JP7086651B2 - Storage battery system and control method of storage battery system - Google Patents

Storage battery system and control method of storage battery system Download PDF

Info

Publication number
JP7086651B2
JP7086651B2 JP2018046571A JP2018046571A JP7086651B2 JP 7086651 B2 JP7086651 B2 JP 7086651B2 JP 2018046571 A JP2018046571 A JP 2018046571A JP 2018046571 A JP2018046571 A JP 2018046571A JP 7086651 B2 JP7086651 B2 JP 7086651B2
Authority
JP
Japan
Prior art keywords
battery
battery cell
voltage
capacity
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018046571A
Other languages
Japanese (ja)
Other versions
JP2019161887A (en
Inventor
弘樹 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2018046571A priority Critical patent/JP7086651B2/en
Publication of JP2019161887A publication Critical patent/JP2019161887A/en
Application granted granted Critical
Publication of JP7086651B2 publication Critical patent/JP7086651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明の実施形態は、蓄電池システムおよび蓄電池システムの制御方法に関する。 Embodiments of the present invention relate to a storage battery system and a control method for the storage battery system.

蓄電池システムが備える蓄電パックは、必要な出力電圧を得るために、直列に接続された複数の電池セルで構成されている。複数の電池セルの中の何れか1個の電池セルが過充電状態もしくは過放電状態になると、発煙発火を生じる危険が高まる。これを防止するために、電池セルそれぞれの充電状態を監視し、電池セルが過充電状態及び過放電状態になることを回避するための蓄電池システムが開発されている。 The storage pack included in the storage battery system is composed of a plurality of battery cells connected in series in order to obtain the required output voltage. When any one of the plurality of battery cells is in an overcharged state or an overdischarged state, the risk of smoke and ignition increases. In order to prevent this, a storage battery system has been developed for monitoring the charge state of each battery cell and preventing the battery cell from becoming an overcharged state or an overdischarged state.

特開2008-125297号公報Japanese Unexamined Patent Publication No. 2008-125297

従来の蓄電池システムは、複数の電池セルの何れかの出力電圧が過充電状態を示す電圧になると充電を停止する。また、複数の電池セルの何れかの出力電圧が過放電状態を示す電圧になると、蓄電池システムから負荷装置を切り離して放電を停止する。 The conventional storage battery system stops charging when the output voltage of any of the plurality of battery cells reaches a voltage indicating an overcharged state. Further, when the output voltage of any of the plurality of battery cells reaches a voltage indicating an over-discharged state, the load device is disconnected from the storage battery system and the discharge is stopped.

複数の電池セルの放電深度特性には、個体差がある。放電深度特性とは、電池セルに蓄えられている電気エネルギーと出力電圧との関係を表す特性である。電池セルごとに放電深度特性が異なれば、過充電状態となる電圧及び過放電状態となる電圧も電池セルごとに異なることになる。 There are individual differences in the discharge depth characteristics of a plurality of battery cells. The discharge depth characteristic is a characteristic that represents the relationship between the electric energy stored in the battery cell and the output voltage. If the discharge depth characteristic is different for each battery cell, the voltage in the overcharged state and the voltage in the overdischarged state will also be different for each battery cell.

放電深度特性の異なる複数の電池セルのそれぞれに同じ量の電気エネルギーを充電した場合、電池セルの電圧は容量が小さいほど大きく上昇する。また、同じ量の電気エネルギーを放電した場合、電池セルの電圧は容量が小さいほど大きく低下する。従来の蓄電池システムは、複数の電池セルの中の1個の電池セルが過充電状態になると充電を停止し、複数の電池セルの中の1個の電池セルが過放電状態になると放電を停止する。したがって、蓄電池システムが備える電池パックの実行容量は、容量の最も小さい電池セルの容量で決まることになる。したがって、電池パックの実行容量は、複数の電池セルの平均容量よりも小さくなる。 When the same amount of electric energy is charged to each of a plurality of battery cells having different discharge depth characteristics, the voltage of the battery cells increases greatly as the capacity is smaller. Further, when the same amount of electric energy is discharged, the voltage of the battery cell decreases greatly as the capacity becomes smaller. In a conventional storage battery system, charging is stopped when one battery cell in a plurality of battery cells is in an overcharged state, and discharge is stopped when one battery cell in a plurality of battery cells is in an overdischarged state. do. Therefore, the execution capacity of the battery pack included in the storage battery system is determined by the capacity of the battery cell having the smallest capacity. Therefore, the running capacity of the battery pack is smaller than the average capacity of the plurality of battery cells.

本発明は、上述の事情の下になされたもので、電池パックの実行容量を増大することを課題とする。 The present invention has been made under the above-mentioned circumstances, and an object of the present invention is to increase the execution capacity of a battery pack.

上記課題を解決するため、本実施形態に係る蓄電池システムは、直列に接続された複数の電池セルを備える電池パックと、複数の電池セルそれぞれを個別に充電する充電器と、充電器を制御して複数の電池セルごとに充電を行う制御部と、を備える。制御部は、複数の電池セルそれぞれの放電深度特性を表す関数を作成する関数作成部と、関数に基づいて、電池セルそれぞれの充電開始電圧及び充電終了電圧を設定する動作範囲設定部と、を備える。動作範囲設定部は、電池パックの定格電圧の範囲と電池パックから電気エネルギーの供給を受ける負荷装置の動作電圧の範囲との関係で分類された装置タイプを選択する装置タイプ選択部と、装置タイプ及び関数に基づいて、電池セルの充電を開始する充電開始電圧を設定する充電開始電圧設定部と、装置タイプ及び関数に基づいて、電池セルの充電を終了する充電終了電圧を設定する充電終了電圧設定部と、を備える。 In order to solve the above problems, the storage battery system according to the present embodiment controls a battery pack including a plurality of battery cells connected in series, a charger for individually charging each of the plurality of battery cells, and a charger. It is provided with a control unit for charging each of a plurality of battery cells. The control unit includes a function creation unit that creates a function representing the discharge depth characteristics of each of the plurality of battery cells, and an operating range setting unit that sets the charge start voltage and charge end voltage of each battery cell based on the function. Be prepared. The operating range setting unit is a device type selection unit that selects a device type classified according to the relationship between the rated voltage range of the battery pack and the operating voltage range of the load device that receives electrical energy from the battery pack, and the device type. And the charge start voltage setting unit that sets the charge start voltage that starts charging the battery cell based on the function, and the charge end voltage that sets the charge end voltage that ends the charge of the battery cell based on the device type and function. It is equipped with a setting unit.

実施形態に係る蓄電システムの構成図である。It is a block diagram of the power storage system which concerns on embodiment. 電池パックの放電深度特性について説明するための図である。It is a figure for demonstrating the discharge depth characteristic of a battery pack. 電池セルの放電深度特性について説明するための図である。It is a figure for demonstrating the discharge depth characteristic of a battery cell. 実施形態に係る充電器の構成図である。It is a block diagram of the charger which concerns on embodiment. 実施形態に係る過充電検出部の構成図である。It is a block diagram of the overcharge detection part which concerns on embodiment. 実施形態に係る過放電検出部の構成図である。It is a block diagram of the over discharge detection part which concerns on embodiment. 実施形態に係る電圧調整部の構成図である。It is a block diagram of the voltage adjustment part which concerns on embodiment. 実施形態に係る制御部の構成図である。It is a block diagram of the control part which concerns on embodiment. 実施形態に係る関数作成部について説明するための図である。It is a figure for demonstrating the function creation part which concerns on embodiment. 実施形態に係る閾値設定部について説明するための図である。It is a figure for demonstrating the threshold value setting part which concerns on embodiment. 実施形態に係る動作範囲設定部の構成図である。It is a block diagram of the operation range setting part which concerns on embodiment. 実施形態に係る装置タイプ選択部について説明するための図である。It is a figure for demonstrating the apparatus type selection part which concerns on embodiment. 実施形態に係る動作範囲設定部について説明するための図である。It is a figure for demonstrating the operation range setting part which concerns on embodiment. 実施形態に係る動作範囲設定部について説明するための図である。It is a figure for demonstrating the operation range setting part which concerns on embodiment. 実施形態に係る動作範囲設定部について説明するための図である。It is a figure for demonstrating the operation range setting part which concerns on embodiment. 実施形態に係る動作範囲設定部について説明するための図である。It is a figure for demonstrating the operation range setting part which concerns on embodiment. 実施形態に係る動作範囲設定部について説明するための図である。It is a figure for demonstrating the operation range setting part which concerns on embodiment. 実施形態に係る動作範囲設定部について説明するための図である。It is a figure for demonstrating the operation range setting part which concerns on embodiment. 実施形態に係る動作範囲設定部について説明するための図である。It is a figure for demonstrating the operation range setting part which concerns on embodiment. 実施形態に係る動作範囲設定部について説明するための図である。It is a figure for demonstrating the operation range setting part which concerns on embodiment.

以下、本発明の実施形態を、図面を参照して説明する。本実施形態に係る蓄電池システムは、車両、船舶、航空機、家電機器等に用いられる。図1は、実施形態に係る蓄電池システム100の構成図である。蓄電池システム100は、内蔵する電池パック10から負荷装置200に電気エネルギーを供給する。負荷装置200は、モーター、空調装置、照明装置、携帯端末等の電気エネルギーを消費する電気機器である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The storage battery system according to this embodiment is used for vehicles, ships, aircraft, home appliances and the like. FIG. 1 is a configuration diagram of a storage battery system 100 according to an embodiment. The storage battery system 100 supplies electric energy to the load device 200 from the built-in battery pack 10. The load device 200 is an electric device that consumes electric energy, such as a motor, an air conditioner, a lighting device, and a mobile terminal.

図1に示すように、蓄電池システム100は、電池パック10、充電器20、過充電検出部30、過放電検出部40、電圧調整部50、電流センサ60、遮断器70、制御部80を備える。 As shown in FIG. 1, the storage battery system 100 includes a battery pack 10, a charger 20, an overcharge detection unit 30, an overdischarge detection unit 40, a voltage adjustment unit 50, a current sensor 60, a circuit breaker 70, and a control unit 80. ..

電池パック10は、複数の電池セルC1~Cnを直列に接続して構成されている。電池セルC1~Cnは、リチウムイオン電池、鉛蓄電池等で構成されている。 The battery pack 10 is configured by connecting a plurality of battery cells C1 to Cn in series. The battery cells C1 to Cn are composed of a lithium ion battery, a lead storage battery, and the like.

図2に、電池パック10の放電深度特性を表すグラフを示す。縦軸は、電池パック10の出力電圧である。横軸は、放電深度である。放電深度0Ah時の電池パック10の出力電圧を満充電電圧ということとする。例えば、満充電状態から15Ahの電気エネルギーが放電されると、放電深度は15Ahとなる。図2に示す例では、放電深度15Ah時の電池パック10の出力電圧は、約27.4Vである。 FIG. 2 shows a graph showing the discharge depth characteristics of the battery pack 10. The vertical axis is the output voltage of the battery pack 10. The horizontal axis is the discharge depth. The output voltage of the battery pack 10 when the discharge depth is 0 Ah is defined as the full charge voltage. For example, when 15 Ah of electrical energy is discharged from a fully charged state, the discharge depth becomes 15 Ah. In the example shown in FIG. 2, the output voltage of the battery pack 10 at a discharge depth of 15 Ah is about 27.4 V.

図3に、電池パック10を構成する電池セルC1~Cnの放電深度特性を表すグラフを示す。製造バラツキや経年劣化等のばらつきにより、電池セルC1~Cnの放電深度特性は一般には異なった特性になる。電池パック10は、図3に示すように放電深度特性が異なる複数の電池セルを直列に接続して構成されている。 FIG. 3 shows a graph showing the discharge depth characteristics of the battery cells C1 to Cn constituting the battery pack 10. The discharge depth characteristics of the battery cells C1 to Cn are generally different due to variations in manufacturing, deterioration over time, and the like. As shown in FIG. 3, the battery pack 10 is configured by connecting a plurality of battery cells having different discharge depth characteristics in series.

充電器20は、複数の電池セルC1~Cnそれぞれを個別に充電する。図4は、充電器20の構成図である。充電器20は、電池セルの数と同数の定電流源21、電流センサ22、電圧センサ23を備える。電流センサ22は、直流電流計であり、定電流源21から供給される充電電流を測定する。電流センサ22は、測定したデータを制御部80に供給する。電圧センサ23は、直流電圧計であり、電池セルの電圧を測定する。電圧センサ23は、測定したデータを制御部80に供給する。 The charger 20 individually charges each of the plurality of battery cells C1 to Cn. FIG. 4 is a block diagram of the charger 20. The charger 20 includes the same number of constant current sources 21, current sensors 22, and voltage sensors 23 as the number of battery cells. The current sensor 22 is a DC ammeter and measures the charging current supplied from the constant current source 21. The current sensor 22 supplies the measured data to the control unit 80. The voltage sensor 23 is a DC voltmeter and measures the voltage of the battery cell. The voltage sensor 23 supplies the measured data to the control unit 80.

図5に、過充電検出部30の構成を示す。過充電検出部30は、複数の電池セルC1~Cnの何れかが過充電状態になったことを検出すると、充電器20を制御して電池セルC1~Cnへの充電を停止させる。過充電検出部30は、電池セルC1~Cnの数に対応する数の過充電検出回路31と1つの充電停止制御回路33を備える。過充電検出回路31は、電池セルC1~Cnごとに設けられている。過充電検出回路31それぞれには、電池セルの放電深度特性に応じた異なった充電停止電圧V11~V1nが設定される。電池セルC1の充電停止電圧をV11、電池セルC2の充電停止電圧をV12、以下同様にして電池セルCnの充電停止電圧をV1nとする。過充電検出回路31は、電池セルC1~Cnの電圧が充電停止電圧V11~V1n以上になるとローレベルの信号を出力する。過充電検出回路31の何れかがローレベルの信号を出力すると、充電停止制御回路33は、ローレベルの信号を出力し、充電器20を制御して電池セルC1~Cnへの充電を停止させる。 FIG. 5 shows the configuration of the overcharge detection unit 30. When the overcharge detection unit 30 detects that any one of the plurality of battery cells C1 to Cn is in the overcharge state, the overcharge detection unit 30 controls the charger 20 to stop charging the battery cells C1 to Cn. The overcharge detection unit 30 includes a number of overcharge detection circuits 31 corresponding to the number of battery cells C1 to Cn and one charge stop control circuit 33. The overcharge detection circuit 31 is provided for each battery cell C1 to Cn. Different charge stop voltages V11 to V1n are set in each of the overcharge detection circuits 31 according to the discharge depth characteristics of the battery cell. The charge stop voltage of the battery cell C1 is V11, the charge stop voltage of the battery cell C2 is V12, and similarly, the charge stop voltage of the battery cell Cn is V1n. The overcharge detection circuit 31 outputs a low-level signal when the voltage of the battery cells C1 to Cn becomes the charge stop voltage V11 to V1n or more. When any of the overcharge detection circuits 31 outputs a low-level signal, the charge stop control circuit 33 outputs a low-level signal and controls the charger 20 to stop charging the battery cells C1 to Cn. ..

図6に、過放電検出部40の構成を示す。過放電検出部40は、複数の電池セルC1~Cnの何れかが過放電状態になったことを検出すると、遮断器70を遮断して負荷装置200への放電を停止させる。過放電検出部40は、電池セルC1~Cnの数に対応する数の過放電検出回路41と1つの放電停止制御回路43を備える。過放電検出回路41は、電池セルC1~Cnごとに設けられている。過放電検出回路41それぞれには、電池セルC1~Cnの放電深度特性に応じて電池セルC1~Cnごとに異なった放電停止電圧V21~V2nが設定される。電池セルC1の放電停止電圧をV21、電池セルC2の放電停止電圧をV22、以下同様にして電池セルCnの放電停止電圧をV2nとする。過放電検出回路41は、電池セルC1~Cnの電圧が放電停止電圧V21~V2n以下になるとローレベルの信号を出力する。過放電検出回路41の何れかがローレベルの信号を出力すると、放電停止制御回路43は、ローレベルの信号を出力し、遮断器70を遮断して蓄電池システム100と負荷装置200とを切り離す。 FIG. 6 shows the configuration of the over-discharge detection unit 40. When the over-discharge detecting unit 40 detects that any of the plurality of battery cells C1 to Cn is in the over-discharged state, the circuit breaker 70 is shut off to stop the discharge to the load device 200. The over-discharge detection unit 40 includes a number of over-discharge detection circuits 41 corresponding to the number of battery cells C1 to Cn and one discharge stop control circuit 43. The over-discharge detection circuit 41 is provided for each battery cell C1 to Cn. In each of the over-discharge detection circuits 41, different discharge stop voltages V21 to V2n are set for each of the battery cells C1 to Cn according to the discharge depth characteristics of the battery cells C1 to Cn. The discharge stop voltage of the battery cell C1 is V21, the discharge stop voltage of the battery cell C2 is V22, and so on, the discharge stop voltage of the battery cell Cn is V2n. The over-discharge detection circuit 41 outputs a low-level signal when the voltage of the battery cells C1 to Cn becomes the discharge stop voltage V21 to V2n or less. When any of the over-discharge detection circuits 41 outputs a low-level signal, the discharge stop control circuit 43 outputs a low-level signal, shuts off the circuit breaker 70, and disconnects the storage battery system 100 and the load device 200.

図7に電圧調整部50の構成図を示す。電圧調整部50は、複数の電池セルC1~Cnそれぞれに並列に接続され、電池セルC1~Cnそれぞれを個別に放電する。電池セルC1に並列に接続された電圧調整部50について説明する。電圧調整部50は、スイッチSW1、抵抗Rcb1、制御用IC1を備える。直列に接続されたスイッチSW1と抵抗Rcb1は、電池セルC1に並行に接続されている。電池セルC1の両端は、抵抗RVC1,RVC2を介して制御用IC1の入力端子VC1およびVC2に接続されている。制御用IC1の入力端子VC1およびVC2の間には、コンデンサCVC1が接続されている。スイッチSW1は、FET等の半導体で構成されている。制御用IC1は、電圧比較機能を有している。 FIG. 7 shows a configuration diagram of the voltage adjusting unit 50. The voltage adjusting unit 50 is connected in parallel to each of the plurality of battery cells C1 to Cn, and discharges each of the battery cells C1 to Cn individually. The voltage adjusting unit 50 connected in parallel to the battery cell C1 will be described. The voltage adjusting unit 50 includes a switch SW1, a resistance Rcb1, and a control IC1. The switch SW1 and the resistance Rcb1 connected in series are connected in parallel to the battery cell C1. Both ends of the battery cell C1 are connected to the input terminals VC1 and VC2 of the control IC1 via the resistors R VC1 and R VC2 . A capacitor C VC1 is connected between the input terminals VC1 and VC2 of the control IC1. The switch SW1 is composed of a semiconductor such as a FET. The control IC 1 has a voltage comparison function.

制御用IC1は、端子VC1-VC2間の電圧が充電停止電圧V11まで上昇すると、CB1出力からハイレベルの信号を出力する。制御用IC1のCB1出力がハイレベルの信号を出力すると、スイッチSW1はオン状態となる。スイッチSW1がオン状態になると、電池セルC1に蓄積されている電気エネルギーは抵抗Rcb1を介して放電される。この放電により、電池セルC1の出力電圧は低下する。 When the voltage between the terminals VC1 and VC2 rises to the charge stop voltage V11, the control IC1 outputs a high-level signal from the CB1 output. When the CB1 output of the control IC1 outputs a high-level signal, the switch SW1 is turned on. When the switch SW1 is turned on, the electric energy stored in the battery cell C1 is discharged via the resistor Rcb1. Due to this discharge, the output voltage of the battery cell C1 is lowered.

電池セルC1は、充電を停止した後も、内部の化学反応により電圧が上昇し、過充電状態に陥る場合がある。電圧調整部50は、電池セルC1の電圧が充電停止電圧V11を超えて上昇すると電池セルC1に蓄積されている電気エネルギーを放電することにより、電池セルC1が過充電状態になることを抑制する。 Even after charging is stopped, the voltage of the battery cell C1 rises due to an internal chemical reaction, and the battery cell C1 may fall into an overcharged state. The voltage adjusting unit 50 suppresses the battery cell C1 from being overcharged by discharging the electric energy stored in the battery cell C1 when the voltage of the battery cell C1 rises above the charging stop voltage V11. ..

また、電圧調整部50は、制御部80の制御に基づいて、容量が小さい電池セルの充電を行う際、容量の小さい電池セルの電気エネルギーの一部を放電する。つまり、電圧調整部50は、電池セルへの充電速度を調整する機能を有している。詳細は後述する。 Further, the voltage adjusting unit 50 discharges a part of the electric energy of the battery cell having a small capacity when charging the battery cell having a small capacity based on the control of the control unit 80. That is, the voltage adjusting unit 50 has a function of adjusting the charging speed of the battery cell. Details will be described later.

図1に戻り、電流センサ60は、負荷装置200に供給される負荷電流を測定する。電流センサ60は、直流電流計で構成されている。電流センサ60は、測定したデータを制御部80に供給する。 Returning to FIG. 1, the current sensor 60 measures the load current supplied to the load device 200. The current sensor 60 is composed of a DC ammeter. The current sensor 60 supplies the measured data to the control unit 80.

遮断器70は、蓄電池システム100と負荷装置200とを遮断する。遮断器70は、MOS-FET(Metal Oxide Semiconductor-Field effect transistor)やIGBT(Insulated gate bipolar transistor)等の半導体スイッチ、リレーで構成されている。 The circuit breaker 70 cuts off the storage battery system 100 and the load device 200. The breaker 70 is composed of a semiconductor switch such as a MOS-FET (Metal Oxide Semiconductor-Field effect transistor) or an IGBT (Insulated gate bipolar transistor), and a relay.

制御部80は、充電器20を制御して複数の電池セルC1~Cnそれぞれを充電する。また、制御部80は、電圧調整部50を制御して複数の電池セルC1~Cnそれぞれの放電を行う。図8に、制御部の構成を示す。制御部80は、関数作成部81、閾値設定部83、駆動部85を備える。 The control unit 80 controls the charger 20 to charge each of the plurality of battery cells C1 to Cn. Further, the control unit 80 controls the voltage adjustment unit 50 to discharge each of the plurality of battery cells C1 to Cn. FIG. 8 shows the configuration of the control unit. The control unit 80 includes a function creation unit 81, a threshold value setting unit 83, and a drive unit 85.

関数作成部81は、複数の電池セルC1~Cnそれぞれの放電深度特性を表す関数を作成する。放電深度特性を表す関数の作成方法について図9を参照して説明する。電池セルC1~Cnは、充電器20から電気エネルギーが供給されるにしたがって満充電状態に近づき、電圧が高くなる。また、電池セルC1~Cnは、負荷装置200に放電するにしたがって電圧が低くなる。関数作成部81は、充電器20から供給される充電電流を電流センサ22から取得し、負荷装置200に供給される放電電流を電流センサ60から取得する。また、関数作成部81は、充放電時の電池セルの出力電圧を電圧センサ23から取得する。関数作成部81は、製造時の放電深度0Ahの電池セルの電圧を基準として、放電深度の変化と出力電圧の変化を図9に示すようにプロットする。関数作成部81は、最小二乗法等により、電池セルC1~Cnの放電深度を表す関数を求める。経年劣化や環境温度によって放電深度特性は変化する。関数作成部81は、例えば、1週間ごともしくは1か月ごとに放電深度特性を表す関数を更新する。 The function creation unit 81 creates a function representing the discharge depth characteristics of each of the plurality of battery cells C1 to Cn. A method of creating a function representing the discharge depth characteristic will be described with reference to FIG. The battery cells C1 to Cn approach a fully charged state as electric energy is supplied from the charger 20, and the voltage increases. Further, the voltage of the battery cells C1 to Cn decreases as the load device 200 is discharged. The function creation unit 81 acquires the charging current supplied from the charger 20 from the current sensor 22 and the discharge current supplied to the load device 200 from the current sensor 60. Further, the function creation unit 81 acquires the output voltage of the battery cell at the time of charging / discharging from the voltage sensor 23. The function creation unit 81 plots the change in the discharge depth and the change in the output voltage with reference to the voltage of the battery cell having a discharge depth of 0 Ah at the time of manufacture as shown in FIG. The function creation unit 81 obtains a function representing the discharge depth of the battery cells C1 to Cn by the least squares method or the like. The discharge depth characteristics change due to aging deterioration and environmental temperature. The function creation unit 81 updates the function representing the discharge depth characteristic, for example, weekly or monthly.

図8に示すように、閾値設定部83は、放電停止電圧設定部831、充電停止電圧設定部832、動作範囲設定部90を備える。 As shown in FIG. 8, the threshold value setting unit 83 includes a discharge stop voltage setting unit 831, a charge stop voltage setting unit 832, and an operation range setting unit 90.

放電停止電圧設定部831は、電池セルの状態が過放電状態であると検出する放電停止電圧V21~V2nを過放電検出部40に設定する。図10に、電池セルC1,C2,Cnの放電停止電圧V21、V22,V2nを示す。過放電状態となる電池セルの電圧は、電池セルの容量に関係なくほぼ一定の電圧である。 The discharge stop voltage setting unit 831 sets the discharge stop voltages V21 to V2n for detecting that the state of the battery cell is in the over-discharge state in the over-discharge detection unit 40. FIG. 10 shows the discharge stop voltages V21, V22, and V2n of the battery cells C1, C2, and Cn. The voltage of the battery cell in the over-discharged state is a substantially constant voltage regardless of the capacity of the battery cell.

充電停止電圧設定部832は、電池セルの状態が過充電状態であると検出する充電停止電圧V11~V1nを過充電検出部30に設定する。例えば、充電停止電圧設定部832は、充電停止電圧として満充電電圧を設定する。図10に、電池セルC1,C2,Cnの充電停止電圧V11、V12,V1nを示す。満充電電圧は、電池セルの容量によって異なる傾向にある。なお、充電停止電圧V11~V1nとして満充電電圧の例えば95%とか90%の電圧を設定してもよい。 The charge stop voltage setting unit 832 sets the charge stop voltage V11 to V1n for detecting that the state of the battery cell is the overcharge state in the overcharge detection unit 30. For example, the charge stop voltage setting unit 832 sets the full charge voltage as the charge stop voltage. FIG. 10 shows the charge stop voltages V11, V12, and V1n of the battery cells C1, C2, and Cn. The full charge voltage tends to vary depending on the capacity of the battery cell. The charging stop voltage V11 to V1n may be set to, for example, 95% or 90% of the full charge voltage.

動作範囲設定部90は、電池パック10の定格電圧の範囲と負荷装置200の動作電圧範囲との関係に基づいて、電池セルC1~Cnの充電開始電圧及び充電終了電圧を設定する。図11に動作範囲設定部90の構成を示す。動作範囲設定部90は、装置タイプ選択部91、充電開始電圧設定部92、充電終了電圧設定部93、調整部94を備える。 The operating range setting unit 90 sets the charging start voltage and the charging end voltage of the battery cells C1 to Cn based on the relationship between the rated voltage range of the battery pack 10 and the operating voltage range of the load device 200. FIG. 11 shows the configuration of the operating range setting unit 90. The operation range setting unit 90 includes a device type selection unit 91, a charge start voltage setting unit 92, a charge end voltage setting unit 93, and an adjustment unit 94.

装置タイプ選択部91は、電池パック10の定格電圧の範囲と負荷装置200の動作電圧範囲の関係に基づいて負荷装置200の装置タイプを選択する。図12を参照して説明する。電池パック10の定格電圧とは、動作保証期間において、電池パック10が備える複数の電池セルC1~Cnの何れもが過充電状態もしくは過放電状態とならない電池パック10の出力電圧の範囲である。装置動作電圧範囲とは、負荷装置200が正常に動作可能な電圧範囲である。 The device type selection unit 91 selects the device type of the load device 200 based on the relationship between the rated voltage range of the battery pack 10 and the operating voltage range of the load device 200. This will be described with reference to FIG. The rated voltage of the battery pack 10 is a range of the output voltage of the battery pack 10 in which none of the plurality of battery cells C1 to Cn included in the battery pack 10 is in an overcharged state or an overdischarged state during the operation guarantee period. The device operating voltage range is a voltage range in which the load device 200 can normally operate.

装置タイプ選択部91は、電池パック10の定格電圧の範囲と負荷装置200の動作電圧範囲との関係に基づいて、負荷装置200を図12に示す4つのタイプに分類する。装置タイプ選択部91は、動作電圧範囲の上限が電池パック10の定格電圧の範囲の上限よりも低い負荷装置200をタイプ1に分類する。電池セルC1~Cnを満充電状態まで充電すると、電池パック10の出力電圧が負荷装置200の動作電圧範囲よりも高くなる。したがって、タイプ1に分類された負荷装置200に電気エネルギーを供給する場合、電池セルC1~Cnは、満充電状態まで充電されることはない。したがって、電池セルC1~Cnは、過充電状態になるまでのマージンが大きい状態で充放電を繰り返すことになる。 The device type selection unit 91 classifies the load device 200 into the four types shown in FIG. 12 based on the relationship between the rated voltage range of the battery pack 10 and the operating voltage range of the load device 200. The device type selection unit 91 classifies the load device 200 in which the upper limit of the operating voltage range is lower than the upper limit of the rated voltage range of the battery pack 10 into type 1. When the battery cells C1 to Cn are charged to a fully charged state, the output voltage of the battery pack 10 becomes higher than the operating voltage range of the load device 200. Therefore, when supplying electric energy to the load device 200 classified as type 1, the battery cells C1 to Cn are not charged to the fully charged state. Therefore, the battery cells C1 to Cn are repeatedly charged and discharged with a large margin until the battery cells are overcharged.

装置タイプ選択部91は、動作電圧範囲の下限が電池パック10の定格電圧の範囲の下限よりも高い負荷装置200をタイプ2に分類する。電池セルC1~Cnを放電停止電圧V21~V2nまで放電すると、電池パック10の出力電圧が負荷装置200の動作電圧範囲よりも低くなる。したがって、タイプ2に分類された負荷装置200に電気エネルギーを供給する場合、電池セルC1~Cnは、過放電状態になるまで放電されることはない。したがって、電池セルC1~Cnは、過放電状態になるまでのマージンが大きい状態で充放電を繰り返すことになる。 The device type selection unit 91 classifies the load device 200 having a lower limit of the operating voltage range higher than the lower limit of the rated voltage range of the battery pack 10 into type 2. When the battery cells C1 to Cn are discharged to the discharge stop voltage V21 to V2n, the output voltage of the battery pack 10 becomes lower than the operating voltage range of the load device 200. Therefore, when the electric energy is supplied to the load device 200 classified into the type 2, the battery cells C1 to Cn are not discharged until the over-discharged state is reached. Therefore, the battery cells C1 to Cn are repeatedly charged and discharged with a large margin until the over-discharged state is reached.

装置タイプ選択部91は、動作電圧範囲と電池パック10の定格電圧の範囲が同じである負荷装置200をタイプ3に分類する。タイプ3に分類された負荷装置200に電気エネルギーを供給する場合、電池セルC1~Cnは、過充電状態になるまでのマージン及び過放電状態になるまでのマージンがない状態で充放電を繰り返すことになる。 The device type selection unit 91 classifies the load device 200 having the same operating voltage range and the rated voltage range of the battery pack 10 into type 3. When supplying electric energy to the load device 200 classified into type 3, the battery cells C1 to Cn are repeatedly charged and discharged without a margin until the overcharge state and a margin until the overdischarge state is reached. become.

装置タイプ選択部91は、動作電圧範囲の上限が電池パック10の定格電圧の範囲の上限よりも低く、動作電圧範囲の下限が電池パック10の定格電圧の範囲の下限よりも高い負荷装置200をタイプ4に分類する。タイプ4に分類された負荷装置200に電気エネルギーを供給する場合、電池セルC1~Cnは、過充電状態になるまでのマージン及び過放電状態になるまでのマージンが大きい状態で充放電を繰り返すことになる。 The device type selection unit 91 sets the load device 200 in which the upper limit of the operating voltage range is lower than the upper limit of the rated voltage range of the battery pack 10 and the lower limit of the operating voltage range is higher than the lower limit of the rated voltage range of the battery pack 10. Classify into type 4. When supplying electric energy to the load device 200 classified into the type 4, the battery cells C1 to Cn are repeatedly charged and discharged with a large margin until the overcharge state and a margin until the overdischarge state is reached. become.

図11に戻り、充電開始電圧設定部92は、装置タイプに応じた電池セルC1~Cnそれぞれの充電開始電圧V41~V4nを駆動部85に設定する。充電終了電圧設定部93は、装置タイプに応じた電池セルC1~Cnそれぞれの充電終了電圧V31~V3nを駆動部85に設定する。 Returning to FIG. 11, the charging start voltage setting unit 92 sets the charging start voltages V41 to V4n of the battery cells C1 to Cn according to the device type in the drive unit 85. The charge end voltage setting unit 93 sets the charge end voltages V31 to V3n of each of the battery cells C1 to Cn according to the device type in the drive unit 85.

調整部94は、装置タイプ選択部91が負荷装置200をタイプ1に分類した場合、駆動部85を介して充電器20を制御して容量が小さい電池セルを充電する。調整部94は、装置タイプ選択部91が負荷装置200をタイプ2に分類した場合、駆動部85を介して電圧調整部50を制御して容量が小さい電池セルを放電する。調整部94は、装置タイプ選択部91が負荷装置200をタイプ3に分類した場合、放電時に容量が小さい電池セルの残量が50%以下になった場合、駆動部85を介して充電器20を制御して容量が小さい電池セルを充電し、充電時に容量が小さい電池セルの残量が50%以上になった場合、駆動部85を介して電圧調整部50を制御して容量が小さい電池セルを放電する。詳細は後述する。 When the device type selection unit 91 classifies the load device 200 into type 1, the adjustment unit 94 controls the charger 20 via the drive unit 85 to charge a battery cell having a small capacity. When the device type selection unit 91 classifies the load device 200 into type 2, the adjustment unit 94 controls the voltage adjustment unit 50 via the drive unit 85 to discharge a battery cell having a small capacity. In the adjusting unit 94, when the device type selection unit 91 classifies the load device 200 into type 3, when the remaining amount of the battery cell having a small capacity becomes 50% or less at the time of discharging, the charger 20 via the drive unit 85. When the battery cell with a small capacity is charged by controlling and the remaining amount of the battery cell with a small capacity becomes 50% or more at the time of charging, the voltage adjusting unit 50 is controlled via the drive unit 85 to control the battery with a small capacity. Discharge the cell. Details will be described later.

駆動部85は、充電器20を制御して、充電開始電圧V41~V4nまで低下した電池セルC1~Cnを充電する。また、駆動部85は、充電器20を制御して、充電終了電圧V31~V3nまで上昇した電池セルC1~Cnの充電を停止する。また、駆動部85は、調整部94の指示に基づいて充電器20を制御して指定された電池セルC1~Cnを充電する。また、駆動部85は、調整部94の指示に基づいて電圧調整部50を制御して指定された電池セルC1~Cnを放電する。 The drive unit 85 controls the charger 20 to charge the battery cells C1 to Cn whose charging start voltage has dropped to V41 to V4n. Further, the drive unit 85 controls the charger 20 to stop charging the battery cells C1 to Cn whose charging end voltage has risen to V31 to V3n. Further, the drive unit 85 controls the charger 20 based on the instruction of the adjustment unit 94 to charge the designated battery cells C1 to Cn. Further, the drive unit 85 controls the voltage adjustment unit 50 based on the instruction of the adjustment unit 94 to discharge the designated battery cells C1 to Cn.

次に、蓄電池システム100の制御方法について、装置タイプごとに説明する。蓄電池システム100は、基準とする容量を有する電池セル(第1の電池セル)よりも容量が小さい電池セル(第2の電池セル)による負荷装置200の動作可能時間と、基準とする容量を有する電池セルによる負荷装置200の動作可能時間と、が同じになるように電池セルC1~Cnの充放電制御を行う。ここでは、平均的な容量を有する電池セルを基準とする場合について説明する。 Next, the control method of the storage battery system 100 will be described for each device type. The storage battery system 100 has an operable time of the load device 200 by a battery cell (second battery cell) having a capacity smaller than that of a battery cell (first battery cell) having a reference capacity, and a reference capacity. The charge / discharge control of the battery cells C1 to Cn is performed so that the operable time of the load device 200 by the battery cells is the same. Here, a case where a battery cell having an average capacity is used as a reference will be described.

図13A、図13B、図15A、図15B、図17A、図17Bにおいて、平均的な容量を有する電池セルの充放電時の電圧の変化を破線で、容量が小さい電池セルの充放電時の電圧の変化を実線で示す。図14、図16において、破線で示す電池セルC2の放電深度特性を平均的な容量を有する電池セルの放電深度特性、実線で示す電池セルCnの放電深度特性を容量が小さい電池セルの放電深度特性、一点鎖線で示す電池セルC1の放電深度特性を容量が大きい電池セルの放電深度特性と仮定する。 In FIGS. 13A, 13B, 15A, 15B, 17A, and 17B, the change in voltage during charging / discharging of a battery cell having an average capacity is shown by a broken line, and the voltage during charging / discharging of a battery cell having a small capacity is shown by a broken line. The change in is shown by a solid line. In FIGS. 14 and 16, the discharge depth characteristic of the battery cell C2 shown by the broken line is the discharge depth characteristic of the battery cell having an average capacity, and the discharge depth characteristic of the battery cell Cn shown by the solid line is the discharge depth of the battery cell having a small capacity. It is assumed that the characteristics and the discharge depth characteristic of the battery cell C1 shown by the alternate long and short dash line are the discharge depth characteristics of the battery cell having a large capacity.

(タイプ1)
タイプ1の場合について説明する。図12に示すように、タイプ1の場合、装置動作電圧範囲は、20~25Vの場合である。図13Aに示すように、放電を開始してから放電停止電圧V2を下回るまでの電池セルCnの時間は、電池セルC2よりも短い。過放電検出部40は、電池セルCnの電圧が放電停止電圧V2を下回ると過放電状態を検出する。したがって、容量が小さい電池セルCnの動作可能時間t1は、平均的な容量を有する電池セルC2の動作可能時間t2よりも短い。
(Type 1)
The case of type 1 will be described. As shown in FIG. 12, in the case of type 1, the device operating voltage range is 20 to 25 V. As shown in FIG. 13A, the time of the battery cell Cn from the start of discharging to the time when the discharge stop voltage V2 is lowered is shorter than that of the battery cell C2. The over-discharge detection unit 40 detects an over-discharge state when the voltage of the battery cell Cn is lower than the discharge stop voltage V2. Therefore, the operable time t1 of the battery cell Cn having a small capacity is shorter than the operating time t2 of the battery cell C2 having an average capacity.

図14を参照して説明する。電池セルC1,C2,Cnが満充電状態から15Ah放電したとする。この時、電池セルC1の残量は10Ah、電池セルC2の残量は7Ah、電池セルCnの残量は4Ahである。この状態で放電を継続した場合、4Ah放電すると電池セルCnが過放電状態となり、遮断器70が遮断されて負荷装置200への放電は停止される。負荷装置200への放電は、電池セルC2にはまだ3Ahの残量があるにもかかわらず停止される。このように、電池セルCnの充電状態を制御しない場合、電池パック10の実行容量は、容量が小さい電池セルCnの容量によって決定されることになる。 This will be described with reference to FIG. It is assumed that the battery cells C1, C2, and Cn are discharged from the fully charged state by 15 Ah. At this time, the remaining amount of the battery cell C1 is 10Ah, the remaining amount of the battery cell C2 is 7Ah, and the remaining amount of the battery cell Cn is 4Ah. If the discharge is continued in this state, when the battery cell Cn is discharged for 4 Ah, the battery cell Cn becomes an over-discharged state, the circuit breaker 70 is cut off, and the discharge to the load device 200 is stopped. The discharge to the load device 200 is stopped even though the battery cell C2 still has a remaining amount of 3 Ah. As described above, when the charge state of the battery cell Cn is not controlled, the execution capacity of the battery pack 10 is determined by the capacity of the battery cell Cn having a small capacity.

図14において、電池セルCnの残量を3Ah増加すれば、電池セルCnと電池セルC2の残量を同じにすることができる。つまり、電池パック10の実行容量を平均的な容量を有する電池セルC2の容量まで増大することができる。 In FIG. 14, if the remaining amount of the battery cell Cn is increased by 3 Ah, the remaining amount of the battery cell Cn and the battery cell C2 can be made the same. That is, the execution capacity of the battery pack 10 can be increased to the capacity of the battery cell C2 having an average capacity.

調整部94は、駆動部85を介して充電器20を駆動し、電池セルCnを3Ah充電するように制御する。具体的には、調整部94は、図14に示す電池セルC2とCnの放電深度特性を表す関数に基づいて、電池セルC2のV22における放電深度(22Ah)と電池セルCnのV2nにおける放電深度(19Ah)との差(3Ah)を求める。次に、調整部94は、電池セルCnが電圧が2.3Vの状態で3Ah充電された場合、電池セルCnの電圧が何Vになるかを電池セルCnの放電深度特性を表す関数から求める。図14に示す例では、その電圧は約2.36Vである。調整部94は、充電器20を制御して、電池セルCnの電圧が求めた電圧になるように充電する。その結果、図14に示すように、電池セルCnの電圧はΔV(約0.06V)上昇する。 The adjusting unit 94 drives the charger 20 via the driving unit 85 and controls the battery cell Cn to be charged for 3 Ah. Specifically, the adjusting unit 94 has a discharge depth (22Ah) in V22 of the battery cell C2 and a discharge depth in V2n of the battery cell Cn based on the function representing the discharge depth characteristics of the battery cells C2 and Cn shown in FIG. The difference (3Ah) from (19Ah) is calculated. Next, the adjusting unit 94 obtains what V the voltage of the battery cell Cn becomes when the battery cell Cn is charged for 3 Ah in a state where the voltage is 2.3 V from a function representing the discharge depth characteristic of the battery cell Cn. .. In the example shown in FIG. 14, the voltage is about 2.36V. The adjusting unit 94 controls the charger 20 to charge the battery cell Cn so that the voltage becomes the obtained voltage. As a result, as shown in FIG. 14, the voltage of the battery cell Cn increases by ΔV (about 0.06V).

図13Bに示すように、タイプ1の場合、電池セルC1,C2,Cnの充電終了電圧V3は、充電停止電圧V1より低く設定されている。したがって、電池セルCnの充電終了電圧V3がΔV上昇してもV1>V3+ΔVの関係を維持することができ、電池セルCnが過充電状態になることはない。 As shown in FIG. 13B, in the case of type 1, the charge end voltage V3 of the battery cells C1, C2, and Cn is set lower than the charge stop voltage V1. Therefore, even if the charge end voltage V3 of the battery cell Cn rises by ΔV, the relationship of V1> V3 + ΔV can be maintained, and the battery cell Cn does not become overcharged.

(タイプ2)
タイプ2の場合について説明する。図12に示すように、タイプ2の場合、装置動作電圧範囲は、25~30Vの場合である。図15Aに示すように、充電を開始してから充電停止電圧V1を超えるまでの電池セルCnの時間は、電池セルC2よりも短い。過充電検出部30は、電池セルCnの電圧が充電停止電圧V1を超えると過充電状態を検出する。したがって、容量が小さい電池セルCnの動作可能時間t1は、平均的な容量を有する電池セルC2の動作可能時間t2よりも短い。
(Type 2)
The case of type 2 will be described. As shown in FIG. 12, in the case of type 2, the device operating voltage range is 25 to 30 V. As shown in FIG. 15A, the time of the battery cell Cn from the start of charging until the charge stop voltage V1 is exceeded is shorter than that of the battery cell C2. The overcharge detection unit 30 detects the overcharge state when the voltage of the battery cell Cn exceeds the charge stop voltage V1. Therefore, the operable time t1 of the battery cell Cn having a small capacity is shorter than the operating time t2 of the battery cell C2 having an average capacity.

図16を参照して説明する。充電開始電圧V4が2.5Vであったとする。電池セルC1,C2,Cnの電圧が2.5Vの状態で充電が開始された場合、満充電状態になるまでに、電池セルC1は11Ah、電池セルC2は6Ah、電池セルCnは2Ahの充電が可能である。この状態で充電を継続した場合、2Ah充電すると電池セルCnが過充電状態となり、過充電検出部30が作動して電池パック10への充電が停止される。満充電状態になる4Ah手前で電池セルC2への充電は停止される。つまり、電池セルC2の実行容量は4Ah分低下したことになる。このように、電池セルCnの充電状態を制御しない場合、電池パック10の実行容量は、容量が小さい電池セルCnの容量によって決定されることになる。 This will be described with reference to FIG. It is assumed that the charging start voltage V4 is 2.5V. When charging is started when the voltage of the battery cells C1, C2, and Cn is 2.5V, the battery cell C1 is charged with 11Ah, the battery cell C2 is charged with 6Ah, and the battery cell Cn is charged with 2Ah by the time the charging is started. Is possible. When charging is continued in this state, when charging for 2 Ah, the battery cell Cn becomes an overcharged state, the overcharge detection unit 30 operates, and charging to the battery pack 10 is stopped. Charging to the battery cell C2 is stopped 4Ah before the fully charged state. That is, the execution capacity of the battery cell C2 is reduced by 4 Ah. As described above, when the charge state of the battery cell Cn is not controlled, the execution capacity of the battery pack 10 is determined by the capacity of the battery cell Cn having a small capacity.

図16において、充電開始時に、電池セルCnの電気エネルギーを4Ah放電すれば、電池セルC2が満充電状態になるまで過充電状態が検出されることはない。つまり、電池パック10の実行容量を平均的な容量を有する電池セルC2の容量まで増大することができる。 In FIG. 16, if the electric energy of the battery cell Cn is discharged by 4 Ah at the start of charging, the overcharged state is not detected until the battery cell C2 is fully charged. That is, the execution capacity of the battery pack 10 can be increased to the capacity of the battery cell C2 having an average capacity.

調整部94は、駆動部85を介して電圧調整部50を駆動し、電池セルCnの電気エネルギーを4Ah放電する。具体的には、調整部94は、図16に示す電池セルC2とCnの放電深度特性を表す関数に基づいて、電池セルC2の充電開始前の放電深度(6Ah)と電池セルCnの充電開始前の放電深度(2Ah)を求める。次に、調整部94は、電池セルCnの充電可能容量が6Ahとなる電池セルCnの電圧を電池セルCnの放電深度特性を表す関数から求める。図16に示す例では、その電圧は約2.44Vである。調整部94は、図7に示す端子VC1-VC2間の電圧が2.44Vまで上昇すると、CB1出力からハイレベルの信号を出力するように制御用IC1を設定する。CB1出力からハイレベルの信号を出力されるとスイッチSW1がオン状態になり、電池セルCnの電圧は放電により低下する。蓄電池Cnの電圧が2.44Vまで低下すると、CB1から出力される信号レベルはローレベルとなり、スイッチSW1はオフ状態になる。以上の制御により、蓄電池Cnは、電圧が2.44Vまで放電される。その結果、図16に示すように、電池セルCnの電圧は、放電によりΔV(約0.06V)低下する。 The adjusting unit 94 drives the voltage adjusting unit 50 via the driving unit 85, and discharges the electric energy of the battery cell Cn by 4 Ah. Specifically, the adjusting unit 94 sets the discharge depth (6Ah) before the start of charging of the battery cell C2 and the start of charging of the battery cell Cn based on the function representing the discharge depth characteristics of the battery cells C2 and Cn shown in FIG. Obtain the previous discharge depth (2Ah). Next, the adjusting unit 94 obtains the voltage of the battery cell Cn at which the rechargeable capacity of the battery cell Cn is 6 Ah from a function representing the discharge depth characteristic of the battery cell Cn. In the example shown in FIG. 16, the voltage is about 2.44V. The adjusting unit 94 sets the control IC1 so as to output a high-level signal from the CB1 output when the voltage between the terminals VC1 and VC2 shown in FIG. 7 rises to 2.44V. When a high-level signal is output from the CB1 output, the switch SW1 is turned on, and the voltage of the battery cell Cn drops due to discharge. When the voltage of the storage battery Cn drops to 2.44V, the signal level output from CB1 becomes low level, and the switch SW1 is turned off. By the above control, the voltage of the storage battery Cn is discharged to 2.44V. As a result, as shown in FIG. 16, the voltage of the battery cell Cn drops by ΔV (about 0.06V) due to the discharge.

図15Bに示すように、タイプ2の場合、電池セルC1,C2,Cnの充電開始電圧V4は、放電停止電圧V2より高く設定されている。したがって、電池セルCnの充電開始電圧V4がΔV低下してもV2<V4-ΔVの関係を維持することができ、電池セルCnが過放電状態になることはない。 As shown in FIG. 15B, in the case of type 2, the charge start voltage V4 of the battery cells C1, C2, and Cn is set higher than the discharge stop voltage V2. Therefore, even if the charging start voltage V4 of the battery cell Cn drops by ΔV, the relationship of V2 <V4-ΔV can be maintained, and the battery cell Cn does not become over-discharged.

(タイプ3)
タイプ3の場合について説明する。図12に示すように、タイプ3の場合、装置動作電圧範囲は、20~30Vの場合である。タイプ3の場合、充電停止電圧V1と充電終了電圧V3が同じであるので、過充電側のマージンはない。また、放電停止電圧V2と充電開始電圧V4が同じであるので、過放電側のマージンもない。図17Aに示すように、電池セルCnの電圧は、放電時に、電池セルC2の電圧よりも早く低下する。また、充電時には、早く上昇する。過充電検出部30は、電池セルの電圧が充電停止電圧V1を超えると過充電状態を検出する。また、過放電検出部40は、電池セルの電圧が放電停止電圧V2を下回ると過放電状態を検出する。したがって、容量が小さい電池セルCnの動作可能時間t1は、平均的な容量を有する電池セルC2の動作可能時間t2よりも短い。電池セルCnの充電状態を制御しない場合、電池パック10の実行容量は、容量が小さい電池セルCnの容量によって決定されることになる。
(Type 3)
The case of type 3 will be described. As shown in FIG. 12, in the case of type 3, the device operating voltage range is 20 to 30 V. In the case of type 3, since the charge stop voltage V1 and the charge end voltage V3 are the same, there is no margin on the overcharge side. Further, since the discharge stop voltage V2 and the charge start voltage V4 are the same, there is no margin on the overdischarge side. As shown in FIG. 17A, the voltage of the battery cell Cn drops faster than the voltage of the battery cell C2 when discharged. Also, when charging, it rises quickly. The overcharge detection unit 30 detects an overcharge state when the voltage of the battery cell exceeds the charge stop voltage V1. Further, the over-discharge detection unit 40 detects an over-discharge state when the voltage of the battery cell falls below the discharge stop voltage V2. Therefore, the operable time t1 of the battery cell Cn having a small capacity is shorter than the operating time t2 of the battery cell C2 having an average capacity. When the charge state of the battery cell Cn is not controlled, the execution capacity of the battery pack 10 is determined by the capacity of the battery cell Cn having a small capacity.

調整部94は、図17Bに示すように、放電時に電池セルCnの残量が50%以下になった場合、電池セルCnを充電することにより、電池セルCnと電池セルC2が同時に放電停止電圧V2になるように制御する。つまり、タイプ1と同様の制御を行う。具体的には、調整部94は、駆動部85を介して充電器20を駆動し、電池セルCnの残容量と電池セルC2の残容量が同程度になるように電池セルCnを充電する。その結果、図17Bに示すように、電池セルCnの電圧はΔV上昇する。 As shown in FIG. 17B, when the remaining amount of the battery cell Cn becomes 50% or less at the time of discharging, the adjusting unit 94 charges the battery cell Cn so that the battery cell Cn and the battery cell C2 are discharged at the same time. It is controlled to be V2. That is, the same control as in type 1 is performed. Specifically, the adjusting unit 94 drives the charger 20 via the driving unit 85, and charges the battery cell Cn so that the remaining capacity of the battery cell Cn and the remaining capacity of the battery cell C2 are about the same. As a result, as shown in FIG. 17B, the voltage of the battery cell Cn increases by ΔV.

また、調整部94は、図17Bに示すように、充電時に電池セルCnの残量が50%以上になった場合、電池セルCnの電気エネルギーを放電することにより、電池セルCnと電池セルC2が同時に充電停止電圧V1になるように制御する。つまり、タイプ2と同様の制御を行う。具体的には、調整部94は、駆動部85を介して電圧調整部50を駆動し、電池セルCnと電池セルC2の充電可能な電気エネルギーが同程度になるように電池セルCnを放電する。その結果、図17Bに示すように、電池セルCnの電圧はΔV低下する。以上の制御により、電池パック10の実行容量を平均的な容量を有する電池セルC2の容量まで増大することができる。 Further, as shown in FIG. 17B, when the remaining amount of the battery cell Cn becomes 50% or more during charging, the adjusting unit 94 discharges the electric energy of the battery cell Cn to cause the battery cell Cn and the battery cell C2. Is controlled to be the charge stop voltage V1 at the same time. That is, the same control as in type 2 is performed. Specifically, the adjusting unit 94 drives the voltage adjusting unit 50 via the driving unit 85, and discharges the battery cell Cn so that the rechargeable electric energies of the battery cell Cn and the battery cell C2 are about the same. .. As a result, as shown in FIG. 17B, the voltage of the battery cell Cn drops by ΔV. By the above control, the execution capacity of the battery pack 10 can be increased to the capacity of the battery cell C2 having an average capacity.

(タイプ4)
タイプ4の場合について説明する。図12に示すように、タイプ4の場合、装置動作電圧範囲は、23~27Vの場合である。タイプ4の場合、充電停止電圧V1は充電終了電圧V3よりも高い。また、放電停止電圧V2は充電開始電圧V4よりも低い。したがって、過充電側にも過放電側にもマージンがある。調整部94は、容量が小さい電池セルCnについて、充電もしくは放電する制御を行わない。
(Type 4)
The case of type 4 will be described. As shown in FIG. 12, in the case of type 4, the device operating voltage range is 23 to 27 V. In the case of type 4, the charge stop voltage V1 is higher than the charge end voltage V3. Further, the discharge stop voltage V2 is lower than the charge start voltage V4. Therefore, there is a margin on both the overcharge side and the overdischarge side. The adjusting unit 94 does not control charging or discharging the battery cell Cn having a small capacity.

以上説明したように、実施形態に係る蓄電池システム100は、複数の電池セルC1~Cnそれぞれの放電深度特性を表す関数を作成する関数作成部81を備える。また、蓄電池システム100は、関数作成部81が作成した複数の電池セルC1~Cnそれぞれの放電深度特性を表す関数に基づいて、電池セルC1~Cnそれぞれの充電開始電圧及び充電終了電圧を設定する動作範囲設定部を備える。これにより、蓄電池システム100は、電池パック10を構成する複数の電池セルC1~Cnの何れかの容量が低下している場合でも電池パック10の実行容量を増大することができる。 As described above, the storage battery system 100 according to the embodiment includes a function creation unit 81 that creates a function representing the discharge depth characteristics of each of the plurality of battery cells C1 to Cn. Further, the storage battery system 100 sets the charge start voltage and the charge end voltage of each of the battery cells C1 to Cn based on the function representing the discharge depth characteristics of each of the plurality of battery cells C1 to Cn created by the function creation unit 81. It is equipped with an operating range setting unit. As a result, the storage battery system 100 can increase the execution capacity of the battery pack 10 even when the capacity of any of the plurality of battery cells C1 to Cn constituting the battery pack 10 is reduced.

また、実施形態に係る蓄電池システム100は、電池パック10の定格電圧の範囲と負荷装置200の動作電圧範囲との関係で分類された装置タイプを選択する装置タイプ選択部91を備える。蓄電池システム100は、装置タイプ及び関数作成部81が作成した電池セルC1~Cnそれぞれの放電深度特性を表す関数に基づいて、電池セルC1~Cnの充電を開始する充電開始電圧を設定する。また、蓄電池システム100は、装置タイプ及び関数作成部81が作成した電池セルC1~Cnそれぞれの放電深度特性を表す関数に基づいて、電池セルC1~Cnの充電を終了する充電終了電圧を設定する。これにより、蓄電池システム100は、過充電状態及び過放電状態を回避するとともに、電池パック10を構成する複数の電池セルC1~Cnの何れかの容量が低下している場合でも電池パック10の実行容量を増大することができる。 Further, the storage battery system 100 according to the embodiment includes a device type selection unit 91 that selects a device type classified according to the relationship between the rated voltage range of the battery pack 10 and the operating voltage range of the load device 200. The storage battery system 100 sets the charging start voltage for starting charging of the battery cells C1 to Cn based on the device type and the function representing the discharge depth characteristics of the battery cells C1 to Cn created by the function creation unit 81. Further, the storage battery system 100 sets the charge end voltage for terminating the charging of the battery cells C1 to Cn based on the function representing the discharge depth characteristics of the battery cells C1 to Cn created by the device type and the function creation unit 81. .. As a result, the storage battery system 100 avoids the overcharged state and the overdischarged state, and executes the battery pack 10 even when the capacity of any of the plurality of battery cells C1 to Cn constituting the battery pack 10 is reduced. The capacity can be increased.

なお、上記では、平均的な容量を有する電池セルを基準とした場合の容量が小さい電池セルの充放電制御について説明したが、充放電制御を行う電池セルは、最も容量が小さい電池セルに限定されない。上述した充放電制御は、電池セルの容量に応じて行えばよい。 In the above, the charge / discharge control of the battery cell having a small capacity when the battery cell having an average capacity is used as a reference has been described, but the battery cell that performs the charge / discharge control is limited to the battery cell having the smallest capacity. Not done. The charge / discharge control described above may be performed according to the capacity of the battery cell.

また、上記では、平均的な容量を有する電池セルを基準として容量が小さい電池セルの充放電を制御する場合について説明した。しかし、基準とする電池セルを平均的な容量を有する電池セルに限定する必要はない。例えば、容量が大きめの電池セルを基準としてもよい。 Further, in the above, the case of controlling the charging / discharging of the battery cell having a small capacity with the battery cell having an average capacity as a reference has been described. However, it is not necessary to limit the reference battery cell to a battery cell having an average capacity. For example, a battery cell having a large capacity may be used as a reference.

また、上記では、最小二乗法等を使用して放電深度特性を表す関数を作成する説明をしたが、放電深度特性を表す関数の作成方法をこれに限定する必要はない。例えば、充放電に伴う(放電深度、出力電圧)の変化量を示すベクトルを繋ぎ合わせて関数を作成してもよい。また、出荷時の放電深度特性曲線の形状を考慮してもよい。また、関数作成部81を設けず、電池セルC1~Cnの放電深度特性を表す関数を外部から取得するようにしてもよい。 Further, in the above description, the function for expressing the discharge depth characteristic is created by using the least squares method or the like, but it is not necessary to limit the method for creating the function for expressing the discharge depth characteristic to this. For example, a function may be created by connecting vectors indicating the amount of change (discharge depth, output voltage) with charge / discharge. Further, the shape of the discharge depth characteristic curve at the time of shipment may be taken into consideration. Further, the function creating unit 81 may not be provided, and a function representing the discharge depth characteristics of the battery cells C1 to Cn may be acquired from the outside.

また、関数作成部81は、放電深度特性を表す関数を周囲の温度ごとに作成するようにしてもよい。例えば、10℃から15℃、15℃から20℃、・・・・のように指定された温度範囲ごとに測定されたデータに基づいて放電深度特性を表す関数を作成するようにしてもよい。そして、蓄電池システム100の動作環境温度と対応する関数を選択し、上述した制御を行うようにしてもよい。 Further, the function creation unit 81 may create a function representing the discharge depth characteristic for each ambient temperature. For example, a function expressing the discharge depth characteristic may be created based on the data measured for each specified temperature range such as 10 ° C to 15 ° C, 15 ° C to 20 ° C, and so on. Then, a function corresponding to the operating environment temperature of the storage battery system 100 may be selected to perform the above-mentioned control.

また、上記の説明では、図4を用いて説明したように、電池セルC1~Cnの数と同じ数の定電流源21を備える場合について説明したが、充電器20の構成はこれに限定されない。たとえば、1個の定電流源、分流回路、バイパス回路、分流回路及びバイパス回路を制御する制御回路等を設け、電池セルC1~Cnを個別に充電できるようにしてもよい。 Further, in the above description, as described with reference to FIG. 4, a case where the constant current source 21 having the same number as the number of battery cells C1 to Cn is provided has been described, but the configuration of the charger 20 is not limited to this. .. For example, one constant current source, a diversion circuit, a bypass circuit, a control circuit for controlling the diversion circuit and the bypass circuit, and the like may be provided so that the battery cells C1 to Cn can be charged individually.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことが出来る。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and variations thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

10…電池パック
20…充電器
21…定電流源
22…電流センサ
23…電圧センサ
30…過充電検出部
31…過充電検出回路
33…充電停止制御回路
40…過放電検出部
41…過放電検出回路
43…放電停止制御回路
50…電圧調整部
60…電流センサ
70…遮断器
80…制御部
81…関数作成部
83…閾値設定部
831…放電停止電圧設定部
832…充電停止電圧設定部
90…動作範囲設定部
91…装置タイプ選択部
92…充電開始電圧設定部
93…充電終了電圧設定部
94…調整部
100…蓄電池システム
200…負荷装置
C1~Cn…電池セル
10 ... Battery pack 20 ... Charger 21 ... Constant current source 22 ... Current sensor 23 ... Voltage sensor 30 ... Overcharge detection unit 31 ... Overcharge detection circuit 33 ... Charge stop control circuit 40 ... Overdischarge detection unit 41 ... Overdischarge detection Circuit 43 ... Discharge stop control circuit 50 ... Voltage adjustment unit 60 ... Current sensor 70 ... Breaker 80 ... Control unit 81 ... Function creation unit 83 ... Threshold setting unit 831 ... Discharge stop voltage setting unit 832 ... Charge stop voltage setting unit 90 ... Operating range setting unit 91 ... Device type selection unit 92 ... Charging start voltage setting unit 93 ... Charging end voltage setting unit 94 ... Adjustment unit 100 ... Storage battery system 200 ... Load device C1 to Cn ... Battery cell

Claims (11)

直列に接続された複数の電池セルを備える電池パックと、
複数の前記電池セルそれぞれを個別に充電する充電器と、
前記充電器を制御して複数の前記電池セルごとに充電を行う制御部と、
を備え
前記制御部は、
複数の前記電池セルそれぞれの放電深度特性を表す関数を作成する関数作成部と、
前記関数に基づいて、前記電池セルそれぞれの充電開始電圧及び充電終了電圧を設定する動作範囲設定部と、
を備え、
前記動作範囲設定部は、
前記電池パックの定格電圧の範囲と前記電池パックから電気エネルギーの供給を受ける負荷装置の動作電圧の範囲との関係で分類された装置タイプを選択する装置タイプ選択部と、
前記装置タイプ及び前記関数に基づいて、前記電池セルの充電を開始する前記充電開始電圧を設定する充電開始電圧設定部と、
前記装置タイプ及び前記関数に基づいて、前記電池セルの充電を終了する前記充電終了電圧を設定する充電終了電圧設定部と、
を備える、
蓄電池システム。
A battery pack with multiple battery cells connected in series,
A charger that individually charges each of the plurality of battery cells,
A control unit that controls the charger to charge each of the plurality of battery cells,
Equipped with
The control unit
A function creation unit that creates a function that represents the discharge depth characteristics of each of the plurality of battery cells,
An operating range setting unit that sets the charge start voltage and charge end voltage of each of the battery cells based on the function.
Equipped with
The operating range setting unit is
A device type selection unit that selects a device type classified according to the relationship between the range of the rated voltage of the battery pack and the range of the operating voltage of the load device to which the electric energy is supplied from the battery pack.
A charging start voltage setting unit that sets the charging start voltage for starting charging of the battery cell based on the device type and the function.
A charge end voltage setting unit that sets the charge end voltage that ends charging of the battery cell based on the device type and the function.
To prepare
Storage battery system.
前記制御部は、前記装置タイプ選択部が、前記負荷装置の動作電圧範囲の上限が前記電池パックの定格電圧の範囲の上限よりも低いと判別した場合、基準とする容量を有する第1の電池セルより容量が小さい第2の電池セルの残量と、前記第1の電池セルの残量と、が同じになるように、前記第2の電池セルを充電する、
請求項に記載の蓄電池システム。
When the device type selection unit determines that the upper limit of the operating voltage range of the load device is lower than the upper limit of the rated voltage range of the battery pack, the control unit has a first battery having a reference capacity. The second battery cell is charged so that the remaining amount of the second battery cell having a capacity smaller than that of the cell and the remaining amount of the first battery cell are the same.
The storage battery system according to claim 1 .
前記制御部は、複数の前記電池セルそれぞれに並列に接続され、前記電池セルそれぞれを個別に放電する電圧調整部を備え、
前記制御部は、前記装置タイプ選択部が、前記負荷装置の動作電圧範囲の下限が前記電池パックの定格電圧の範囲の下限よりも高いと判別した場合、基準とする容量を有する第1の電池セルより容量が小さい第2の電池セルの満充電状態になるまでの容量と、前記第1の電池セルの満充電状態になるまでの容量と、が同じになるように、前記電圧調整部を制御して前記第2の電池セルを放電する、
請求項に記載の蓄電池システム。
The control unit is connected in parallel to each of the plurality of battery cells, and includes a voltage adjusting unit that individually discharges each of the battery cells.
When the device type selection unit determines that the lower limit of the operating voltage range of the load device is higher than the lower limit of the rated voltage range of the battery pack, the control unit has a first battery having a reference capacity. The voltage adjusting unit is set so that the capacity until the second battery cell, which has a smaller capacity than the cell, is fully charged and the capacity until the first battery cell is fully charged are the same. Controlled to discharge the second battery cell,
The storage battery system according to claim 1 .
前記制御部は、複数の前記電池セルそれぞれに並列に接続され、前記電池セルそれぞれを個別に放電する電圧調整部を備え、
前記制御部は、前記装置タイプ選択部が、前記負荷装置の動作電圧範囲と前記電池パックの定格電圧の範囲が同じであると判別した場合、
放電時に、基準とする容量を有する第1の電池セルより容量が小さい第2の電池セルの残量が50%以下になった場合、前記第2の電池セルの残量と前記第1の電池セルの残量とが同じになるように、前記第2の電池セルを充電し、
充電時に、前記第2の電池セルの残量が50%以上になった場合、前記第2の電池セルの満充電状態になるまでの容量と前記第1の電池セルの満充電状態になるまでの容量とが同じになるように、前記電圧調整部を制御して前記第2の電池セルを放電する、
請求項に記載の蓄電池システム。
The control unit is connected in parallel to each of the plurality of battery cells, and includes a voltage adjusting unit that individually discharges each of the battery cells.
When the control unit determines that the device type selection unit has the same operating voltage range of the load device and the rated voltage range of the battery pack, the control unit determines.
When the remaining amount of the second battery cell having a capacity smaller than that of the first battery cell having the reference capacity becomes 50% or less at the time of discharging, the remaining amount of the second battery cell and the first battery Charge the second battery cell so that the remaining amount of the cell is the same.
When the remaining amount of the second battery cell becomes 50% or more at the time of charging, the capacity until the second battery cell is fully charged and the capacity until the first battery cell is fully charged. The second battery cell is discharged by controlling the voltage adjusting unit so that the capacity is the same as that of the second battery cell.
The storage battery system according to claim 1 .
複数の前記電池セルの何れかが過充電状態になったことを検出する過充電検出部を備え、
前記過充電検出部は、複数の前記電池セルの何れかが過充電状態になったことを検出すると、前記充電器を制御して前記電池セルへの充電を停止させる、
請求項1からの何れか一項に記載の蓄電池システム。
It is provided with an overcharge detection unit that detects that any of the plurality of battery cells has become overcharged.
When the overcharge detection unit detects that any of the plurality of battery cells is in the overcharge state, the overcharge detection unit controls the charger to stop charging the battery cells.
The storage battery system according to any one of claims 1 to 4 .
前記電池パックと前記電池パックから電気エネルギーの供給を受ける負荷装置とを遮断する遮断器と、
複数の前記電池セルの何れかが過放電状態になったことを検出する過放電検出部を備え、
前記過放電検出部は、複数の前記電池セルの何れかが過放電状態になったことを検出すると、前記遮断器を制御して、前記電池パックと前記負荷装置とを遮断する、
請求項1からの何れか一項に記載の蓄電池システム。
A circuit breaker that cuts off the battery pack and a load device that receives electrical energy from the battery pack.
It is provided with an over-discharge detection unit that detects that any of the plurality of battery cells has become over-discharged.
When the over-discharge detecting unit detects that any of the plurality of battery cells is in an over-discharged state, the over-discharge detecting unit controls the circuit breaker to cut off the battery pack and the load device.
The storage battery system according to any one of claims 1 to 5 .
電池パックを構成する複数の電池セルそれぞれの放電深度特性を表す関数を作成する関数作成工程と、
電池パックの定格電圧の範囲と負荷装置の動作電圧範囲の関係で分類された装置タイプを選択する装置タイプ選択工程と、
前記装置タイプに基づいて前記電池セルそれぞれの充電開始電圧および充電終了電圧を設定する設定工程と、
設定された前記充電開始電圧および前記充電終了電圧に基づいて前記電池セルへの充電を制御する制御工程と、
を含む蓄電池システムの制御方法。
A function creation process that creates a function that represents the discharge depth characteristics of each of the multiple battery cells that make up the battery pack,
A device type selection process that selects device types classified according to the relationship between the rated voltage range of the battery pack and the operating voltage range of the load device, and
A setting process for setting the charge start voltage and charge end voltage of each of the battery cells based on the device type, and
A control step for controlling charging of the battery cell based on the set charging start voltage and charging end voltage, and
How to control the battery system, including.
前記制御工程では、前記電池パックを構成する複数の前記電池セルそれぞれの容量に応じて、前記電池セルそれぞれの充放電制御を行う、
請求項に記載の蓄電池システムの制御方法。
In the control step, charge / discharge control of each of the battery cells is performed according to the capacity of each of the plurality of battery cells constituting the battery pack.
The control method for a storage battery system according to claim 7 .
前記負荷装置の動作電圧範囲の上限が前記電池パックの定格電圧の範囲の上限よりも低い場合、前記制御工程において、基準とする容量を有する第1の電池セルより容量が小さい第2の電池セルの残量と前記第1の電池セルの残量とが同じになるように、前記第2の電池セルを充電する、
請求項に記載の蓄電池システムの制御方法。
When the upper limit of the operating voltage range of the load device is lower than the upper limit of the rated voltage range of the battery pack, the second battery cell having a smaller capacity than the first battery cell having the reference capacity in the control step. The second battery cell is charged so that the remaining amount of the first battery cell is the same as the remaining amount of the first battery cell.
The control method for a storage battery system according to claim 8 .
前記負荷装置の動作電圧範囲の下限が前記電池パックの定格電圧の範囲の下限よりも高い場合、前記制御工程において、基準とする容量を有する第1の電池セルより容量が小さい第2の電池セルの満充電状態になるまでの容量と前記第1の電池セルの満充電状態になるまでの容量とが同じになるように、前記第2の電池セルを放電する、
請求項に記載の蓄電池システムの制御方法。
When the lower limit of the operating voltage range of the load device is higher than the lower limit of the rated voltage range of the battery pack, the second battery cell having a smaller capacity than the first battery cell having the reference capacity in the control step. The second battery cell is discharged so that the capacity until the first battery cell is fully charged and the capacity until the first battery cell is fully charged are the same.
The control method for a storage battery system according to claim 8 .
前記負荷装置の動作電圧範囲と前記電池パックの定格電圧の範囲が同じである場合、
前記制御工程において、
放電時に、基準とする容量を有する第1の電池セルより容量が小さい第2の電池セルの残量が50%以下になった場合、前記第2の電池セルの残量と前記第1の電池セルの残量とが同じになるように、前記第2の電池セルを充電し、
充電時に、前記第2の電池セルの残量が50%以上になった場合、前記第2の電池セルの満充電状態になるまでの容量と前記第1の電池セルの満充電状態になるまでの容量とが同じになるように、前記第2の電池セルを放電する、
請求項に記載の蓄電池システムの制御方法。
When the operating voltage range of the load device and the rated voltage range of the battery pack are the same,
In the control step,
When the remaining amount of the second battery cell having a capacity smaller than that of the first battery cell having the reference capacity becomes 50% or less at the time of discharging, the remaining amount of the second battery cell and the first battery Charge the second battery cell so that the remaining amount of the cell is the same.
When the remaining amount of the second battery cell becomes 50% or more at the time of charging, the capacity until the second battery cell is fully charged and the capacity until the first battery cell is fully charged. Discharge the second battery cell so that the capacity is the same as that of the second battery cell.
The control method for a storage battery system according to claim 8 .
JP2018046571A 2018-03-14 2018-03-14 Storage battery system and control method of storage battery system Active JP7086651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018046571A JP7086651B2 (en) 2018-03-14 2018-03-14 Storage battery system and control method of storage battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018046571A JP7086651B2 (en) 2018-03-14 2018-03-14 Storage battery system and control method of storage battery system

Publications (2)

Publication Number Publication Date
JP2019161887A JP2019161887A (en) 2019-09-19
JP7086651B2 true JP7086651B2 (en) 2022-06-20

Family

ID=67992685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018046571A Active JP7086651B2 (en) 2018-03-14 2018-03-14 Storage battery system and control method of storage battery system

Country Status (1)

Country Link
JP (1) JP7086651B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113263957B (en) * 2021-05-17 2022-06-24 重庆大学 Energy optimization device and method for power battery system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023736A (en) 2001-07-06 2003-01-24 Japan Storage Battery Co Ltd Charger for combined battery pack
JP2003157908A (en) 2001-09-10 2003-05-30 Ntt Power & Building Facilities Inc Charging device for lithium ion secondary cell, and charging method of the same
US20060097696A1 (en) 2004-11-10 2006-05-11 Eaglepicher Technologies, Llc Method and system for cell equalization with isolated charging sources
JP2009106018A (en) 2007-10-22 2009-05-14 Pues Corp Charging device and charging method
JP2009303430A (en) 2008-06-17 2009-12-24 Kazumasa Sakakibara Battery pack
JP2013081306A (en) 2011-10-04 2013-05-02 Toyota Industries Corp Battery deterioration equalization system and method
JP2017085876A (en) 2015-10-22 2017-05-18 パナソニックIpマネジメント株式会社 Power storage system and control method for power storage system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3922655B2 (en) * 1996-07-12 2007-05-30 株式会社東京アールアンドデー Power supply control system and power supply control method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023736A (en) 2001-07-06 2003-01-24 Japan Storage Battery Co Ltd Charger for combined battery pack
JP2003157908A (en) 2001-09-10 2003-05-30 Ntt Power & Building Facilities Inc Charging device for lithium ion secondary cell, and charging method of the same
US20060097696A1 (en) 2004-11-10 2006-05-11 Eaglepicher Technologies, Llc Method and system for cell equalization with isolated charging sources
JP2009106018A (en) 2007-10-22 2009-05-14 Pues Corp Charging device and charging method
JP2009303430A (en) 2008-06-17 2009-12-24 Kazumasa Sakakibara Battery pack
JP2013081306A (en) 2011-10-04 2013-05-02 Toyota Industries Corp Battery deterioration equalization system and method
JP2017085876A (en) 2015-10-22 2017-05-18 パナソニックIpマネジメント株式会社 Power storage system and control method for power storage system

Also Published As

Publication number Publication date
JP2019161887A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
EP2418751B1 (en) Battery charger and battery charging method
EP2068420B1 (en) Secondary battery charging method and device
US9184476B2 (en) Battery module control system and battery module control method
CN100373742C (en) Over voltage transient controller
KR101500826B1 (en) Battery charging apparatus and battery charging method
US8436588B2 (en) Method of charging a battery array
US9564768B2 (en) Discharge device for electricity storage device
US11075526B2 (en) Charging control device
US9906052B2 (en) Power supply device
CN104467062A (en) Charging method of battery and battery charging system
JP5122214B2 (en) Battery pack, charging device, and charging system
US4311952A (en) Battery charging system
KR102342202B1 (en) Battery device and control method thereof
EP1338074B1 (en) Temperature limitation in li battery charging
JPH1155865A (en) Voltage measuring circuit of secondary battery and protective circuit using the same
JP2018050373A (en) Battery system
CN110311430B (en) Charging system for vehicle and charging control method
JPH09200968A (en) Charge controller for battery set
JP7086651B2 (en) Storage battery system and control method of storage battery system
CN115038612A (en) Charge management apparatus, charge management method, and electric vehicle
KR102349705B1 (en) Battery cell balancing circuit and apparatus and method for balancing of a battery cell for using the same
JP5165405B2 (en) Charge control circuit, battery pack, and charging system
TWI570991B (en) Storage device and charge-discharge method thereof
JP2003217681A (en) Secondary battery and charging device for it
JP7401076B2 (en) FET control device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220608

R150 Certificate of patent or registration of utility model

Ref document number: 7086651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150