JP2009101497A - 脚式ロボット、及びその制御方法 - Google Patents

脚式ロボット、及びその制御方法 Download PDF

Info

Publication number
JP2009101497A
JP2009101497A JP2007278106A JP2007278106A JP2009101497A JP 2009101497 A JP2009101497 A JP 2009101497A JP 2007278106 A JP2007278106 A JP 2007278106A JP 2007278106 A JP2007278106 A JP 2007278106A JP 2009101497 A JP2009101497 A JP 2009101497A
Authority
JP
Japan
Prior art keywords
foot
leg
deviation
gait data
sole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007278106A
Other languages
English (en)
Inventor
Hiroshi Shimada
宏史 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007278106A priority Critical patent/JP2009101497A/ja
Publication of JP2009101497A publication Critical patent/JP2009101497A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

【課題】ロボットに対して外力が加えられた場合であっても、転倒せずに安定して歩行が可能な脚式ロボット、及びその制御方法を提供する。
【解決手段】脚式ロボットは、胴体と、胴体に連結された脚部と、脚部の下端に設けられた足部と、歩容データに基づいて脚部の関節を駆動制御する制御部30と、足部の足裏と路面との距離を検出する距離検出部と、を備え、制御部30が、距離検出部の検出結果が所定の閾値を越えるまでは当該検出結果の影響を受けずに歩容データ51に基づいて脚部の関節を駆動制御する不感帯と、距離検出部16の検出結果に基づいて、歩容データを修正する歩容データ修正手段と、を備える。
【選択図】図3

Description

本発明は脚式ロボット、及びその制御方法に関する。
脚式移動ロボットを転倒させずに安定して移動させるためには、ロボットの支持脚を路面に密着させることが必要である。また、ロボットの遊脚を着地させる際には、予期しない路面凹凸からの外乱力を抑制することも効果的である。このため、ロボットの足裏と路面との関係を目標どおりに制御することが重要である。本明細書においては、足裏を路面に倣わせる制御を足裏倣い制御、足平から胴体への位置姿勢を目標の位置姿勢に維持する制御を倒立制御という。
足裏倣い制御と倒立制御を組合せて、ロボットの歩行安定化を行う技術が知られている。本願出願人による出願(特願2007−022740号)には、足裏に路面との距離を検出する距離センサを設け、距離センサの検出結果に基づく足裏倣い制御により歩行安定化を行う2足ロボットが開示されている。当該2足ロボットでは、足裏倣い制御と倒立制御を組み合わせて制御する際に、倒立制御を外側のループに配置し、倒立制御の出力を足裏倣い制御の目標値補正量とし、さらにその倒立制御の出力に制限を設けることで、足裏が路面から完全に離れることを防止するものである。
また、特許文献1には、ロボットの目標歩容を生成する際に、外力操作量の値が不感帯に存在するときには、仮想外力を0とし、不感帯域から逸脱しているときには、仮想外力を不感帯域から逸脱した分の値とすることで、円滑な運動を可能とする脚式移動ロボットの制御装置が開示されている。特許文献1に開示される脚式移動ロボットの制御装置では、脚式移動ロボットの所定方向の並進運動(鉛直方向並進運動)に関する実際の状態量と目標歩容の状態量との偏差である状態量偏差(上体の鉛直位置の偏差)を求め、その状態量偏差を0に近づけるように目標歩容の目標運動を決定する。ここで、目標運動は、目標歩容を生成するための動力学モデルに、状態量偏差に応じて決定した仮想外力を付加的に入力することにより、該動力学モデルを用いて決定する。併せて、状態量偏差0に応じてロボットの目標床反力を修正し、コンプライアンス制御によりロボットの運動と床反力とを目標歩容の目標運動と目標床反力とに追従させる。
再表03−090978号
ところで、ロボットの動作中に、ロボットに対して一定の範囲内の外力が加えられた場合には、ロボットが転倒しないで倒立状態を維持可能とするため、外力に耐えるように足裏を路面に倣わせる必要がある。しかしながら、従来技術では、ロボットに対して外力が実際に加えられた場合には、ロボットが転倒しないで倒立状態を維持することが困難である。図9は、ロボットに対して外力が加えられた場合の問題点を説明するための図である。図9に示すように、ロボット201に対して外力Fが加えられた場合には、ロボット201は足裏倣い制御によって足裏を路面に倣わせ続けようと制御するため、ロボットの足首関節が必要以上に柔らかくなり、破線で示す倒立状態から実線で示す状態へと傾いてしまう。また、図10(a)に示すように、ロボット201の足平リンク126の足裏に衝撃吸収用の弾性部材117が備えられる構成においては、外力によってロボットに作用する床反力中心が移動することで、図10(b)に示すように弾性部材が歪んでしまう。このため、足裏に距離センサを設け、足裏と路面との距離を測定し、距離センサの偏差を小さくするように足裏倣い制御を行うものとした場合には、ロボット201は弾性部材の歪みに起因する偏差dθを小さくするように足裏倣い制御を行うため、必要以上に足首関節が柔らかくなり、倒立状態を維持できずに転倒する虞がある。即ち、距離センサの微小な偏差に対しても足裏倣い制御を実行させてしまい、外力に対して必要以上に不安定となることで、ロボットが転倒する虞がある。
このように、従来の脚式ロボットによれば、ロボットに対して外力が加えられた場合に、足裏倣い制御によってロボットの足首関節が必要以上に柔らかくなり、ロボットが転倒しやすくなるという問題点があった。
本発明は、かかる課題を解決するためになされたものであり、ロボットに対して外力が加えられた場合であっても、転倒せずに安定して歩行が可能な脚式ロボット、及びその制御方法を提供することを目的とする。
本発明に係る脚式ロボットは、胴体と、該胴体に連結された脚部と、該脚部の下端に設けられた足部と、歩容データに基づいて前記脚部の関節を駆動制御する制御部と、前記足部の足裏と路面との距離を検出する距離検出部と、を備えた脚式ロボットであって、前記制御部が、前記距離検出部の検出結果が所定の閾値を越えるまでは当該検出結果の影響を受けずに前記歩容データに基づいて前記脚部の関節を駆動制御する不感帯と、前記距離検出部の検出結果に基づいて、前記歩容データを修正する歩容データ修正手段と、を備えるものである。
これにより、脚部の関節を駆動制御するための歩容データは、ロボットに対して外力が加えられた場合であっても、距離検出部の検出結果が所定の閾値を超えるまでは検出結果の影響を受けないため、足裏を路面に倣わせる制御を抑制することができる。従って、足首関節を不要に柔らかくすることなく、ロボットを転倒せずに安定して歩行させることができる。
また、前記制御部は、前記距離検出部の検出結果に基づいて、前記足部の目標とする位置姿勢と実際の位置姿勢との偏差を計算し、前記歩容データ修正手段は、当該偏差を小さくするように前記歩容データを修正するようにしてもよい。
さらにまた、前記制御部は、前記脚部が支持脚である場合に、前記不感帯を用いて前記脚部の関節を駆動制御するようにしてもよい。このように、脚部が支持脚の場合にのみ不感帯を用いて関節を駆動制御することで、ロボットに対して外力が加えられた場合であっても、遊脚の場合と比べて足首関節を硬くすることで、足平から胴体への位置姿勢を目標の位置姿勢に維持する倒立制御をより効果的に行うことできる。尚、本発明に係る脚式ロボットは、まず、脚部の足平部分を床面に接触させて支持脚とし、その後に足平の裏面で床面を押して脚部全体(ロボット全体)を持ち上げるように脚部を駆動することで、次の歩行動作を行う。駆動された脚部は遊脚となる一方、他の脚部が支持脚となり、このように、遊脚と支持脚を交互に繰り返して切替えることで、歩行動作を行うことができる。
また、前記制御部は、前記脚部が遊脚である場合に、前記不感帯を用いずに前記脚部の関節を駆動制御するようにしてもよい。このように、脚部が支持脚であるか又は遊脚であるかに応じて不感帯の使用を動的に変更することで、遊脚着地時には、路面の凹凸に対してより速やかに足裏を倣わせることができる。
さらにまた、前記胴体の位置姿勢を検出する胴体位置姿勢検出部を更に備え、前記制御部は、前記胴体位置姿勢検出部の検出結果に基づいて、前記胴体の目標とする位置姿勢と実際の位置姿勢との偏差を計算し、前記歩容データ修正手段は、当該偏差を小さくするように前記歩容データを修正するようにしてもよい。また、前記距離検出部は、前記足部の足裏に設けられた距離センサの出力信号から前記足部の足裏と路面との距離を検出するようにしてもよい。さらにまた、前記足部の足裏に、着地時の衝撃を吸収する衝撃吸収部材が設けられているようにしてもよい。これにより、着地時の衝撃を吸収することができる。
本発明に係る脚式ロボットの制御方法は、胴体と、該胴体に連結された脚部と、該脚部の下端に設けられた足部と、を備えた脚式ロボットの制御方法であって、歩容データに基づいて前記脚部の関節を駆動制御する制御ステップでは、前記足部の足裏と路面との距離を検出する距離検出ステップと、前記ステップにおいて検出された検出結果に基づいて、前記足部の目標とする位置姿勢と実際の位置姿勢との偏差を計算するステップと、前記計算された偏差が所定の閾値を越えるまでは当該検出結果の影響を受けずに前記歩容データに基づいて前記脚部の関節を駆動制御する不感帯と、前記計算された偏差を小さくするように前記歩容データを修正する歩容データ修正ステップと、を備えるものである。
これにより、脚部の関節を駆動制御するための歩容データは、ロボットに対して外力が加えられた場合であっても、距離検出ステップにおける検出結果が所定の閾値を超えるまでは検出結果の影響を受けないため、足裏を路面に倣わせる制御を抑制することができる。従って、足首関節を不要に柔らかくすることなく、ロボットを転倒せずに安定して歩行させることができる。
また、前記制御ステップでは、前記脚部が支持脚である場合に、前記不感帯を用いて前記脚部の関節を駆動制御するようにしてもよい。
本発明によれば、ロボットに対して外力が加えられた場合であっても、転倒せずに安定して歩行が可能な脚式ロボット、及びその制御方法を提供することを目的とする。
発明の実施の形態1.
本実施の形態1にかかる脚式ロボットは、胴体と、胴体に連結された脚部と、脚部の下端に設けられた足部と、歩容データに基づいて脚部の関節を駆動制御する制御部と、足部の足裏と路面との距離を検出する距離検出部と、を備える。ここで、ロボットの制御部は、距離検出部の検出結果が所定の閾値を越えるまでは当該検出結果の影響を受けずに歩容データに基づいて脚部の関節を駆動制御する不感帯と、距離検出部の検出結果に基づいて、歩容データを修正する歩容データ修正手段と、を備える。
歩行ロボットの動作においては、足裏に設けられた距離センサを用いて足裏を路面に倣わせる足裏倣い制御と、姿勢センサを用いてロボットの姿勢を倒立させる倒立振子制御を組み合わせることによって安定化制御を実現している。本実施の形態1にかかる脚式ロボットによれば、脚部の関節を駆動制御するための歩容データは、ロボットに対して外力が加えられた場合であっても、距離検出部の検出結果が所定の閾値を超えるまでは検出結果の影響を受けないため、足裏を路面に倣わせる制御が不要に実行されることを抑制することができる。従って、足首関節を不要に柔らかくすることなく、ロボットを転倒せずに安定して歩行させることができる。
以下、図面を参照しながら本実施の形態1に係るロボットの制御方法について説明する。図1は、本実施の形態1に係る脚式ロボットの概要を示す図である。ロボット100は、胴体10と、胴体10に連結された2本の脚を有する。尚、図1には、一方の脚部20のみを示しており、他方の脚部は図示を省略している。胴体10は、ロボット100の動作(脚部の各関節の動作)を制御する制御部30と、胴体の加速度を検出する加速度センサ12と、胴体の10の鉛直方向に対する傾斜角(姿勢角)を検出する姿勢角センサ14を備える。
脚部20は、股関節21、膝関節23、足首関節25、大腿リンク22、脛リンク24、及び足部としての足平リンク26を備える。大腿リンク22と脛リンク24は、直線で模式化して示してある。股関節21は、胴体10と大腿リンク22を揺動可能に連結している。膝関節23は、大腿リンク22と脛リンク24を揺動可能に連結している。足首関節25は、脛リンク24と足平リンク26を揺動可能に連結している。脚部20の下端には足部としての足平リンク26が設けられる。足平リンク26は板状の部材であり、足平リンクの裏面(足裏面)は平面となっている。
足平リンク26には、距離検出部としての少なくとも3個以上の距離センサ16が設けられている。距離センサ16は、足平リンク26の裏面(足裏面)と接地面Sとの距離を検出する。図2は、足平リンク26の構成を説明するための図である。図2に示すように、足平リンク26は、上面視において、略矩形状に形成されている。足平リンク26の四隅近傍には、4つの距離センサ16a、16b、16c、16dがそれぞれ設けられている。ここでは、足平リンク26の爪先側に2つの距離センサ16a及び16dが、踵側に2つ距離センサ16b及び16cが設けられている。距離センサ16a及び16dは、足平リンク26の前方の所定位置における足裏面と接地面Sとの距離を検出し、距離センサ16b及び16cは、足平リンク26の後方の所定位置における足裏面と接地面Sとの距離を検出する。従って、距離センサ16a及び16dが検出する距離と16b及び16cが検出する距離の差から、足平リンク26の足裏面の接地面Sに対する傾きを求めることができる。足平リンク26と路面との間に着地時の衝撃を吸収するための衝撃吸収部材が設けられる。衝撃吸収部材は距離センサ16と一体的に形成される。
各関節には図示しないモータが内蔵されており、制御部30からの指令に基づいて駆動される。モータを駆動することによって、関節に連結されたリンク同士を揺動させることができる。図示を省略している他方の脚部も、脚部20と同様の構造を有する。制御部30が2本の脚部の関節(詳細には関節角)を適宜制御することにより、ロボット100を歩行させることができる。
図1においては、説明の便宜上、ロボット100が進行する向き(前後方向)をx軸、ロボット100が進行する方向に対して水平方向に直交する向き(左右方向)をy軸、ロボット100の進行する平面から鉛直方向に延びる向き(上下方向)をz軸とし、これら3軸からなる絶対座標系を用いて説明する。即ち、図1において、x軸は紙面に向かって左右方向、y軸は紙面の奥行き方向、z軸は紙面中の上下方向を示す。尚、ロボット100の胴体10に対して点Obを特定し固定する。足平リンク26に対して点Ofを特定し固定する。
ロボット100は、記憶部50に記憶されている歩容データに基づいて制御される。歩容データには、胴体10の目標位置(目標胴体位置)、胴体10の目標姿勢角(目標胴体姿勢角)、足平リンク26の目標位置(目標足平位置)、及び足平リンク26の目標姿勢角(目標足平姿勢角)のそれぞれの時系列データが含まれる。歩容データには、ロボット100が有する脚部のそれぞれの目標足平位置・姿勢角の時系列データが含まれる。
歩容データは、シミュレーション等によってロボット100を安定して歩行させることができるように作成されている。即ち、目標胴体位置、目標胴体姿勢角、目標足平位置、及び目標足平姿勢角は、ロボット100のZMP位置が接地面に接地した足裏で囲まれた凸包内となる関係を満足するように設定されている。作成された歩容データは、ロボット100の記憶部50に記憶される。後述するように、制御部30は、歩容データに含まれる目標胴体位置等に実胴体位置等を一致させるように各関節を制御する。
目標胴体位置は、絶対座標系に対する特定点Obの位置で表される。特定点Obを原点とする胴体座標系を用いる場合には、目標胴体姿勢角は、絶対座標系に対する胴体座標系の傾きで表される。実胴体姿勢角は、胴体10に備えられた姿勢角センサ14によって検出することができる。目標足平位置は、絶対座標系に対する特定点Ofの位置で表される。目標足平姿勢角は、接地面に対する足裏面の角度で表される。特定点Ofを原点とする足平座標系を用いる場合には、目標足平姿勢角は、絶対座標系に対する足平座標系の傾きで表してもよい。実足平姿勢角は、後述するように、足平リンク26に備えられた距離センサ16によって検出することができる。
続いて、本実施の形態1に係るロボット100の制御システム1の詳細について説明する。制御システム1は、倒立制御を実行すると共に、足裏倣い制御を実行する。倒立制御は、実胴体位置及び実胴体姿勢角をそれぞれ目標胴体位置及び目標胴体姿勢角に一致する制御である。足裏倣い制御は、接地面から見た相対的な実足平位置及び実足平姿勢角をそれぞれ目標足平位置及び目標足平姿勢角に一致する制御である。
図3は、制御システム1の機能構成を示す機能ブロック図である。制御システム1は、制御部30と、記憶部50と、姿勢角センサ14と、モータ15と、足裏距離センサ16等を有している。
記憶部50には、歩容データ51及び路面ノミナル位置・傾斜情報52が記憶されている。歩容データ51は、目標胴体位置、目標胴体姿勢角、目標足平位置、及び目標足平姿勢角の時系列データを含む。歩容データ上で足裏が接地面と接触するときは、足裏面と接地面を面接触状態とするため、目標足平姿勢角(仮想的な接地面に対する仮想的な足裏面の傾き)はゼロに設定されている。また、歩容データ上の各目標値は、ロボット100のZMP位置が接地している脚の足裏で囲まれた凸包内となる関係を満たすように決定されている。路面ノミナル位置・傾斜情報52は、ロボット100が移動する路面の存在情報であり、路面の位置・傾斜に関する基準値を示す。
制御部30は、記憶部50に記憶された歩容データ51等を読み出すと共に、読み出した歩容データ51等によって特定されるロボット100の姿勢を実現するために必要な脚部20の関節角を算出する。そして、このように算出した関節角に基づく信号をモータ15に送信する。また、制御部30は、センサからの信号を受けて、モータの駆動量を調整する。
より詳細には、制御部30は、足裏倣い制御部61と、倒立制御部62と、関節角変換部63と、各軸制御器64と、を備える。制御部30内では、実胴体姿勢角と目標胴体姿勢角の偏差に基づくフィードバック制御系(倒立制御部62による倒立制御系)と、接地面から見た相対的な実足平姿勢角と目標足平姿勢角の偏差に基づくフィードバック制御系(足裏倣い制御部61による倣い制御系)が含まれる。以後、足裏倣い制御の偏差については、接地面から見た相対的な足平姿勢角に関するものを示すものとする。
足裏倣い制御部61は、実足平姿勢角を目標足平姿勢角に一致させるように、例えば足裏が接地面に密着している状態を目標として、踵側が接地面から浮いている場合には、足平リンク26の爪先側を脛リンク24に近づける方向に足平リンク26を回転させる。即ち、足裏面と接地面との面接触を維持するように足平リンク26を回転させる。実足平姿勢角は、足平リンク26が備える距離センサ16a、16b、16c、16dの出力値から求められる。尚、足裏倣い制御部61の詳細については後述する。
倒立制御部62は、ロボット100の胴体位置姿勢を目標位置姿勢に維持する機能を果たす。胴体位置姿勢は、実際の胴体位置と胴体姿勢角であり、目標位置姿勢は、目標の胴体位置と胴体姿勢角である。実胴体姿勢角は、胴体10に備えられた姿勢角センサ14で検出される。姿勢角センサ14は、例えば胴体10の角速度を検出するジャイロと、ジャイロの出力(角速度)を積分する積分器と、重力加速度ベクトルを検出する3軸加速度センサで構成される。尚、倒立制御部62の詳細については後述する。
制御部30の歩容データ修正手段(不図示)は、距離センサ16からの出力信号に基づいて、足裏と路面との位置関係が目標値に追従するように歩容データを修正する。まず、距離センサ16の出力値と追従すべき目標値との足偏差を計算する。そして、計算された足偏差から、歩容データを修正するための補正量を計算する。次いで、偏差に関する伝達関数を用いて、補正量を算出する。
より詳細には、以下のようにして記憶部50に記憶された歩容データ(目標胴体位置、目標胴体姿勢角、目標足平位置、及び目標足平姿勢角の時系列データ)が修正され、関節角変換部63に入力される。図3においては、胴体位置姿勢目標値が、目標胴体位置及び目標胴体姿勢角の時系列データを含み、足先位置姿勢目標値が、目標足平位置及び目標足平姿勢角の時系列データを含む。
記憶部50に記憶された目標胴体位置は、目標胴体加速度と実胴体加速度の偏差に基づいて補正された後に関節角変換部63に入力される。目標胴体加速度は、目標胴体位置を2回微分することによって求められる。実胴体加速度は、加速度センサ12により検出される。
記憶部50に記憶された目標足平位置は、目標足平位置と実足平位置の偏差に基づいて補正された後に関節角変換部63に入力される。
記憶部50に記憶された目標胴体姿勢角は、そのまま関節角変換部63に入力される。同時に、目標胴体姿勢角と実胴体姿勢角の偏差(胴体姿勢角偏差)が求められる。胴体姿勢角偏差は倒立制御部62に入力されて、胴体姿勢角偏差を小さくする方向に胴体を回転させる胴体補正角が算出される。実胴体姿勢角は、姿勢角センサ14により検出される。尚、図3においては、胴体補正角は足裏倣い制御部61における補正量となるため、胴体補正角を倣い制御目標値補正量という。
記憶部50に記憶された目標足平姿勢角と実足平姿勢角の偏差(足平姿勢角偏差)が求められる。実足平姿勢角は、距離センサ16により検出される。足平姿勢角偏差と上述した胴体補正角(倣い制御目標値補正量)とが加算され、加算された結果が、足裏倣い制御部61に入力される。足裏倣い制御部61によって、入力された角度(胴体補正角と足平姿勢角偏差を加算した角度)を小さくする方向へ足平を回転させる足平補正角が求められる。記憶部50に記憶された目標足平姿勢角は、上述した足平補正角が加算された後に(足平補正角で補正された後に)関節角変換部63に入力される。尚、図3においては、足平補正角を足先目標値補正量という。
関節角変換部63には、以上のようにして修正された歩容データが入力される。これらの値から、関節角変換部63では、逆キネマティクスの演算によって脚部20の各関節の目標関節角が算出される。ここで、それぞれの目標値は、絶対座標系に対する値で表されている。関節角変換部63では、目標足平位置と目標胴体位置の差から足平と胴体の相対位置を計算し、目標足平姿勢角(足平補正角によって補正されている)と目標胴体姿勢角の差から足平と胴体の相対回転角を計算する。計算された相対位置と相対回転角を実現する目標関節角が算出される。
各軸制御器64は、関節角変換部63により送信された目標関節角の信号に基づいて、脚部20を駆動するための各モータ15の駆動量を特定し、これらの駆動量でモータ15を駆動させるためのモータ駆動信号を各モータに送信する。これによって、脚部20の各関節における駆動量が変更され、ロボット100の動きが制御される。
続いて、図4乃至図6を参照しながら、本実施の形態1に係る足裏倣い制御部61について詳細に説明する。図4は、足裏倣い制御部61の機能構成を示す機能ブロック図である。図5は、足裏倣い制御部61による制御処理の概要を説明するためのフローチャートである。図6は、足裏倣い制御部61が有する距離センサ16の偏差に関する不感帯を説明するための図である。図4に示すように、足裏倣い制御部61は、距離センサ目標値計算部611と、差分器612と、位置姿勢偏差計算部613と、不感帯614と、切替器615と、加算器616と、補償器617を有する。
まず、足裏倣い制御部61の距離センサ目標値計算部611において、歩容データ51に含まれる足先位置姿勢目標値(目標足平位置・姿勢角の軌道)と、路面の存在情報である路面のノミナル位置・傾斜情報52とから、距離センサ16の高さ目標値を計算する(ステップS101)。言い換えると、足平リンク26の目標位置・姿勢角を示す軌道データと、足平26が実際に着地する地点(ノミナル位置・傾斜)とから、距離センサ16の目標とする時系列値を計算する。即ち、目標とする距離センサ16の出力値を計算する。尚、ノミナル位置・傾斜に代えて、ロボット100の一歩分の着地位置から足平リンク26の着地位置・姿勢を計算することで、目標とする距離センサ16の出力値を計算するようにしてもよい。
次いで、ステップS101で計算した距離センサ16の目標値と、距離センサ16によって実際に計測された計測値とから、足裏距離センサ16の偏差を差分器612により計算する(ステップS102)。次いで、位置姿勢偏差計算部613において、S102で計算した足裏距離センサ16の偏差から、足平リンク26の足裏と路面との相対位置偏差・相対姿勢偏差を計算する(S103)。より詳細には、足平リンク26の目標位置姿勢に対する実際の位置姿勢の足偏差(ロール、ピッチ、z)を計算する。ここで、足平リンク26の目標位置姿勢に対する実際の位置姿勢の足偏差(ロール、ピッチ、z)を(Δφ,Δθ,Δz)とする。尚、zは鉛直方向の測定高さを示す。次式において示す変換行列によれば、足裏と距離センサ16が配置される位置の幾何学的関係から近似を用いて、各距離センサ16a乃至16dの出力値の偏差(Δz1,Δz2,Δz3,Δz4)と、各距離センサ16の偏差に対応する3行4列の変換行列とから、足偏差を一意に決定することができる。
Figure 2009101497
次いで、切替器615が、脚部20が遊脚であるか、又は、支持脚であるかを判定する(ステップS104)。脚部20が遊脚である場合には、ステップS103で計算した偏差に対して不感帯614を用いずにステップS106へと進む。脚部20が支持脚であるか又は遊脚であるかに応じて不感帯614の使用を動的に変更することで、遊脚着地時には、路面の凹凸に対してより速やかに足裏を倣わせることができる。
一方、脚部20が支持脚である場合には、ステップS103で計算した偏差に対して不感帯614を設ける(ステップS105)。このように、脚部20が支持脚の場合にのみ不感帯614を用いることで、ロボットに対して外力が加えられた場合であっても、遊脚の場合と比べて足首関節を硬くすることで、足平リンク26から胴体10への位置姿勢を目標の位置姿勢に維持する倒立制御をより効果的に行うことできる。これにより、足首関節が必要以上に柔らかくなることを抑制し、転倒を防止することができる。
図6は、足裏倣い制御部61が有する距離センサ16の偏差に関する不感帯614を説明するための図である。図6に示す不感帯では、横軸を実際の足裏と路面との姿勢偏差dθ(ここでは、足裏と路面との相対姿勢偏差(ロール、ピッチ)を示す。)、縦軸を制御において使用する足裏と路面との姿勢偏差とする。言い換えると、横軸は図5のステップS103で計算した相対姿勢偏差(ロール、ピッチ)を、縦軸は図5の後述するステップS106での補正量の計算に使用する相対姿勢偏差(ロール、ピッチ)をそれぞれ示す。
図6に示す不感帯614によれば、距離センサ16の偏差の大きさが所定の閾値を越えるまでは、補正量の計算に使用するための相対姿勢偏差(ロール、ピッチ)を0とする。一方、所定の閾値を越えた場合は、実際の足裏と路面との姿勢偏差dθを相対姿勢偏差として補正量の計算に使用する。言い換えると、距離センサ16の偏差の大きさが所定の範囲の不感帯域に含まれる場合には、当該偏差の影響を受けずに、歩容データに基づいて脚部20の関節を駆動制御する。
尚、不感帯域を示す不感帯の幅L(値−dθmax〜dθmax間の距離)は、足裏に配置される衝撃吸収部材としての弾性部材の剛性に基づいて、予め許容可能な偏差の大きさを計算することで決定することができる。ここで、偏差が許容可能であるとは、偏差が不感帯域に含まれる場合においては、足裏加重中心が足裏面内に余裕を持って存在することができ、安定余裕があるということを意味する。また、距離センサ16の偏差に関する不感帯614は、偏差dθとしてロール及びピッチ方向の偏差である相対姿勢偏差に対して設けることができ、z方向の偏差である相対位置偏差に対しては不感帯614を設けなくともよい。
図5に戻って説明を続ける。次いでロボット100の制御部30は、ステップS104で計算した距離センサ16の相対位置偏差・相対姿勢偏差を用いて、実際に歩容データを補正するための足先目標値補正量を計算し、計算された足先目標値補正量を実現するように歩容データを修正する(ステップS106)。より詳細には、倣い制御部61において、相対位置偏差・相対姿勢偏差と倣い制御目標値補正量とが加算器616により加算され、加算された結果が、補償器617に入力される。補償器617において、所定の伝達関数を用いて足先目標値補正量を計算し、計算された足先目標値補正量により、偏差が小さくなるように足平リンク26の目標位置姿勢を補正する。足先目標値補正量の計算は、例えば、足偏差を入力とし、足先目標値補正量を出力とする伝達関数を通すことで実現することができる。足先目標値補正量(ロール)に関しては、ロール偏差Δφを伝達関数Cφ(s)に通す。足先目標値補正量(ピッチ)に関しては、ピッチ偏差Δθを伝達関数Cθ(s)に通す。足先目標値補正量(z)に関しては、z偏差Δzを伝達関数Cz(s)に通す。
続いて、図7及び図8を参照しながら、本実施の形態1に係る倒立制御部62について詳細に説明する。図7は、倒立制御部62の機能構成を示す機能ブロック図である。図8は、倒立制御部62による制御処理の概要を説明するためのフローチャートである。図7に示すように、倒立制御部62は、姿勢偏差計算部621と、コントローラ622と、リミッタ623と、を有する。
まず、姿勢偏差計算部621において、胴体姿勢目標値(胴体の目標姿勢)と、胴体姿勢計測値(姿勢角センサ14により検出した実姿勢)との偏差を計算する(ステップS201)。
次いで、ステップS201で計算した胴体の姿勢偏差に基づき、所定のコントローラ622によって、足裏倣い制御で使用する足裏と路面との目標相対位置・目標相対姿勢の補正量を計算する(ステップS202)
次いで、足裏距離センサ16の出力値に基づき、足裏が路面から剥がれたか否かを判定する(ステップS203)。判定の結果、足裏が路面から剥がれていない場合には、ステップS202において計算された目標相対位置・目標相対姿勢に対して補正を行わずに、倣い制御目標値補正量として出力する。
一方、判定の結果、足裏が路面から剥がれた場合には、リミッタ623を介してステップS202で計算した補正量を制限する(ステップS204)。即ち、リミッタ623は、目標相対位置・目標相対姿勢の補正量の大きさに制限を加えるものである。リミッタ623は、入力された補正量の大きさが許容範囲内を超えているときに、許容限界の値を出力する。このリミッタ623を設けることで、足裏倣い制御部61に入力される倣い制御目標値補正量を制限する。これによって、倣い制御系(足裏倣い制御部61)が倒立制御系(倒立制御部62)よりも優勢に作用することを保証する。従って、倣い制御系が優勢に作用して、足裏面が接地面と面接触することを保証することができる。
次いで、計算された補正量に基づいて、胴体の姿勢偏差を小さくする方向へ、足裏と路面との目標相対位置・目標相対姿勢を補正する(ステップS205)。補正された目標相対位置・目標相対姿勢を倣い制御目標値補正量として足裏倣い制御部61へと出力する。
以上説明したようにロボット100の足裏倣い制御部61において、距離センサ16の偏差に対する不感帯614を設けることで、歩容データ51は、ロボット100に対して外力が加えられた場合であっても、距離センサ16の偏差が所定の閾値を超えるまでは距離センサ16による検出結果の影響を受けないため、不要な足裏倣い制御を抑制することができる。従って、足首関節を不要に柔らかくすることなく、ロボットを転倒せずに安定して歩行させることができる。
その他の実施の形態.
上述した実施の形態においては、ロボット100は2本の脚を備えるものとしたが本発明はこれに限定されない。少なくとも2本以上の脚を有し、それぞれの脚の下端には足部が設けられ、足部の足裏には少なくとも3個以上の距離センサを備える脚式ロボットに対しても、本発明を適用することができる。
尚、本発明は上述した実施の形態のみに限定されるものではなく、既に述べた本発明の要旨を逸脱しない範囲において種々の変更が可能であることは勿論である。
本発明の実施の形態1に係る脚式ロボットの構成図である。 本発明の実施の形態1に係る脚式ロボットの足平リンクの構成図である。 本発明の実施の形態1に係る脚式ロボットシステムの構成を示す機能ブロック図である。 本発明の実施の形態1に係る脚式ロボットの足裏倣い制御部の構成を示す機能ブロック図である。 本発明の実施の形態1に係る脚式ロボットの足裏倣い制御部が行う処理を示すフローチャートである。 本発明の実施の形態1に係る脚式ロボットの不感帯を説明するための図である。 本発明の実施の形態1に係る脚式ロボットの倒立制御部の構成を示す機能ブロック図である。 本発明の実施の形態1に係る脚式ロボットの倒立制御部が行う処理を示すフローチャートである。 従来の脚式ロボットにおける問題点を説明するための図である。 従来の脚式ロボットにおける問題点を説明するための図である。
符号の説明
1 制御システム、
10 胴体、
12 加速度センサ、14 姿勢角センサ、15 モータ、16 距離センサ
20 脚部、21 股関節、22 大腿リンク、23 膝関節、24 脛リンク、
25 足首関節、26 足平リンク、26a 爪先部、26b 踵部、27 爪先関節、
30 制御部、50 記憶部、
51 歩容データ、52 路面ノミナル位置・傾斜、
60 演算処理部、61 倣い制御部、62 倒立制御部、63 関節角変換部、
64 各軸制御器、
611 距離センサ目標値計算部、613 位置姿勢偏差計算部、614 不感帯、
617 補償器、
621 姿勢偏差計算部、622 コントローラ、623 リミッタ、
100 ロボット

Claims (9)

  1. 胴体と、該胴体に連結された脚部と、該脚部の下端に設けられた足部と、歩容データに基づいて前記脚部の関節を駆動制御する制御部と、前記足部の足裏と路面との距離を検出する距離検出部と、を備えた脚式ロボットであって、
    前記制御部が、
    前記距離検出部の検出結果が所定の閾値を越えるまでは当該検出結果の影響を受けずに前記歩容データに基づいて前記脚部の関節を駆動制御する不感帯と、
    前記距離検出部の検出結果に基づいて、前記歩容データを修正する歩容データ修正手段と、を備える
    ことを特徴とする脚式ロボット。
  2. 前記制御部は、
    前記距離検出部の検出結果に基づいて、前記足部の目標とする位置姿勢と実際の位置姿勢との偏差を計算し、
    前記歩容データ修正手段は、
    当該偏差を小さくするように前記歩容データを修正する
    ことを特徴とする請求項1記載の脚式ロボット。
  3. 前記制御部は、
    前記脚部が支持脚である場合に、前記不感帯を用いて前記脚部の関節を駆動制御する
    ことを特徴とする請求項1又は2記載の脚式ロボット。
  4. 前記制御部は、
    前記脚部が遊脚である場合に、前記不感帯を用いずに前記脚部の関節を駆動制御する
    ことを特徴とする請求項3記載の脚式ロボット。
  5. 前記胴体の位置姿勢を検出する胴体位置姿勢検出部を更に備え、
    前記制御部は、
    前記胴体位置姿勢検出部の検出結果に基づいて、前記胴体の目標とする位置姿勢と実際の位置姿勢との偏差を計算し、
    前記歩容データ修正手段は、
    当該偏差を小さくするように前記歩容データを修正する
    ことを特徴とする請求項1記載の脚式ロボット。
  6. 前記距離検出部は、前記足部の足裏に設けられた距離センサの出力信号から前記足部の足裏と路面との距離を検出する
    ことを特徴とする請求項1乃至5いずれか1項記載の脚式ロボット。
  7. 前記足部の足裏に、着地時の衝撃を吸収する衝撃吸収部材が設けられている
    ことを特徴とする請求項1乃至6いずれか1項記載の脚式ロボット。
  8. 胴体と、該胴体に連結された脚部と、該脚部の下端に設けられた足部と、を備えた脚式ロボットの制御方法であって、
    歩容データに基づいて前記脚部の関節を駆動制御する制御ステップでは、
    前記足部の足裏と路面との距離を検出する距離検出ステップと、
    前記ステップにおいて検出された検出結果に基づいて、前記足部の目標とする位置姿勢と実際の位置姿勢との偏差を計算するステップと、
    前記計算された偏差が所定の閾値を越えるまでは当該検出結果の影響を受けずに前記歩容データに基づいて前記脚部の関節を駆動制御する不感帯と、
    前記計算された偏差を小さくするように前記歩容データを修正する歩容データ修正ステップと、を備える
    ことを特徴とする脚式ロボットの制御方法。
  9. 前記制御ステップでは、
    前記脚部が支持脚である場合に、前記不感帯を用いて前記脚部の関節を駆動制御する
    ことを特徴とする請求項8記載の脚式ロボット。
JP2007278106A 2007-10-25 2007-10-25 脚式ロボット、及びその制御方法 Withdrawn JP2009101497A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007278106A JP2009101497A (ja) 2007-10-25 2007-10-25 脚式ロボット、及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007278106A JP2009101497A (ja) 2007-10-25 2007-10-25 脚式ロボット、及びその制御方法

Publications (1)

Publication Number Publication Date
JP2009101497A true JP2009101497A (ja) 2009-05-14

Family

ID=40703805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007278106A Withdrawn JP2009101497A (ja) 2007-10-25 2007-10-25 脚式ロボット、及びその制御方法

Country Status (1)

Country Link
JP (1) JP2009101497A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194503A (ja) * 2010-03-18 2011-10-06 Toyota Motor Corp 2脚歩行ロボット
JP2017113847A (ja) * 2015-12-25 2017-06-29 本田技研工業株式会社 移動ロボットの制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194503A (ja) * 2010-03-18 2011-10-06 Toyota Motor Corp 2脚歩行ロボット
JP2017113847A (ja) * 2015-12-25 2017-06-29 本田技研工業株式会社 移動ロボットの制御装置

Similar Documents

Publication Publication Date Title
JP4466715B2 (ja) 脚式ロボット、及びその制御方法
KR101131773B1 (ko) 이동 로봇의 보용생성장치
KR101985790B1 (ko) 보행 로봇 및 그 제어 방법
JP3672426B2 (ja) 脚式移動ロボットの姿勢制御装置
JP3629133B2 (ja) 脚式移動ロボットの制御装置
US6289265B1 (en) Controller for legged mobile robot
US6920374B2 (en) Floor shape estimation system of legged mobile robot
US6922609B2 (en) Floor shape estimation system of legged mobile robot
US20020022907A1 (en) Attitude controller of legend moving robot
JP5053644B2 (ja) 脚式移動ロボットおよびその制御プログラム
KR101687630B1 (ko) 보행 로봇 및 그 균형 제어 방법
US20120316682A1 (en) Balance control apparatus of robot and control method thereof
WO1998033629A1 (fr) Appareil de controle de robot mobile du type a jambes
WO2003090978A1 (fr) Dispositif de commande d'un robot mobile dote de jambes
US8509948B2 (en) Walking robot and method of controlling the same
WO2006064598A1 (ja) 脚式移動ロボットおよびその制御プログラム
JP2010069546A (ja) ロボット制御装置、ロボット制御方法およびロボット制御プログラム
JP2009184022A (ja) ロボット制御装置、ロボット制御方法およびロボット制御プログラム
JP5040693B2 (ja) 脚式ロボット、及びその制御方法
JP5198035B2 (ja) 脚式ロボット及びその制御方法
JP2009101497A (ja) 脚式ロボット、及びその制御方法
JP2009107033A (ja) 脚式移動ロボット及びその制御方法
JPWO2009040885A1 (ja) ロボット制御装置、ロボット制御方法およびロボット制御プログラム
JP2009184034A (ja) 脚式ロボット、及びその制御方法
JP2009255231A (ja) 歩行制御装置および歩行制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100223

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110322