JP2009102708A - Agent and method for treating polluted water containing heavy metals - Google Patents

Agent and method for treating polluted water containing heavy metals Download PDF

Info

Publication number
JP2009102708A
JP2009102708A JP2007276587A JP2007276587A JP2009102708A JP 2009102708 A JP2009102708 A JP 2009102708A JP 2007276587 A JP2007276587 A JP 2007276587A JP 2007276587 A JP2007276587 A JP 2007276587A JP 2009102708 A JP2009102708 A JP 2009102708A
Authority
JP
Japan
Prior art keywords
iron powder
heavy metals
iron
water
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007276587A
Other languages
Japanese (ja)
Other versions
JP5046853B2 (en
Inventor
Masaaki Matsubara
正明 松原
Hitoshi Sakuma
均 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007276587A priority Critical patent/JP5046853B2/en
Publication of JP2009102708A publication Critical patent/JP2009102708A/en
Application granted granted Critical
Publication of JP5046853B2 publication Critical patent/JP5046853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an iron powder treatment agent which comprises inexpensive iron as a main component material and shows a high performance in removing heavy metals such as arsenic, selenium, cadmium, lead and chromium, and a useful treatment method using such the treatment agent. <P>SOLUTION: The treatment agent is used for removing heavy metals from polluted water containing at least one heavy metal chosen from arsenic, selenium, cadmium, lead and chromium and comprises the iron powder containing 0.6-5 mass% phosphorus. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ヒ素、セレン、カドミウム、鉛およびクロム(特に六価クロム)等の重金属類に汚染された地下水や河川水、湖沼水、各種工業排水などから重金属類を効率よく除去する方法と、これに用いる処理剤に関するものである。尚、本発明において「重金属類」とは、水に溶解した状態の金属イオンおよび化合物イオン(特に酸化物イオン)を意味する。   The present invention is a method for efficiently removing heavy metals from groundwater, river water, lake water, various industrial wastewater, etc. contaminated with heavy metals such as arsenic, selenium, cadmium, lead and chromium (especially hexavalent chromium), It is related with the processing agent used for this. In the present invention, “heavy metals” means metal ions and compound ions (particularly oxide ions) dissolved in water.

ヒ素、セレン、カドミウム、鉛およびクロム等の重金属類は、人体に対して有害であり健康障害をもたらすことから、これらの重金属類による環境汚染が問題となっている。重金属類は、地下水、河川水、湖沼水、各種工業排水などに含まれており、環境基準、排水基準等によって水質基準が定められているが、水中の重金属類がこの水質基準を超える場合には、水中からこれらの重金属を除去する必要がある。   Since heavy metals such as arsenic, selenium, cadmium, lead and chromium are harmful to human bodies and cause health problems, environmental pollution by these heavy metals is a problem. Heavy metals are contained in groundwater, river water, lake water, various industrial wastewater, etc., and water quality standards are set by environmental standards, drainage standards, etc., but when heavy metals in the water exceed these water quality standards Need to remove these heavy metals from the water.

これらの重金属類で汚染された水(以下、「汚染水」と呼ぶことがある)の浄化処理としては、一般に、鉄塩やアルミニウム塩等の無機質凝集剤を用いた沈殿処理法が行われている。この沈殿処理法では、汚染水に無機質凝集剤を添加した後、pH調整して金属水酸化物の凝集フロックを沈殿させる際に、該フロックに重金属を取り込んで共殿させて分離する方法が採用される。また凝集剤として、高分子凝集剤を併用する場合もある。   As a purification treatment of water contaminated with these heavy metals (hereinafter sometimes referred to as “contaminated water”), a precipitation treatment method using an inorganic flocculant such as an iron salt or an aluminum salt is generally performed. Yes. In this precipitation treatment method, after adding an inorganic flocculant to the contaminated water, when the pH is adjusted to precipitate the flocs of the metal hydroxide, a method is adopted in which heavy metals are taken into the flocs and separated together. Is done. Further, a polymer flocculant may be used in combination as the flocculant.

しかしながら、このような沈殿処理法によって汚染水中の重金属類濃度を充分に低くするためには、多量の凝集剤を必要とする。また、沈殿処理で生成する重金属類含有スラッジは嵩高いアモルファス状であるために沈降させるのに大掛かりな設備と長時間を要する他、多量に生成するスラッジの処理が煩雑で手数を要するという問題がある。   However, a large amount of flocculant is required to sufficiently reduce the concentration of heavy metals in the contaminated water by such a precipitation treatment method. In addition, the heavy metal-containing sludge produced by the precipitation treatment is bulky amorphous, so it takes a large amount of equipment and a long time to settle, and the treatment of sludge produced in large quantities is cumbersome and time-consuming. is there.

そこで凝集剤ではなく、吸着剤を用いて重金属類を吸着除去する方法が提案されている。この吸着法は、重金属類を含む汚染水を吸着剤に接触させて吸着除去する方法であり、用いる吸着剤としては活性炭、活性アルミナ、ゼオライト、チタン酸、ジルコニウム水和物等が使用される。   Therefore, a method of adsorbing and removing heavy metals using an adsorbent instead of a flocculant has been proposed. This adsorption method is a method in which contaminated water containing heavy metals is brought into contact with an adsorbent and adsorbed and removed. As the adsorbent used, activated carbon, activated alumina, zeolite, titanic acid, zirconium hydrate, or the like is used.

こうした吸着剤を使用する方法は、吸着剤を選択することによって優れた除去効率を達成できるが、そのような吸着剤は概して高価であるため処理コストが高くなるという欠点がある。吸着剤として鉄粉を使用する方法もあるが、通常の鉄粉は除去性能が不十分であり、満足のいく除去効果は得られない。従って、吸着剤を使用するにしても、極力安価な素材で重金属を効率良く除去することのできる技術の開発が望まれる。   Although the method using such an adsorbent can achieve excellent removal efficiency by selecting the adsorbent, such an adsorbent is generally expensive and has a disadvantage of high processing cost. Although there is a method of using iron powder as an adsorbent, normal iron powder has insufficient removal performance and a satisfactory removal effect cannot be obtained. Therefore, it is desired to develop a technique capable of efficiently removing heavy metals with an inexpensive material even when using an adsorbent.

汚染物質を効果的に除去する技術も、これまで様々提案されており、例えば特許文献1には、共沈法によって生成する金属水酸化物とヒ素からなる凝集フロックを限外濾過膜や精密濾過膜で分離する方法が開示されている。しかしながら、この方法では、スラッジの処理に難渋する点では上記凝集沈殿法と本質的に変わりがないものである。   Various techniques for effectively removing contaminants have been proposed so far. For example, Patent Document 1 discloses that an aggregated floc formed of a metal hydroxide and arsenic produced by a coprecipitation method is subjected to ultrafiltration membranes or microfiltration. A method of separating with a membrane is disclosed. However, this method is essentially the same as the coagulation sedimentation method in that it is difficult to treat sludge.

また、特許文献2には、適量のリン(P)、硫黄(S)またはホウ素(B)等を含む有害除去処理用の鉄粉が提案されている。この技術では、鉄粉中に適量のP,SまたはBを含有させると、汚染水への鉄の溶出速度は高められ、汚染水中のリン化合物や有機塩素化合物等の有害物質を効率良く除去できることが示されている。しかしながら、この技術では、ヒ素、セレン、カドミウム、鉛およびクロム等の重金属類の除去については考慮されておらず、また本発明者等が確認したところによると、重金属類の除去効果については十分なものとは言えないものであった。   Patent Document 2 proposes an iron powder for harmful removal containing an appropriate amount of phosphorus (P), sulfur (S), boron (B) and the like. In this technology, when an appropriate amount of P, S or B is contained in the iron powder, the elution rate of iron into the contaminated water can be increased, and harmful substances such as phosphorus compounds and organochlorine compounds in the contaminated water can be efficiently removed. It is shown. However, this technology does not consider the removal of heavy metals such as arsenic, selenium, cadmium, lead and chromium, and according to the present inventors' confirmation, the removal effect of heavy metals is not sufficient. It couldn't be said.

一方、特許文献3には、汚染物質として有機ハロゲン化合物や重金属類等を含む汚染水(被処理水)の浄化を行うために、硫黄(S)を含む還元性の海綿鉄を使用し、有機ハロゲン化合物を還元して脱ハロゲン化し、或は重金属類を還元して不溶化する技術も提案されている。この技術では、汚染物質の処理素材として比較的嵩密度の高い海綿を使用することから、生成する汚染物質含有スラッジも相対的に高密度で分離も容易であり、しかも海綿鉄は上記の各種吸着剤に比べると比較的廉価であることから、工業的に有効な方法と考えられる。しかしながら、海綿鉄は、水アトマイズ法によって得られる通常の鉄粉に比べると高価であるため、工業的規模での汎用性の観点からして更なる改善の余地が残されている。
特開平8−206663号公報 特開2000−80401号公報 特開2004−331996号公報
On the other hand, in Patent Document 3, reducing sponge iron containing sulfur (S) is used to purify contaminated water (treated water) containing organic halogen compounds or heavy metals as pollutants, and organic Techniques have also been proposed in which halogen compounds are reduced and dehalogenated, or heavy metals are reduced and insolubilized. In this technology, sponge with relatively high bulk density is used as a contaminant treatment material, so the pollutant-containing sludge produced is relatively dense and easy to separate. It is considered to be an industrially effective method because it is relatively inexpensive compared to the agent. However, since sponge iron is more expensive than ordinary iron powder obtained by the water atomization method, there remains room for further improvement from the viewpoint of versatility on an industrial scale.
JP-A-8-206663 JP 2000-80401 A JP 2004-331996 A

本発明は前記のような事情に着目してなされたものであって、その目的は、安価な鉄を主たる構成素材とし、汚染水からヒ素、セレン、カドミウム、鉛およびクロムの重金属類を除去する性能が高い鉄粉処理剤、およびこうした処理剤を用いた有用な処理方法を提供することにある。   The present invention has been made paying attention to the circumstances as described above, and its purpose is to use inexpensive iron as a main constituent material and remove heavy metals such as arsenic, selenium, cadmium, lead and chromium from contaminated water. An object is to provide an iron powder treatment agent having high performance and a useful treatment method using such a treatment agent.

上記目的を達成し得た本発明の処理剤とは、ヒ素、セレン、カドミウム、鉛およびクロムの重金属類の少なくとも1種を含有する汚染水から前記重金属類を除去するための処理剤であって、リンを0.6〜5質量%の量で含有する鉄粉である点に要旨を有するものである。本発明の処理剤としては、水アトマイズ法によって製造された鉄粉であることが好ましい。   The treating agent of the present invention that has achieved the above object is a treating agent for removing the heavy metals from contaminated water containing at least one kind of arsenic, selenium, cadmium, lead and chromium heavy metals. In the point which is an iron powder which contains phosphorus in the quantity of 0.6-5 mass%, it has a summary. The treatment agent of the present invention is preferably iron powder produced by a water atomization method.

上記のような処理剤を用い、ヒ素、セレン、カドミウム、鉛およびクロムの重金属類の少なくとも1種を含む汚染水と、前記処理剤とを接触させることによって汚染水中の重金属類が効果的に除去できる。   Using the treatment agent as described above, the contaminated water containing at least one of arsenic, selenium, cadmium, lead, and chromium heavy metals is contacted with the treatment agent to effectively remove heavy metals in the contaminated water. it can.

本発明によれば、適量のリン(P)を含有する鉄粉の重金属吸着能を利用することによって、汚染水中のヒ素、セレン、カドミウム、鉛およびクロムの重金属類を効率よく除去することができることになる。特に、こうした鉄粉では、重金属吸着後の処理剤の密度も相対的に高くなるので、重金属吸着物の回収やその後の分離等の処理作業も簡便に行える等、実操業上多くの利点がある。   According to the present invention, arsenic, selenium, cadmium, lead and chromium heavy metals in contaminated water can be efficiently removed by utilizing the heavy metal adsorption ability of iron powder containing an appropriate amount of phosphorus (P). become. In particular, with such iron powder, since the density of the treatment agent after heavy metal adsorption is relatively high, there are many advantages in practical operations such as easy collection of heavy metal adsorbate and subsequent separation work. .

本発明の処理剤は、鉄粉に0.6〜5質量%のリン(P)を含有させるところに要旨がある。本発明者らが、リン(P)含有量の高い鉄粉は赤錆を生じやすいという事実に着目し、リン(P)含有量の高い水アトマイズ鉄粉を、上記重金属類の処理剤として適用することを試みた。その結果、所定量のリン(P)を含有する水アトマイズ鉄粉を処理剤として使用すれば、汚染水からセレン等の重金属類を除去する性能が向上することを見出し、本発明を完成した。   The treatment agent of the present invention is summarized in that iron powder contains 0.6 to 5% by mass of phosphorus (P). The present inventors pay attention to the fact that iron powder having a high phosphorus (P) content tends to cause red rust, and applying water atomized iron powder having a high phosphorus (P) content as a treatment agent for the above heavy metals. I tried to do that. As a result, the inventors have found that the performance of removing heavy metals such as selenium from contaminated water is improved by using water atomized iron powder containing a predetermined amount of phosphorus (P) as a treatment agent, and the present invention has been completed.

Pを含有する鉄粉を使用することによって、重金属類の除去性能が向上する理由としては、鉄粉中に含まれるリン(P)の作用で鉄粉表面の酸化が加速され(鉄のアノード反応:Fe→Fe2++2e-)、該鉄粉表面で効率良く生成する鉄イオン、急速に成長する鉄の酸化物や水酸化物によって、汚染中に金属イオンや化合物イオンの形態で存在する重金属類の鉄粉への吸着が促進され、それに伴って重金属類の除去が効率良く進行するものと考えられる。 The reason why the removal performance of heavy metals is improved by using iron powder containing P is that oxidation of the iron powder surface is accelerated by the action of phosphorus (P) contained in the iron powder (iron anodic reaction). : Fe → Fe 2+ + 2e ), iron ions that are efficiently generated on the surface of the iron powder, and heavy metals that exist in the form of metal ions and compound ions during contamination by rapidly growing iron oxides and hydroxides It is considered that the adsorption of the metal to the iron powder is promoted, and the removal of heavy metals proceeds efficiently accordingly.

鉄粉に含まれるリン(P)によって、鉄粉が徐々にイオン化されること、および酸化鉄や水酸化鉄に変化していくメカニズムについては、その全てを解明し得た訳ではないが、おそらく、リン(P)が存在することによって、電位差による局部電池作用が促進され、その結果として鉄の酸化が促進されるものと考えることができた。   Although the iron powder is gradually ionized by phosphorus (P) contained in the iron powder, and the mechanism of changing to iron oxide and iron hydroxide has not been fully clarified, It can be considered that the presence of phosphorus (P) promotes the local cell action due to the potential difference, and as a result, the oxidation of iron is promoted.

以下では、各重金属類が鉄粉へ吸着される推定メカニズムについて、具体例を挙げて、より詳しく説明する。まずヒ素やセレンは、ヒ酸イオン(AsO4 3-)やセレン酸イオン(SeO4 2-)の形態で溶解している。このヒ酸イオンやセレン酸イオンを除去するためには、これらのイオンと鉄イオンを反応させて化合物を生成させれば良い。そして本発明の処理剤では、鉄粉中にリン(P)が存在するので、鉄イオンを水中に効率良く放出することができる。その結果、不溶性のヒ酸鉄やセレン酸鉄(ヒ酸やセレン酸と鉄との化合物)を鉄粉表面に析出させて(即ち、重金属を鉄粉に吸着させて)、水中からヒ酸イオンやセレン酸イオンを効率良く除去することができる。 Below, a specific example is given and the estimated mechanism by which each heavy metal is adsorb | sucked to iron powder is demonstrated in detail. First, arsenic and selenium are dissolved in the form of arsenate ions (AsO 4 3− ) and selenate ions (SeO 4 2− ). In order to remove these arsenate ions and selenate ions, these ions may be reacted with iron ions to form a compound. And in the processing agent of this invention, since phosphorus (P) exists in iron powder, an iron ion can be discharge | released efficiently in water. As a result, insoluble iron arsenate or iron selenate (arsenic acid or a compound of selenate and iron) is precipitated on the surface of the iron powder (that is, heavy metal is adsorbed to the iron powder), and arsenate ions from water. And selenate ions can be efficiently removed.

カドミウムおよび鉛は、夫々カドミウムイオン(Cd2+)および鉛イオン(Pb2+)の形態で水中に溶解している。本発明の処理剤では、リン(P)によって鉄のアノード反応が促進されているので、カドミウムイオンや鉛イオンが、夫々金属カドミウムや金属鉛に効率良く還元され、鉄粉表面に析出する(即ち、重金属が鉄粉に吸着する)。その結果、カドミウムイオンや鉛イオンを、水中から効率良く除去することができる。 Cadmium and lead are dissolved in water in the form of cadmium ions (Cd 2+ ) and lead ions (Pb 2+ ), respectively. In the treatment agent of the present invention, since the anode reaction of iron is promoted by phosphorus (P), cadmium ions and lead ions are efficiently reduced to metal cadmium and metal lead, respectively, and are deposited on the surface of the iron powder (that is, , Heavy metal adsorbs to iron powder). As a result, cadmium ions and lead ions can be efficiently removed from the water.

クロムは、クロムイオン(Cr3+、Cr6+)の形態で水中に溶解している。本発明の処理剤では、鉄のアノード反応によって水に電子を供給し、水酸化物イオンを効率良く生成させる。これらクロムイオンと水酸化物イオンとが反応して、不溶性の水酸化クロムが鉄粉表面に析出する(即ち、重金属が鉄粉に吸着する)。その結果、クロムイオンが水中から効率良く除去することができる。 Chromium is dissolved in water in the form of chromium ions (Cr 3+ , Cr 6+ ). In the treating agent of the present invention, electrons are supplied to water by an anodic reaction of iron, and hydroxide ions are efficiently generated. These chromium ions and hydroxide ions react to precipitate insoluble chromium hydroxide on the surface of the iron powder (that is, heavy metal is adsorbed to the iron powder). As a result, chromium ions can be efficiently removed from the water.

鉄粉中のリン(P)含有量が多いほど、鉄粉の重金属類の除去性能が向上する。しかしP含有量が過度に多くなると、鉄粉本来の重金属吸着活性を阻害することになりかねず、またアトマイズ法などによって鉄粉を製造する際に多量のタール状物質が生成して、溶鉄流出ノズルが閉塞され、鉄粉の生産性が著しく害される。こうしたことから、鉄粉中のP含有量は、0.6質量%以上(好ましくは0.8質量%以上)、5質量%以下(好ましくは3質量%以下)と定めた。   As the phosphorus (P) content in the iron powder increases, the removal performance of heavy metals in the iron powder improves. However, if the P content is excessively large, iron powder's original heavy metal adsorption activity may be inhibited, and a large amount of tar-like substances are produced when iron powder is produced by the atomization method, etc. The nozzle is clogged, and the productivity of the iron powder is significantly impaired. Therefore, the P content in the iron powder is determined to be 0.6% by mass or more (preferably 0.8% by mass or more) and 5% by mass or less (preferably 3% by mass or less).

本発明の鉄粉は、所定量のPを含有するものであれば、その種類に特に限定は無く、工業的に入手可能なあらゆる鉄粉を用いることができるが、P含有量を調整しやすいとの観点からすればアトマイズ鉄粉が好ましい。   The iron powder of the present invention is not particularly limited as long as it contains a predetermined amount of P, and any industrially available iron powder can be used, but it is easy to adjust the P content. From the viewpoint of, atomized iron powder is preferable.

本発明で用いる鉄粉は、小さいほど表面積が増大し、重金属類の除去性能が増大する。しかし鉄粉が小さすぎると、汚染水と一緒に鉄粉が流出する、汚染水が鉄粉の間隙を通らない、および貯蔵および輸送中に発熱する等の問題が生ずる。一方、鉄粉は大きいほど取扱い性は向上するが、重金属類の除去速度が低下する。そこで鉄粉の平均粒径は、好ましくは1μm以上(より好ましくは10μm以上)、好ましくは3.0mm以下(より好ましくは1.0mm以下)である。   The smaller the iron powder used in the present invention, the greater the surface area and the heavy metal removal performance. However, if the iron powder is too small, there are problems such as the iron powder flowing out together with the contaminated water, the contaminated water not passing through the gaps of the iron powder, and generating heat during storage and transportation. On the other hand, the larger the iron powder, the better the handleability but the lower the removal rate of heavy metals. Therefore, the average particle size of the iron powder is preferably 1 μm or more (more preferably 10 μm or more), preferably 3.0 mm or less (more preferably 1.0 mm or less).

本発明は、ヒ素、セレン、カドミウム、鉛またはクロム等の重金属類を含有する汚染水と、本発明の処理剤(所定量のPを含有する鉄粉)とを接触させることによって、汚染水から重金属類を除去する方法も提供する。本発明において、汚染水と本発明の処理剤(鉄粉)とを接触させる方法には特に限定は無く、例えば(1)処理剤を適当な容器に充填し、これに汚染水を通過させて接触させる方法、(2)処理剤を汚染水に添加した後、撹拌・分散させて重金属類を捕捉する方法、(3)汚染水の流れの中で処理剤を浮遊流動させながら接触させて吸着させる方法、等が挙げられる。   In the present invention, contaminated water containing heavy metals such as arsenic, selenium, cadmium, lead or chromium is brought into contact with the treating agent of the present invention (iron powder containing a predetermined amount of P) from the contaminated water. A method for removing heavy metals is also provided. In the present invention, the method for bringing the contaminated water into contact with the treatment agent (iron powder) of the present invention is not particularly limited. For example, (1) the treatment agent is filled in a suitable container and the contaminated water is allowed to pass through it. (2) After adding the treatment agent to the contaminated water, stir and disperse it to capture heavy metals, (3) Adsorb by contacting the treatment agent while floating in the flow of contaminated water And the like.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、上記・下記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and appropriate modifications are made within a range that can meet the above and the following purposes. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

〈処理剤〉
鉄粉として、水アトマイズ法で製造した種々のP含有量の鉄粉(平均粒径:65μm)を使用した。尚、各鉄粉のP含有量は表1に記載する。
<Processing agent>
As the iron powder, iron powders having various P contents (average particle size: 65 μm) produced by the water atomization method were used. The P content of each iron powder is shown in Table 1.

〈汚染水の調製に使用した化合物等〉
ヒ素、セレン、カドミウム、鉛およびクロムの重金属類を含有する汚染水を調製するために、和光純薬製のKH2AsO4、関東化学製のSeO2、原子吸光分析用Cd標準液(Cd2+を含む水溶液)、および和光純薬製のPbO、並びに原子吸光分析用Cr標準液(Cr6+を含む水溶液)を用いた。
<Compounds used to prepare contaminated water>
In order to prepare contaminated water containing arsenic, selenium, cadmium, lead and chromium heavy metals, KH 2 AsO 4 manufactured by Wako Pure Chemical Industries, SeO 2 manufactured by Kanto Chemical, Cd standard solution for atomic absorption analysis (Cd 2 Aqueous solution containing + ), PbO manufactured by Wako Pure Chemical Industries, Ltd., and Cr standard solution for atomic absorption analysis (aqueous solution containing Cr 6+ ).

〈試験方法〉
表1に示す重金属元素の濃度となるように、蒸留水に前記化合物等を溶解させ、各種汚染水を調整した。これら汚染水50mLを、0.5gの鉄粉を入れた容量125mLのバイアル瓶に注ぎ、バイアル瓶を密閉した。そして鉄粉が適度に流動するように、25℃で撹拌を続けた。24時間経過後に、ろ紙(No.5C)を用いるろ過によって汚染水から鉄粉を除去し、濾液中の重金属元素の濃度を定量分析した。結果を表1に併記する。
<Test method>
The compounds and the like were dissolved in distilled water so as to obtain heavy metal element concentrations shown in Table 1, and various contaminated waters were prepared. 50 mL of the contaminated water was poured into a 125 mL vial containing 0.5 g of iron powder, and the vial was sealed. And stirring was continued at 25 degreeC so that iron powder might flow moderately. After 24 hours, iron powder was removed from the contaminated water by filtration using filter paper (No. 5C), and the concentration of heavy metal elements in the filtrate was quantitatively analyzed. The results are also shown in Table 1.

Figure 2009102708
Figure 2009102708

表1の結果から明らかなように、P含有量が0.6質量%以上である鉄粉では、処理後のヒ素、セレン等の濃度が充分に低くなっており、重金属類の除去性能が向上していることが分かる。同様にカドミウム、鉛またはクロムの重金属類を含有する汚染水の処理でも、所定量のPを含有する鉄粉(P含有量:1.0質量%)の方が、Pを含有していないものと比べて、処理後の重金属元素の濃度が低くなっており、Pを所定量で含有させることによって鉄粉の除去性能が向上することが分かる。   As is apparent from the results in Table 1, the concentration of arsenic, selenium, etc. after treatment is sufficiently low in iron powder having a P content of 0.6% by mass or more, and the removal performance of heavy metals is improved. You can see that Similarly, in the treatment of contaminated water containing heavy metals such as cadmium, lead or chromium, iron powder containing a predetermined amount of P (P content: 1.0 mass%) does not contain P. The concentration of the heavy metal element after the treatment is low, and it can be seen that the iron powder removal performance is improved by containing P in a predetermined amount.

Claims (3)

ヒ素、セレン、カドミウム、鉛およびクロムの重金属類の少なくとも1種を含有する汚染水から前記重金属類を除去するための処理剤であって、リンを0.6〜5質量%の量で含有する鉄粉であることを特徴とする処理剤。   A treating agent for removing heavy metals from contaminated water containing at least one of heavy metals of arsenic, selenium, cadmium, lead and chromium, containing phosphorus in an amount of 0.6 to 5% by mass A treatment agent characterized by being iron powder. 水アトマイズ法によって製造された鉄粉である請求項1に記載の処理剤。   The processing agent according to claim 1, which is iron powder produced by a water atomization method. ヒ素、セレン、カドミウム、鉛およびクロムの重金属類の少なくとも1種を含む汚染水と、請求項1または2に記載の処理剤とを接触させることを特徴とする汚染水の処理方法。   A contaminated water treatment method comprising contacting contaminated water containing at least one heavy metal of arsenic, selenium, cadmium, lead and chromium with the treatment agent according to claim 1 or 2.
JP2007276587A 2007-10-24 2007-10-24 Treatment agent and treatment method for contaminated water containing heavy metals Active JP5046853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007276587A JP5046853B2 (en) 2007-10-24 2007-10-24 Treatment agent and treatment method for contaminated water containing heavy metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007276587A JP5046853B2 (en) 2007-10-24 2007-10-24 Treatment agent and treatment method for contaminated water containing heavy metals

Publications (2)

Publication Number Publication Date
JP2009102708A true JP2009102708A (en) 2009-05-14
JP5046853B2 JP5046853B2 (en) 2012-10-10

Family

ID=40704687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007276587A Active JP5046853B2 (en) 2007-10-24 2007-10-24 Treatment agent and treatment method for contaminated water containing heavy metals

Country Status (1)

Country Link
JP (1) JP5046853B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017051908A (en) * 2015-09-09 2017-03-16 株式会社神戸製鋼所 Purification method and purifying agent
WO2019117222A1 (en) * 2017-12-15 2019-06-20 株式会社神戸製鋼所 Arsenic absorption-inhibiting agent, soil, and cultivation method
WO2020084997A1 (en) * 2018-10-25 2020-04-30 株式会社神戸製鋼所 Iron powder for treating contaminated water, and method for manufacturing iron powder for treating contaminated water
CN111847622A (en) * 2019-04-25 2020-10-30 株式会社神户制钢所 Method for removing selenium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6776163B2 (en) 2017-03-24 2020-10-28 株式会社神戸製鋼所 Purification agent and purification method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080401A (en) * 1998-08-31 2000-03-21 Kawasaki Steel Corp Iron powder for toxic substance removal treatment
JP2000288404A (en) * 1999-04-02 2000-10-17 Teikoku Piston Ring Co Ltd Photocatalyst powder and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080401A (en) * 1998-08-31 2000-03-21 Kawasaki Steel Corp Iron powder for toxic substance removal treatment
JP2000288404A (en) * 1999-04-02 2000-10-17 Teikoku Piston Ring Co Ltd Photocatalyst powder and its production

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017051908A (en) * 2015-09-09 2017-03-16 株式会社神戸製鋼所 Purification method and purifying agent
CN111278948B (en) * 2017-12-15 2021-08-10 株式会社神户制钢所 Arsenic absorption inhibitor, soil and cultivation method
WO2019117222A1 (en) * 2017-12-15 2019-06-20 株式会社神戸製鋼所 Arsenic absorption-inhibiting agent, soil, and cultivation method
KR102468440B1 (en) * 2017-12-15 2022-11-17 가부시키가이샤 고베 세이코쇼 Arsenic Absorption Inhibitors, Soils and Cultivation Methods
CN111278948A (en) * 2017-12-15 2020-06-12 株式会社神户制钢所 Arsenic absorption inhibitor, soil and cultivation method
KR20200096966A (en) * 2017-12-15 2020-08-14 가부시키가이샤 고베 세이코쇼 Arsenic absorption inhibitors, soil and cultivation methods
JP2020066778A (en) * 2018-10-25 2020-04-30 株式会社神戸製鋼所 Iron powder for polluted water treatment, and method for producing iron powder for polluted water treatment
CN112469518A (en) * 2018-10-25 2021-03-09 株式会社神户制钢所 Iron powder for treating contaminated water and method for producing iron powder for treating contaminated water
KR20210046719A (en) * 2018-10-25 2021-04-28 가부시키가이샤 고베 세이코쇼 Iron powder for contaminated water treatment and method of manufacturing iron powder for contaminated water treatment
KR102414870B1 (en) 2018-10-25 2022-06-29 가부시키가이샤 고베 세이코쇼 Method of manufacturing iron powder for treatment of contaminated water and iron powder for treatment of contaminated water
WO2020084997A1 (en) * 2018-10-25 2020-04-30 株式会社神戸製鋼所 Iron powder for treating contaminated water, and method for manufacturing iron powder for treating contaminated water
CN112469518B (en) * 2018-10-25 2023-02-17 株式会社神户制钢所 Iron powder for treating contaminated water and method for producing iron powder for treating contaminated water
CN111847622A (en) * 2019-04-25 2020-10-30 株式会社神户制钢所 Method for removing selenium

Also Published As

Publication number Publication date
JP5046853B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP4755159B2 (en) Treatment agent and treatment method for contaminated water containing heavy metals
US6368510B2 (en) Method and apparatus for the removal of arsenic from water
JP4676898B2 (en) Arsenic removal method and arsenic removal treatment agent in contaminated water
US20060086670A1 (en) Removal of arsenic from drinking and process water
TW201500294A (en) Methods and apparatus for multi-part treatment of liquids containing contaminants using zero valent nanoparticles
JP6602237B2 (en) Purification treatment agent and purification treatment method
JP5046853B2 (en) Treatment agent and treatment method for contaminated water containing heavy metals
JP2013177575A (en) Treatment agent, and method for treating polluted water or polluted soil
JP2008043921A (en) Method for removing arsenic in polluted water and arsenic-removing treatment agent
Lichtfouse et al. Methods for selenium removal from contaminated waters: a review
JP2007326077A (en) Treatment method of selenium-containing water
JP2008207071A (en) Method for removing arsenic in contaminated water and treatment agent used for it
KR101344235B1 (en) Adsorbent for eliminating harmful ions using alum sludge and method for producing the same
JP6208648B2 (en) Treatment agent and treatment method for contaminated water or soil
JP2005288363A (en) Arsenic adsorbent and production method therefor
CN110386647B (en) Titanium oxide-based treatment solution and method for promoting precipitation and removal of heavy metals from water sources
JP4630237B2 (en) Recycling method of iron powder for arsenic removal
US9133047B2 (en) Decontamination system with insoluble additives
JP5484702B2 (en) Water purification material and water purification method using the same
JP4808093B2 (en) Recycling method of iron powder for arsenic removal
JP2013213685A (en) Decontamination method of radioactive contamination
Subeshan et al. Mercury recycling technologies in its’ end-of-life management: a review
JP2010227868A (en) Removing agent and method for removing the same
JP2009220102A (en) Method for treating selenium-containing waste water using iron powder
JP2020179343A (en) Removal method of selenium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5046853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150