JP2009061655A - Method of manufacturing fiber-reinforced plastic pipe - Google Patents

Method of manufacturing fiber-reinforced plastic pipe Download PDF

Info

Publication number
JP2009061655A
JP2009061655A JP2007231197A JP2007231197A JP2009061655A JP 2009061655 A JP2009061655 A JP 2009061655A JP 2007231197 A JP2007231197 A JP 2007231197A JP 2007231197 A JP2007231197 A JP 2007231197A JP 2009061655 A JP2009061655 A JP 2009061655A
Authority
JP
Japan
Prior art keywords
fiber
resin
reinforced plastic
base material
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007231197A
Other languages
Japanese (ja)
Inventor
Hideo Iwai
英夫 岩井
Shohei Kawasaki
章平 川崎
Tatsuo Kinoshita
健生 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2007231197A priority Critical patent/JP2009061655A/en
Publication of JP2009061655A publication Critical patent/JP2009061655A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a fiber-reinforced plastic pipe which has high strength and even thickness, and is superior in appearance while preventing styrene from being diffused during the manufacturing. <P>SOLUTION: The method of manufacturing fiber-reinforced plastic pipe being the vacuum injection molding method of the fiber-reinforced plastic pipe comprises: a process of disposing a sheet-like reinforcing fiber base material 2 as an object to be impregnated on a cylindrical molding mold; a process of laying a resin diffusion member 4 which prompts diffusion of injection resin via a release material 3 on the reinforcing fiber base material; a process of air-tightly covering the reinforcing fiber base material, release material and resin diffusion member with a bag film 5 over the molding mold; a process of sucking and injecting the resin into the bag film while evacuating the inside of the bag film to impregnate the reinforcing fiber base material with the resin, wherein the reinforcing fiber base material prepared by laminating a stitched fabric and an extensible sheet is used. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、繊維強化プラスチック製管体の製造方法に関し、さらに詳しくは製造中のスチレン拡散防止を図るとともに、高強度で均一な肉厚、外観の優れた繊維強化プラスチック製管体を製造する方法に関するものである。   The present invention relates to a method for producing a fiber reinforced plastic tube, and more particularly, a method for producing a fiber reinforced plastic tube having high strength, uniform wall thickness, and excellent appearance while preventing styrene diffusion during production. It is about.

従来、軽量で高強度な素材として、繊維強化プラスチック(FRP)が各種産業分野で使用されている。
また、繊維強化プラスチック製管体を製造するのに、フィラメントワインディング(FW)法が用いられることはよく知られている。しかし、この成形方法は開放された状態で樹脂含浸繊維の成形型への巻付けが行なわれるため、製造中にスチレン等が揮散するなどといった環境上の問題があり、近年では、環境配慮型の成形方法として真空吸引による減圧環境下で成形を行う真空注入成形法が注目されつつある。
Conventionally, fiber reinforced plastic (FRP) has been used in various industrial fields as a lightweight and high strength material.
In addition, it is well known that a filament winding (FW) method is used to manufacture a fiber reinforced plastic tube. However, since this molding method is wound around the molding die of the resin-impregnated fiber in an open state, there is an environmental problem such as volatilization of styrene during the production. As a molding method, a vacuum injection molding method in which molding is performed in a reduced pressure environment by vacuum suction is drawing attention.

真空注入成形法は、基本的には、成形型の上に、強化繊維基材を配置し、適宜離型材を介して樹脂拡散材を設け、これをバッグフィルムで覆い、シールしてバッグフィルムで覆われた内部を真空減圧状態としてバッグフィルム内に樹脂注入を行うことで成形体を得る成形法である(例えば、特許文献1参照)。   In the vacuum injection molding method, basically, a reinforcing fiber base is disposed on a mold, and a resin diffusion material is appropriately provided through a release material, which is covered with a bag film, sealed, and sealed with a bag film. This is a molding method in which a molded body is obtained by injecting resin into a bag film with the covered interior in a vacuum and reduced pressure state (see, for example, Patent Document 1).

特開平2002−307463号公報Japanese Patent Laid-Open No. 2002-307463

この真空注入成形方法を利用して管体を成形する場合、被含浸物である強化繊維基材に編織物が汎用されるが、その場合、編織物は繊維の引き揃えが完全ではないため、均一に高緊張力で成形型に巻き付けるのは困難であり、そのため成形型へ巻き付ける時の緊張力が弱まり、真空吸引時に図3に示すように編織物がたるみ、しわなどの凹凸等の外観不良が発生し易いといった問題がある。   When forming a tube body using this vacuum injection molding method, a knitted fabric is generally used for the reinforcing fiber base material to be impregnated, but in that case, the knitted fabric is not perfect for fiber alignment, It is difficult to wrap around a mold with a uniform high tension force, so the tension force when wrapping around the mold is weakened, and the knitted fabric sags, as shown in FIG. There is a problem that is likely to occur.

本発明は、このような事情の下、製造中のスチレン拡散防止を図るとともに、高強度で均一な肉厚、外観の優れた繊維強化プラスチック製管体を製造する方法を提供することを課題とするものである。   Under such circumstances, the present invention aims to prevent diffusion of styrene during production, and to provide a method for producing a fiber-reinforced plastic tubular body having high strength, uniform wall thickness, and excellent appearance. To do.

本発明者らは、上記課題を解決すべく鋭意検討した結果、強化繊維基材について、それぞれ樹脂強化能及び伸縮性の機能を有する2種類のシート状材料を積層したものとすることにより、特に繊維編織物の上から高緊張力で伸縮性シートを巻き付け、伸縮性シートの復元力により締め付け力をアップして繊維編織物の緩みを小さくしうるものとすることにより、凹凸等の外観不良の生じるのを防止しうることを見出し、この知見に基づいて本発明をなすに至った。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention particularly made the reinforcing fiber base material by laminating two kinds of sheet-like materials each having a resin reinforcing ability and a stretchable function. By winding the stretchable sheet with high tension from the top of the fiber knitted fabric and increasing the tightening force by the restoring force of the stretchable sheet, the looseness of the fiber knitted fabric can be reduced. It has been found that it can be prevented from occurring, and the present invention has been made based on this finding.

すなわち、本発明の第1の発明によれば、筒状の成形型上に被含浸物のシート状の強化繊維基材を配設し、この強化繊維基材の上に、離型材を介して注入樹脂の拡散を促進する樹脂拡散部材を敷設し、これらの強化繊維基材、離型材及び樹脂拡散部材をバッグフィルムによって成形型上に気密に被覆し、このバッグフィルム内を真空減圧状態にしてバッグフィルム内に樹脂を吸引、注入して、強化繊維基材に樹脂を含浸させる繊維強化プラスチック製管体の真空注入成形方法であって、強化繊維基材として繊維編織物及び伸縮性シートを積層して用いることを特徴とする繊維強化プラスチック製管体の製造方法が提供される。   That is, according to the first aspect of the present invention, a sheet-like reinforcing fiber base material to be impregnated is disposed on a cylindrical mold, and a release material is disposed on the reinforcing fiber base material. A resin diffusion member that promotes the diffusion of the injected resin is laid, and the reinforcing fiber base material, the release material, and the resin diffusion member are air-tightly covered on the mold by the bag film, and the bag film is evacuated to a vacuum. A vacuum injection molding method for a fiber reinforced plastic tube in which a resin is sucked and injected into a bag film and the resin is impregnated into the reinforcing fiber base, and the fiber knitted fabric and the stretchable sheet are laminated as the reinforcing fiber base. And a method for producing a fiber-reinforced plastic tube, characterized by being used in the present invention.

また、本発明の第2の発明によれば、第1の発明において、繊維編織物が、繊維方向を管軸に対して90±10°方向に引き揃えた長繊維と繊維方向を管軸に対して0から±45°方向に引き揃えた長繊維とをステッチ糸で編み止めしたステッチファブリックであることを特徴とする繊維強化プラスチック製管体の製造方法が提供される。   Further, according to the second invention of the present invention, in the first invention, the fiber knitted fabric has a long fiber in which the fiber direction is aligned in a direction of 90 ± 10 ° with respect to the tube axis and the fiber direction as the tube axis. On the other hand, there is provided a method for producing a fiber-reinforced plastic tube, which is a stitch fabric in which long fibers aligned in the direction of 0 to ± 45 ° are braided with stitch yarns.

また、本発明の第3の発明によれば、第1または2の発明において、繊維編織物が、ガラスクロス、カーボンクロスまたはケブラークロスからなる強化繊維織物であることを特徴とする繊維強化プラスチック製管体の製造方法が提供される。   According to a third invention of the present invention, in the first or second invention, the fiber knitted fabric is a reinforced fiber fabric made of glass cloth, carbon cloth, or Kevlar cloth. A method of manufacturing a tubular body is provided.

また、本発明の第4の発明によれば、第1ないし3のいずれかの発明において、伸縮性シートが、相互に斜交する方向に引き揃えた長繊維をステッチ糸で編み止めしたステッチファブリック、連続長繊維のトリコット編物または伸縮性不織布であることを特徴とする繊維強化プラスチック製管体の製造方法が提供される。   According to the fourth invention of the present invention, in any one of the first to third inventions, a stitch fabric in which the elastic sheets are braided with stitch yarns that are aligned in a direction oblique to each other. There is provided a method for producing a fiber-reinforced plastic tubular body characterized by being a continuous long-fiber tricot knitted fabric or a stretchable nonwoven fabric.

また、本発明の第5の発明によれば、第4の発明において、ステッチファブリックが、上下二面に+40〜60°、−40〜−60°方向に引き揃えた連続長繊維をステッチ糸で編み止めしたものであることを特徴とする繊維強化プラスチック製管体の製造方法が提供される。   Further, according to the fifth aspect of the present invention, in the fourth aspect, the stitch fabric is formed by stitching continuous continuous fibers that are aligned in the +40 to 60 ° and −40 to −60 ° directions on the upper and lower surfaces. There is provided a method for producing a fiber-reinforced plastic tube characterized by being braided.

また、本発明の第6の発明によれば、第1ないし5のいずれかの発明において、注入樹脂が、ビニルエステル樹脂、不飽和ポリエステル樹脂またはエポキシ樹脂であることを特徴とする繊維強化プラスチック製管体の製造方法が提供される。   According to a sixth aspect of the present invention, in any one of the first to fifth aspects, the injection resin is a vinyl ester resin, an unsaturated polyester resin, or an epoxy resin. A method of manufacturing a tubular body is provided.

また、本発明の第7の発明によれば、第6の発明において、注入樹脂が、0.2Pa・s以下の粘度を有することを特徴とする繊維強化プラスチック製管体の製造方法が提供される。   According to a seventh aspect of the present invention, there is provided the method for producing a fiber-reinforced plastic tubular body according to the sixth aspect, wherein the injected resin has a viscosity of 0.2 Pa · s or less. The

本発明の製造方法によれば、製造中のスチレン拡散防止が図れるとともに、得られる繊維強化プラスチック製管体は、高強度で、肉厚が均一で厚みのバラツキが小さく、たるみやシワ等の凹凸の少ない優れた外観を確保しうるという顕著な効果が奏される。   According to the production method of the present invention, the diffusion of styrene during production can be prevented, and the obtained fiber reinforced plastic tubular body has high strength, uniform thickness, small variation in thickness, and irregularities such as sagging and wrinkles. The outstanding effect that the outstanding external appearance with few can be ensured is show | played.

本発明の製造方法は、繊維強化プラスチック製管体の真空注入成形方法であって、強化繊維基材として繊維編織物及び伸縮性シートを積層して用いるものである。
以下、本発明の製造方法について、それに用いられる強化繊維基材や注入樹脂、真空注入成形方法等について詳細に説明する。
The production method of the present invention is a vacuum injection molding method for a fiber reinforced plastic tube, in which a fiber knitted fabric and a stretchable sheet are laminated and used as a reinforcing fiber base material.
Hereinafter, the manufacturing method of the present invention will be described in detail with respect to the reinforcing fiber substrate, the injection resin, the vacuum injection molding method and the like used therein.

1.強化繊維基材
強化繊維基材には、繊維編織物及び伸縮性シートが積層されて用いられ、好ましくは図4に示されるように、繊維編織物21と伸縮性シート22とが交互に多重に積層された形態で用いられる。
1. Reinforced fiber base material A fiber knitted fabric and an elastic sheet are laminated and used for the reinforcing fiber base material. Preferably, as shown in FIG. 4, the fiber knitted fabric 21 and the elastic sheet 22 are alternately multiplexed. Used in stacked form.

<繊維編織物>
繊維編織物としては、例えば、一般に基材として使用されている繊維性素材からなる編織物、中でも強化繊維編織物が挙げられ、中でも管軸に対して90±10°方向に引き揃えた長繊維と繊維方向を管軸に対して0から±45°方向に引き揃えた長繊維とをステッチ糸で編み止めしたステッチファブリック、ガラスクロス、カーボンクロス、ケブラークロスが、樹脂の浸透性に優れ、繊維基材の方向を自由に変えることができ、強度設計の自由度が大きく好ましい。
<Fiber knitted fabric>
Examples of the fiber knitted fabric include a knitted fabric made of a fibrous material generally used as a base material, particularly a reinforced fiber knitted fabric, and in particular, a long fiber aligned in a direction of 90 ± 10 ° with respect to the tube axis. Stitch fabric, glass cloth, carbon cloth, and Kevlar cloth, which are made of braided yarn and stitched together with long fibers aligned in the direction of 0 to ± 45 ° with respect to the tube axis, are excellent in resin permeability. The direction of the substrate can be freely changed, and the degree of freedom in strength design is great.

<伸縮性シート>
伸縮性シートとしては、例えば、相互に斜交する方向に引き揃えた長繊維をステッチ糸で編み止めしたステッチファブリック、連続長繊維の編物、伸縮性不織布等が挙げられ、中でも連続長繊維を上下二面に+40〜60°、−40〜−60°方向に引き揃えた後、ステッチ糸で編み止めしたステッチファブリック、連続長繊維のトリコット編物が挙げられる。
伸縮性シートとしては、特に繊維方向を+40〜60°、−40〜−60°に引き揃えた上記ステッチファブリックが、強度付与部材として強度設計に寄与することができ、また、樹脂の浸透性にも優れており好ましい。
<Elastic sheet>
Examples of the elastic sheet include a stitch fabric in which long fibers aligned in a direction oblique to each other are knitted with stitch yarns, a continuous long fiber knitted fabric, an elastic nonwoven fabric, and the like. Examples of the fabric include a stitch fabric that is aligned on +40 to 60 ° and −40 to −60 ° on two sides and then knitted with stitch yarn, and a tricot knitted fabric of continuous long fibers.
As an elastic sheet, the above-mentioned stitch fabric with the fiber direction aligned to +40 to 60 ° and −40 to −60 ° can contribute to strength design as a strength imparting member, and also to resin permeability. Is also preferable.

本発明方法において、繊維編織物と伸縮性シートとは図5に示すように、交互にテンションをかけながら成形型に巻き付け積層するのがよい。
このようにすると、伸縮性シートは、配向角度が巻き付け前は図6に示すように直交していたのが、図7に示すようにテンションにより90°以下になり長手方向に伸ばされ、テンションを緩めると元に戻ろうとする復元力が働くようになる。
In the method of the present invention, the fiber knitted fabric and the stretchable sheet are preferably wound and laminated on a mold while alternately applying tension as shown in FIG.
In this way, the stretchable sheet was perpendicular to the orientation angle as shown in FIG. 6 before winding, but it became 90 ° or less by the tension as shown in FIG. When you loosen it, the restoring force will work to restore it.

2.注入樹脂
注入樹脂としては、ビニルエステル樹脂、不飽和ポリエステル樹脂、エポキシ樹脂等が好ましく、さらには、0.2Pa・s以下の粘度を有するものが含浸性を考慮すると好ましい。
2. Injection resin As the injection resin, a vinyl ester resin, an unsaturated polyester resin, an epoxy resin, or the like is preferable, and a resin having a viscosity of 0.2 Pa · s or less is preferable in consideration of impregnation properties.

上記注入樹脂には、更に必要に応じて、耐候性等の耐久性を向上させるための紫外線吸収剤、紫外線劣化防止剤、酸化劣化防止剤、顔料、難燃剤等の公知の添加剤を添加してもよい。   If necessary, the injection resin may be added with known additives such as an ultraviolet absorber, an ultraviolet degradation inhibitor, an oxidation degradation inhibitor, a pigment, and a flame retardant to improve durability such as weather resistance. May be.

本発明方法においては、上記原材料を用いて、真空注入成形方法により、所望の繊維強化プラスチック製管体が得られる。
真空注入成形方法について、図1の模式図を参照して説明すると、筒状の成形型1には、所定の強化繊維基材が後述するように積層形態で配設され、該基材上に離型材を介し樹脂拡散部材が敷設され、これらの強化繊維基材、離型材及び樹脂拡散部材をバッグフィルム5で成形型上に気密に被覆し、このバッグフィルム内を真空減圧状態にしてバッグフィルム内に注入用樹脂を吸引、注入して、強化繊維基材に樹脂を含浸させるようになっている。
In the method of the present invention, a desired fiber-reinforced plastic tube is obtained by the vacuum injection molding method using the above raw materials.
The vacuum injection molding method will be described with reference to the schematic diagram of FIG. 1. A predetermined reinforcing fiber base material is disposed in a laminated form on the cylindrical molding die 1 as will be described later. A resin diffusion member is laid through the release material, and these reinforcing fiber base material, release material, and resin diffusion member are airtightly covered on the mold with the bag film 5, and the bag film is evacuated to a vacuum pressure. A resin for injection is sucked and injected into the reinforcing fiber base to impregnate the resin.

すなわち、図1のA−A´断面図としての図2をも参照すると明らかなように、円筒状の成形型1の外周上には強化繊維基材2、離型材3及び樹脂拡散部材4がこの順に配設、積層され、これをバッグフィルム5で覆い、バッグフィルム内が気密になるようにシール材6でシールされている。
この強化繊維基材2は、図4に示されるように、繊維編織物21と伸縮性シート22とが積層されてなり、好ましくは成形型にテンションをかけながら巻き付けられている。
離型材3は、樹脂の離型性を高めるものであり、注入用樹脂と非接着性の材料からなるシートが好ましい。
離型材3の上に敷設された樹脂拡散部材4は、注入用樹脂の拡散を促進するものであり、注入用樹脂を強化繊維基材2に偏りなく含浸させるとともに、成形型1上の所望の範囲全体に注入用樹脂を拡散させうる網状のシート材が好ましい。
バッグフィルム5はこれらの各材の積層された成形型1を気密に被覆するものであって、この種の真空注入成形法に一般的に用いられる気密な合成樹脂製のフィルム材であれば特に限定されない。
シール材6は粘着材料等であって、成形型1の両端側部において、バッグフィルム5を成形型1の表面に固着し、それにより、成形型1とバッグフィルム5との間を、気密かつ密閉された成形部として構成するようにするものである。
また、バッグフィルム5で被覆した成形型1には、このバッグフィルム5内に注入用樹脂を注入する注入ライン7が接続され、さらに成形部内の空気を真空吸引して減圧する真空減圧源(図示せず)およびこの真空減圧源に接続した真空減圧ライン8が接続されている。
そして、このように構成された成形部内に真空吸引による真空減圧状態下で注入用樹脂を注入し、所望の形状の繊維強化プラスチック製管体が得られる。
That is, as apparent from FIG. 2 as a cross-sectional view taken along the line AA ′ of FIG. 1, the reinforcing fiber base material 2, the release material 3, and the resin diffusion member 4 are formed on the outer periphery of the cylindrical mold 1. They are arranged and laminated in this order, covered with a bag film 5, and sealed with a sealing material 6 so that the inside of the bag film becomes airtight.
As shown in FIG. 4, the reinforcing fiber base 2 is formed by laminating a fiber knitted fabric 21 and an elastic sheet 22, and is preferably wound while applying tension to a forming die.
The release material 3 enhances the release property of the resin, and a sheet made of an injection resin and a non-adhesive material is preferable.
The resin diffusing member 4 laid on the mold release material 3 promotes the diffusion of the injecting resin, impregnates the injecting resin into the reinforcing fiber base 2 evenly, and at the same time, a desired mold on the mold 1 A net-like sheet material capable of diffusing the injection resin over the entire range is preferable.
The bag film 5 covers the mold 1 in which these materials are laminated in an airtight manner, and is particularly an airtight synthetic resin film material generally used in this type of vacuum injection molding method. It is not limited.
The sealing material 6 is an adhesive material or the like, and the bag film 5 is fixed to the surface of the molding die 1 at both end portions of the molding die 1, thereby airtight and between the molding die 1 and the bag film 5. It is configured as a sealed molded part.
An injection line 7 for injecting an injecting resin into the bag film 5 is connected to the mold 1 covered with the bag film 5, and a vacuum depressurization source (Fig. (Not shown) and a vacuum decompression line 8 connected to the vacuum decompression source.
Then, an injection resin is injected into the molded part thus configured under a vacuum reduced pressure state by vacuum suction, so that a fiber-reinforced plastic tubular body having a desired shape is obtained.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこの例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited at all by this example.

実施例
上記の図1の模式図で参照されるとおりの真空注入成形方法により、下記の注入用樹脂、各種材を用いて、直径160φ、長さ300mmの繊維強化プラスチック製管体を作製した。
注入用樹脂:ネオポール8250(商品名、日本ユピカ株式会社製)
樹脂拡散部材:GREENFLOW 75(商品名、AIRTECH社製、0.88mm厚のポリプロピレン製ネット)
離型材:BLEEDER LEASE B(商品名、AIRTECH社製、0.011mm厚 シリコーンコートされたポリアミド製シート)
強化繊維基材
強化繊維編織物:イージーファブWF800(商品名、FRPサービス株式会社製、繊維配向 0゜、90゜のステッチファブリック、質量 810g/m) 3枚
伸縮性シート:イージーファブDB800(商品名、FRPサービス株式会社製、繊維配向 ±45゜のステッチファブリック、質量 777g/m) 3枚
Example A tube made of fiber reinforced plastic having a diameter of 160φ and a length of 300 mm was prepared using the following injection resin and various materials by the vacuum injection molding method as referred to in the schematic diagram of FIG.
Resin for injection: Neopol 8250 (trade name, manufactured by Nippon Yupica Co., Ltd.)
Resin diffusion member: GREENFLOW 75 (trade name, manufactured by AIRTECH, polypropylene net of 0.88 mm thickness)
Mold release material: BLEEDER LEASE B (trade name, manufactured by AIRTECH, 0.011 mm thick silicone-coated polyamide sheet)
Reinforced fiber base material Reinforced fiber knitted fabric: Easy Fab WF800 (trade name, manufactured by FRP Service Co., Ltd., fiber orientation 0 °, 90 ° stitch fabric, mass 810 g / m 2 ) 3 sheets Elastic sheet: Easy Fab DB 800 (Product Name, manufactured by FRP Service Co., Ltd., stitch fabric with fiber orientation ± 45 °, mass 777 g / m 2 ) 3 sheets

比較例
強化繊維基材として、強化繊維編織物のみを6枚用いた以外は実施例と同様にして直径160φ、長さ300mmの繊維強化プラスチック製管体を作製した。
各例の外観評価結果及び肉厚の測定結果を表1に示す。
評価結果

Figure 2009061655
Comparative Example A fiber-reinforced plastic tube having a diameter of 160φ and a length of 300 mm was prepared in the same manner as in the example except that only six reinforcing fiber knitted fabrics were used as the reinforcing fiber substrate.
Table 1 shows the appearance evaluation results and thickness measurement results of each example.
Evaluation results
Figure 2009061655

外観評価
○ シワの発生なし
× シワ発生
Appearance evaluation ○ No wrinkles × Wrinkles

これより、比較例では、シワが発生し、肉厚にバラツキがあるのに対し、実施例ではシワが発生せず、肉厚もバラツキが小さいことが分かる。   From this, it can be seen that in the comparative example, wrinkles occur and the thickness varies, whereas in the example, no wrinkles occur and the thickness varies little.

本発明方法は、シワが発生せず、肉厚もバラツキが小さい繊維強化プラスチック製管体を製造することを可能にし、産業上大いに有用である。   The method of the present invention makes it possible to produce a fiber-reinforced plastic pipe body that is free from wrinkles and has a small thickness variation, and is very useful in industry.

本発明の製造方法に用いられる成形装置の一例の模式図。The schematic diagram of an example of the shaping | molding apparatus used for the manufacturing method of this invention. 図1の成形装置におけるA−A´断面図。AA 'sectional drawing in the shaping | molding apparatus of FIG. 真空吸引時の編織物のたるみ状態を示す模式図。The schematic diagram which shows the sagging state of the knitted fabric at the time of vacuum suction. 被含浸物の強化繊維基材の一例の模式図。The schematic diagram of an example of the reinforced fiber base material of an impregnation thing. 被含浸物の巻き付け方法を示す模式図。The schematic diagram which shows the winding method of the to-be-impregnated thing. 巻き付け前の伸縮性シートの一例の模式図。The schematic diagram of an example of the elastic sheet before winding. 巻き付け後の伸縮性シートの一例の模式図。The schematic diagram of an example of the elastic sheet after winding.

符号の説明Explanation of symbols

1 成形型
2 強化繊維基材
21 繊維編織物
22 伸縮性シート
3 離型材
4 樹脂拡散部材
5 バッグフィルム
6 シール材
7 注入ライン
8 真空減圧ライン
DESCRIPTION OF SYMBOLS 1 Mold 2 Reinforcement fiber base material 21 Textile knitted fabric 22 Elastic sheet 3 Release material 4 Resin diffusion member 5 Bag film 6 Seal material 7 Injection line 8 Vacuum decompression line

Claims (7)

筒状の成形型上に被含浸物のシート状の強化繊維基材を配設し、この強化繊維基材の上に、離型材を介して注入樹脂の拡散を促進する樹脂拡散部材を敷設し、これらの強化繊維基材、離型材及び樹脂拡散部材をバッグフィルムによって成形型上に気密に被覆し、このバッグフィルム内を真空減圧状態にしてバッグフィルム内に樹脂を吸引、注入して、強化繊維基材に樹脂を含浸させる繊維強化プラスチック製管体の真空注入成形方法であって、強化繊維基材として繊維編織物及び伸縮性シートを積層して用いることを特徴とする繊維強化プラスチック製管体の製造方法。   A sheet-like reinforcing fiber base material to be impregnated is disposed on a cylindrical mold, and a resin diffusion member that promotes the diffusion of the injected resin is laid on the reinforcing fiber base material through a release material. These reinforced fiber base material, mold release material and resin diffusion member are airtightly covered on the mold by the bag film, and the bag film is evacuated and vacuumed to inject and inject the resin into the bag film for reinforcement. A method for vacuum injection molding of a fiber reinforced plastic tube body in which a fiber base material is impregnated with a resin, wherein the fiber knitted fabric and a stretchable sheet are laminated and used as the reinforced fiber base material. Body manufacturing method. 繊維編織物が、繊維方向を管軸に対して90±10°方向に引き揃えた長繊維と繊維方向を管軸に対して0から±45°方向に引き揃えた長繊維とをステッチ糸で編み止めしたステッチファブリックであることを特徴とする請求項1に記載の繊維強化プラスチック製管体の製造方法。   The stitched yarn is a long fiber whose fiber direction is aligned in the 90 ± 10 ° direction with respect to the tube axis and a long fiber whose fiber direction is aligned in the direction of 0 to ± 45 ° with respect to the tube axis. 2. The method for producing a fiber-reinforced plastic pipe body according to claim 1, wherein the stitch fabric is a knitted stitch fabric. 繊維編織物が、ガラスクロス、カーボンクロスまたはケブラークロスからなる強化繊維織物であることを特徴とする請求項1または2に記載の繊維強化プラスチック製管体の製造方法。   The method for producing a fiber-reinforced plastic pipe according to claim 1 or 2, wherein the fiber knitted fabric is a reinforced fiber fabric made of glass cloth, carbon cloth, or Kevlar cloth. 伸縮性シートが、相互に斜交する方向に引き揃えた長繊維をステッチ糸で編み止めしたステッチファブリック、連続長繊維のトリコット編物または伸縮性不織布であることを特徴とする請求項1〜3のいずれかに記載の繊維強化プラスチック製管体の製造方法。   The stretchable sheet is a stitch fabric obtained by braiding long fibers aligned in a direction oblique to each other with a stitch yarn, a tricot knitted fabric of continuous long fibers, or a stretchable nonwoven fabric, according to Claims 1 to 3. The manufacturing method of the fiber reinforced plastic pipe body in any one. ステッチファブリックが、上下二面に+40〜60°、−40〜−60°方向に引き揃えた連続長繊維をステッチ糸で編み止めしたものであることを特徴とする請求項4に記載の繊維強化プラスチック製管体の製造方法。   The fiber reinforcement according to claim 4, wherein the stitch fabric is formed by stitching continuous long fibers aligned in +40 to 60 ° and -40 to -60 ° directions on two upper and lower surfaces with stitch yarns. A method of manufacturing a plastic tube. 注入樹脂が、ビニルエステル樹脂、不飽和ポリエステル樹脂またはエポキシ樹脂であることを特徴とする請求項1〜5のいずれかに記載の繊維強化プラスチック製管体の製造方法。   The method for producing a fiber-reinforced plastic pipe according to any one of claims 1 to 5, wherein the injected resin is a vinyl ester resin, an unsaturated polyester resin, or an epoxy resin. 注入樹脂が、0.2Pa・s以下の粘度を有することを特徴とする請求項6に記載の繊維強化プラスチック製管体の製造方法。   The method for producing a fiber-reinforced plastic pipe body according to claim 6, wherein the injected resin has a viscosity of 0.2 Pa · s or less.
JP2007231197A 2007-09-06 2007-09-06 Method of manufacturing fiber-reinforced plastic pipe Pending JP2009061655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007231197A JP2009061655A (en) 2007-09-06 2007-09-06 Method of manufacturing fiber-reinforced plastic pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007231197A JP2009061655A (en) 2007-09-06 2007-09-06 Method of manufacturing fiber-reinforced plastic pipe

Publications (1)

Publication Number Publication Date
JP2009061655A true JP2009061655A (en) 2009-03-26

Family

ID=40556719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007231197A Pending JP2009061655A (en) 2007-09-06 2007-09-06 Method of manufacturing fiber-reinforced plastic pipe

Country Status (1)

Country Link
JP (1) JP2009061655A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522486A (en) * 2010-03-18 2013-06-13 トウホウ テナックス ユーロップ ゲゼルシャフト ミット ベシュレンクテル ハフツング Stitched multi-axis fabric
CN103331857A (en) * 2013-06-09 2013-10-02 无锡市华牧机械有限公司 End molding method for fiber ropes
JP5677651B1 (en) * 2011-12-21 2015-02-25 ジーケーエヌ エアロスペース サーヴィシーズ ストラクチャーズ、コーポレイション Method and apparatus for applying compressive pressure to a textile preform during packaging

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522486A (en) * 2010-03-18 2013-06-13 トウホウ テナックス ユーロップ ゲゼルシャフト ミット ベシュレンクテル ハフツング Stitched multi-axis fabric
JP5677651B1 (en) * 2011-12-21 2015-02-25 ジーケーエヌ エアロスペース サーヴィシーズ ストラクチャーズ、コーポレイション Method and apparatus for applying compressive pressure to a textile preform during packaging
CN103331857A (en) * 2013-06-09 2013-10-02 无锡市华牧机械有限公司 End molding method for fiber ropes

Similar Documents

Publication Publication Date Title
JP6446047B2 (en) Continuous fiber reinforced resin composite and molded product thereof
JP6138045B2 (en) Method for producing high-weight carbon fiber sheet for RTM method and RTM method
US20120128905A1 (en) Structural element and method for the production thereof
JP2007076202A (en) Molding method of frp-made square pipe
AU2017209441A1 (en) Fabrication of complex-shaped composite structures
KR20200068893A (en) Fiber reinforced composite material having a hollow section and method for manufacturing the same
JP2009061655A (en) Method of manufacturing fiber-reinforced plastic pipe
JP2011246827A (en) Unidirectional fiber-reinforced woven or knitted fabric for fiber-reinforced plastic and fiber base material of the same, method of manufacturing the fiber base material, and method of molding fiber-reinforced plastic using the fiber base material
KR20170112396A (en) Three Dimensional Fiber-Reinforced Plastics and Manufacturing Method thereof
CN112703280A (en) Hybrid reinforced fabric
JP2007090811A (en) Member of fiber-reinforced plastic and manufacturing method of the same
JP2009101546A (en) Method for manufacturing fiber-reinforced plastic tubular body
JP4769044B2 (en) Vacuum injection molding method for fiber reinforced resin molded products
JP2011098475A (en) Method for producing reducer made of fiber-reinforced resin
JP4371671B2 (en) Resin transfer molding method and sandwich laminate manufacturing method
JP4817651B2 (en) Preform substrate for FRP and method for producing preform
JP2011073288A (en) Method of molding joint for fiber-reinforced resin pipe
JP2004299178A (en) Resin transfer molding method
JP2014163016A (en) Multi-axis stitched substrate for reinforcement, woven fabric for reinforcement and carbon fiber reinforcement composite material, and method for producing them
JP5427543B2 (en) Cylindrical member joining method, cylindrical molded body molding method, and molded body
JP5336695B2 (en) Vacuum injection molding method for fiber reinforced resin molded products
CN112585309A (en) Hybrid reinforced fabric
JP5415320B2 (en) Fiber-reinforced resin sheet and fiber-reinforced resin molded body using the same
KR102401275B1 (en) Fiber reinforced composite material having a hollow section and methode for manufacturing the same
KR101777732B1 (en) Long-fiber nonwoven textile preforms including Long-fiber web layer and method of manufacturing the same and composite material including Long-fiber nonwoven textile preforms and method of manufacturing the same