charging state adjusting unit that adjusts the charging state of each power storage element;
A charging device comprising: charging means for performing charging of the assembled battery after the charge state of each power storage element is adjusted by the charge state adjusting means.
前記充電開始状態設定手段は、前記組電池の充電終了時に該組電池を構成する全ての蓄電素子の充電状態が充電終了時の目標充電状態と一致するように、充電開始時の目標充電状態を設定することを特徴とする請求項1に記載の充電装置。   The charging start state setting means sets the target charging state at the start of charging so that the charging state of all the power storage elements constituting the assembled battery coincides with the target charging state at the end of charging at the end of charging of the assembled battery. The charging device according to claim 1, wherein the charging device is set. 前記充電開始状態設定手段は、充電終了時の目標電圧値、及び前記充電特性に基づいて、前記蓄電素子毎に充電開始時の目標電圧値を設定し、
前記充電状態調節手段は、前記各蓄電素子の実電圧値と、充電開始時の目標電圧値とが一致するように前記各蓄電素子の補充電又は放電を行うことを特徴とする請求項1又は2に記載の充電装置。
The charging start state setting means sets a target voltage value at the start of charging for each power storage element based on the target voltage value at the end of charging and the charging characteristics,
The charge state adjusting means performs supplementary charging or discharging of each storage element so that an actual voltage value of each storage element matches a target voltage value at the start of charging. 2. The charging device according to 2.
前記充電開始状態設定手段は、充電終了時の目標電圧値、及び前記充電特性に基づいて、前記蓄電素子毎に充電開始前の目標補充電量を設定し、
前記充電状態調節手段は、前記目標補充電量に応じて、前記各蓄電素子の補充電又は放電を行うことを特徴とする請求項1又は2に記載の充電装置。
The charging start state setting means sets a target supplementary charging amount before starting charging for each power storage element based on the target voltage value at the end of charging and the charging characteristics,
3. The charging device according to claim 1, wherein the charging state adjusting unit performs auxiliary charging or discharging of each power storage element according to the target auxiliary charging amount.
前記蓄電素子は、リチウムイオン電池であることを特徴とする請求項1〜4のいずれか1項に記載の充電装置。   The charging device according to claim 1, wherein the power storage element is a lithium ion battery. 複数の蓄電素子が直列に接続されて構成される組電池の充電方法であって、
前記蓄電素子それぞれの電圧値を検出する電圧検出ステップと、
前記電圧検出ステップにおいて検出された各蓄電素子の充電中の電圧値変化に基づいて、各蓄電素子の充電特性を取得する充電特性取得ステップと、
予め設定されている充電終了時の目標充電状態、及び前記充電特性取得ステップにおいて取得された充電特性に基づいて、前記蓄電素子毎に充電開始時の目標充電状態を設定する充電開始状態設定ステップと、
前記充電開始状態設定ステップにおいて設定された充電開始時の目標充電状態に基づいて、前記各蓄電素子の充電状態を調節する充電状態調節ステップと、
前記充電状態調節ステップにおいて前記各蓄電素子の充電状態が調節された後、前記組電池の充電を実行する充電ステップと、を備えることを特徴とする充電方法。
A battery pack charging method comprising a plurality of power storage elements connected in series,
A voltage detection step of detecting a voltage value of each of the storage elements;
Based on the voltage value change during charging of each storage element detected in the voltage detection step, a charging characteristic acquisition step for acquiring the charging characteristics of each storage element;
A charge start state setting step for setting a target charge state at the start of charge for each power storage element based on a preset target charge state at the end of charge and the charge characteristics acquired in the charge characteristic acquisition step; ,
A charge state adjustment step for adjusting the charge state of each of the power storage elements based on the target charge state at the start of charge set in the charge start state setting step;
And a charging step of performing charging of the assembled battery after the charging state of each power storage element is adjusted in the charging state adjusting step.
前記充電開始状態設定ステップは、前記組電池の充電終了時に該組電池を構成する全ての蓄電素子の充電状態が充電終了時の目標充電状態と一致するように、充電開始時の目標充電状態を設定することを特徴とする請求項6に記載の充電方法。   In the charging start state setting step, the target charge state at the start of charging is set so that the charge states of all the power storage elements constituting the assembled battery coincide with the target charge state at the end of charging at the end of charging of the assembled battery. The charging method according to claim 6, wherein the charging method is set. 前記充電開始状態設定ステップは、充電終了時の目標電圧値、及び前記充電特性に基づいて、前記蓄電素子毎に充電開始時の目標電圧値を設定し、
前記充電状態調節ステップは、前記各蓄電素子の実電圧値と、充電開始時の目標電圧値とが一致するように前記各蓄電素子の補充電又は放電を行うことを特徴とする請求項6又は7に記載の充電方法。
The charging start state setting step sets a target voltage value at the start of charging for each power storage element based on the target voltage value at the end of charging and the charging characteristics,
The charge state adjusting step performs supplementary charging or discharging of each of the storage elements so that an actual voltage value of each of the storage elements matches a target voltage value at the start of charging. 8. The charging method according to 7.
前記充電開始状態設定ステップは、充電終了時の目標電圧値、及び前記充電特性に基づいて、前記蓄電素子毎に充電開始前の目標補充電量を設定し、
前記充電状態調節ステップは、前記目標補充電量に応じて、前記各蓄電素子の補充電又は放電を行うことを特徴とする請求項6又は7に記載の充電方法。
In the charging start state setting step, based on the target voltage value at the end of charging and the charging characteristics, a target supplementary charging amount before starting charging is set for each power storage element,
8. The charging method according to claim 6, wherein in the charging state adjustment step, each of the power storage elements is subjected to auxiliary charging or discharging according to the target auxiliary charging amount.
前記蓄電素子は、リチウムイオン電池であることを特徴とする請求項6〜9のいずれか1項に記載の充電方法。   The charging method according to claim 6, wherein the power storage element is a lithium ion battery.
JP2007273487A 2007-10-22 2007-10-22 Charging apparatus and charging method Active JP4986806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007273487A JP4986806B2 (en) 2007-10-22 2007-10-22 Charging apparatus and charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007273487A JP4986806B2 (en) 2007-10-22 2007-10-22 Charging apparatus and charging method

Publications (2)

Publication Number Publication Date
JP2009106018A true JP2009106018A (en) 2009-05-14
JP4986806B2 JP4986806B2 (en) 2012-07-25

Family

ID=40707185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007273487A Active JP4986806B2 (en) 2007-10-22 2007-10-22 Charging apparatus and charging method

Country Status (1)

Country Link
JP (1) JP4986806B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102458A1 (en) * 2010-02-19 2011-08-25 本田技研工業株式会社 Power supply system and electric vehicle
WO2011108201A1 (en) * 2010-03-01 2011-09-09 株式会社ピューズ Assembled battery
CN104124481A (en) * 2013-04-26 2014-10-29 广州汽车集团股份有限公司 Charge control method and charge control system for electric automobiles
JP2019161887A (en) * 2018-03-14 2019-09-19 株式会社東芝 Storage battery system and control method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032936A (en) * 1996-07-12 1998-02-03 Tokyo R & D:Kk Control system and method for power supply
JP2002170599A (en) * 2000-11-30 2002-06-14 Shin Kobe Electric Mach Co Ltd Monitor, controller, and battery module
JP2003157908A (en) * 2001-09-10 2003-05-30 Ntt Power & Building Facilities Inc Charging device for lithium ion secondary cell, and charging method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032936A (en) * 1996-07-12 1998-02-03 Tokyo R & D:Kk Control system and method for power supply
JP2002170599A (en) * 2000-11-30 2002-06-14 Shin Kobe Electric Mach Co Ltd Monitor, controller, and battery module
JP2003157908A (en) * 2001-09-10 2003-05-30 Ntt Power & Building Facilities Inc Charging device for lithium ion secondary cell, and charging method of the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102458A1 (en) * 2010-02-19 2011-08-25 本田技研工業株式会社 Power supply system and electric vehicle
JPWO2011102458A1 (en) * 2010-02-19 2013-06-17 本田技研工業株式会社 Power supply system and electric vehicle
WO2011108201A1 (en) * 2010-03-01 2011-09-09 株式会社ピューズ Assembled battery
JP2011182558A (en) * 2010-03-01 2011-09-15 Pues Corp Assembled battery
TWI566497B (en) * 2010-03-01 2017-01-11 Pues股份有限公司 Battery pack
CN104124481A (en) * 2013-04-26 2014-10-29 广州汽车集团股份有限公司 Charge control method and charge control system for electric automobiles
CN104124481B (en) * 2013-04-26 2016-08-10 广州汽车集团股份有限公司 The charge control method of a kind of electric automobile and system
JP2019161887A (en) * 2018-03-14 2019-09-19 株式会社東芝 Storage battery system and control method of the same
JP7086651B2 (en) 2018-03-14 2022-06-20 株式会社東芝 Storage battery system and control method of storage battery system

Also Published As

Publication number Publication date
JP4986806B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP3389670B2 (en) Series connection circuit of secondary battery
JP5919560B2 (en) Equalizing circuit, power supply system, and vehicle
US8674659B2 (en) Charge control device and vehicle equipped with the same
WO2011061902A1 (en) Charge control circuit, cell pack, and charging system
JP2006246646A (en) Equalization method and its device
JP2008206259A (en) Charging system, charger, and battery pack
JP5122214B2 (en) Battery pack, charging device, and charging system
US20100237832A1 (en) Charging method and charging system
EP2685592A1 (en) Balance correction device and electricity storage system
JP4116589B2 (en) Capacity equalization device
EP2528188A1 (en) Rechargeable battery power supply starter and cell balancing apparatus
JP2004120871A (en) Method of regulating charge state of battery pack, and its device
WO2013154156A1 (en) Cell equalization device and method
JP6541310B2 (en) Module control device, balance correction system and storage system
JP2009033843A (en) Apparatus and method for charging
JP6102746B2 (en) Storage battery device and charge control method
JP4512062B2 (en) Voltage balance adjustment method for assembled battery with multiple lithium ion secondary batteries connected in series
JP4986806B2 (en) Charging apparatus and charging method
JPH10257683A (en) Charging-discharging circuit for combined batteries
JP2006246645A (en) Equalization method and its device
WO2020049943A1 (en) Secondary battery temperature-raising device, computer program, and secondary battery temperature-raising method
JP2009296699A (en) Charging control circuit, power supply, and charging control method
WO2013114757A1 (en) Battery equalization device and method
EP3649719A1 (en) Battery management
CN110816311B (en) Method for operating a battery system and electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120424

R150 Certificate of patent or registration of utility model

Ref document number: 4986806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250