JP2009105242A - Method of manufacturing electrode foil for electrolytic capacitor - Google Patents

Method of manufacturing electrode foil for electrolytic capacitor Download PDF

Info

Publication number
JP2009105242A
JP2009105242A JP2007275985A JP2007275985A JP2009105242A JP 2009105242 A JP2009105242 A JP 2009105242A JP 2007275985 A JP2007275985 A JP 2007275985A JP 2007275985 A JP2007275985 A JP 2007275985A JP 2009105242 A JP2009105242 A JP 2009105242A
Authority
JP
Japan
Prior art keywords
foil
etching
aluminum foil
electrolytic capacitor
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007275985A
Other languages
Japanese (ja)
Inventor
Takahisa Nishi
貴久 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2007275985A priority Critical patent/JP2009105242A/en
Publication of JP2009105242A publication Critical patent/JP2009105242A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • ing And Chemical Polishing (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an electrode foil for an electrolytic capacitor of raised electrostatic capacitance. <P>SOLUTION: The method of manufacturing the electrode foil for an electrolytic capacitor includes an etching step with an aluminum foil, an immersion step in which the aluminum foil is immerged in a processing liquid at least once, a thermal treatment step, and a chemical formation step. In the immersion step, micro bubbles are generated in any step liquid when performing a cleaning step of removing ion sticking to the aluminum foil and a hydration treatment step in which the aluminum foil is immersed in the processing liquid for forming a hydrate film. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、アルミニウム電解コンデンサ用電極箔の製造方法に関するものであり、特に、アルミニウム箔をエッチングした後の処理技術に関するものである。   The present invention relates to a method for manufacturing an electrode foil for an aluminum electrolytic capacitor, and particularly to a processing technique after etching an aluminum foil.

アルミニウム電解コンデンサにおいては、小形化要求にともなって、電極箔には静電容量の向上が要求されている。
かかる要求に対応するにあたって、従来は、アルミニウム箔を塩酸と硫酸との水溶液に硝酸やリン酸等を混合したエッチング液中で化学的なエッチング(無電解エッチング)、および/または電気化学的なエッチング(電解エッチング)を行って有効表面積を拡大した後、エッチング箔に付着する塩化物イオン、硫化物イオン等を除去する洗浄工程、水和処理工程、および化成工程を行うことにより、静電容量の高い陽極箔を得ている。
ここで、水和処理工程は、アルミニウム箔の表面に水和皮膜を形成することにより、化成工程で形成する陽極酸化皮膜の膜質を向上させることを目的とする(例えば、非特許文献1参照)。
In the aluminum electrolytic capacitor, with the demand for miniaturization, the electrode foil is required to improve the capacitance.
In order to meet such demands, conventionally, an aluminum foil is chemically etched (electroless etching) and / or electrochemically etched in an etching solution in which nitric acid or phosphoric acid is mixed with an aqueous solution of hydrochloric acid and sulfuric acid. (Electrolytic etching) to increase the effective surface area, and then perform a cleaning process, a hydration process, and a chemical conversion process to remove chloride ions, sulfide ions, etc. adhering to the etching foil. High anode foil is obtained.
Here, the purpose of the hydration process is to improve the film quality of the anodized film formed in the chemical conversion process by forming a hydrated film on the surface of the aluminum foil (for example, see Non-Patent Document 1). .

永田伊佐也、「電解液陰極アルミニウム電解コンデンサ」、日本蓄電器工業株式会社、平成9年2月24日、第2版第1刷、P265〜271Isaya Nagata, “Electrolytic Cathode Aluminum Electrolytic Capacitor”, Nihon Denki Kogyo Kogyo Co., Ltd., February 24, 1997, Second Edition, First Printing, P265-271

しかしながら、電解コンデンサにはさらなる小形化が要求されており、それに伴って、さらに静電容量の高い陽極箔が求められているが、従来の製造方法では、エッチング倍率を高めてエッチングピットを微細かつ深くしても、かかる要求に対応できるレベルまで陽極箔の静電容量を高めることができないという問題がある。   However, the electrolytic capacitor is required to be further miniaturized, and accordingly, an anode foil having a higher capacitance is required. However, in the conventional manufacturing method, the etching pit is made fine by increasing the etching magnification. Even if it is deepened, there is a problem that the capacitance of the anode foil cannot be increased to a level that can meet such requirements.

以上の問題に鑑みて、本発明の課題は、静電容量をさらに高めることのできる電解コンデンサ用電極箔の製造方法を提供することにある。   In view of the above problems, an object of the present invention is to provide a method for producing an electrode foil for an electrolytic capacitor that can further increase the capacitance.

上記課題を解決するために、本願発明者が種々、検討を重ねた結果、エッチング倍率を高めていくと、エッチングピットが微細かつ深くなった分、エッチングピットの細部まで、塩化物イオン、硫化物イオン等の洗浄処理や、水和処理が確実に行われず、良質の陽極酸化皮膜を形成できないという知見を得た。
すなわち、エッチングピットの径が小さければ小さいほどアルミニウム箔内部(エッチングピットの奥)と、液に接している表面側との間において処理液の出入り、交換が行われにくくなり、エッチングピットの細部まで洗浄や水和処理が十分、行われなくなってしまうのである。
In order to solve the above problems, the inventors of the present application have made various studies. As a result, when the etching magnification is increased, the etching pits become finer and deeper. It was found that the cleaning process of ions and the hydration process were not performed reliably, and a good quality anodic oxide film could not be formed.
That is, the smaller the diameter of the etching pit, the more difficult it is for the processing solution to enter and exit and exchange between the inside of the aluminum foil (the back of the etching pit) and the surface side in contact with the solution. Washing and hydration will not be performed sufficiently.

本発明は、かかる知見に基づいて達成されたものであり、少なくとも、アルミニウム箔を化学的および/または電気化学的にエッチングするエッチング工程と、該エッチング工程の後、前記アルミニウム箔を処理液に1回以上浸漬する浸漬工程と、前記浸漬工程の後、前記アルミニウム箔の表面に陽極酸化を行う化成工程と、を有する電解コンデンサ用電極箔の製造方法において、前記浸漬工程のうち、少なくとも1回の工程で、処理液中にマイクロバブルを発生させて浸漬を行うことを特徴とする。   The present invention has been achieved on the basis of such knowledge. At least, an etching process for chemically and / or electrochemically etching an aluminum foil, and after the etching process, the aluminum foil is used as a treatment liquid. In the method for producing an electrode foil for an electrolytic capacitor having a dipping step of dipping more than once and a chemical conversion step of anodizing the surface of the aluminum foil after the dipping step, at least one of the dipping steps. The process is characterized in that the microbubbles are generated in the treatment liquid and immersed.

本発明では、前記浸漬工程として、前記アルミニウム箔を処理液に浸漬し、前記エッチング工程で当該アルミニウム箔に付着したイオンを除去する洗浄工程と、該洗浄工程の後、前記アルミニウム箔を処理液に浸漬して、箔表面に水和皮膜を形成する水和処理工程とを有する場合があり、この場合、前記洗浄工程および前記水和処理工程の両工程において、処理液中に前記マイクロバブルを発生させることが好ましい。   In the present invention, as the dipping step, the aluminum foil is dipped in a processing solution, and a cleaning step for removing ions attached to the aluminum foil in the etching step, and after the cleaning step, the aluminum foil is used as a processing solution. A hydration treatment step of immersing and forming a hydrated film on the foil surface. In this case, the microbubbles are generated in the treatment liquid in both the washing step and the hydration treatment step. It is preferable to make it.

「マイクロバブル」は、直径が100μm以下、例えば10μm〜数10μmの気泡であり、加圧減圧法や気液せん断法などにより形成できる。
加圧減圧法では、高圧下で気体を大量に溶解させ、減圧により再気泡化する。
一方、気液せん断法では、渦流を作って、この中に気体を巻き込みながら最後に切断・粉砕させる。
いずれの方法で形成したマイクロバブルも、通常の気泡に比べ上昇速度が非常に緩やかであること、優れた溶解能力を備えていること、内部の圧力が高くなっている自己加圧効果により様々な化学物質を分解できる圧壊現象を引き出すことなどの特徴を備えている。
“Microbubbles” are bubbles having a diameter of 100 μm or less, for example, 10 μm to several tens of μm, and can be formed by a pressure-reduced pressure method or a gas-liquid shear method.
In the pressure-reduced pressure method, a large amount of gas is dissolved under high pressure and re-bubbled by reducing pressure.
On the other hand, in the gas-liquid shearing method, a vortex is created, and the gas is finally cut and pulverized while entraining the gas.
The microbubbles formed by either method have a very slow rising speed compared to normal bubbles, have excellent dissolution capability, and have various self-pressurization effects due to the high internal pressure. It has features such as drawing out crushing phenomena that can decompose chemical substances.

洗浄工程や水和処理工程などの浸漬工程において、処理液中にマイクロバブルを発生させると、マイクロバブルにてエッチングピット内部の処理液の攪拌が促進され、該ピット細部への処理液の浸透を促進するので、ピット内部に付着、残存する塩素イオン、硫酸イオンが洗い出され、洗浄処理を十分に行うことができる。
また、ピット細部への水分の浸透が促進されるので、水和処理を十分かつ均一に行うことが可能となる。
従って、化成時においては、均一に膜質のよい陽極酸化皮膜を形成することができ、高い静電容量を有する電極箔が得られる。
When microbubbles are generated in the processing liquid in the immersion process such as the cleaning process and the hydration processing process, stirring of the processing liquid inside the etching pit is promoted by the microbubbles, and the processing liquid penetrates into the pit details. Since it promotes, chlorine ions and sulfate ions adhering and remaining inside the pit are washed out, and the washing process can be sufficiently performed.
In addition, since the penetration of moisture into the pit details is promoted, the hydration treatment can be performed sufficiently and uniformly.
Therefore, at the time of chemical conversion, an anodic oxide film having a good film quality can be formed uniformly, and an electrode foil having a high capacitance can be obtained.

本発明は、前記洗浄工程および水和処理工程の両工程において、処理液の液温を40〜60℃として、浸漬を行うことが好ましい。   In the present invention, in both the washing step and the hydration treatment step, the treatment liquid is preferably immersed at a temperature of 40 to 60 ° C.

本発明は、前記浸漬工程の後、前記化成工程の前に前記エッチング箔に熱処理を施す熱処理工程を設ける製造方法の場合にも適用することができる。   The present invention can also be applied to a manufacturing method in which a heat treatment step is performed after the dipping step and before the chemical conversion step.

本発明において、前記マイクロバブルを発生させる際、当該マイクロバブルを前記アルミニウム箔の両面に向けて噴き付けることが好ましい。このように構成すると、エッチングピットが微細かつ深い場合でも、エッチングピットの細部まで、洗浄や水和処理を均一に行うことができ、良質の陽極酸化皮膜を形成することができる。   In this invention, when generating the said microbubble, it is preferable to spray the said microbubble toward both surfaces of the said aluminum foil. If comprised in this way, even if an etching pit is fine and deep, it can wash | clean and hydrate evenly to the detail of an etching pit, and can form a quality anodic oxide film.

本発明においては、前記マイクロバブルの発生量が多いほど効果がある。   In the present invention, the more microbubbles are generated, the more effective.

本発明では、洗浄工程や水和処理工程などの浸漬工程において、処理液中にマイクロバブルを発生させると、マイクロバブルにてエッチングピット内部の処理液の攪拌が促進され、該ピット内部への処理液の浸透を促進するので、ピット内部に付着、残存する塩素イオン、硫酸イオンが洗い出され、洗浄処理を十分に行うことができる。
また、ピット細部への水分の浸透が促進されるので、水和処理を均一に行うことが可能となる。
従って、洗浄処理または水和処理を十分かつ均一に行うことができるので、化成時において、均一で膜質のよい陽極酸化皮膜を形成することができ、高い静電容量が得られる。
ここで、マイクロバブルの気泡径が100μmを超えると、通常の気泡と同様に、気泡上昇による処理槽中の溶液(バルク)の攪拌効果しかなく、ピット内部への処理液の攪拌が起こりにくくなるため、洗浄処理を十分に行うことができず、また、ピット内部での水和処理を均一に行うことができなくなるので、好ましくない。
In the present invention, when microbubbles are generated in the treatment liquid in the immersion process such as the washing process and the hydration treatment process, the stirring of the treatment liquid inside the etching pit is promoted by the microbubbles, and the treatment into the pit is performed. Since the penetration of the liquid is promoted, chlorine ions and sulfate ions adhering to and remaining in the pit are washed out, and the washing process can be sufficiently performed.
Further, since the penetration of moisture into the pit details is promoted, the hydration process can be performed uniformly.
Therefore, since the washing treatment or the hydration treatment can be performed sufficiently and uniformly, a uniform and good quality anodic oxide film can be formed at the time of chemical conversion, and a high capacitance can be obtained.
Here, when the bubble diameter of the microbubbles exceeds 100 μm, there is only an agitation effect of the solution (bulk) in the treatment tank due to the bubble rise, and the agitation of the treatment liquid into the pit is less likely to occur. Therefore, the cleaning process cannot be performed sufficiently, and the hydration process in the pits cannot be performed uniformly, which is not preferable.

図1は、本発明を適用した電解コンデンサ用電極箔の製造方法における浸漬工程処理の説明図である。   FIG. 1 is an explanatory diagram of a dipping process in a method for producing an electrode foil for an electrolytic capacitor to which the present invention is applied.

低圧用の電解コンデンサに用いる陽極箔(電解コンデンサ用電極箔)を製造するには、まず、エッチング工程で、塩酸と硫酸との水溶液に硝酸やリン酸等を混合したエッチング液中で化学的および/または電気化学的なエッチングを行って有効表面積を拡大する。
陽極箔として、低圧用の電解コンデンサ用のエッチング箔を製造する場合、交流を用いた電解エッチングが多用される。
In order to manufacture an anode foil (electrolytic capacitor electrode foil) used for an electrolytic capacitor for low pressure, first, in an etching process, chemical and chemicals are mixed in an etching solution in which nitric acid or phosphoric acid is mixed with an aqueous solution of hydrochloric acid and sulfuric acid. Electrochemical etching is performed to enlarge the effective surface area.
When manufacturing an etching foil for an electrolytic capacitor for low pressure as the anode foil, electrolytic etching using alternating current is frequently used.

次に、アルミニウム箔を処理液に1回以上浸漬する浸漬工程を行う。
かかる浸漬工程として、本形態では、アルミニウム箔(エッチング箔)を水や酸性の処理液に浸漬することにより、エッチング工程でアルミニウム箔に付着した塩化物イオン、硫化物イオン等のイオンを除去する洗浄工程と、洗浄工程の後、アルミニウム箔を中性、弱酸性、または弱アルカリ性の処理液に浸漬してアルミニウム箔の表面に薄い水和皮膜を形成する水和処理工程とを行う。
ここで、洗浄工程と水和処理工程との間に水洗工程を設けてもよい。
Next, an immersion process is performed in which the aluminum foil is immersed in the treatment liquid at least once.
As this immersion process, in this embodiment, the aluminum foil (etching foil) is immersed in water or an acidic treatment solution to remove ions such as chloride ions and sulfide ions attached to the aluminum foil in the etching process. After the step and the cleaning step, a hydration treatment step is performed in which the aluminum foil is immersed in a neutral, weakly acidic or weakly alkaline treatment solution to form a thin hydrated film on the surface of the aluminum foil.
Here, a water washing step may be provided between the washing step and the hydration treatment step.

次に、熱処理工程において、エッチング箔に例えば、温度400℃の熱処理を施す。   Next, in the heat treatment step, for example, a heat treatment at a temperature of 400 ° C. is performed on the etching foil.

次に、化成工程において、アジピン酸アンモニウム水溶液などを用いて、アルミニウム箔の表面に陽極酸化を行い、誘電体となる陽極酸化皮膜を形成する。   Next, in the chemical conversion step, using an aqueous solution of ammonium adipate or the like, anodization is performed on the surface of the aluminum foil to form an anodized film serving as a dielectric.

かかる製造方法において、エッチング工程を行うと、図1に示すように、アルミニウム箔の表面(両面)にはエッチングピットが形成され、アルミニウム箔の厚さ方向の中央には芯金が残る。
ここで、静電容量の高い陽極箔を得るには、エッチング倍率を高めてエッチングピットを微細かつ深く成長させる。
その結果、エッチング工程の後に行う浸漬工程(洗浄工程および水和処理工程)では、エッチングピットの内部と外側で処理液の入れ替わりなどが起こらず、細部まで浸透した塩化物イオン、硫化物イオン等の洗浄除去や、水和処理が行われなくなる。その結果、良質の陽極酸化皮膜を形成できないことになる。
In such a manufacturing method, when an etching process is performed, as shown in FIG. 1, etching pits are formed on the surface (both sides) of the aluminum foil, and a metal core remains in the center in the thickness direction of the aluminum foil.
Here, in order to obtain an anode foil having a high capacitance, the etching magnification is increased to grow the etching pit finely and deeply.
As a result, in the immersion process (cleaning process and hydration process) performed after the etching process, there is no replacement of the processing solution inside and outside the etching pit, and chloride ions, sulfide ions, etc. that have penetrated to the details Cleaning removal and hydration treatment are not performed. As a result, a good quality anodic oxide film cannot be formed.

そこで、本形態では、処理液中にマイクロバブルを発生させる。その際、マイクロバブルをアルミニウム箔の両面に向けて噴き付ける。かかるマイクロバブルは、直径が数10μm以下で、例えば10μm〜数10μmの気泡であり、エッチングピットの内外の処理液が入れ替わるのを促進する。   Therefore, in this embodiment, microbubbles are generated in the processing liquid. At that time, micro bubbles are sprayed toward both sides of the aluminum foil. Such microbubbles are bubbles having a diameter of several tens of μm or less, for example, 10 μm to several tens of μm, and promote the replacement of the processing liquid inside and outside the etching pit.

以下、実施例に基づき、本発明をより具体的に説明する。   Hereinafter, based on an Example, this invention is demonstrated more concretely.

[実施例1〜5]
エッチングされた低圧用のアルミニウム箔を、付着物を除去するための洗浄用の処理液、および水和処理用の処理液に1分間ずつ浸漬を施す。かかる洗浄工程および水和処理工程を行う際、図1を参照して説明したように、処理液中にマイクロバブルを発生させ、マイクロバブルをアルミニウム箔の両面に向けて噴き付けた。
マイクロバブルは、気液せん断法により発生させた。具体的には、浸漬槽とは異なる槽で、後述の温度に加熱した処理液に渦流を作って、空気を吹き込みながら、空気を切断、粉砕した後、浸漬槽中に設けた噴出口より処理液とともにマイクロバブルをアルミニウム箔に噴き付けた。
本実施例では、洗浄用の処理液は10wt%硝酸水溶液で処理液温60℃、水和処理用の処理液は0.03wt%水酸化カリウム水溶液を用いた。
また、本実施例では、表1に示すように、水和処理液の温度は、20℃、40℃、50℃、60℃、65℃に設定した。
[Examples 1 to 5]
The etched low-pressure aluminum foil is immersed in a cleaning treatment solution for removing deposits and a hydration treatment solution for 1 minute each. When performing this washing | cleaning process and a hydration process process, as demonstrated with reference to FIG. 1, the microbubble was generated in the process liquid and the microbubble was sprayed toward both surfaces of the aluminum foil.
Microbubbles were generated by a gas-liquid shear method. Specifically, in a tank different from the immersion tank, a vortex is created in the processing liquid heated to the temperature described below, and the air is blown and crushed while being blown, and then processed from the spout provided in the immersion tank. Microbubbles were sprayed on the aluminum foil together with the liquid.
In this example, the treatment liquid for cleaning was a 10 wt% nitric acid aqueous solution at a treatment liquid temperature of 60 ° C., and the treatment liquid for hydration treatment was a 0.03 wt% potassium hydroxide aqueous solution.
In this example, as shown in Table 1, the temperature of the hydration solution was set to 20 ° C., 40 ° C., 50 ° C., 60 ° C., and 65 ° C.

Figure 2009105242
Figure 2009105242

次に、熱処理工程において、エッチング箔に温度400℃で、5分間の熱処理を施した。   Next, in the heat treatment step, the etching foil was subjected to heat treatment at a temperature of 400 ° C. for 5 minutes.

次に、アジピン酸アンモニウム80g/L、アジピン酸1.5g/Lを溶解した化成液中で、85±2℃にて電圧印加し、22Vまで電圧を上昇させて化成した後、デポラリゼーション、再化成処理等を施し、化成箔(電解コンデンサ用電極箔)を得た。   Next, in a chemical conversion solution in which 80 g / L of ammonium adipate and 1.5 g / L of adipic acid were dissolved, a voltage was applied at 85 ± 2 ° C. to increase the voltage to 22 V, followed by depolarization, Re-chemical conversion treatment etc. were performed and chemical conversion foil (electrode foil for electrolytic capacitors) was obtained.

(比較例1〜5)
比較例1〜5として、実施例1〜5と同様な条件で化成箔を得た。但し、処理液中にマイクロバブルを発生させずに洗浄工程および水和処理工程を行った。
(Comparative Examples 1-5)
As Comparative Examples 1 to 5, chemical conversion foils were obtained under the same conditions as in Examples 1 to 5. However, the washing step and the hydration treatment step were performed without generating microbubbles in the treatment liquid.

[評価結果]
次に、上記の実施例1〜5、および比較例1〜5の化成箔の静電容量を測定した。その結果を表1に示す。
[Evaluation results]
Next, the electrostatic capacitance of the chemical conversion foil of said Examples 1-5 and Comparative Examples 1-5 was measured. The results are shown in Table 1.

表1から明らかなように、エッチング箔に対する洗浄工程および水和処理工程を行う際、マイクロバブルを発生させた実施例2〜4では、比較例2〜4に比して高い静電容量を得ることができる。   As is clear from Table 1, when performing the cleaning step and the hydration treatment step on the etching foil, in Examples 2 to 4 in which microbubbles were generated, a higher capacitance was obtained compared to Comparative Examples 2 to 4. be able to.

すなわち、浸漬工程(洗浄工程および水和処理工程)における処理液の温度は、40〜60℃で高い静電容量が得られることが分かる。
処理液の温度が40℃未満の場合、例えば、20℃の場合には効果が小さく(実施例1)、60℃を超えた場合、例えば65℃の場合には、水和皮膜が過度に形成され、静電容量を確実に向上させることができない傾向にある(実施例5)。それ故、処理液の温度は40〜60℃の範囲が好ましい(実施例2〜4)。
That is, it is understood that a high capacitance can be obtained at a temperature of 40 to 60 ° C. in the treatment liquid in the dipping process (cleaning process and hydration process).
When the temperature of the treatment liquid is less than 40 ° C., for example, when the temperature is 20 ° C., the effect is small (Example 1). Thus, there is a tendency that the electrostatic capacity cannot be improved reliably (Example 5). Therefore, the temperature of the treatment liquid is preferably in the range of 40 to 60 ° C. (Examples 2 to 4).

なお、今回は処理液の温度による比較のみ記載したが、処理液については、pHを5〜11、浸漬処理時間0.5〜1.0分間、熱処理温度については250〜400℃で5分間の範囲であれば、同様の効果が得られることが確認できている。   In addition, although only the comparison by the temperature of a process liquid was described this time, about a process liquid, pH 5-11, immersion process time 0.5-1.0 minute, and about heat processing temperature 250-400 degreeC for 5 minutes. If it is within the range, it has been confirmed that the same effect can be obtained.

また、上記形態では、洗浄用の処理液に硝酸水溶液、水和処理用の処理液に水酸化カリウム水溶液を用いたが、洗浄用の処理液にリン酸、シュウ酸、硫酸の水溶液を用いても、そして、水和処理用の処理液に水酸化ナトリウムを用いても、同様の効果が得られる。   In the above embodiment, an aqueous nitric acid solution is used as the cleaning treatment solution and an aqueous potassium hydroxide solution is used as the hydrating treatment solution. However, an aqueous solution of phosphoric acid, oxalic acid, and sulfuric acid is used as the cleaning treatment solution. The same effect can be obtained even when sodium hydroxide is used in the treatment liquid for hydration treatment.

なお、上記実施例では洗浄工程、水和処理工程の両工程でマイクロバブルを使用したが、洗浄工程、水和処理工程のいずれかの工程だけであっても、効果が得られることは、上述したとおりである。
また、上記形態では、低圧用の電解コンデンサ用電極箔の製造に本発明を適用した例を中心に説明したが、中高圧の電解コンデンサ用電極箔の製造に本発明を適用してもよい。この場合、直流を用いた電解エッチングが多用される。また、電解エッチングと無電解エッチングを組み合わせた方法が採用されることもある。
In the above embodiment, microbubbles are used in both the washing step and the hydration treatment step. However, the effect can be obtained even if only one of the washing step and the hydration treatment step is described above. Just as you did.
In the above embodiment, the example in which the present invention is applied to the manufacture of an electrode foil for electrolytic capacitors for low pressure has been mainly described. However, the present invention may be applied to the manufacture of an electrode foil for electrolytic capacitors of medium to high pressure. In this case, electrolytic etching using direct current is frequently used. Further, a method in which electrolytic etching and electroless etching are combined may be employed.

本発明を適用した電解コンデンサ用電極箔の製造方法における浸漬工程の説明図である。It is explanatory drawing of the immersion process in the manufacturing method of the electrode foil for electrolytic capacitors to which this invention is applied.

Claims (6)

少なくとも、
アルミニウム箔を化学的および/または電気化学的にエッチングするエッチング工程と、
該エッチング工程の後、前記アルミニウム箔を処理液に1回以上浸漬する浸漬工程と、
前記浸漬工程の後、前記アルミニウム箔の表面に陽極酸化を行う化成工程と、
を有する電解コンデンサ用電極箔の製造方法において、
前記浸漬工程のうち、少なくとも1回の工程で、処理液中にマイクロバブルを発生させて浸漬を行うことを特徴とする電解コンデンサ用電極箔の製造方法。
at least,
An etching step of chemically and / or electrochemically etching the aluminum foil;
After the etching step, an immersion step of immersing the aluminum foil in the treatment liquid at least once;
After the dipping step, a chemical conversion step of anodizing the surface of the aluminum foil,
In the manufacturing method of the electrode foil for electrolytic capacitors having
A method for producing an electrode foil for an electrolytic capacitor, characterized in that microbubbles are generated in the treatment liquid and immersed in at least one of the immersion steps.
前記浸漬工程として、前記アルミニウム箔を処理液に浸漬し、前記エッチング工程で当該アルミニウム箔に付着したイオンを除去する洗浄工程と、該洗浄工程の後、前記アルミニウム箔を処理液に浸漬して、箔表面に水和皮膜を形成する水和処理工程とを有し、
前記洗浄工程および水和処理工程の両工程において、処理液中に前記マイクロバブルを発生させることを特徴とする請求項1に記載の電解コンデンサ用電極箔の製造方法。
As the immersion step, the aluminum foil is immersed in a treatment liquid, a cleaning step for removing ions attached to the aluminum foil in the etching step, and after the cleaning step, the aluminum foil is immersed in a treatment solution, A hydration process for forming a hydrated film on the foil surface,
The method for producing an electrode foil for an electrolytic capacitor according to claim 1, wherein the microbubbles are generated in a treatment liquid in both the washing step and the hydration treatment step.
前記洗浄工程および水和処理工程の両工程において、処理液の液温を40〜60℃として、浸漬を行うことを特徴とする請求項2に記載の電解コンデンサ用電極箔の製造方法。   3. The method for producing an electrode foil for an electrolytic capacitor according to claim 2, wherein in both the washing step and the hydration treatment step, the treatment solution is immersed at a liquid temperature of 40 to 60 ° C. 前記浸漬工程の後、前記化成工程の前に、前記エッチング箔に熱処理を施す熱処理工程を設けることを特徴とする請求項2または3に記載の電解コンデンサ用電極箔の製造方法。   4. The method for producing an electrode foil for an electrolytic capacitor according to claim 2, wherein a heat treatment step for heat-treating the etching foil is provided after the dipping step and before the chemical conversion step. 5. 前記マイクロバブルを発生させる際、当該マイクロバブルを前記アルミニウム箔の両面に向けて噴き付けることを特徴とする請求項1〜4の何れか1項に記載の電解コンデンサ用電極箔の製造方法。   The method for producing an electrode foil for an electrolytic capacitor according to any one of claims 1 to 4, wherein when the microbubbles are generated, the microbubbles are sprayed toward both surfaces of the aluminum foil. 前記マイクロバブルとして、気泡径が100μm以下のバブルを発生させることを特徴とする請求項1〜5の何れか1項に記載の電解コンデンサ用電極箔の製造方法。   The method for producing an electrode foil for an electrolytic capacitor according to claim 1, wherein a bubble having a bubble diameter of 100 μm or less is generated as the microbubble.
JP2007275985A 2007-10-24 2007-10-24 Method of manufacturing electrode foil for electrolytic capacitor Pending JP2009105242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007275985A JP2009105242A (en) 2007-10-24 2007-10-24 Method of manufacturing electrode foil for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007275985A JP2009105242A (en) 2007-10-24 2007-10-24 Method of manufacturing electrode foil for electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2009105242A true JP2009105242A (en) 2009-05-14

Family

ID=40706639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007275985A Pending JP2009105242A (en) 2007-10-24 2007-10-24 Method of manufacturing electrode foil for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2009105242A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826079A (en) * 2016-05-31 2016-08-03 南通海星电子股份有限公司 Hole reaming technology of electrode foil for middle and high voltage aluminum electrolytic capacitor
JP2021061431A (en) * 2020-12-28 2021-04-15 日本蓄電器工業株式会社 Electrode member for electrolytic capacitor and electrolytic capacitor
CN113764191A (en) * 2021-09-14 2021-12-07 南通海星电子股份有限公司 An inhibitor for Al (OH)3Method for manufacturing low-voltage electrode foil formed by crystallization

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826079A (en) * 2016-05-31 2016-08-03 南通海星电子股份有限公司 Hole reaming technology of electrode foil for middle and high voltage aluminum electrolytic capacitor
CN105826079B (en) * 2016-05-31 2018-02-06 南通海星电子股份有限公司 A kind of chambering process of medium-high voltage aluminum electrolytic capacitor electrode foil
JP2021061431A (en) * 2020-12-28 2021-04-15 日本蓄電器工業株式会社 Electrode member for electrolytic capacitor and electrolytic capacitor
JP7028481B2 (en) 2020-12-28 2022-03-02 日本蓄電器工業株式会社 Electrode members for electrolytic capacitors and electrolytic capacitors
CN113764191A (en) * 2021-09-14 2021-12-07 南通海星电子股份有限公司 An inhibitor for Al (OH)3Method for manufacturing low-voltage electrode foil formed by crystallization

Similar Documents

Publication Publication Date Title
JP2014136832A (en) Anodic oxide film and method for manufacturing the same
CN108456916B (en) Corrosion method of medium-high voltage electronic aluminum foil
JP2007103798A (en) Method of forming aluminum electrode foil for electrolytic capacitor
JP2009105242A (en) Method of manufacturing electrode foil for electrolytic capacitor
JP2009135343A (en) Method of manufacturing aluminum electrode foil for electrolytic capacitor
JP4520385B2 (en) Method for producing aluminum electrode foil for electrolytic capacitor
JP5613125B2 (en) Method for producing aluminum anodic oxide film having high withstand voltage and excellent productivity
JP2009146984A (en) Method of manufacturing electrode foil for electrolytic capacitor
JP3582451B2 (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
JP4758827B2 (en) Method for producing electrode foil for electrolytic capacitor
JP4709069B2 (en) Method for producing aluminum electrode foil for electrolytic capacitor
JP4344620B2 (en) Manufacturing method of etching foil for electrolytic capacitor
JP4690221B2 (en) Method for producing anode foil for electrolytic capacitor
JP4970369B2 (en) Manufacturing method of etching foil for electrolytic capacitor
JP2001244153A (en) Method for manufacturing electrode foil for aluminum electrolytic capacitor
JP3728964B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP2008112877A (en) Manufacturing method of electrode foil for electrolytic capacitor
JP2007299956A (en) Method for manufacturing cathode foil for electrolytic capacitor
JPH08241832A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JP2009130067A (en) Method for manufacturing electrolytic capacitor etching foil
TW403923B (en) The etch method of cathode foil in the aluminum electrolysis capacitor
JP2008282994A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JP2011066032A (en) Method of manufacturing electrode foil for electrolytic capacitor
CN115110139A (en) Titanium alloy workpiece, shell, preparation method of titanium alloy workpiece and etching solution
JPH108299A (en) Aluminum etched foil and its production