JP2009102820A - Rainwater storage facility - Google Patents

Rainwater storage facility Download PDF

Info

Publication number
JP2009102820A
JP2009102820A JP2007273476A JP2007273476A JP2009102820A JP 2009102820 A JP2009102820 A JP 2009102820A JP 2007273476 A JP2007273476 A JP 2007273476A JP 2007273476 A JP2007273476 A JP 2007273476A JP 2009102820 A JP2009102820 A JP 2009102820A
Authority
JP
Japan
Prior art keywords
storage tank
rainwater
hours
water
rainfall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007273476A
Other languages
Japanese (ja)
Inventor
Masahiro Nishii
雅宏 西井
Koji Harada
浩次 原田
Satoshi Tanaka
智 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2007273476A priority Critical patent/JP2009102820A/en
Publication of JP2009102820A publication Critical patent/JP2009102820A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/108Rainwater harvesting

Landscapes

  • Sewage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rainwater storage facility capable of accurately and efficiently performing water utilization and water control by utilizing meteorological information. <P>SOLUTION: A weather data collecting means collects the hourly weather data predicted in six hours which is to be supplied from a climate-forecasting system. When a drain hour in which the fully stored water is drained from a storage tank at the maximum allowable drain rate is n, a stored water quantity control means determines the drain timing and drain quantity of the stored water from the storage tank according to the predicted inflow quantity calculated from the predicted rainfall quantity obtained by analyzing the predicted weather data for each hour in six hours after (n+1) hours. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、雨水の利水および治水に供する雨水貯留設備に関する。   The present invention relates to rainwater storage equipment used for rainwater use and flood control.

従来から、雨水貯留設備は、主として治水を目的として設置されており、豪雨などが発生した場合に、貯留槽内に雨水を貯留して、雨水を調整するために使用されていた。   Conventionally, rainwater storage facilities have been installed mainly for the purpose of flood control, and have been used to store rainwater in a storage tank and adjust the rainwater when heavy rain occurs.

しかし、近年、貯留槽内に貯留した雨水を、公園や学校、ショッピングセンターなどにおけるトイレや緑化施設へ利用できるように、雨水貯留設備を利水の目的に使用する要求が高まってきている。   However, in recent years, there has been an increasing demand for using rainwater storage facilities for the purpose of water utilization so that rainwater stored in a storage tank can be used for toilets and greening facilities in parks, schools, shopping centers, and the like.

しかしながら、利水を目的とする雨水貯留設備では、貯留した雨水を所定期間で消費するため、雨水貯留設備の貯留槽の内部には、常に所定量の雨水が保有されていなければならない。ところが、貯留槽内部に雨水を保有している状態で、豪雨などが発生した場合には、貯留槽が短時間で満水になるために、雨水貯留設備の治水の機能を果たすことができなくなってしまうといった問題が生じる。   However, in a rainwater storage facility for the purpose of water utilization, the stored rainwater is consumed for a predetermined period, so that a predetermined amount of rainwater must always be held inside the storage tank of the rainwater storage facility. However, in the case where heavy rain occurs in the state where rainwater is held inside the storage tank, the storage tank will be full in a short time, so it will not be possible to perform the flood control function of the rainwater storage facility. Problem arises.

そこで、雨水貯留設備に治水槽と利水槽とを別々に施工する方法が、従来から採用されている。   Therefore, a method of separately constructing a flood control tank and a water tank in the rainwater storage facility has been conventionally employed.

このような雨水貯留設備では、降雨時に治水槽に雨水を貯留し、その後利水槽に雨水を移して利用するように構成されている。したがって、治水槽は降雨時以外には空になるので、次の降雨に備えることができる。また、利水槽、治水槽の双方に雨水が貯留されている場合は、降雨のない間に治水槽の雨水を河川や下水道に放流することによって、治水槽を空けるようにして、治水機能を確保している。   Such a rainwater storage facility is configured to store rainwater in a flood control tank at the time of raining, and then transfer the rainwater to a water use tank for use. Therefore, since the flood control tank is empty except during rain, it can be prepared for the next rain. In addition, if rainwater is stored in both the irrigation tank and the flood control tank, the rainwater in the flood control tank is discharged into rivers and sewers without rain to secure the flood control function. is doing.

また、例えば特許文献1に記載された雨水調整および利用システムでは、中水用貯水槽、雨水調整槽、および浸透槽を設け、これらの槽をパイプで接続することにより、中水の利用、雨水の調整、雨水の地中への浸透を効率良く行うことが提案されている。   Further, for example, in the rainwater adjustment and utilization system described in Patent Document 1, a reservoir for rainwater, a rainwater adjustment tank, and a permeation tank are provided, and by connecting these tanks with pipes, the use of rainwater, rainwater It has been proposed to efficiently adjust the rainwater and infiltrate rainwater into the ground.

しかしながら、利水槽と治水槽とを別々に有する雨水貯留設備では、同程度の貯留槽を2つ作り、そのうちの一方を空にする必要があるため、土地の利用効率が著しく悪化するといった問題や、同程度の貯留槽を2つ施工するために、施工費用がかかるといった問題があった。   However, in rainwater storage facilities that have separate water tanks and flood control tanks, it is necessary to create two storage tanks of the same degree and to empty one of them. In order to construct two storage tanks of the same degree, there was a problem that construction cost was required.

また、上記特許文献1に記載された雨水調整および利用システムにおいても、中水用貯水槽、雨水調整槽、および浸透槽の3つの槽を施工するために、施工費用がかかるといった問題は、依然として生じてしまう。   Moreover, in the rainwater adjustment and utilization system described in the above-mentioned Patent Document 1, there is still a problem that construction costs are incurred for constructing the three tanks of the intermediate water storage tank, the rainwater adjustment tank, and the infiltration tank. It will occur.

そこで、本発明の発明者らは、1つの貯留槽と、この貯留槽内に雨水を導く雨水導入手段と、貯留槽内の水を排出する排出手段と、各種計測器により得られた気象データを収集する気象データ収集手段と、この収集した気象データに基づいて貯留槽の貯留水量を制御する貯留水量制御手段と、を有し、前記貯留水量制御手段により、前記気象データに基づいて降雨が予想されるときには貯留槽内に残存する雨水を排出することで貯留槽を治水槽として機能させる一方、前記貯留水量制御手段により、前記気象データに基づいて予想される降雨のおそれのない期間は貯留槽内に残存する雨水を貯留し続けることで貯留槽を利水槽として機能させることを特徴とする雨水貯留設備を先に提案している(特許文献2参照)。
すなわち、この雨水貯留設備は、1つの貯留槽が利水槽として機能するとともに治水槽としても機能するので、貯留槽を1つ施工するだけで利水と治水の双方の目的に雨水貯留設備を使用することができる。したがって、土地の利用効率を大幅に上げることができるとともに、施工費用を大幅に削減することができるという優れた効果を備えている。
しかしながら、利用する降雨予報が短時間予報であれば精度は良いが、短時間で貯留槽内の貯留水を排水することになり降雨までに排水しきれない場合がある。また、長時間予報であれば、降雨までの時間は長いため十分に排水可能であるが、予報自体の精度が悪いためシステムが無駄に動作して貯留水を排水して利水に利用できなくなったり、あるいは降雨があるにも関わらず動作せずオーバーフローが発生し治水の目的が達成できなくなってしまうおそれがある。特に突発的な豪雨については予測降雨量と実際の降雨量の差が大きいため、このような予報に基づいて制御をしても貯留設備から雨水が溢れ出る危険性があった。
Therefore, the inventors of the present invention have one storage tank, rainwater introduction means for guiding rainwater into the storage tank, discharge means for discharging water in the storage tank, and meteorological data obtained by various measuring instruments. Meteorological data collection means for collecting the stored water amount control means for controlling the amount of water stored in the storage tank based on the collected weather data, and the stored water amount control means causes rainfall based on the weather data. When it is expected, the rainwater remaining in the storage tank is discharged so that the storage tank functions as a flood control tank. On the other hand, the storage water amount control means stores the rainwater during a period when there is no possibility of rainfall predicted based on the weather data. A rainwater storage facility has been proposed which is characterized by allowing a storage tank to function as a water-saving tank by continuously storing rainwater remaining in the tank (see Patent Document 2).
That is, since this rainwater storage facility functions as a water tank as well as a water tank, the rainwater storage facility can be used for both water use and flood control purposes by constructing only one tank. be able to. Therefore, the land use efficiency can be significantly increased and the construction cost can be greatly reduced.
However, if the rain forecast to be used is a short-term forecast, the accuracy is good, but the stored water in the storage tank is drained in a short time and may not be drained by the rain. Long-term forecasts can be sufficiently drained because the time to rain is long, but the forecast itself is inaccurate and the system operates wastefully, draining the stored water and making it unavailable for water use. In addition, there is a possibility that the operation will not be performed in spite of rain and overflow may occur and the purpose of water control may not be achieved. In particular, in the case of sudden heavy rain, the difference between the predicted rainfall and the actual rainfall is large, so there was a risk that rainwater would overflow from the storage facilities even if control was performed based on such forecasts.

特開2000−355959号公報JP 2000-355959 A 特開2007−126939号公報JP 2007-126939 A

本発明は、上記事情に鑑みて、気象情報を活用してより精度よく、かつ、効率よく、利水および治水を行うことができる雨水貯留設備を提供することを目的としている。   In view of the above circumstances, an object of the present invention is to provide a rainwater storage facility that can perform water use and flood control more accurately and efficiently by utilizing weather information.

上記目的を達成するために、本発明にかかる雨水貯留設備は、流入口から流れ込んだ雨水を貯留する1つの貯留槽と、気象データを収集する気象データ収集手段と、この収集した気象データに基づいて貯留槽の貯留水量を制御する貯留水量制御手段と、を有し、前記貯留水量制御手段により、前記気象データに基づいて降雨が予想されるときには、貯留槽内の貯留水を降雨前に排出することで貯留槽を治水槽として機能させる一方、前記貯留水量制御手段により、前記気象データに基づいて予想される降雨のおそれのない期間は貯留槽内に残存する雨水を貯留し続けることで貯留槽を利水槽として機能させる雨水貯留設備であって、前記気象データ収集手段が気象予報システムから供給される6時間後までの1時間毎の予想気象データを収集するとともに、満水状態の貯留水を前記貯留槽から最大排水可能量で排水したときの排水時間がn時間であるとき、前記貯留水量制御手段が、(n+1)時間後から6時間後までの1時間毎の予想気象データを解析して得られる予想降雨量から演算された予想流入量に応じて貯留槽からの貯留水の排水タイミング、排水量を決定するようにしたことを特徴としている。
また、本発明において、貯留槽は、通常排水に用いられるオリフィス排水口と緊急排水のための緊急排水口とを備えていることが好ましい。そして、オリフィス排水口と緊急排水口とは、同時排水可能になっていても構わない。
なお、オリフィス排水口の口径は、通常排水許容量によって適宜決定され、特に限定されないが、たとえば、貯留槽が1500m3程度のもので口径60cm程度が好ましい。
また、オリフィス排水口と緊急排水口が放流先よりも低い位置にある場合は、オリフィス排水口と緊急排水口との下流側に一次貯留槽を設けてポンプアップしても構わない。このときポンプはバルブの開閉と連動して作動させるのが好ましい。
In order to achieve the above object, a rainwater storage facility according to the present invention is based on one storage tank for storing rainwater flowing from an inlet, weather data collection means for collecting weather data, and the collected weather data. Storage water amount control means for controlling the amount of water stored in the storage tank, and when the storage water amount control means predicts rain based on the weather data, the stored water in the storage tank is discharged before the rain. While the storage tank functions as a flood control tank, the storage water volume control means stores the rainwater remaining in the storage tank during a period when there is no possibility of rain predicted based on the weather data. A rainwater storage facility that allows the tank to function as a water-use tank, and collects forecasted weather data every hour until 6 hours after the weather data collection means is supplied from the weather forecast system. In addition, when the drainage time when the stored water in the full state is drained from the storage tank with the maximum drainable amount is n hours, the stored water amount control means is configured to perform 1 from (n + 1) hours to 6 hours later. It is characterized in that the drainage timing and drainage amount of the stored water from the storage tank are determined according to the predicted inflow calculated from the predicted rainfall obtained by analyzing the forecasted weather data for each hour.
Moreover, in this invention, it is preferable that the storage tank is equipped with the orifice drain port normally used for drainage, and the emergency drain port for emergency drainage. The orifice drain port and the emergency drain port may be capable of simultaneous drainage.
Incidentally, the diameter of the orifice drain outlet is appropriately determined by the normal water-discharge allowance is not particularly limited, for example, the reservoir is preferably approximately diameter 60cm at a of about 1500 m 3.
Further, when the orifice drain port and the emergency drain port are at a position lower than the discharge destination, a primary storage tank may be provided downstream of the orifice drain port and the emergency drain port to pump up. At this time, the pump is preferably operated in conjunction with opening and closing of the valve.

さらに、貯留槽は、通常、地下に埋設され、プラスチック製であっても、コンクリート製であっても良いが、好ましくは安価であるためプラスチック製が好ましく、さらに好ましくは耐荷重性能がT25(25トントラック通過可能耐荷重性能)を保有しており、内部に砂等の堆積物を1箇所に集約しメンテナンス性を向上させたもの(例えば、積水化学工業社製の商品名レインステーション等)が良い。   Furthermore, the storage tank is usually buried underground and may be made of plastic or concrete, but is preferably made of plastic because it is inexpensive and more preferably has a load bearing performance of T25 (25 (The load-bearing performance that can pass through ton trucks) is possessed, and sediments such as sand are consolidated in one place to improve maintainability (for example, the product name Rain Station manufactured by Sekisui Chemical Co., Ltd.) .

気象データは、特に限定されないが、インターネットを介して気象業務支援センターから送信される降雨データを活用あるいは、各種インターネット上の各種サイトから提供される降雨情報を利用することができる。好ましくは気象業務支援センターから30分毎に送信される対象区域を1kmメッシュとし6時間後までの降雨予報が可能なデータを活用するのが好ましい。   The weather data is not particularly limited, but rain data transmitted from the weather service support center via the Internet can be used, or rain information provided from various sites on various Internets can be used. Preferably, the target area transmitted every 30 minutes from the meteorological service support center is 1 km mesh, and it is preferable to use data capable of forecasting rainfall up to 6 hours later.

本発明にかかる雨水貯留設備は、以上のように、流入口から流れ込んだ雨水を貯留する1つの貯留槽と、気象データを収集する気象データ収集手段と、この収集した気象データに基づいて貯留槽の貯留水量を制御する貯留水量制御手段と、を有し、前記貯留水量制御手段により、前記気象データに基づいて降雨が予想されるときには、貯留槽内の貯留水を降雨前に排出することで貯留槽を治水槽として機能させる一方、前記貯留水量制御手段により、前記気象データに基づいて予想される降雨のおそれのない期間は貯留槽内に残存する雨水を貯留し続けることで貯留槽を利水槽として機能させる雨水貯留設備であって、前記気象データ収集手段が気象予報システムから供給される6時間後までの1時間毎の予想気象データを収集するとともに、満水状態の貯留水を前記貯留槽から最大排水可能量で排水したときの排水時間がn時間であるとき、前記貯留水量制御手段が、(n+1)時間後から6時間後までの1時間毎の予想気象データを解析して得られる予想降雨量から演算された予想流入量に応じて貯留槽からの貯留水の排水タイミング、排水量を決定するようにしたので、気象情報を活用してより精度よく、かつ、効率よく、利水および治水を行うことができる。
また、貯留槽に、通常排水に用いられるオリフィス排水口と緊急排水のための緊急排水口とを設けるようにすれば、突発性豪雨が発生する時期の排水を迅速に行うことができる。さらに緊急排水を行う条件を設けることで、その条件を上回った場合に緊急排水を行い、降雨までに貯留槽内に所定の空き容量を確保することができる。
なお、緊急排出条件は、各地域特性等を考慮して設定するが、例えば突発的な豪雨(30mm/時間以上の降雨)が起こりやすい5月〜9月などは、たとえば、1時間あたり1mm/時間以上かつ3時間の総降雨量予測が2mm/時間であれば、突発的な豪雨が発生する確率が高いため、予想降雨量が1mm/時間以上かつ3時間の総降雨量予測が2mm/3時間になった時点で緊急排水を行うようにするとよい。また、この場合の緊急排水は、貯留槽内の貯留水を全排水することが好ましい。
As described above, the rainwater storage facility according to the present invention has one storage tank for storing rainwater flowing from the inlet, weather data collection means for collecting weather data, and a storage tank based on the collected weather data. A storage water amount control means for controlling the amount of stored water, and when the storage water amount control means predicts rainfall based on the weather data, the stored water in the storage tank is discharged before the rain. While the storage tank is functioning as a flood control tank, the storage water volume control means allows the storage tank to be stored by continuing to store rainwater remaining in the storage tank during a period when there is no possibility of rainfall predicted based on the weather data. A rainwater storage facility that functions as a water tank, wherein the meteorological data collection means collects forecasted meteorological data every hour up to six hours after being supplied from the weather forecasting system. When the drainage time when draining the full reservoir water from the storage tank with the maximum drainable amount is n hours, the stored water amount control means performs every hour from (n + 1) hours to 6 hours later. The drainage timing and drainage amount of the stored water from the storage tank are determined according to the predicted inflow calculated from the predicted rainfall obtained by analyzing the predicted weather data. And water use and flood control can be performed efficiently.
Further, if the storage tank is provided with an orifice outlet used for normal drainage and an emergency drain outlet for emergency drainage, drainage at the time of sudden heavy rain can be performed quickly. Furthermore, by providing conditions for performing emergency drainage, emergency drainage can be performed when the conditions are exceeded, and a predetermined free space can be secured in the storage tank before the rain.
The emergency discharge conditions are set in consideration of the characteristics of each region. For example, in May to September when sudden heavy rain (rainfall of 30 mm / hour or more) is likely to occur, for example, 1 mm / hour per hour. If the total rainfall forecast for more than 3 hours and 2 hours is 2 mm / hour, there is a high probability that sudden heavy rain will occur. Therefore, the estimated rainfall is 1 mm / hour or more and the estimated rainfall for 3 hours is 2 mm / 3. It is recommended to perform emergency drainage when it is time. Moreover, it is preferable that the emergency drainage in this case drains all the stored water in a storage tank.

以下に、本発明を、その実施の形態をあらわす図面を参照しつつ詳しく説明する。
図1〜図3は、本発明にかかる雨水貯留設備の1つの実施の形態をあらわしている。
Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof.
1 to 3 show an embodiment of a rainwater storage facility according to the present invention.

図1に示すように、この雨水貯留設備1は、1つの貯留槽2と、この貯留槽2内に雨水を導く雨水導入部3と、気象データを収集する気象データ収集部5と、この収集した気象データに基づいて貯留槽2の貯留水量を制御する貯留水量制御部6と、を有している。   As shown in FIG. 1, this rainwater storage facility 1 includes one storage tank 2, a rainwater introduction section 3 that guides rainwater into the storage tank 2, a weather data collection section 5 that collects weather data, and this collection A stored water amount control unit 6 that controls the stored water amount of the storage tank 2 based on the meteorological data.

貯留槽2は、図2に示すように、駐車場等の地面をまず掘削し、防水シート等を掘削穴の壁面に沿って配置させた状態でポリプロピレン等の合成樹脂製板材や脚部材等の多数の単位部材を掘削穴内に上下左右に組み合わせることによって雨水を貯留し得るように貯留空間が形成されていて、耐荷重性能がT25(25トントラック通過可能耐荷重性能)を保有しており、内部に流入した砂等が最下端に設けられた溝2a部分に集約されるようになっている。
また、貯留槽2には、貯留水量を検知する水位計21、通常排水に用いられるオリフィス排水口4aと緊急排水のための緊急排水口4bとを備えているとともに、図示していないが、利水用のポンプと、利水用の配管、この利水用の配管を流れる利水の流量を計測する流量計およびオーバーフロー配管が設けられている。
As shown in FIG. 2, the storage tank 2 is formed by first excavating the ground of a parking lot or the like, and placing a waterproof sheet or the like along the wall surface of the excavation hole. A storage space is formed so that rainwater can be stored by combining a large number of unit members vertically and horizontally in the excavation hole, and the load-bearing performance is T25 (load-bearing performance that allows 25-ton trucks to pass through). The sand that has flowed into the groove is collected in the groove 2a provided at the lowermost end.
The storage tank 2 includes a water level meter 21 for detecting the amount of stored water, an orifice drain port 4a used for normal drainage, and an emergency drain port 4b for emergency drainage. There are provided a water pump, a water supply pipe, a flow meter for measuring the flow rate of the water flowing through the water supply pipe, and an overflow pipe.

雨水導入部3は、地上に配置されることもあるが、通常貯留槽2に併設されて地中に埋設されており、集水部である建物の屋上Rから樋32およびマンホール等の集合マス33を経て流入してくる雨水を貯留槽2に導くように構成されている。また、雨水導入部3の貯留槽2への流入口には、図3に示すように、流入水量を検知する流量計31が設けられている。   Although the rainwater introduction part 3 may be arranged on the ground, it is usually attached to the storage tank 2 and buried in the ground. From the roof R of the building, which is a water collecting part, a mass such as a ridge 32 and a manhole is collected. It is configured to guide rainwater flowing in through the storage tank 2 to the storage tank 2. Moreover, as shown in FIG. 3, the flowmeter 31 which detects the amount of inflow water is provided in the inflow port to the storage tank 2 of the rainwater introduction part 3. As shown in FIG.

オリフィス排水口4aは、貯留槽2の下部に設けられたオリフィス管41と、貯留水量制御部6により出力される開閉信号に応じて開閉される電磁弁42とを備え、電磁弁42を開放状態で満水状態の貯留槽2を3時間で排水できる排水能力(雨水貯留設備1が設けられた地域の条例等で通常排水量として認められている量に一致する)を備えている。
緊急排水口4bは、緊急排水管43と、貯留水量制御部6により出力される開閉信号に応じて開閉される電磁弁44とを備え、電磁弁44を開放状態で満水状態の貯留槽2を1時間で排水できる排水能力(雨水貯留設備1が設けられた地域の条例等で渇水期等において緊急排水許容量として認められている量に一致する)を備えている。
The orifice drain port 4a includes an orifice pipe 41 provided in the lower part of the storage tank 2, and an electromagnetic valve 42 that is opened and closed according to an opening / closing signal output from the stored water amount control unit 6, and the electromagnetic valve 42 is opened. In addition, it has a drainage capacity (corresponding to the amount that is normally recognized as the amount of drainage in the local ordinance where the rainwater storage facility 1 is provided) that can drain the full storage tank 2 in 3 hours.
The emergency drain port 4b includes an emergency drain pipe 43 and an electromagnetic valve 44 that is opened / closed in response to an opening / closing signal output by the stored water amount control unit 6, and the storage tank 2 that is full with the electromagnetic valve 44 open. Equipped with drainage capacity that can drain in 1 hour (corresponding to the amount allowed as emergency drainage allowance in the drought period etc. in the local ordinance where the rainwater storage facility 1 is provided).

気象データ収集部5は、例えば、図3に示すように、気象業務支援センターから送信される対象区域を1kmメッシュとし6時間後までの降雨予報が可能な気象データを、インターネット回線50を介して収集できるように図られているとともに、たとえば、気圧計51、湿度計52、露点計53、温度計54、風向計55、風力計56、雨量計57の計測器を備えている。   For example, as shown in FIG. 3, the meteorological data collection unit 5 uses the Internet line 50 to send the meteorological data that can be predicted for 6 hours after the target area transmitted from the meteorological service support center is 1 km mesh. For example, a barometer 51, a hygrometer 52, a dew point meter 53, a thermometer 54, an anemometer 55, an anemometer 56, and a rain gauge 57 are provided.

貯留水量制御部6は、プログラムおよびプログラム制御コンピューターのほか、降雨予報データ取得のための通信機器、バルブ制御のためのリレー、およびA/D変換のためのアダプター等を備え、気象データ収集部5で収集した気象データならびに水位計21により計測した貯留水量および流量計31により計測した流入水量を自動分析し、この分析結果に基づいて電磁弁42および電磁弁44の開閉信号を出力し、オリフィス排水口4aおよび緊急排水口4bからの貯留水の排水時期および排水量を制御するように構成されている。   The stored water amount control unit 6 includes a program and a program control computer, a communication device for acquiring rainfall forecast data, a relay for valve control, an adapter for A / D conversion, and the like, and a meteorological data collection unit 5 Automatically collects the meteorological data collected in the above, the amount of stored water measured by the water level meter 21 and the amount of inflow water measured by the flow meter 31, and outputs the opening / closing signals of the solenoid valve 42 and solenoid valve 44 based on the analysis result, It is configured to control the drainage timing and drainage amount of the stored water from the port 4a and the emergency drainage port 4b.

詳しく説明すると、貯留水量制御部6は、以下のようにして、オリフィス排水口4aおよび緊急排水口4bの排水制御を自動的に行うようになっている。
(1)気象データ収集部5で収集した気象データを解析して現在から6時間以内に降雨の可能性がないと判断されたとき、オリフィス排水口4aおよび緊急排水口4bから排水がなされないように、電磁弁42および電磁弁44が閉状態になるように制御する。
(2)気象データ収集部5で収集した気象データを解析して現在から6時間以内に降雨があると判断されるとともに、降出し時刻が4時間後(3時間(満水時の最大排水可能量で排水したときの排水時間)+1時間)以内であるか否かを判断し、5時間後以降であると判断されたとき、オリフィス排水口4aおよび緊急排水口4bから排水がなされないように、電磁弁42および電磁弁44が閉状態になるように制御する。
More specifically, the stored water amount control unit 6 automatically performs drainage control of the orifice drainage port 4a and the emergency drainage port 4b as follows.
(1) When the meteorological data collected by the meteorological data collection unit 5 is analyzed and it is determined that there is no possibility of rainfall within 6 hours from the present, the drainage from the orifice drainage port 4a and the emergency drainage port 4b is prevented. Further, the solenoid valve 42 and the solenoid valve 44 are controlled to be in a closed state.
(2) The meteorological data collected by the meteorological data collection unit 5 is analyzed, and it is determined that there is rainfall within 6 hours from the present time, and after 4 hours (3 hours (maximum drainable capacity when full) In order to prevent drainage from the orifice drainage port 4a and the emergency drainage port 4b when it is determined that the drainage time is within 1 hour), it is within 5 hours later. Control is performed so that the solenoid valve 42 and the solenoid valve 44 are closed.

(3)気象データ収集部5で収集した気象データを解析して現在から6時間以内に降雨があると判断されるとともに、降出し時刻が4時間後(3時間(満水時の最大排水可能量で排水したときの排水時間)+1時間)以内であるか否かを判断し、4時間後以内であると判断されたとき、気象データから求めた4時間後から6時間後までの予想総降雨量から予想流入量を求める。
そして、予想流入量が、水位計21によって計測された現在の貯留槽2内の貯留水量から求められた貯水可能容積より少ない場合、電磁弁42および電磁弁44が閉状態になるように制御する。
一方、予想流入量が、上記貯水可能容積より多い場合、不足容積(最大は貯留槽が空になる量)、この不足容積分を確保するのに要する排水時間t1を求め、現在から予想降雨開始時までの時間t2とを比較し、t1≧t2であれば、排水管41から不足容積分(最大は貯留槽2が空になる量)の貯留空間が確保されるまで電磁弁42を開状態として貯留槽2内の貯留水を排水するように制御する。また、電磁弁44は閉状態が保持される。なお、排水と同時に利水が行われる場合は、利水分も貯留槽2から排出されたものと見なされるため、利水用配管に設けた流量計によって計測される利水量も排水量に加算されるようになっている。
(3) The meteorological data collected by the meteorological data collection unit 5 is analyzed, and it is determined that there is rainfall within 6 hours from the present time, and after 4 hours (3 hours (maximum drainable capacity when water is full) It is determined whether it is within 1 hour) or not, and when it is determined that it is within 4 hours, the estimated total rainfall from 4 hours to 6 hours from meteorological data Calculate the expected inflow from the volume.
Then, when the expected inflow amount is smaller than the water storage capacity determined from the current stored water amount in the storage tank 2 measured by the water level gauge 21, the solenoid valve 42 and the solenoid valve 44 are controlled to be closed. .
On the other hand, if the expected inflow is larger than the above-mentioned water storage capacity, the insufficient volume (the maximum is the amount that the storage tank is empty) and the drainage time t1 required to secure this insufficient volume are obtained, and the expected rainfall starts from now The time t2 until the time is compared, and if t1 ≧ t2, the electromagnetic valve 42 is opened until the storage space for the insufficient volume (the maximum is the amount that the storage tank 2 is empty) is secured from the drain pipe 41. Control is performed so that the stored water in the storage tank 2 is drained. Further, the electromagnetic valve 44 is kept closed. In addition, when water is used at the same time as drainage, it is assumed that water is also discharged from the storage tank 2, so that the amount of water measured by the flow meter provided in the water supply pipe is also added to the amount of drainage. It has become.

(4)気象データ収集部5で収集した気象データを解析して3時間以内に突発的な豪雨が予想された場合、渇水期等で排水許容量が緩和されていれば、降雨までの間に電磁弁44を開状態として貯留槽2内の貯留水を緊急排水口4bから排水するように制御する。 (4) Analyzing meteorological data collected by the meteorological data collection unit 5 and sudden heavy rains are expected within 3 hours. The electromagnetic valve 44 is opened and the stored water in the storage tank 2 is controlled to be discharged from the emergency drain 4b.

以上のように、この雨水貯留設備1は、インターネット回線を介して送られてくる気象データから降雨が予測された場合は、予想降雨量から求めた予想流入量を確保できるように、貯留槽2内の貯留水をオリフィス排水口4aから予め排水するようにしたので、貯留槽2を治水槽として機能させる一方、気象データに基づいて予想される降雨のおそれのない期間は電磁弁42を閉鎖して貯留槽2内に残存する雨水を貯留し続けることで貯留槽2を利水槽として効率よく機能させることができる。   As described above, the rainwater storage facility 1 has a storage tank 2 that can secure an expected inflow obtained from the predicted rainfall when rainfall is predicted from meteorological data sent via the Internet line. Since the stored water in the inside is drained in advance from the orifice drain port 4a, the storage tank 2 is made to function as a flood control tank, while the solenoid valve 42 is closed during a period when there is no possibility of rain based on weather data. Thus, the storage tank 2 can efficiently function as a water-use tank by continuing to store rainwater remaining in the storage tank 2.

しかも、予想降雨量を4時間後から6時間後までの1時間毎の予想気象データを解析して得られるようにしたので、予想降雨量が実降雨量により近いものとなる。
したがって、気象情報を活用してより精度よく、かつ、効率よく、利水および治水を行うことができる。
Moreover, since the predicted rainfall is obtained by analyzing hourly predicted weather data from 4 hours to 6 hours later, the predicted rainfall is closer to the actual rainfall.
Therefore, water utilization and flood control can be performed more accurately and efficiently using weather information.

また、特に突発的な豪雨については予測降雨量と実際の降雨量の差が大きいため、このような予報に基づいて制御をしても雨水貯留設備から雨水が溢れ出る危険性があったが、この雨水貯留設備1は、緊急排水口4bを備え、気象データを解析して3時間以内に突発的な豪雨が予想された場合、渇水期等で排水許容量が緩和されていれば、降雨までの間に電磁弁44を開状態として貯留槽2内の貯留水を緊急排水口4bから排水するように制御するようにしたので、豪雨時にも貯留槽2から貯留水があふれ出たりすることを極力押えることができ、より良好な治水を図ることができる。   Also, especially for sudden torrential rains, the difference between the predicted rainfall and the actual rainfall is large, so there was a risk that rainwater would overflow from the rainwater storage facilities even if control was performed based on such forecasts. This rainwater storage facility 1 is equipped with an emergency drain 4b. If sudden heavy rain is predicted within 3 hours by analyzing meteorological data, if the drainage allowance is eased during the dry season, etc. During this period, the electromagnetic valve 44 is opened and the stored water in the storage tank 2 is controlled to be discharged from the emergency drain 4b, so that the stored water overflows from the storage tank 2 even during heavy rain. It can be pressed as much as possible, and better flood control can be achieved.

(参考例1)
気象業務支援センターから送信される、対象場所の周辺1kmメッシュ情報のうち現時点降雨量および1時間毎6時間先までの予想降雨量を算出することができる気象データを活用して、測定日Aの30分毎に送られてくる6時間後までの1時間毎の予想降雨量データの、1時間後〜6時間後までの予想降雨量データを加算して補正予想降雨量データを求めた結果と、雨量計を用いて求めた実降雨量のデータとを合わせて図4に示した。
(Reference Example 1)
Using the meteorological data that can be calculated from the 1km mesh information around the target location, which is sent from the Meteorological Business Support Center, the current rainfall and the expected rainfall up to 6 hours ahead every hour, The result of calculating the corrected predicted rainfall data by adding the predicted rainfall data from 1 hour to 6 hours after the predicted rainfall data for every hour until 6 hours sent every 30 minutes The combined rainfall data obtained using a rain gauge is shown in FIG.

(参考例2)
気象業務支援センターから送信される、対象場所の周辺1kmメッシュ情報のうち現時点降雨量および1時間毎6時間先までの予想降雨量を算出することができる気象データを活用して、測定日Bの30分毎に送られてくる6時間後までの1時間毎の予想降雨量データのうち、4時間後〜6時間後までの予想降雨量データを加算して補正予想降雨量データを求めた結果と、雨量計を用いて求めた実降雨量のデータとを合わせて図5に示した。
(Reference Example 2)
Using the weather data that can be calculated from the 1km mesh information around the target location, which is sent from the Meteorological Business Support Center, the current rainfall and the expected rainfall up to 6 hours ahead every hour, Result of calculating corrected predicted rainfall data by adding estimated rainfall data from 4 hours to 6 hours after the predicted rainfall data every hour until 6 hours sent every 30 minutes FIG. 5 shows the combined rainfall data obtained using a rain gauge.

(参考例3)
気象業務支援センターから送信される、対象場所の周辺1kmメッシュ情報のうち現時点降雨量および1時間毎6時間先までの予想降雨量を算出することができる気象データを活用して、測定日Cの30分毎に送られてくる6時間後までの1時間毎の予想降雨量データのうち、6時間後予想降雨量データと、雨量計を用いて求めた実降雨量のデータとを合わせて図6に示した。
(Reference Example 3)
Utilizing the meteorological data that can be calculated from the 1km mesh information around the target location, which is sent from the Meteorological Business Support Center, the current rainfall and the expected rainfall up to 6 hours ahead every hour, Of the forecasted rainfall data for every hour up to 6 hours sent every 30 minutes, the figure shows the estimated rainfall data after 6 hours and the actual rainfall data obtained using a rain gauge. This is shown in FIG.

また、上記参考例1〜3で求めた予想降雨データと、実降雨データとからピーク位置の差と、ピーク量の差を以下の式でそれぞれ求め、その結果を表1に示した。
・ピーク位置の差=1次のピーク(実降雨の時間−予想降雨の時間)
+2次のピーク(実降雨の時間−予想降雨の時間)
+3次のピーク(実降雨の時間−予想降雨の時間)
・ピーク量の差=1次のピーク(実降雨量−予想降雨量)
+2次のピーク(実降雨量−予想降雨量)
+3次のピーク(実降雨量−予想降雨量)
Moreover, the peak position difference and the peak amount difference were obtained from the predicted rainfall data obtained in Reference Examples 1 to 3 and the actual rainfall data, respectively, by the following formulas, and the results are shown in Table 1.
・ Peak position difference = primary peak (actual rainfall time-expected rainfall time)
+ Secondary peak (actual rainfall time-expected rainfall time)
+ 3rd peak (actual rainfall time-expected rainfall time)
・ Peak amount difference = 1st peak (Actual rainfall-Expected rainfall)
+ Secondary peak (Actual rainfall-Expected rainfall)
+ 3rd order peak (Actual rainfall-Expected rainfall)

Figure 2009102820
Figure 2009102820

上記表1から、6時間後の1時間のみの予想降雨量で判断したのでは、精度が悪いが、4時間後から6時間後の3時間分の予想降雨量で判断すれば予想降雨量は実降雨量にかなり近づきより効率よく利水、治水を行えることがわかる。   From Table 1 above, judging from the estimated rainfall for only one hour after six hours is inaccurate, but if the judgment is based on the estimated rainfall for three hours from four hours to six hours, the expected rainfall is It can be seen that water use and flood control can be carried out more efficiently by approaching the actual rainfall.

(参考例4)
気象業務支援センターから送信される、対象場所の周辺1kmメッシュ情報のうち現時点降雨量および1時間毎6時間先までの予想降雨量を算出することができる気象データを活用して、7月の測定日Dの30分毎に送られてくる6時間後までの1時間毎の予想降雨量データのうち、3時間後予想降雨量データと、3時間後から5時間後までの予想降雨量データを加算して求めた補正予想降雨量データと、雨量計を用いて求めた実降雨量のデータとを合わせて図7に示した。
また、3時間後の1時間データで得られた1時間の予想降雨量、3時間後〜5時間後の加算の補正予想降雨量データで得られた3時間の予想降雨量と、実降雨開始から1時間の実降雨量とを調べその結果を表2に示した。
(Reference Example 4)
Measurement in July using weather data that can be calculated from the current 1km mesh information and the estimated rainfall up to 6 hours ahead every hour from the 1km mesh information around the target location sent from the Meteorological Business Support Center Of the forecasted rainfall data for every hour up to 6 hours after every 30 minutes of day D, the forecasted rainfall data after 3 hours and the forecasted rainfall data from 3 hours to 5 hours FIG. 7 shows the corrected predicted rainfall data obtained by addition and the actual rainfall data obtained using a rain gauge.
Estimated rainfall for 1 hour obtained from 1 hour data after 3 hours, and estimated rainfall for 3 hours obtained from corrected estimated rainfall data for 3 hours to 5 hours later, and actual rainfall start Table 2 shows the actual rainfall for one hour from the beginning.

Figure 2009102820
Figure 2009102820

図7に示すように、9時30分に3時間後に降雨があることが予想され、実際には3時間後の12時30分に降雨があったことがわかる。
また、上記表2から、5月〜9月などは、たとえば、1時間あたり1mm/h以上かつ3時間の総降雨量予測が2mm/3hであれば、突発的な豪雨が発生する確率が高いことが裏づけられた。
As shown in FIG. 7, it is predicted that there will be rainfall after 3 hours at 9:30, and in fact, there was rain at 12:30 after 3 hours.
Also, from the above Table 2, from May to September, for example, if the total rainfall forecast for 1 hour is 1 mm / h or more and the total rainfall for 3 hours is 2 mm / 3h, the probability of sudden heavy rain is high. That was confirmed.

本発明は、上記の実施の形態に限定されない。たとえば、上記の実施の形態では、オリフィス排水口からの排水および緊急排水口からの排水を貯留水量制御部が自動制御していたが、緊急排水は、手動作業で行うようにしても構わない。
上記の実施の形態では、電磁弁を開閉することで貯留槽内の貯留水量を制御しているが、電磁弁に限らず、例えば、エアー弁や油圧弁など貯留水量制御可能な開閉弁であってもよい。
The present invention is not limited to the above embodiment. For example, in the above-described embodiment, the stored water amount control unit automatically controls the drainage from the orifice drainage port and the drainage from the emergency drainage port. However, emergency drainage may be performed manually.
In the above embodiment, the amount of stored water in the storage tank is controlled by opening and closing the solenoid valve. However, the present invention is not limited to the solenoid valve, and may be an open / close valve that can control the amount of stored water, such as an air valve or a hydraulic valve. May be.

本発明に係る雨水貯留設備を模式的に示す概略図である。It is the schematic which shows typically the rainwater storage facility which concerns on this invention. 図1の雨水貯留設備の貯留槽部分を断面で模式的に示す概略図である。It is the schematic which shows typically the storage tank part of the rainwater storage facility of FIG. 1 in a cross section. 図1の雨水貯留設備の制御系統を説明する概略図である。It is the schematic explaining the control system of the rainwater storage facility of FIG. 参考例1で求めた予想降雨量と実降雨量とを比較するグラフである。It is a graph which compares the estimated rainfall calculated | required in the reference example 1, and an actual rainfall. 参考例2で求めた予想降雨量と実降雨量とを比較するグラフである。It is a graph which compares the estimated rainfall calculated | required in the reference example 2, and an actual rainfall. 参考例3で求めた予想降雨量と実降雨量とを比較するグラフである。It is a graph which compares the estimated rainfall calculated | required in the reference example 3, and an actual rainfall. 参考例4で求めた予想降雨量と実降雨量とを比較するグラフである。It is a graph which compares the estimated rainfall calculated | required in the reference example 4, and an actual rainfall.

符号の説明Explanation of symbols

1 雨水貯留設備
2 貯留槽
21 水位計
3 雨水導入部
31 流量計
4a オリフィス排水口
41 オリフィス排水管
42 電磁弁
4a 緊急排水口
43 緊急排水管
44 電磁弁
5 気象データ収集部
6 貯留水量制御部
DESCRIPTION OF SYMBOLS 1 Rainwater storage equipment 2 Reservoir 21 Water level meter 3 Rainwater introduction part 31 Flowmeter 4a Orifice drain port 41 Orifice drain pipe 42 Solenoid valve 4a Emergency drain pipe 43 Emergency drain pipe 44 Solenoid valve 5 Meteorological data collection part 6 Storage water amount control part

Claims (3)

流入口から流れ込んだ雨水を貯留する1つの貯留槽と、気象データを収集する気象データ収集手段と、この収集した気象データに基づいて貯留槽の貯留水量を制御する貯留水量制御手段と、を有し、
前記貯留水量制御手段により、前記気象データに基づいて降雨が予想されるときには、貯留槽内の貯留水を降雨前に排出することで貯留槽を治水槽として機能させる一方、前記貯留水量制御手段により、前記気象データに基づいて予想される降雨のおそれのない期間は貯留槽内に残存する雨水を貯留し続けることで貯留槽を利水槽として機能させる雨水貯留設備であって、
前記気象データ収集手段が気象予報システムから供給される6時間後までの1時間毎の予想気象データを収集するとともに、
満水状態の貯留水を前記貯留槽から最大排水可能量で排水したときの排水時間がn時間であるとき、
前記貯留水量制御手段が、(n+1)時間後から6時間後までの1時間毎の予想気象データを解析して得られる予想降雨量から演算された予想流入量に応じて貯留槽からの貯留水の排水タイミング、排水量を決定するようにしたことを特徴とする雨水貯留設備。
One storage tank for storing rainwater flowing in from the inlet, a meteorological data collecting means for collecting meteorological data, and a stored water volume control means for controlling the amount of stored water in the storing tank based on the collected meteorological data. And
When rain is predicted based on the weather data by the stored water amount control means, the stored water in the storage tank is discharged before the rain so that the storage tank functions as a flood control tank, while the stored water amount control means The rainwater storage facility that allows the storage tank to function as a water-use tank by continuing to store the rainwater remaining in the storage tank during a period when there is no possibility of rainfall predicted based on the weather data,
The weather data collection means collects forecasted weather data every hour up to 6 hours after being supplied from the weather forecast system,
When the drainage time when draining the full water from the storage tank with the maximum drainable amount is n hours,
The storage water amount control means is configured to output from the storage tank according to an expected inflow amount calculated from an estimated rainfall amount obtained by analyzing hourly predicted weather data from (n + 1) hours to 6 hours later. A rainwater storage facility characterized by determining the timing and amount of drainage of stored water.
貯留槽が、通常排水に用いられるオリフィス排水口と緊急排水のための緊急排水口とを備えている請求項1に記載の雨水貯留設備。   The rainwater storage facility according to claim 1, wherein the storage tank includes an orifice outlet used for normal drainage and an emergency outlet for emergency drainage. 貯留槽が、オリフィス排水口および緊急排水口から同時排水可能になっている請求項2に記載の雨水貯留設備。   The rainwater storage facility according to claim 2, wherein the storage tank is capable of simultaneous drainage from the orifice drainage port and the emergency drainage port.
JP2007273476A 2007-10-22 2007-10-22 Rainwater storage facility Pending JP2009102820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007273476A JP2009102820A (en) 2007-10-22 2007-10-22 Rainwater storage facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007273476A JP2009102820A (en) 2007-10-22 2007-10-22 Rainwater storage facility

Publications (1)

Publication Number Publication Date
JP2009102820A true JP2009102820A (en) 2009-05-14

Family

ID=40704778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007273476A Pending JP2009102820A (en) 2007-10-22 2007-10-22 Rainwater storage facility

Country Status (1)

Country Link
JP (1) JP2009102820A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101226649B1 (en) 2010-10-13 2013-02-07 이메트릭스 주식회사 Smart system for using Rainwater and Waterworks and Control method thereof
JP2013227849A (en) * 2012-03-28 2013-11-07 Haruaki Yamazaki Water level control system of rainwater storage tank
CN103967105A (en) * 2014-04-25 2014-08-06 天津大学 Housing cluster rainwater ecological drain-off system
CN105019537A (en) * 2014-11-26 2015-11-04 陈思 Roof impoundment and waterlogging prevention system
CN109797915A (en) * 2019-01-18 2019-05-24 四川建鑫工程监理有限公司 A kind of green house building

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101226649B1 (en) 2010-10-13 2013-02-07 이메트릭스 주식회사 Smart system for using Rainwater and Waterworks and Control method thereof
JP2013227849A (en) * 2012-03-28 2013-11-07 Haruaki Yamazaki Water level control system of rainwater storage tank
CN103967105A (en) * 2014-04-25 2014-08-06 天津大学 Housing cluster rainwater ecological drain-off system
CN105019537A (en) * 2014-11-26 2015-11-04 陈思 Roof impoundment and waterlogging prevention system
CN109797915A (en) * 2019-01-18 2019-05-24 四川建鑫工程监理有限公司 A kind of green house building

Similar Documents

Publication Publication Date Title
CN109164509B (en) Intelligent rainwater system based on runoff simulation and multi-sensor monitoring and operation method
CN103628560B (en) A kind of dam control device and control method with memory function
JP2009108534A (en) Rainwater storage facility and monitoring-management system for rainwater storage facility
JP2007146638A (en) Rainwater storage facility
KR101381192B1 (en) Intelligent management system and method for rainwater based on real time control
JP2009108537A (en) Rainwater storage facility
CN112116229A (en) Drainage basin water quality scheduling management method, system and platform
US20150218785A1 (en) Automated roof runoff management system
JP2009102820A (en) Rainwater storage facility
Kim et al. Design method for determining rainwater tank retention volumes to control runoff from building rooftops
DK2982810T3 (en) Water drainage system with automatically adjustable flow rate
JP2007126939A (en) Rainwater storage facility
JP2009235872A (en) Method for flood regulation and water utilization, and rainwater storage facility used for the method
Doyle et al. Effect of first flush on storage-reliability-yield of rainwater harvesting
Gould Rainwater harvesting for domestic supply
JP2009235864A (en) Method for flood regulation and water utilization, and rainwater storage facility used for the method
JP7040835B1 (en) Regional hydraulic system
JP2009185496A (en) Rainwater storage facility
CN105239659A (en) Municipal drainage system
JP2009108533A (en) Rainwater storage facility
Arthur et al. Recent and future advances in roof drainage design and performance
CN208488559U (en) A kind of wisdom storm-water system monitored based on Runoff Simulation and multisensor
Sokac Water Balance in Urban Areas
KR20210098670A (en) Storm-water reservoir for flood control
CN108716243A (en) A kind of roof of transformer substation rainwater recycle reutilization system and control method