JP2009102519A - Coating composition and planar heat generating body using this coating composition - Google Patents

Coating composition and planar heat generating body using this coating composition Download PDF

Info

Publication number
JP2009102519A
JP2009102519A JP2007275566A JP2007275566A JP2009102519A JP 2009102519 A JP2009102519 A JP 2009102519A JP 2007275566 A JP2007275566 A JP 2007275566A JP 2007275566 A JP2007275566 A JP 2007275566A JP 2009102519 A JP2009102519 A JP 2009102519A
Authority
JP
Japan
Prior art keywords
slag
electric furnace
synthetic resin
heating element
heat generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007275566A
Other languages
Japanese (ja)
Other versions
JP4390828B2 (en
Inventor
Eiji Fuchigami
榮治 渕上
Kumao Hoshino
熊夫 星野
Keiichi Tsuruyama
圭一 鶴山
Hiroteru Masamoto
博輝 政本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOSHINO SANSHO KK
Hoshino Sansho KK
Original Assignee
HOSHINO SANSHO KK
Hoshino Sansho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOSHINO SANSHO KK, Hoshino Sansho KK filed Critical HOSHINO SANSHO KK
Priority to JP2007275566A priority Critical patent/JP4390828B2/en
Priority to KR1020080056448A priority patent/KR101190104B1/en
Publication of JP2009102519A publication Critical patent/JP2009102519A/en
Application granted granted Critical
Publication of JP4390828B2 publication Critical patent/JP4390828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/011Heaters using laterally extending conductive material as connecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)
  • Paints Or Removers (AREA)
  • Furnace Details (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a planar heat generating body having high energy efficiency. <P>SOLUTION: A heat generating layer is formed by applying a coating composition with a mixture of a ferritic inorganic granular substance or a crushed material thereof and a carbon powder and/or carbon fiber dispersed in a synthetic resin emulsion or synthetic resin solution to the surface of a substrate, and then drying. The heat generating layer generates heat according to Joule's law, and the ferritic inorganic granular substance also generates heat by absorbing electromagnetic wave simultaneously generated by energization. In addition, the heat generating layer efficiently radiates infrared rays, serving as a planar heat generating body of high energy efficiency. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は通電加熱性を有する無機混合材料を使用した塗料、及び該塗料を使用した面状発熱体に関するものである。   The present invention relates to a paint using an inorganic mixed material having electric heating properties, and a planar heating element using the paint.

従来、面状発熱体としてはカーボン粉末あるいはカーボン繊維、酸化スズ、酸化亜鉛、酸化アンチモン等の酸化金属などの低抵抗無機材料を分散させた塗料を基板表面に塗布し、乾燥して発熱層を形成した構成、あるいは基板表面に化学蒸着法によって上記金属酸化物層を形成した構成が提供されている(例えば特許文献1、2参照)。   Conventionally, as a planar heating element, a coating material in which a low-resistance inorganic material such as carbon powder or carbon fiber, tin oxide, zinc oxide, antimony oxide or the like is dispersed is applied to the substrate surface and dried to form a heating layer. There is provided a configuration in which the metal oxide layer is formed on the surface of the substrate by chemical vapor deposition (for example, see Patent Documents 1 and 2).

特開2002−216938号公報Japanese Patent Laid-Open No. 2002-216938 特開平11−16665号公報Japanese Patent Laid-Open No. 11-16665

上記カーボン粉末あるいはカーボン繊維を低抵抗無機材料として用いた面状発熱体は、電力消費が大きいこと、また酸化金属を低抵抗無機材料として用いた面状発熱体は、酸化の度合いが一定のものを得ることが難しいこと、経験的に酸化が進み易く、品質が不安定であること等の問題点がある。   The planar heating element using carbon powder or carbon fiber as a low resistance inorganic material consumes a large amount of power, and the planar heating element using metal oxide as a low resistance inorganic material has a constant degree of oxidation. There are problems such as difficult to obtain, empirically easy oxidation, and unstable quality.

本発明は上記従来の問題点を解決するための手段として、フェライト系無機質粒状物または破砕物とカーボン粉末および/またはカーボン繊維との混合物を主体とする無機混合材料を合成樹脂エマルジョンまたは合成樹脂溶液に分散した塗料を提供するものである。上記合成樹脂溶液は、低抵抗合成樹脂溶液であることが好ましく、この場合、上記低抵抗合成樹脂溶液は、カチオン性アクリル樹脂水溶液であることが好ましい。   As a means for solving the above-described conventional problems, the present invention uses a synthetic resin emulsion or a synthetic resin solution as an inorganic mixed material mainly composed of a mixture of a ferrite inorganic granular material or crushed material and carbon powder and / or carbon fiber. The coating material dispersed in is provided. The synthetic resin solution is preferably a low resistance synthetic resin solution. In this case, the low resistance synthetic resin solution is preferably a cationic acrylic resin aqueous solution.

また該フェライト系無機質粒状物または破砕物は、電気炉酸化スラグおよび/または銅スラグおよび/または電気炉ダスト処理スラグの粒状物または破砕物であることが好ましく、この場合、該電気炉酸化スラグおよび/または銅スラグおよび/または電気炉ダスト処理スラグは、電気炉酸化スラグおよび/または銅スラグおよび/または電気炉ダスト処理スラグの溶融物に空気または酸素を吹込んで強制酸化処理を施した上で急冷固化することによって得られた改質品であることが好ましい。更に、該電気炉酸化スラグおよび/または銅スラグおよび/または電気炉ダスト処理スラグの溶融物には、該電磁波吸収性を向上させるためにFe,Ba,Co,Ni,Cr,Cu,Mn,Sr,Znおよびこれらの金属の酸化物または加熱によりこれらの金属の酸化物を与える金属化合物が添加されることが好ましい。   Further, the ferrite-based inorganic granular material or crushed material is preferably an electric furnace oxidation slag and / or copper slag and / or an electric furnace dust treatment slag granular material or crushed material. In this case, the electric furnace oxidation slag and The copper slag and / or electric furnace dust treatment slag is quenched after forced oxidation treatment is performed by blowing air or oxygen into the melt of the electric furnace oxidation slag and / or copper slag and / or electric furnace dust treatment slag. A modified product obtained by solidifying is preferable. Furthermore, the melt of the electric furnace oxidation slag and / or copper slag and / or electric furnace dust treatment slag includes Fe, Ba, Co, Ni, Cr, Cu, Mn, and Sr in order to improve the electromagnetic wave absorption. Zn and oxides of these metals or metal compounds which give oxides of these metals upon heating are preferably added.

本発明においては、更に上記塗料を基材表面に塗布し、乾燥して発熱層を形成した面状発熱体が提供される。通常、上記面状発熱体の発熱層の両端には、電極として導電層が形成されている。   In the present invention, there is further provided a planar heating element in which the coating material is further applied to the substrate surface and dried to form a heating layer. Usually, conductive layers are formed as electrodes on both ends of the heating layer of the planar heating element.

〔作用〕
上記塗料を使用した面状発熱体の発熱層に通電すると、発熱層はジュールの法則に従い、Q=RIの熱量を発生するが、更に通電によって同時に発生する電磁波をフェライト系無機質粒状物または破砕物が吸収して熱エネルギーに変換し、発熱する。
更に、上記フェライト系無機質粒状物は黒体に近似の性質を有するから、本発明の面状発熱体は加熱によって表面から赤外線を放射し、高い分光放射率と分光放射輝度が得られる。
また更に、上記フェライト系無機質粒状物は、特に電気炉酸化スラグ、銅スラグ、電気炉ダスト処理スラグの場合、大比重でかつ比熱(0.16kcal/kg・℃)が大きいので、熱容量が大きく、加熱された面状発熱体は冷めにくい。
[Action]
When the heating layer of the sheet heating element using the paint is energized, the heating layer generates a quantity of heat of Q = RI 2 according to Joule's law. Things are absorbed and converted into heat energy, which generates heat.
Furthermore, since the ferrite-based inorganic granular material has properties close to those of a black body, the planar heating element of the present invention emits infrared rays from the surface by heating, and high spectral emissivity and spectral radiance can be obtained.
Furthermore, the ferrite-based inorganic particulate matter has a large specific gravity and a large specific heat (0.16 kcal / kg · ° C.), particularly in the case of electric furnace oxidation slag, copper slag, and electric furnace dust treatment slag, so that the heat capacity is large. The heated planar heating element is difficult to cool.

〔効果〕
本発明の塗料を使用した面状発熱体は、ジュールの法則による発熱以外に、電磁波吸収による発熱を伴い、しかも加熱されたら冷めにくいので、エネルギー効率の極めて高いものとなる。したがって本発明の面状発熱体は、加熱対象を効率よく加熱できるが、面状発熱体の加熱面が黒体に近いので赤外線放射効率が高く、離れた距離にある加熱対象でも局部的に効率よく加熱することができ、それ故局部的遠隔加熱や暖房などに好適に使用される。
〔effect〕
The planar heating element using the coating material of the present invention is extremely energy efficient because it generates heat due to electromagnetic wave absorption in addition to the heat generation according to Joule's law and is difficult to cool down when heated. Therefore, the planar heating element of the present invention can efficiently heat the heating target, but since the heating surface of the planar heating element is close to a black body, the infrared radiation efficiency is high, and the heating target at a distance is also locally efficient. It can be heated well and is therefore preferably used for local remote heating and heating.

本発明を以下に詳細に説明する。
〔フェライト系無機質〕
本発明で使用するフェライト系無機質は、MIIO・Fe23 およびFe34 を含むものであり、MIIとしてはFe,Ba,Cr,Co,Ni,Cu,Zn,Mg,Cdが例示され、望ましいフェライト系無機質としては、FeO・Fe23を含むものである。
上記フェライト系無機質としては、鋼材を溶断する際に発生するスケール粉や電気炉酸化スラグを使用することが望ましい。これらのフェライト系無機質は安価に入手出来る。
更に本発明において望ましいフェライト系無機質としては、電気炉酸化スラグ、銅スラグ、および電気炉ダスト処理スラグがある。上記スラグは産業廃棄物として処理されていたものであるが、本発明においては上記スラグの有効な再利用が可能になる。
電気炉酸化スラグは、通常、CaOを10〜26質量%、SiO2 を8〜22質量%、MnOを4〜7質量%、MgOを2〜8質量%、FeOを13〜32質量%、Fe23を9〜45質量%、Al23 を4〜16質量%、Cr23 を1〜4質量%程度含み、更に微量成分としてBaOを0.05〜0.20質量%、TiO2を0.25〜0.70質量%、P25 を0.15〜0.50質量%、Sを0.005〜0.085質量%程度含み、安定な鉱物組成を得るためのFeを20〜45質量%程度含むものであり、天然骨材成分に含まれる粘土、有機不純物、塩分を全く含まず、不安定な遊離石灰、遊離マグネシアあるいは鉱物も殆ど含まない。該電気炉酸化スラグは粒状物または破砕物として提供される。
銅スラグは銅精錬工程で得られるスラグであり、通常、CaOを1〜10質量%、SiO2 を25〜40質量%、FeをFeO換算で15〜55質量%程度含み、上記電気炉酸化スラグと同様に天然骨材に含まれる粘土、有機不純物、塩分は全く含まない。
電気炉ダスト処理スラグは電気炉による製鋼過程において発生する集塵ダストを加熱溶融し、該ダスト中の低沸点有害および/または有価金属あるいは重金属を蒸発分離除去し、蒸発分離した上記金属あるいは重金属を回収する処理を施したスラグであり、通常、CaOを5〜20質量%、FeをFeO換算で35〜55質量%程度含み、上記電気炉酸化スラグと同様に天然骨材に含まれる粘土、有機不純物、塩分は全く含まない。
上記銅スラグ、電気炉ダスト処理スラグも上記電気炉酸化スラグと同様に粒状物または破砕物として提供される。
The present invention is described in detail below.
[Ferrite mineral]
The ferrite mineral used in the present invention contains M II O · Fe 2 O 3 and Fe 3 O 4 , and M II includes Fe, Ba, Cr, Co, Ni, Cu, Zn, Mg, and Cd. The preferred ferrite minerals include FeO.Fe 2 O 3 .
As the ferritic inorganic material, it is desirable to use scale powder or electric furnace oxidation slag generated when fusing steel. These ferrite minerals can be obtained at low cost.
In addition, preferred ferritic minerals in the present invention include electric furnace oxidation slag, copper slag, and electric furnace dust treatment slag. Although the slag has been treated as industrial waste, the slag can be effectively reused in the present invention.
The electric furnace oxidation slag is usually 10 to 26% by mass of CaO, 8 to 22% by mass of SiO2, 4 to 7% by mass of MnO, 2 to 8% by mass of MgO, 13 to 32% by mass of FeO, Fe It contains 9 to 45% by mass of 2 O 3 , 4 to 16% by mass of Al 2 O 3 and 1 to 4% by mass of Cr 2 O 3 , and 0.05 to 0.20% by mass of BaO as a minor component. the TiO 2 from 0.25 to 0.70 wt%, P 2 O 5 of 0.15 to 0.50 wt%, including about 0.005 to 0.085 wt% of S, in order to obtain a stable mineral composition It contains about 20 to 45% by mass of Fe, does not contain any clay, organic impurities and salt contained in the natural aggregate component, and contains almost no unstable free lime, free magnesia or mineral. The electric furnace oxidation slag is provided as a granular material or a crushed material.
Copper slag is a slag obtained from copper refining process, generally 1 to 10 mass% of CaO, a SiO 2 25 to 40 wt%, including about 15 to 55 wt% of Fe in FeO terms, the electric furnace oxide slag As with, it does not contain any clay, organic impurities, or salt contained in natural aggregate.
The electric furnace dust treatment slag heats and melts the dust collected during the steelmaking process in the electric furnace, evaporates and removes low-boiling point harmful and / or valuable metals or heavy metals in the dust, and removes the evaporated or separated metals or heavy metals. It is a slag that has been subjected to a recovery process, and usually contains about 5 to 20% by mass of CaO and about 35 to 55% by mass of Fe in terms of FeO. Contains no impurities or salt.
The copper slag and the electric furnace dust treatment slag are also provided as granular materials or crushed materials in the same manner as the electric furnace oxidation slag.

〔電気炉酸化スラグ粒化法〕
上記電気炉酸化スラグを粒化して粒状物を製造するには、該電気炉酸化スラグの溶融物を高速回転する羽根付きドラムに注入し、該溶融物を該羽根付きドラムによって破砕粒状化し、粒状化した該溶融物を水ミスト雰囲気中で急冷処理する方法が採られる。該羽根付きドラムは複数個配置して複数段の破砕粒状化を行なってもよい。
このようにして得られる電気炉酸化スラグの粒状物は、再酸化が促進されるので、Fe23系の鉱物およびFe34系の鉱物(マグネタイト)を多く含み、かつ急冷により、極微細な粒状物になるため、電磁波吸収性が非常に良好なものとなる。また通常5mm以下の粒径を有し、粒径2.5mm以下のものは略球状であり、比重は3.3〜4.1の範囲にあり、表面にはひび割れ等の欠陥はなく、微細な凹凸を有しまた中空構造のものからなるかまたは中空構造のものを含んでいる。
[Electric furnace oxidation slag granulation method]
In order to granulate the electric furnace oxidation slag, a granular material is produced by injecting a melt of the electric furnace oxidation slag into a bladed drum rotating at high speed, and crushing and granulating the melt with the bladed drum. A method of quenching the melted melt in a water mist atmosphere is employed. A plurality of bladed drums may be arranged to perform a plurality of stages of crushing and granulating.
Since the granular material of the electric furnace oxidation slag obtained in this manner promotes reoxidation, it contains a large amount of Fe 2 O 3 -based minerals and Fe 3 O 4 -based minerals (magnetite), and by quenching, Since it becomes a fine granular material, electromagnetic wave absorptivity becomes very good. In addition, usually those having a particle size of 5 mm or less, those having a particle size of 2.5 mm or less are substantially spherical, the specific gravity is in the range of 3.3 to 4.1, and there are no defects such as cracks on the surface, and fine And have a hollow structure or a hollow structure.

〔電気炉酸化スラグ破砕法〕
上記電気炉酸化スラグ破砕物を製造するには、上記電気炉酸化スラグを溶融状態で耐熱容器中に所定の厚みに流し出し、上から水をかけることによって急冷改質処理が施される。この場合、耐熱容器中のスラグ溶融物の厚さが小さすぎると、水をかける前に自然冷却(徐冷)によって硬化し易くなり、所望の硬度が得られなくなるおそれがあり、また厚さが大きくなり過ぎると、水をかけた場合に水が急激に水蒸気となり、水蒸気爆発の危険がある。望ましいスラグ溶融物の厚さは80mm〜120mmである。
[Electric furnace oxidation slag crushing method]
In order to manufacture the electric furnace oxidized slag crushed material, the electric furnace oxidized slag is poured into a heat-resistant container in a molten state to a predetermined thickness, and subjected to rapid cooling reforming by pouring water from above. In this case, if the thickness of the slag melt in the heat-resistant container is too small, it tends to harden by natural cooling (slow cooling) before applying water, and the desired hardness may not be obtained. If it becomes too large, when water is applied, the water suddenly becomes water vapor and there is a danger of water vapor explosion. A desirable slag melt thickness is 80 mm to 120 mm.

水をかける場合には耐熱容器中のスラグ溶融物のスラグ溶融物の表面に水が溜まらないようにすることが望ましく、水をかける量が多過ぎてスラグ溶融物の表面に水が溜まって水の蒸発潜熱による急冷効果が期待出来なくなる。
上記水をかける量は、スラグ溶融物1トン当たり毎秒200〜400リットル程度が望ましい。
上記急冷によってスラグ溶融物は急速に硬化するが、この際自己破砕によって容器中のスラグ溶融物の厚さ程度の径を有するスラグ原塊が得られる。
When water is applied, it is desirable to prevent water from accumulating on the surface of the slag melt of the slag melt in the heat-resistant container. Too much water is applied and water accumulates on the surface of the slag melt. The rapid cooling effect due to the latent heat of vaporization cannot be expected.
The amount of water applied is preferably about 200 to 400 liters per second per ton of slag melt.
The slag melt is rapidly cured by the rapid cooling, and at this time, a slag ingot having a diameter of about the thickness of the slag melt in the container is obtained by self-crushing.

該スラグ原塊は粗砕機で粗砕され、更に細砕機で細砕される。上記粉砕によって、スラグ塊はスラグ成分のマトリクスと鉱物相との境界で破断し、表面に微細な凹凸が形成される。所望なれば上記破砕物は粗篩機等によって粗分級され、更に細篩機等によって望ましくは10〜30μmの粒度に細分級する。   The slag bulk is crushed by a pulverizer and further pulverized by a pulverizer. By the pulverization, the slag lump is broken at the boundary between the slag component matrix and the mineral phase, and fine irregularities are formed on the surface. If desired, the crushed material is coarsely classified by a coarse sieving machine or the like, and further finely classified by a fine sieving machine or the like to a particle size of 10 to 30 μm.

上記粗砕および細砕はスラグ原塊が水で濡れたままで行ってもよいし、またスラグ原塊を乾燥して粗砕以後の工程を行ってもよいし、あるいはスラグ原塊を粗砕した後に乾燥して細砕以後の工程を行ってもよい。また上記分級工程において、篩を通過しない残分は破砕工程に戻されることが望ましい。
このようにして得られる破砕物は徐冷スラグに較べ、再酸化が促進されるので、Fe23系の鉱物を多く含み、かつ急冷により、微細な粒状物になるため、電磁波吸収性が非常に良好なものとなり、その比重は水砕品と同様3.3〜4.1の範囲にある。
The above crushing and crushing may be performed while the slag block is wet with water, or the slag block may be dried and the steps after the crushing may be performed, or the slag block may be crushed. You may dry and perform the process after a grinding | pulverization later. Moreover, in the said classification process, it is desirable to return the residue which does not pass a sieve to a crushing process.
Since the crushed material obtained in this way promotes reoxidation as compared with slow-cooled slag, it contains a large amount of Fe 2 O 3 mineral and becomes a fine granular material by rapid cooling. It becomes very good, and its specific gravity is in the range of 3.3 to 4.1 like the granulated product.

〔改質電気炉酸化スラグ〕
更に本発明にあっては、電気炉酸化スラグに電磁波吸収性を向上させるための添加物を添加してもよい。
上記電磁波吸収性を向上させるための添加物としては、Fe,Ba,Co,Ni,Cr,Cu,Mn,Sr,Zn等の金属あるいはこれら金属を含む合金、あるいはこれらの金属の酸化物、水酸化物、塩化物、硫酸塩等の加熱により酸化物を与える化合物、あるいはシリカ粉、ケイ砂、ケイ石の粉末、水ガラス、ケイ藻土、ドロマイト、シリカヒューム、高炉スラグ、フライアッシュ、シラスバルーン、パーライト等のケイ酸含有物質がある。望ましい添加物としては鉄スクラップ、スケール、BaO屑、硫酸バリウムを含む重晶石等がある。
上記添加物は前記粒化法あるいは破砕法において、電気炉酸化スラグ溶融物に添加されるかあるいは電気炉酸化スラグに混合されて共に溶融される。上記溶融は通常電気溶解炉で行われるが、この時溶融物に空気または酸素を吹込み強制酸化処理を施す。上記強制酸化処理は特にFeO比率が高い破砕法によるスラグに対して有効であり、上記強制酸化処理によってFe23やFe34 の含有率を高めて電磁波吸収性を向上せしめることが出来る。
該改質電気炉酸化スラグも粒状物または破砕物として提供される。
[Reformed electric furnace oxidation slag]
Furthermore, in this invention, you may add the additive for improving electromagnetic wave absorptivity to an electric furnace oxidation slag.
Examples of the additive for improving the electromagnetic wave absorption include metals such as Fe, Ba, Co, Ni, Cr, Cu, Mn, Sr, and Zn, alloys containing these metals, oxides of these metals, water Compounds that give oxides by heating, such as oxides, chlorides and sulfates, or silica powder, silica sand, silica stone powder, water glass, diatomaceous earth, dolomite, silica fume, blast furnace slag, fly ash, shirasu balloon And silicic acid-containing substances such as perlite. Desirable additives include iron scrap, scale, BaO scrap, barite containing barium sulfate, and the like.
In the granulation method or crushing method, the additive is added to the electric furnace oxidation slag melt or mixed with the electric furnace oxidation slag and melted together. The melting is usually carried out in an electric melting furnace. At this time, air or oxygen is blown into the melt and subjected to forced oxidation treatment. The forced oxidation treatment is particularly effective for slag by a crushing method with a high FeO ratio, and the content of Fe 2 O 3 and Fe 3 O 4 can be increased by the forced oxidation treatment to improve electromagnetic wave absorption. .
The reformed electric furnace oxidation slag is also provided as a granular or crushed material.

銅スラグおよび電気炉ダスト処理スラグは上記電気炉酸化スラグと同様に、上記銅スラグや電気炉ダスト処理スラグの溶融物を急冷処理して粒化あるいは破砕して分級する。
上記電気炉酸化スラグと同様に、上記銅スラグおよび電気炉ダスト処理スラグには上記電磁波吸収性を向上させるための添加物が添加されてもよいし、また強制酸化処理が行なわれてもよい。
上記銅スラグ粒状物および電気炉ダスト処理スラグ粒状物は上記電気炉酸化スラグ粒状物と同様に通常5mm以下の粒径を有し、粒径2.5mm以下のものは略球状であり、比重は銅スラグ粒状物で3.2〜3.7、電気炉ダスト処理スラグで3.5〜4.5の範囲にあり、表面にはひび割れ等の欠陥はなく、微細な凹凸を有し、また中空構造のものからなるかまたは中空構造のものを含んでいる。
Similarly to the electric furnace oxidation slag, the copper slag and the electric furnace dust treatment slag are classified by granulating or crushing the molten copper slag and the electric furnace dust treatment slag and granulating or crushing them.
Similarly to the electric furnace oxidation slag, the copper slag and the electric furnace dust treatment slag may be added with an additive for improving the electromagnetic wave absorption, or may be subjected to forced oxidation treatment.
The copper slag granule and the electric furnace dust-treated slag granule have a particle size of usually 5 mm or less like the electric furnace oxidation slag granule, and those having a particle size of 2.5 mm or less are substantially spherical, and the specific gravity is Copper slag granular material is in the range of 3.2 to 3.7, electric furnace dust treatment slag is in the range of 3.5 to 4.5, the surface has no defects such as cracks, has fine irregularities, and is hollow It consists of a structure or includes a hollow structure.

〔導電性材料〕
本発明においては、導電性材料としては、カーボン粉末および/またはカーボン繊維が使用される。カーボン粉末としては、細長形状で高導電性のものが望ましく、また上記カーボン粉末およびカーボン繊維には、銅、銀等の金属メッキが施されてもよい。
[Conductive material]
In the present invention, carbon powder and / or carbon fiber is used as the conductive material. The carbon powder is preferably an elongated shape and highly conductive, and the carbon powder and the carbon fiber may be subjected to metal plating such as copper or silver.

〔無機混合材料〕
上記フェライト系無機質粒状物または破砕物と、カーボン粉末および/またはカーボン繊維とは、通常は95:5質量比〜80:20質量比の範囲で混合される。
[Inorganic mixed materials]
The ferrite-based inorganic granular material or crushed material and carbon powder and / or carbon fiber are usually mixed in a range of 95: 5 mass ratio to 80:20 mass ratio.

〔面状発熱体用塗料〕
本発明の面状発熱体用塗料を調製するには、上記無機混合材料を合成樹脂エマルジョンまたは合成樹脂溶液に分散する。上記合成樹脂としては、アクリル樹脂、酢酸ビニル−アクリル共重合体樹脂、スチレン−ブタジエン共重合体樹脂等が使用される。望ましい合成樹脂としては、アミン塩型、イミダゾリン型、第4級アンモニウム塩型等のカチオン性アクリル樹脂のような低抵抗合成樹脂がある。該アクリル樹脂は、通常メタノール、エタノール、イソプロパノール等の水溶性アルコールと水との混合溶媒の溶液または水性ディスパーションとして提供され、カチオン性親水基に起因する電導性を有する。
上記塗料には通常、上記無機混合材料が、該塗料の樹脂分100質量部に対し、50〜400質量部程度添加される。
[Coating for sheet heating element]
In order to prepare the coating for a planar heating element of the present invention, the inorganic mixed material is dispersed in a synthetic resin emulsion or a synthetic resin solution. As the synthetic resin, acrylic resin, vinyl acetate-acrylic copolymer resin, styrene-butadiene copolymer resin, or the like is used. Desirable synthetic resins include low resistance synthetic resins such as cationic acrylic resins such as amine salt type, imidazoline type, and quaternary ammonium salt type. The acrylic resin is usually provided as a solution or aqueous dispersion of a mixed solvent of water-soluble alcohol such as methanol, ethanol, and isopropanol and water, or has an electrical conductivity due to a cationic hydrophilic group.
Usually, the inorganic mixed material is added to the paint in an amount of about 50 to 400 parts by mass with respect to 100 parts by mass of the resin content of the paint.

〔面状発熱体〕
上記塗料を基材に塗布して乾燥させれば、該基材の表面に低抵抗(発熱層)を形成することが出来る。
上記基材としては、ポリプロピレン板またはシート、ポリエステル板またはシート、ポリ塩化ビニル板またはシート、ポリアミド板またはシート等のプラスチック板またはシート、木質板、セラミックス板等が例示され、上記発熱層の厚みは通常、10〜100μm、望ましくは20〜50μm程度に設定される。
以下に本発明を更に具体的に説明するための実施例を記載する。
(Surface heating element)
If the coating material is applied to a substrate and dried, a low resistance (heat generation layer) can be formed on the surface of the substrate.
Examples of the substrate include a polypropylene plate or sheet, a polyester plate or sheet, a polyvinyl chloride plate or sheet, a plastic plate or sheet such as a polyamide plate or sheet, a wood plate, a ceramic plate, etc., and the thickness of the heating layer is Usually, it is set to about 10 to 100 μm, desirably about 20 to 50 μm.
Examples for more specifically explaining the present invention will be described below.

〔実施例1〕(電気炉酸化スラグ粒状物の製造)
図1に本発明の電気炉酸化スラグ粒状物8(以下「スラグ粒状物8」と略す)を製造する装置を示す。
即ち1500℃前後の電気炉酸化スラグ溶融物1は電気溶解炉から取鍋2に移され、該取鍋2からシューター3に移し、該シューター3から高速回転する羽根付きドラム4,5に注入する。該製鋼スラグ溶融物1は該羽根付きドラム4,5によって細破砕されて粒状化し、該電気炉酸化スラグ溶融物の粒化物1Aは急冷チャンバー6内にスプレー装置7からスプレーされる水ミストによって急冷される。そしてこのようにして得られたスラグ粒状物8は備蓄容器9内に備蓄される。
該スラグ粒状物8は略球状の中空体であり、表面にはひび割れ等の欠陥はなく、微細な凹凸が有り、高硬度(モース硬さでマトリックスが6程度、鉱物相が8程度であった。)を有し耐摩耗性に優れており、真比重は3.84、絶乾比重は3.52、耐火度は1100℃で、電磁波吸収性、透磁性、誘電性、耐酸性、耐アルカリ性等にも優れている。
該スラグ粒状物8の粒度分布を図2に示す。
[Example 1] (Manufacture of electric furnace oxidation slag granular material)
FIG. 1 shows an apparatus for producing an electric furnace oxidation slag granular material 8 (hereinafter abbreviated as “slag granular material 8”) of the present invention.
That is, the electric furnace oxidation slag melt 1 around 1500 ° C. is transferred from the electric melting furnace to the ladle 2, transferred from the ladle 2 to the shooter 3, and injected from the shooter 3 to the bladed drums 4 and 5 that rotate at high speed. . The steelmaking slag melt 1 is crushed and granulated by the bladed drums 4, 5, and the granulated product 1 A of the electric furnace oxidation slag melt is quenched by water mist sprayed from the spray device 7 into the quenching chamber 6. Is done. And the slag granular material 8 obtained in this way is stored in the storage container 9.
The slag granular material 8 is a substantially spherical hollow body, has no defects such as cracks on the surface, has fine irregularities, and has high hardness (Mohs hardness of about 6 matrix and mineral phase of about 8). )) And has excellent wear resistance, true specific gravity of 3.84, absolute dry specific gravity of 3.52, fire resistance of 1100 ° C., electromagnetic wave absorption, magnetic permeability, dielectric property, acid resistance, alkali resistance Etc. are also excellent.
The particle size distribution of the slag granular material 8 is shown in FIG.

〔実施例2〕(電気炉酸化スラグ破砕物の製造)
実施例1において電気溶解炉から取鍋2に移されたスラグの溶融物に鉄粉および酸化カルシウムと酸化ケイ素とを後添加して次の組成に調節する。
CaO 24.92重量%
SiO2 15.24重量%
Al23 6.72重量%
MnO 5.66重量%
MgO 4.25重量%
Cr23 1.97重量%
TiO2 0.42重量%
BaO 0.07重量%
総Fe 40.75重量%
CaO/SiO2 =1.64
上記スラグ溶融物は約1350℃に加熱されているが、取鍋2から耐熱容器(皿型鋼鉄製)に約100mmの厚さに流し出され、直ちにスラグ溶融物1トン当たり毎秒300リットル、スプレーにより散水する。
[Example 2] (Production of electric furnace oxidized slag crushed material)
In Example 1, iron powder, calcium oxide, and silicon oxide are post-added to the molten slag transferred from the electric melting furnace to the ladle 2 to adjust to the following composition.
CaO 24.92 wt%
SiO 2 15.24% by weight
Al 2 O 3 6.72% by weight
MnO 5.66 wt%
MgO 4.25 wt%
Cr 2 O 3 1.97 wt%
TiO 2 0.42% by weight
BaO 0.07% by weight
Total Fe 40.75 wt%
CaO / SiO 2 = 1.64
The slag melt is heated to about 1350 ° C., but is poured out of the ladle 2 into a heat-resistant container (made of dish-shaped steel) to a thickness of about 100 mm, and immediately, 300 liters per second per ton of slag melt is sprayed. Sprinkle water.

このようにして約100mm径のスラグ原塊が得られ、該スラグ原塊のモース硬さはマトリクスで6、鉱物相で8であった。該スラグ原塊は粗砕機で粗砕され、乾燥機で乾燥後細砕機で細砕される。細砕されたスラグ原塊は次いで粗篩機で粗分級され、更に細篩機で細分級されて、10〜30μmの粒度の細骨材に分けられる。   In this way, a slag bulk having a diameter of about 100 mm was obtained, and the Mohs hardness of the slag bulk was 6 in the matrix and 8 in the mineral phase. The slag bulk is crushed with a crusher, dried with a drier and then pulverized with a crusher. The crushed slag ingot is then coarsely classified by a coarse sieving machine, and further finely classified by a fine sieving machine, and divided into fine aggregates having a particle size of 10 to 30 μm.

〔実施例3〕(改質電気炉スラグ破砕物の製造)
4.5トンの電気炉酸化スラグ1を図3に示す電気溶解炉10に投入し、更に鉄スクラップとして1.5トンの銑ダライと125kgの重晶石を加えてランス管12から酸素を吹精しつつ加熱溶融し、得られた溶融物1Aを図1に示す取鍋2に移し、以後実施例2と同様にして改質電気炉酸化スラグ破砕物を得る。
上記改質電気炉酸化スラグ破砕物の化学組成の一例を表1に示す。
[Example 3] (Production of crushed reformed electric furnace slag)
4.5 tons of electric furnace oxidation slag 1 is put into the electric melting furnace 10 shown in FIG. 3, and 1.5 tons of paddy dairy and 125 kg of barite are added as iron scrap, and oxygen is blown from the lance pipe 12. The melt 1A obtained by heating and melting while being refined is transferred to a ladle 2 shown in FIG. 1, and a reformed electric furnace oxidation slag crushed material is obtained in the same manner as in Example 2.
An example of the chemical composition of the reformed electric furnace oxidized slag crushed material is shown in Table 1.

〔実施例4〕(面状発熱体)
実施例1の電気スラグ粒状物をボールミルによって粉砕して平均粒径20μm の粉末とした。以下、これをスラグ粉末と称する。
合成樹脂としてジュリマーSP−50TF(商品名、日本純薬(株)製)を使用した。該ジュリマーSP−50TFは、第4級アンモニウム塩を有するカチオン性アクリル樹脂の20質量%水性溶液(イソプロパノール:水=1:1質量比)である。
上記合成樹脂100質量部に対して表2の組成(質量比)の無機混合材料を20質量部添加して面状発熱体用塗料を調製した。
Example 4 (Surface heating element)
The electric slag granule of Example 1 was pulverized by a ball mill to obtain a powder having an average particle size of 20 μm. Hereinafter, this is referred to as slag powder.
Jurimer SP-50TF (trade name, manufactured by Nippon Pure Chemical Co., Ltd.) was used as a synthetic resin. The Julimer SP-50TF is a 20% by mass aqueous solution (isopropanol: water = 1: 1 mass ratio) of a cationic acrylic resin having a quaternary ammonium salt.
20 parts by mass of an inorganic mixed material having the composition (mass ratio) shown in Table 2 was added to 100 parts by mass of the synthetic resin to prepare a coating for a planar heating element.

上記塗料No1〜No5を幅150mm、長さ150mm、厚さ2mmのアクリル板に塗布し、100℃、10分乾燥後、長さ方向両端に銅テープを貼着して電極(導電層)とし、面状発熱体試料No1〜No5を作成した。なお発熱層の膜厚は45μm に設定した。
上記面状発熱体No1〜No5の発熱層の抵抗値を測定した結果を表3に示す。
The paints No1 to No5 are applied to an acrylic plate having a width of 150 mm, a length of 150 mm, and a thickness of 2 mm, dried at 100 ° C. for 10 minutes, and then a copper tape is attached to both ends in the length direction to form electrodes (conductive layers). Planar heating element samples No1 to No5 were prepared. The film thickness of the heat generating layer was set to 45 μm.
Table 3 shows the results of measuring the resistance values of the heating layers of the planar heating elements No1 to No5.

次いで上記面状発熱体試料No1〜No5の電極間に100ボルトの直流電圧を印加して発熱層中央の温度上昇を測定した。その結果を図3に示す。雰囲気温度は25℃に設定した。
図3をみると、スラグ粉末:粉末カーボンの質量比が90:10の試料No2が最も良好な発熱を示し、電圧印加後1時間30分で表面温度が57℃に達した。しかしスラグ粉末:粉末カーボンの質量比が95:5の試料No1は抵抗が大きく、逆にスラグ粉末:粉末カーボンの質量比が80:20の試料No4、および質量比が75:25の試料No5は導電性が大きく、1時間30分でも温度が40℃に達しなかった。
本実施例ではフェライト系無機質として比熱の大きい電気炉酸化スラグ粒状物を使用したので、発熱層の保温性が高く、電圧をオフにした後、急速には冷却しないことが認められた。
Next, a DC voltage of 100 volts was applied between the electrodes of the planar heating element samples No1 to No5, and the temperature rise at the center of the heating layer was measured. The result is shown in FIG. The ambient temperature was set to 25 ° C.
Referring to FIG. 3, Sample No. 2 having a slag powder: powder carbon mass ratio of 90:10 showed the best heat generation, and the surface temperature reached 57 ° C. 1 hour and 30 minutes after the voltage application. However, the sample No. 1 in which the mass ratio of slag powder: powder carbon is 95: 5 has a large resistance. Conversely, the sample No. 4 in which the mass ratio of slag powder: powder carbon is 80:20 and the sample No. 5 in which the mass ratio is 75:25 are The conductivity was high, and the temperature did not reach 40 ° C. even after 1 hour 30 minutes.
In this example, since the electric furnace oxidation slag granular material having a large specific heat was used as the ferrite-based inorganic material, it was confirmed that the heat-generating layer had high heat retention and did not cool rapidly after the voltage was turned off.

〔実施例5〕
(面状発熱体)
実施例2および実施例3の電気スラグ粉砕物をボールミルによって粉砕して平均粒径15μm の粉末とした。以下、これらをスラグ粉砕物A(実施例2)、スラグ粉砕物B(実施例3)と称する。
合成樹脂としてアミン塩型カチオン性アクリル樹脂水性ディスパーション(30質量%、樹脂分)を使用した。
上記合成樹脂100質量部に対して表4の組成(質量比)の電磁波吸収材料を30質量部添加して面状発熱体を調製した。
Example 5
(Surface heating element)
The electric slag pulverized product of Example 2 and Example 3 was pulverized by a ball mill to obtain a powder having an average particle size of 15 μm. Hereinafter, these are referred to as slag pulverized product A (Example 2) and slag pulverized product B (Example 3).
Amine salt type cationic acrylic resin aqueous dispersion (30% by mass, resin content) was used as a synthetic resin.
30 parts by mass of an electromagnetic wave absorbing material having the composition (mass ratio) shown in Table 4 was added to 100 parts by mass of the synthetic resin to prepare a planar heating element.

上記塗料No6〜No11を使用し、上記実施例4と同様にして面状発熱体試料No6〜No11を作成した。
上記面状発熱体No6〜No11の発熱層の抵抗値を測定した結果を表5に示す。
Using the coating materials No6 to No11, planar heating element samples No6 to No11 were prepared in the same manner as in Example 4.
Table 5 shows the results of measuring the resistance values of the heating layers of the planar heating elements No6 to No11.

次いで上記実施例15と同様にして上記面状発熱体試料No6〜No11の発熱層中央の温度上昇を測定した。その結果を図4に示す。
図4をみると、実施例15と同様に、スラグ粉末:粉末カーボンの質量比が90:10の試料No7および試料No10は良好な発熱を示し、電圧印加後1時間30分で表面温度が、試料No7は55℃、試料No10は53℃に達した。しかしスラグ粉末:粉末カーボンの質量比が95:5の試料No6および試料No9は抵抗値が試料No7および試料No10よりも高く、またスラグ粉末:粉末カーボンの質量比が85:15の試料No8および試料No11は抵抗値が試料No7および試料No10よりも低く、いずれも発熱は不良であった。なお本実施例に使用したスラグ粉末も高比熱であり、発熱層の保温性が高く、電圧をオフにした後、急速には冷却しないことが認められた。
Next, in the same manner as in Example 15, the temperature increase at the center of the heat generating layer of the sheet heating element samples No. 6 to No. 11 was measured. The result is shown in FIG.
When FIG. 4 is seen, like Example 15, sample No7 and sample No10 whose mass ratio of slag powder: powder carbon is 90:10 show favorable heat_generation | fever, and surface temperature is 1 hour 30 minutes after voltage application, Sample No. 7 reached 55 ° C. and Sample No. 10 reached 53 ° C. However, sample No. 6 and sample No. 9 with a mass ratio of slag powder: powder carbon of 95: 5 have higher resistance values than those of sample No. 7 and sample No. 10, and sample No. 8 and sample with a mass ratio of slag powder: powder carbon of 85:15. No11 had a resistance value lower than that of sample No7 and sample No10, and both of them generated poor heat. The slag powder used in this example also has a high specific heat, the heat-retaining layer has high heat retention, and it was confirmed that it does not cool rapidly after the voltage is turned off.

〔赤外線放射テスト〕
面状発熱体の試料No1〜No3について、赤外分光放射(分光放射率、分光放射出力)を測定した。測定は、フーリエ変換赤外分光光波計を用いて行った。その結果を図5〜図7(分光放射率)および図8〜図10(分光放射出力)に示す。
図5〜図7を参照すると、試料No1〜No3は、何れもほぼ1に近いと云う高い分光放射率を示し、また分光放射輝度も黒体に近似の出力グラフとなり、効率良く赤外線が放射されていることが判る。
[Infrared radiation test]
Infrared spectral radiation (spectral emissivity, spectral radiation output) was measured for samples No1 to No3 of the planar heating element. The measurement was performed using a Fourier transform infrared spectrophotometer. The results are shown in FIGS. 5 to 7 (spectral emissivity) and FIGS. 8 to 10 (spectral radiation output).
Referring to FIGS. 5 to 7, samples No. 1 to No. 3 show high spectral emissivities that are almost close to 1, and the spectral radiance becomes an output graph that approximates a black body, and infrared rays are efficiently emitted. You can see that

本発明の塗料を使用した面状発熱体は、安価に提供出来かつ発熱効率および赤外線放射効率が高いので産業上利用可能である。   The planar heating element using the coating material of the present invention can be provided at low cost and can be used industrially because it has high heat generation efficiency and infrared radiation efficiency.

電気炉スラグ粒状物製造装置の説明図。Explanatory drawing of an electric furnace slag granular material manufacturing apparatus. 電気炉スラグ粒状物の粒度分布を示すグラフ。The graph which shows the particle size distribution of an electric furnace slag granular material. 実施例4の試料の発熱状況を示すグラフ。6 is a graph showing the heat generation status of the sample of Example 4. 実施例5の試料の発熱状況を示すグラフ。10 is a graph showing the heat generation status of the sample of Example 5. 試料No1の分光放射率のグラフ。The graph of the spectral emissivity of sample No1. 試料No2の分光放射率のグラフ。The graph of the spectral emissivity of sample No2. 試料No3の分光放射率のグラフ。The graph of the spectral emissivity of sample No3. 試料No1の分光放射出力のグラフ。The graph of the spectral radiation output of sample No1. 試料No2の分光放射出力のグラフ。The graph of the spectral radiation output of sample No2. 試料No3の分光放射出力のグラフ。The graph of the spectral radiation output of sample No3.

符号の説明Explanation of symbols

1 電気炉酸化スラグ溶融物
8 電気炉スラグ粒状物
1 Electric furnace oxidation slag melt 8 Electric furnace slag granular material

Claims (8)

フェライト系無機質粒状物または破砕物とカーボン粉末および/またはカーボン繊維との混合物を主体とする無機混合材料を合成樹脂エマルジョンまたは合成樹脂溶液に分散したことを特徴とする塗料。   A paint comprising an inorganic mixed material mainly composed of a mixture of a ferrite-based inorganic granular material or crushed material and carbon powder and / or carbon fiber in a synthetic resin emulsion or a synthetic resin solution. 上記合成樹脂溶液は、低抵抗合成樹脂溶液である請求項1に記載の塗料。   The paint according to claim 1, wherein the synthetic resin solution is a low-resistance synthetic resin solution. 上記低抵抗合成樹脂溶液は、カチオン性アクリル樹脂水溶液である請求項2に記載の塗料。   The coating material according to claim 2, wherein the low-resistance synthetic resin solution is a cationic acrylic resin aqueous solution. 該フェライト系無機質粒状物または破砕物は、電気炉酸化スラグおよび/または銅スラグおよび/または電気炉ダスト処理スラグの粒状物または破砕物である請求項1から請求項3のいずれか一項に記載の塗料。   The ferrite-based inorganic granular material or crushed material is a granular material or crushed material of electric furnace oxidation slag and / or copper slag and / or electric furnace dust treatment slag. Paint. 該電気炉酸化スラグおよび/または銅スラグおよび/または電気炉ダスト処理スラグは、電気炉酸化スラグおよび/または銅スラグおよび/または電気炉ダスト処理スラグの溶融物に空気または酸素を吹込んで強制酸化処理を施した上で急冷固化することによって得られた改質品である請求項4に記載の塗料。   The electric furnace oxidation slag and / or copper slag and / or electric furnace dust treatment slag is forced oxidation treatment by blowing air or oxygen into the melt of the electric furnace oxidation slag and / or copper slag and / or electric furnace dust treatment slag. The coating material according to claim 4, which is a modified product obtained by quenching and solidifying. 該電気炉酸化スラグおよび/または銅スラグおよび/または電気炉ダスト処理スラグの溶融物には、該電磁波吸収性を向上させるためにFe,Ba,Co,Ni,Cr,Cu,Mn,Sr,Znおよびこれらの金属の酸化物または加熱によりこれらの金属の酸化物を与える金属化合物が添加される請求項5に記載の塗料。   In order to improve the electromagnetic wave absorption, Fe, Ba, Co, Ni, Cr, Cu, Mn, Sr, Zn are used in the melt of the electric furnace oxidation slag and / or copper slag and / or electric furnace dust treatment slag. 6. The paint according to claim 5, wherein an oxide of these metals or a metal compound which gives an oxide of these metals by heating is added. 請求項1から請求項6のいずれか一項に記載の塗料を基材表面に塗布し、乾燥して発熱層を形成したことを特徴とする面状発熱体。   A planar heating element, wherein the coating material according to any one of claims 1 to 6 is applied to a substrate surface and dried to form a heating layer. 上記面状発熱体の発熱層の両端には、電極として導電層が形成されている請求項7に記載の面状発熱体。   The planar heating element according to claim 7, wherein conductive layers are formed as electrodes at both ends of the heating layer of the planar heating element.
JP2007275566A 2007-10-23 2007-10-23 Paint and planar heating element using the paint Active JP4390828B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007275566A JP4390828B2 (en) 2007-10-23 2007-10-23 Paint and planar heating element using the paint
KR1020080056448A KR101190104B1 (en) 2007-10-23 2008-06-16 Paint and plane heater using the paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007275566A JP4390828B2 (en) 2007-10-23 2007-10-23 Paint and planar heating element using the paint

Publications (2)

Publication Number Publication Date
JP2009102519A true JP2009102519A (en) 2009-05-14
JP4390828B2 JP4390828B2 (en) 2009-12-24

Family

ID=40704537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007275566A Active JP4390828B2 (en) 2007-10-23 2007-10-23 Paint and planar heating element using the paint

Country Status (2)

Country Link
JP (1) JP4390828B2 (en)
KR (1) KR101190104B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181197A (en) * 2011-03-25 2011-09-14 武汉科技大学 Nano-blackening agent for infrared radiation energy-saving coating and preparation method thereof
JP2016216643A (en) * 2015-05-22 2016-12-22 株式会社日進産業 Far-infrared ray radiating composition and far-infrared ray radiating substrate carrying the same
CN109049318A (en) * 2018-06-11 2018-12-21 滁州恒通磁电科技有限公司 A kind of collection device of ferrite powder
CN109504139A (en) * 2018-12-09 2019-03-22 马鞍山市雷狮轨道交通装备有限公司 A kind of grinding of grinding device for tread cleaner coating and coating

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3661351B2 (en) 1997-04-30 2005-06-15 Jsr株式会社   Binder resin for organic filler and / or inorganic filler
JP2002117962A (en) 2000-10-05 2002-04-19 Hitachi Cable Ltd Surface heating element
JP2002216938A (en) 2001-01-17 2002-08-02 Mitsuo Shiba Plane shape heating body and electrode installation structure
JP2007224207A (en) 2006-02-24 2007-09-06 Nippon Zeon Co Ltd Electroconductive composition, electroconductive coating material, electroconductive fiber material, method for producing electroconductive fiber material, and flat heater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181197A (en) * 2011-03-25 2011-09-14 武汉科技大学 Nano-blackening agent for infrared radiation energy-saving coating and preparation method thereof
CN102181197B (en) * 2011-03-25 2013-06-05 武汉科技大学 Nano-blackening agent for infrared radiation energy-saving coating and preparation method thereof
JP2016216643A (en) * 2015-05-22 2016-12-22 株式会社日進産業 Far-infrared ray radiating composition and far-infrared ray radiating substrate carrying the same
CN109049318A (en) * 2018-06-11 2018-12-21 滁州恒通磁电科技有限公司 A kind of collection device of ferrite powder
CN109504139A (en) * 2018-12-09 2019-03-22 马鞍山市雷狮轨道交通装备有限公司 A kind of grinding of grinding device for tread cleaner coating and coating

Also Published As

Publication number Publication date
KR101190104B1 (en) 2012-10-11
KR20090041307A (en) 2009-04-28
JP4390828B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
CN101280361B (en) Process method of tailings in vanadium extraction
JP5640307B2 (en) Blasting abrasive and method for producing blasting abrasive.
CN101413037A (en) Method for recovery of waste heat of steel slag and comprehensively processing and utilizing steel slag
JP4390828B2 (en) Paint and planar heating element using the paint
KR101957366B1 (en) Silicon manganese slag light weight aggregate and it&#39;s manufacturing method
CN107487986A (en) Glass microballoon and the method for reclaiming dross sensible heat are prepared using liquid blast furnace cinder
KR101314384B1 (en) Metal oxide composition heated by microwave irradiation, organic/inorganic composition and product comprising the same
JP6460531B2 (en) Method for producing reduced iron
JP4451328B2 (en) Ferrite-containing filler manufacturing method, electromagnetic heating material, electromagnetic shielding material
WO2007020855A1 (en) Process for producing spherical inorganic particle
JP4031070B2 (en) Heavy aggregate
JP2006222104A (en) Electromagnetic wave absorbing composition
JP2000192155A (en) Treatment of sludge containing water and oil components
US3015553A (en) Slag reduction process
JP6235439B2 (en) Manufacturing method of granular metallic iron
JP2003147708A (en) Asphalt mixture
JP2000290048A (en) Granular body for shot blast
JPH01237049A (en) Heat insulating refractory grain for molten metal
JP2004067400A (en) Process for manufacturing foam glass
JP2007012775A (en) Electromagnetic wave absorber
JP6809095B2 (en) How to make slag
JP2002316845A (en) Artificial aggregate
Kocakusak et al. Production of anhydrous borax using microwave heating
TW201925484A (en) Manufacture method of mortar fine aggregates, and mortar composition having the same
JP2001352194A (en) Method of manufacturing permeable, radiation shielding and electromagnetic wave shielding material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091006

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151016

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Ref document number: 4390828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250