JP2009101546A - Method for manufacturing fiber-reinforced plastic tubular body - Google Patents

Method for manufacturing fiber-reinforced plastic tubular body Download PDF

Info

Publication number
JP2009101546A
JP2009101546A JP2007273661A JP2007273661A JP2009101546A JP 2009101546 A JP2009101546 A JP 2009101546A JP 2007273661 A JP2007273661 A JP 2007273661A JP 2007273661 A JP2007273661 A JP 2007273661A JP 2009101546 A JP2009101546 A JP 2009101546A
Authority
JP
Japan
Prior art keywords
resin
fiber
base material
reinforced plastic
tubular body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007273661A
Other languages
Japanese (ja)
Inventor
Hideo Iwai
英夫 岩井
Shohei Kawasaki
章平 川崎
Tatsuo Kinoshita
健生 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2007273661A priority Critical patent/JP2009101546A/en
Publication of JP2009101546A publication Critical patent/JP2009101546A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a fiber-reinforced plastic tubular body having high strength, uniform thickness and an excellent exterior appearance, while styrene is prevented from being diffused during manufacturing. <P>SOLUTION: The method for manufacturing the fiber-reinforced plastic tubular body is a vacuum injection molding method comprising the steps of: arranging a sheet-like reinforcing fibrous base material being an object to be impregnated on a cylindrical molding mold; laying a resin diffusing member for promoting the diffusion of a resin to be injected on the reinforcing fibrous base material while interposing a mold releasing agent between them; airtightly covering these reinforcing fibrous base material, mold releasing agent and resin diffusing member with a bagging film on the molding mold; and evacuating air in the bagging film and sucking/injecting the resin into the bagging film to impregnate the reinforcing fibrous base material with the injected resin. A laminate obtained by layering a fiber knitted/woven fabric, a granular material and a nonwoven fabric is used as the reinforcing fibrous base material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、繊維強化プラスチック製管体の製造方法に関し、さらに詳しくは製造中のスチレン拡散防止を図るとともに、高強度で均一な肉厚、外観の優れた繊維強化プラスチック製管体を製造する方法に関するものである。   The present invention relates to a method for producing a fiber reinforced plastic tube, and more particularly, a method for producing a fiber reinforced plastic tube having high strength, uniform wall thickness, and excellent appearance while preventing styrene diffusion during production. It is about.

従来、軽量で高強度な素材として、繊維強化プラスチック(FRP)が各種産業分野で使用されている。
また、繊維強化プラスチック製管体を製造するのに、フィラメントワインディング(FW)法が用いられることはよく知られている。しかし、この成形方法は開放された状態で樹脂含浸繊維の成形型への巻付けが行なわれるため、製造中にスチレン等が揮散するなどといった環境上の問題があり、近年では、環境配慮型の成形方法として真空吸引による減圧環境下で成形を行う真空注入成形法が注目されつつある。
Conventionally, fiber reinforced plastic (FRP) has been used in various industrial fields as a lightweight and high strength material.
In addition, it is well known that a filament winding (FW) method is used to manufacture a fiber reinforced plastic tube. However, since this molding method is wound around the molding die of the resin-impregnated fiber in an open state, there is an environmental problem such as volatilization of styrene during the production. As a molding method, a vacuum injection molding method in which molding is performed in a reduced pressure environment by vacuum suction is drawing attention.

真空注入成形法は、基本的には、成形型の上に、強化繊維基材を配置し、適宜離型材を介して樹脂拡散材を設け、これをバッグフィルムで覆い、シールしてバッグフィルムで覆われた内部を真空減圧状態としてバッグフィルム内に樹脂注入を行うことで成形体を得る成形法である(例えば、特許文献1参照)。   In the vacuum injection molding method, basically, a reinforcing fiber base is disposed on a mold, and a resin diffusion material is appropriately provided through a release material, which is covered with a bag film, sealed, and sealed with a bag film. This is a molding method in which a molded body is obtained by injecting resin into a bag film with the covered interior in a vacuum and reduced pressure state (see, for example, Patent Document 1).

特開2002−307463号公報JP 2002-307463 A

この真空注入成形方法を利用して管体を成形する場合、被含浸物である強化繊維基材に織物が汎用されるが、その場合、織物は繊維の引き揃えが完全ではないため、均一に高緊張力で成形型に巻き付けるのは困難であり、そのため成形型へ巻き付ける時の緊張力が弱まり、真空吸引時に図3に示すように繊維基材がたるみ、しわなどの凹凸等の外観不良が生じやすいといった問題がある。   When forming a tube body using this vacuum injection molding method, a woven fabric is generally used for the reinforcing fiber base material to be impregnated, but in that case, the woven fabric is not evenly aligned, so it is uniform. It is difficult to wrap around a mold with high tension. Therefore, the tension when wrapping around the mold is weakened. As shown in Fig. 3, the fiber base is slack and has poor appearance such as irregularities such as wrinkles. There is a problem that it is likely to occur.

本発明は、このような事情の下、製造中のスチレン拡散防止を図るとともに、高強度で均一な肉厚、外観の優れた繊維強化プラスチック製管体を製造する方法を提供することを課題とするものである。   Under such circumstances, the present invention aims to prevent diffusion of styrene during production, and to provide a method for producing a fiber-reinforced plastic tubular body having high strength, uniform wall thickness, and excellent appearance. To do.

本発明者らは、上記課題を解決すべく鋭意検討した結果、粒状物と繊維編織物及び不織布の2種類のシート状材料を用い、繊維編織物、不織布間に粒状物を配置し、高緊張力で繊維編織物、不織布を巻き付けることにより、繊維編織物の中に粒状物が入り込み、また、高緊張力で巻き付けるため、粒状物の層がつき固められて、真空吸引時、強化繊維基材がたるみにくくなり、著しい外観凹凸の発生を防止しうることを見出し、この知見に基づいて本発明をなすに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have used two kinds of sheet-like materials, a granular material, a fiber knitted fabric, and a nonwoven fabric. By wrapping fiber knitted fabric and non-woven fabric with force, the granular material enters the fiber knitted fabric, and because it is wound with high tension, the layer of granular material is stuck and solidified during vacuum suction. As a result, the present inventors have found that it becomes difficult to sag and can prevent the occurrence of remarkable appearance irregularities, and based on this knowledge, the present invention has been made.

すなわち、本発明の第1の発明によれば、筒状の成形型上に被含浸物のシート状の強化繊維基材を配設し、この強化繊維基材の上に、離型材を介して注入樹脂の拡散を促進する樹脂拡散部材を敷設し、これらの強化繊維基材、離型材及び樹脂拡散部材をバッグフィルムによって成形型上に気密に被覆し、このバッグフィルム内を真空減圧状態にしてバッグフィルム内に樹脂を吸引、注入して、強化繊維基材に樹脂を含浸させる繊維強化プラスチック製管体の真空注入成形方法であって、強化繊維基材として繊維編織物、粒状物及び不織布を積層して用いることを特徴とする繊維強化プラスチック製管体の製造方法が提供される。   That is, according to the first aspect of the present invention, a sheet-like reinforcing fiber base material to be impregnated is disposed on a cylindrical mold, and a release material is disposed on the reinforcing fiber base material. A resin diffusion member that promotes the diffusion of the injected resin is laid, and the reinforcing fiber base material, the release material, and the resin diffusion member are airtightly covered on the mold by the bag film, and the inside of the bag film is in a vacuum reduced pressure state. A vacuum injection molding method for a fiber reinforced plastic tube in which a resin is sucked and injected into a bag film to impregnate the reinforced fiber base material with a resin, and a fiber knitted fabric, a granular material and a non-woven fabric are used as the reinforced fiber base material. A method for producing a fiber-reinforced plastic tubular body characterized by being used by being laminated is provided.

また、本発明の第2の発明によれば、第1の発明において、繊維編織物が、ステッチファブリック、ガラスクロス、カーボンクロスまたはケブラークロスからなる強化繊維編織物であることを特徴とする繊維強化プラスチック製管体の製造方法が提供される。   According to a second aspect of the present invention, in the first aspect, the fiber knitted fabric is a reinforced fiber knitted fabric comprising a stitch fabric, a glass cloth, a carbon cloth, or a Kevlar cloth. A method of manufacturing a plastic tube is provided.

また、本発明の第3の発明によれば、第1または2の発明において、粒状物が、珪砂またはガラスビーズであることを特徴とする繊維強化プラスチック製管体の製造方法が提供される。   According to a third aspect of the present invention, there is provided a method for producing a fiber-reinforced plastic tubular body according to the first or second aspect, wherein the granular material is silica sand or glass beads.

また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、粒状物が、0.05〜2mmの平均粒径を有することを特徴とする繊維強化プラスチック製管体の製造方法が提供される。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the granular material has an average particle diameter of 0.05 to 2 mm. A manufacturing method is provided.

また、本発明の第5の発明によれば、第1〜4のいずれかの発明において、注入樹脂が、ビニルエステル樹脂、不飽和ポリエステル樹脂またはエポキシ樹脂であることを特徴とする繊維強化プラスチック製管体の製造方法が提供される。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the injection resin is a vinyl ester resin, an unsaturated polyester resin, or an epoxy resin. A method of manufacturing a tubular body is provided.

また、本発明の第6の発明によれば、第5の発明において、注入樹脂が、0.2Pa・s以下の粘度を有することを特徴とする繊維強化プラスチック製管体の製造方法が提供される。   According to a sixth aspect of the present invention, there is provided the method for producing a fiber-reinforced plastic tubular body according to the fifth aspect, wherein the injected resin has a viscosity of 0.2 Pa · s or less. The

本発明の製造方法によれば、製造中のスチレン拡散防止が図れるとともに、得られる繊維強化プラスチック製管体は、高強度で、肉厚が均一で厚みのバラツキが小さく、たるみやシワ等の凹凸の少ない優れた外観を確保しうるという顕著な効果が奏される。   According to the production method of the present invention, the diffusion of styrene during production can be prevented, and the obtained fiber reinforced plastic tubular body has high strength, uniform thickness, small variation in thickness, and irregularities such as sagging and wrinkles. The outstanding effect that the outstanding external appearance with few can be ensured is show | played.

本発明の製造方法は、繊維強化プラスチック製管体の真空注入成形方法であって、強化繊維基材として粒状物、繊維編織物及び不織布を積層して用いるものである。
以下、本発明の製造方法について、それに用いられる強化繊維基材や注入樹脂、真空注入成形方法等について詳細に説明する。
The production method of the present invention is a vacuum injection molding method for a fiber reinforced plastic tube, in which granular materials, fiber knitted fabrics and nonwoven fabrics are laminated and used as a reinforcing fiber base material.
Hereinafter, the manufacturing method of the present invention will be described in detail with respect to the reinforcing fiber substrate, the injection resin, the vacuum injection molding method and the like used therein.

1.強化繊維基材
強化繊維基材には、繊維編織物、不織布粒状物、粒状物が積層されて用いられる。
1. Reinforcing fiber base material A fiber knitted fabric, a nonwoven fabric granular material, and a granular material are laminated | stacked and used for a reinforcing fiber base material.

<繊維編織物>
繊維編織物としては、例えば、一般に基材として使用されている繊維性素材からなる編織物、中でも強化繊維編織物が挙げられ、ステッチファブリック、ガラスクロス、カーボンクロス、ケブラークロスが、樹脂の浸透性に優れ、繊維基材の方向を自由に変えることができ、強度設計の自由度が大きく好ましい。
<Fiber knitted fabric>
Examples of the fiber knitted fabric include a knitted fabric made of a fibrous material generally used as a base material, particularly a reinforced fiber knitted fabric, and stitch fabric, glass cloth, carbon cloth, and Kevlar cloth are resin permeability. It is excellent in that the direction of the fiber base material can be freely changed, and the degree of freedom in strength design is great.

<粒状物>
粒状物は特に制限されないが、セラミックスや、金属や、サーメットや、その他の無機材料等の無機質のものが一般に用いられる。
セラミックスとしては、例えばシリカ、アルミナ、マグネシア、ジルコニア、チタニア、酸化鉄、チタン酸カリウム等の酸化物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、フロゴパイト、マスコバイト、ゼオライト、セリサイト、パイロフィライト、ベントナイト、アルミナシリケート、タルク、クレー、カオリン、珪酸カルシウムなどの珪酸塩、水酸化マグネシウムなどの水酸化物、硅砂、マイカ、ガラス、サイアロン、スピネルムライト、窒化珪素、窒化ホウ素、炭化珪素などが挙げられ、これらは1種用いてもよいし、また、2種以上を組み合わせて用いてもよい。
粒状物として好ましくはセラミックスビーズ、セラミックス成形体、例えば陶器や磁器等の粉砕物等が用いられ、中でも特に珪砂が樹脂の浸透性に優れ、安価であり、熱硬化性樹脂で硬化させて得られる積層品としての品質も優れており好ましく、また、ガラスビーズでもよい。
粒状物の平均粒径は0.05〜2mmの範囲が好ましい。平均粒径が0.05mm未満になると樹脂の浸透性が悪くなるし、また2mmを超えると空隙率が大きくなって樹脂比率が高まり、コスト高となるし、また厚物成形では樹脂のクラックが発生し易くなる。平均粒径は、レーザー回折式粒度分布測定機を用いて常法に従って測定した粒径分布に基づき求められるものである。
粒状物の形状は、立方形、紡錘形、柱状形、針状形、球形、不定形等であるが、好ましくは球形、立方形、紡錘形がよい。
<Granular material>
The granular material is not particularly limited, but inorganic materials such as ceramics, metal, cermet, and other inorganic materials are generally used.
Examples of ceramics include oxides such as silica, alumina, magnesia, zirconia, titania, iron oxide and potassium titanate, carbonates such as calcium carbonate, magnesium carbonate and dolomite, sulfates such as calcium sulfate and barium sulfate, phlogopite, Muscovite, zeolite, sericite, pyrophyllite, bentonite, alumina silicate, talc, clay, kaolin, silicate such as calcium silicate, hydroxide such as magnesium hydroxide, dredged sand, mica, glass, sialon, spinel mullite, Examples thereof include silicon nitride, boron nitride, silicon carbide, etc., and these may be used alone or in combination of two or more.
As the granular material, ceramic beads, ceramic molded bodies, for example, pulverized materials such as ceramics and porcelain, etc. are used, and in particular, silica sand is excellent in resin permeability, is inexpensive, and is obtained by curing with a thermosetting resin. The quality as a laminated product is also excellent, and glass beads may be used.
The average particle size of the granular material is preferably in the range of 0.05 to 2 mm. When the average particle size is less than 0.05 mm, the resin permeability is deteriorated. When the average particle size is more than 2 mm, the porosity is increased, the resin ratio is increased, and the cost is increased. It tends to occur. The average particle size is determined based on the particle size distribution measured according to a conventional method using a laser diffraction particle size distribution measuring machine.
The shape of the granular material is a cubic shape, a spindle shape, a columnar shape, a needle shape, a spherical shape, an indeterminate shape, etc., but preferably a spherical shape, a cubic shape, or a spindle shape.

<不織布>
不織布としては、一般に繊維強化プラスチックの外観向上のために用いられているガラス繊維、ポリエステル繊維、ビニロン繊維などが挙げられる。不織布の目付けとしては、25〜100g/mが好ましい。
<Nonwoven fabric>
Examples of the nonwoven fabric include glass fibers, polyester fibers, and vinylon fibers that are generally used for improving the appearance of fiber-reinforced plastics. As a fabric weight of a nonwoven fabric, 25-100 g / m < 2 > is preferable.

本発明方法において、繊維編織物と不織布とは図5に示すように、交互にテンションをかけながら成形型に巻き付け、粒状物を繊維編織物の上に散布しながら積層する。   In the method of the present invention, as shown in FIG. 5, the fiber knitted fabric and the non-woven fabric are wound around a forming die while alternately applying tension, and are laminated while spraying the granular material on the fiber knitted fabric.

2.注入樹脂
注入樹脂としては、ビニルエステル樹脂、不飽和ポリエステル樹脂、エポキシ樹脂等が好ましく、さらには、0.2Pa・s以下の粘度を有するものが含浸性を考慮すると好ましい。
2. Injection resin As the injection resin, a vinyl ester resin, an unsaturated polyester resin, an epoxy resin, or the like is preferable, and a resin having a viscosity of 0.2 Pa · s or less is preferable in consideration of impregnation properties.

上記注入樹脂には、更に必要に応じて、耐候性等の耐久性を向上させるための紫外線吸収剤、紫外線劣化防止剤、酸化劣化防止剤、顔料、難燃剤等の公知の添加剤を添加してもよい。   If necessary, the injection resin may be added with known additives such as an ultraviolet absorber, an ultraviolet degradation inhibitor, an oxidation degradation inhibitor, a pigment, and a flame retardant to improve durability such as weather resistance. May be.

3.真空注入成形方法
本発明方法においては、上記原材料を用いて、真空注入成形方法により、所望の繊維強化プラスチック製管体が得られる。
真空注入成形方法について、図1の模式図を参照して説明すると、筒状の成形型1には、所定の強化繊維基材が後述するように積層形態で配設され、該基材上に離型材を介し樹脂拡散部材が敷設され、これらの強化繊維基材、離型材及び樹脂拡散部材をバッグフィルム5で成形型上に気密に被覆し、このバッグフィルム内を真空減圧状態にしてバッグフィルム内に注入用樹脂を吸引、注入して、強化繊維基材に樹脂を含浸させるようになっている。
3. Vacuum Injection Molding Method In the method of the present invention, a desired fiber-reinforced plastic tube is obtained by the vacuum injection molding method using the above raw materials.
The vacuum injection molding method will be described with reference to the schematic diagram of FIG. 1. A predetermined reinforcing fiber base material is disposed in a laminated form on the cylindrical molding die 1 as will be described later. A resin diffusion member is laid through the release material, and these reinforcing fiber base material, release material, and resin diffusion member are airtightly covered on the mold with the bag film 5, and the bag film is evacuated to a vacuum pressure. A resin for injection is sucked and injected into the reinforcing fiber base to impregnate the resin.

すなわち、図1のA−A´断面図としての図2をも参照すると明らかなように、円筒状の成形型1の外周上には強化繊維基材2、離型材3及び樹脂拡散部材4がこの順に配設、積層され、これをバッグフィルム5で覆い、バッグフィルム内が気密になるようにシール材6でシールされている。離型材3は、樹脂の離型性を高めるものであり、注入用樹脂と非接着性の材料からなるシートが好ましい。
離型材3の上に敷設された樹脂拡散部材4は、注入用樹脂の拡散を促進するものであり、注入用樹脂を強化繊維基材2に偏りなく含浸させるとともに、成形型1上の所望の範囲全体に注入用樹脂を拡散させうる網状のシート材が好ましい。
バッグフィルム5はこれらの各材の積層された成形型1を気密に被覆するものであって、この種の真空注入成形法に一般的に用いられる気密な合成樹脂製のフィルム材であれば特に限定されない。
シール材6は粘着材料等であって、成形型1の両端側部において、バッグフィルム5を成形型1の表面に固着し、それにより、成形型1とバッグフィルム5との間を、気密かつ密閉された成形部として構成するようにするものである。
また、バッグフィルム5で被覆した成形型1には、このバッグフィルム5内に注入用樹脂を注入する注入ライン7が接続され、さらに成形部内の空気を真空吸引して減圧する真空減圧源(図示せず)およびこの真空減圧源に接続した真空減圧ライン8が接続されている。
そして、このように構成された成形部内に真空吸引による真空減圧状態下で注入用樹脂を注入し、所望の形状の繊維強化プラスチック製管体が得られる。
That is, as apparent from FIG. 2 as a cross-sectional view taken along the line AA ′ of FIG. 1, the reinforcing fiber base material 2, the release material 3, and the resin diffusion member 4 are formed on the outer periphery of the cylindrical mold 1. They are arranged and laminated in this order, covered with a bag film 5, and sealed with a sealing material 6 so that the inside of the bag film becomes airtight. The release material 3 enhances the release property of the resin, and a sheet made of an injection resin and a non-adhesive material is preferable.
The resin diffusing member 4 laid on the mold release material 3 promotes the diffusion of the injecting resin, impregnates the injecting resin into the reinforcing fiber base 2 evenly, and at the same time, a desired mold on the mold 1 A net-like sheet material capable of diffusing the injection resin over the entire range is preferable.
The bag film 5 covers the mold 1 in which these materials are laminated in an airtight manner, and is particularly an airtight synthetic resin film material generally used in this type of vacuum injection molding method. It is not limited.
The sealing material 6 is an adhesive material or the like, and the bag film 5 is fixed to the surface of the molding die 1 at both end portions of the molding die 1, thereby airtight and between the molding die 1 and the bag film 5. It is configured as a sealed molded part.
An injection line 7 for injecting an injecting resin into the bag film 5 is connected to the mold 1 covered with the bag film 5, and a vacuum depressurization source (Fig. (Not shown) and a vacuum decompression line 8 connected to the vacuum decompression source.
Then, an injection resin is injected into the molded part thus configured under a vacuum reduced pressure state by vacuum suction, so that a fiber-reinforced plastic tubular body having a desired shape is obtained.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこの例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited at all by this example.

実施例
上記の図1の模式図で参照されるとおりの真空注入成形方法により、下記の注入用樹脂、各種材を用いて、直径160mmφ、長さ300mmの繊維強化プラスチック製管体を作製した。
注入用樹脂:ネオポール8250(商品名、日本ユピカ株式会社製)
樹脂拡散部材:GREENFLOW 75(商品名、AIRTECH社製、0.88mm厚のポリプロピレン製ネット)
離型材:BLEEDER LEASE B(商品名、AIRTECH社製、0.011mm厚 シリコーンコートされたポリアミド製シート)
強化繊維基材
強化繊維編織物:イージーファブWF800(商品名、FRPサービス株式会社製、繊維配向 0゜、90゜のステッチファブリック、質量 810g/m) 4枚
不織布:スパンボンド20307WTD(商品名、ユニチカ株式会社製、厚さ0.16mm)4枚
粒状物:硅砂5号(一般市販品、粒径0.3〜0.6mm)散布量1,030g/m3層
Example By a vacuum injection molding method as referred to in the schematic diagram of FIG. 1 described above, a fiber reinforced plastic tube having a diameter of 160 mmφ and a length of 300 mm was prepared using the following injection resin and various materials.
Resin for injection: Neopol 8250 (trade name, manufactured by Nippon Yupica Co., Ltd.)
Resin diffusion member: GREENFLOW 75 (trade name, manufactured by AIRTECH, polypropylene net of 0.88 mm thickness)
Mold release material: BLEEDER LEASE B (trade name, manufactured by AIRTECH, 0.011 mm thick silicone-coated polyamide sheet)
Reinforced fiber substrate Reinforced fiber knitted fabric: Easy Fab WF800 (trade name, manufactured by FRP Service Co., Ltd., fiber orientation 0 °, 90 ° stitch fabric, mass 810 g / m 2 ) 4 sheets Nonwoven fabric: Spunbond 20307WTD (trade name, Unitika Co., Ltd., thickness 0.16 mm) 4 granular materials: silica sand No. 5 (general commercial product, particle size 0.3 to 0.6 mm) spraying amount 1,030 g / m 2 3 layers

比較例
強化繊維基材として、強化繊維編織物のみを6枚用いた以外は実施例と同様にして直径160mmφ、長さ300mmの繊維強化プラスチック製管体を作製した。
各例の外観評価結果及び厚み(単位mm)の測定結果を表1に示す。
Comparative Example A fiber-reinforced plastic tube having a diameter of 160 mmφ and a length of 300 mm was prepared in the same manner as in the example except that only six reinforcing fiber knitted fabrics were used as the reinforcing fiber base material.
The appearance evaluation results and thickness (unit: mm) measurement results of each example are shown in Table 1.

Figure 2009101546
Figure 2009101546

これより、比較例では、シワが発生し、肉厚にバラツキがあるのに対し、実施例ではシワが発生せず、肉厚もバラツキが小さいことが分かる。   From this, it can be seen that in the comparative example, wrinkles occur and the thickness varies, whereas in the example, no wrinkles occur and the thickness varies little.

本発明方法は、シワが発生せず、肉厚もバラツキが小さい繊維強化プラスチック製管体を製造することを可能にし、産業上大いに有用である。   The method of the present invention makes it possible to produce a fiber-reinforced plastic pipe body that is free from wrinkles and has a small thickness variation, and is very useful in industry.

本発明の製造方法に用いられる成形装置の一例の模式図。The schematic diagram of an example of the shaping | molding apparatus used for the manufacturing method of this invention. 図1の成形装置におけるA−A´断面図。AA 'sectional drawing in the shaping | molding apparatus of FIG. 真空吸引時の繊維基材のたるみ状態を示す模式図。The schematic diagram which shows the sagging state of the fiber base material at the time of vacuum suction. 被含浸物の繊維基材の一例の模式図。The schematic diagram of an example of the fiber base material of an impregnation thing. 被含浸物の巻き付け方法を示す模式図。The schematic diagram which shows the winding method of the to-be-impregnated thing.

符号の説明Explanation of symbols

1 成形型
2 強化繊維基材
3 離型材
4 樹脂拡散部材
5 バッグフィルム
6 シール材
7 注入ライン
8 真空減圧ライン
DESCRIPTION OF SYMBOLS 1 Mold 2 Reinforcing fiber base material 3 Release material 4 Resin diffusion member 5 Bag film 6 Seal material 7 Injection line 8 Vacuum decompression line

Claims (6)

筒状の成形型上に被含浸物のシート状の強化繊維基材を配設し、この強化繊維基材の上に、離型材を介して注入樹脂の拡散を促進する樹脂拡散部材を敷設し、これらの強化繊維基材、離型材及び樹脂拡散部材をバッグフィルムによって成形型上に気密に被覆し、このバッグフィルム内を真空減圧状態にしてバッグフィルム内に樹脂を吸引、注入して、強化繊維基材に樹脂を含浸させる繊維強化プラスチック製管体の真空注入成形方法であって、強化繊維基材として繊維編織物、粒状物及び不織布を積層して用いることを特徴とする繊維強化プラスチック製管体の製造方法。   A sheet-like reinforcing fiber base material to be impregnated is disposed on a cylindrical mold, and a resin diffusion member that promotes the diffusion of the injected resin is laid on the reinforcing fiber base material through a release material. These reinforced fiber base material, mold release material and resin diffusion member are airtightly covered on the mold by the bag film, and the bag film is evacuated and vacuumed to inject and inject the resin into the bag film for reinforcement. A method of vacuum injection molding of a fiber reinforced plastic tube body in which a fiber base material is impregnated with a resin, wherein the fiber base material is made of a fiber knitted fabric, a granular material and a non-woven fabric laminated as a reinforcing fiber base material. A method for manufacturing a tubular body. 繊維編織物が、ステッチファブリック、ガラスクロス、カーボンクロスまたはケブラークロスからなる強化繊維編織物であることを特徴とする請求項1に記載の繊維強化プラスチック製管体の製造方法。   The method for producing a fiber-reinforced plastic pipe according to claim 1, wherein the fiber knitted fabric is a reinforced fiber knitted fabric made of stitch fabric, glass cloth, carbon cloth, or Kevlar cloth. 粒状物が、珪砂またはガラスビーズであることを特徴とする請求項1または2に記載の繊維強化プラスチック製管体の製造方法。   The method for producing a fiber-reinforced plastic tubular body according to claim 1 or 2, wherein the granular material is silica sand or glass beads. 粒状物が、0.05〜2mmの平均粒径を有することを特徴とする請求項1〜3のいずれかに記載の繊維強化プラスチック製管体の製造方法。   The method for producing a fiber-reinforced plastic tubular body according to any one of claims 1 to 3, wherein the granular material has an average particle diameter of 0.05 to 2 mm. 注入樹脂が、ビニルエステル樹脂、不飽和ポリエステル樹脂またはエポキシ樹脂であることを特徴とする請求項1〜4のいずれかに記載の繊維強化プラスチック製管体の製造方法。   The method for producing a fiber-reinforced plastic pipe according to any one of claims 1 to 4, wherein the injected resin is a vinyl ester resin, an unsaturated polyester resin, or an epoxy resin. 注入樹脂が、0.2Pa・s以下の粘度を有することを特徴とする請求項5に記載の繊維強化プラスチック製管体の製造方法。   The method for producing a fiber-reinforced plastic pipe body according to claim 5, wherein the injected resin has a viscosity of 0.2 Pa · s or less.
JP2007273661A 2007-10-22 2007-10-22 Method for manufacturing fiber-reinforced plastic tubular body Withdrawn JP2009101546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007273661A JP2009101546A (en) 2007-10-22 2007-10-22 Method for manufacturing fiber-reinforced plastic tubular body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007273661A JP2009101546A (en) 2007-10-22 2007-10-22 Method for manufacturing fiber-reinforced plastic tubular body

Publications (1)

Publication Number Publication Date
JP2009101546A true JP2009101546A (en) 2009-05-14

Family

ID=40703840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007273661A Withdrawn JP2009101546A (en) 2007-10-22 2007-10-22 Method for manufacturing fiber-reinforced plastic tubular body

Country Status (1)

Country Link
JP (1) JP2009101546A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079283A (en) * 2009-10-09 2011-04-21 Sekisui Chem Co Ltd Joining method of cylindrical member, molding method of cylindrical molding, and molding
JP5677651B1 (en) * 2011-12-21 2015-02-25 ジーケーエヌ エアロスペース サーヴィシーズ ストラクチャーズ、コーポレイション Method and apparatus for applying compressive pressure to a textile preform during packaging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079283A (en) * 2009-10-09 2011-04-21 Sekisui Chem Co Ltd Joining method of cylindrical member, molding method of cylindrical molding, and molding
JP5677651B1 (en) * 2011-12-21 2015-02-25 ジーケーエヌ エアロスペース サーヴィシーズ ストラクチャーズ、コーポレイション Method and apparatus for applying compressive pressure to a textile preform during packaging

Similar Documents

Publication Publication Date Title
TWI444221B (en) Filter medium and its manufacturing method and filter unit
KR100570229B1 (en) Carbon fiber fabrics, fiber-reinforced plastic molded articles using the fabrics, and methods of making the molded articles
US20100218890A1 (en) Methods for preparing nanoparticle-containing thermoplastic composite laminates
KR101771287B1 (en) Continuous fiber reinforced composite material and molded product thereof
AU2013356368B2 (en) Articles including untwisted fibers and methods of using them
WO2014141418A1 (en) Heat-insulating sound-absorbing material and heat-insulating sound-absorbing material molded article
JP2006125631A (en) Vacuum insulation material and manufacturing method thereof
KR102307989B1 (en) Fiber reinforced composite material having a hollow section and method for manufacturing the same
CA2798032A1 (en) Apparatus for change of direction of long sheet, and article floating apparatus
Nelyub Technologies of production of components of electric transmission line supports from epoxy binders by the winding method
JP2009101546A (en) Method for manufacturing fiber-reinforced plastic tubular body
KR20170112396A (en) Three Dimensional Fiber-Reinforced Plastics and Manufacturing Method thereof
JP2008132775A (en) Multilayer substrate and preform
JP2007126793A (en) Cutting method and preform substrate for laminate, and preform production method using the same
JP2009061655A (en) Method of manufacturing fiber-reinforced plastic pipe
JP2000263668A (en) Sandwiched panel made of frp and its manufacture
CN204036988U (en) A kind of transhipment is dull and stereotyped
JP2008290441A (en) Manufacturing method of sandwich material made of reinforced plastic
JP2005213469A (en) Reinforced fiber base material, preform and composite material and method of manufacturing the base material
JP2005262818A (en) Reinforcing fiber substrate, preform and reinforcing fiber substrate manufacturing method
JP2012127468A (en) High-pressure gas container
JP2012127467A (en) High-pressure gas container
JP4769044B2 (en) Vacuum injection molding method for fiber reinforced resin molded products
JP2011098475A (en) Method for producing reducer made of fiber-reinforced resin
WO2010022547A1 (en) A paper-based composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100721

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110118