JP2009097479A - Device and method for controlling reducing agent supplying device - Google Patents

Device and method for controlling reducing agent supplying device Download PDF

Info

Publication number
JP2009097479A
JP2009097479A JP2007272370A JP2007272370A JP2009097479A JP 2009097479 A JP2009097479 A JP 2009097479A JP 2007272370 A JP2007272370 A JP 2007272370A JP 2007272370 A JP2007272370 A JP 2007272370A JP 2009097479 A JP2009097479 A JP 2009097479A
Authority
JP
Japan
Prior art keywords
reducing agent
temperature
injection valve
cooling water
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007272370A
Other languages
Japanese (ja)
Inventor
Wataru Domon
渉 土門
Hiroyuki Igarashi
洋之 五十嵐
Eiji Nakao
英志 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Bosch Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Corp filed Critical Bosch Corp
Priority to JP2007272370A priority Critical patent/JP2009097479A/en
Priority to US12/738,414 priority patent/US20100242439A1/en
Priority to PCT/JP2008/065641 priority patent/WO2009050948A1/en
Priority to CN200880112164A priority patent/CN101828011A/en
Publication of JP2009097479A publication Critical patent/JP2009097479A/en
Priority to US13/738,050 priority patent/US20130118155A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/02Exhaust treating devices having provisions not otherwise provided for for cooling the device
    • F01N2260/024Exhaust treating devices having provisions not otherwise provided for for cooling the device using a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/11Adding substances to exhaust gases the substance or part of the dosing system being cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1433Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1473Overflow or return means for the substances, e.g. conduits or valves for the return path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1811Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1812Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reducing agent supplying device capable of preventing the thermal damage to a reducer injection valve and crystallization of urea solution due to excessive cooling of liquid reducing agent, and a controlling method thereof. <P>SOLUTION: The reducing agent supplying device injects urea solution to an exhaust upstream side of reducing catalyst arranged in an exhaust passage of an internal combustion engine as the reducing agent, is used for an exhaust emission control device reducing/purifying nitrogen oxide in exhaust gas by the reducing catalyst, and equipped with a reducing agent injection valve fixed to an exhaust pipe on an exhaust upstream side of the reducing catalyst. The reducing agent supplying device comprises a cooling water circulating passage for circulating at least a part of cooling water in the internal combustion engine for cooling the reducing agent injection valve, a flow rate controlling means for adjusting the flow rate of the cooling water flowing in the cooling water circulating passage, a temperature detecting means for detecting the temperature of the reducing agent injection valve, and a controlling means for controlling the flow rate controlling means on the basis of the temperature of the reducing agent injection valve. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、排気浄化装置に使用される還元剤供給装置及び制御方法に関する。特に、尿素溶液を還元剤として使用するとともに、内燃機関を冷却するための冷却水を循環させて還元剤噴射弁の冷却を行う構成の還元剤供給装置及び還元剤供給装置の制御方法に関する。   The present invention relates to a reducing agent supply device and a control method used in an exhaust purification device. In particular, the present invention relates to a reducing agent supply device configured to cool a reducing agent injection valve by using a urea solution as a reducing agent and circulating cooling water for cooling an internal combustion engine, and a control method for the reducing agent supply device.

従来、ディーゼルエンジン等の内燃機関から排出される排気ガス中には、環境に影響を与えるおそれのある窒素酸化物(以下、NOXと称する)が含まれている。このNOXを浄化するために用いられる排気浄化装置として、排気通路に配設された還元触媒の上流側で尿素溶液等の液体還元剤を排気ガス中に噴射供給し、還元触媒中でNOXを選択的に還元浄化する排気浄化装置(SCRシステム)が知られている。 Conventionally, in exhaust gas discharged from internal-combustion engine such as diesel engines, nitrogen oxides that may affect the environment (hereinafter, referred to as NO X) are included. As an exhaust gas purification apparatus used to purify the NO X, the liquid reducing agent urea solution or the like on the upstream side of the disposed in the exhaust passage reduction catalyst injected and supplied into the exhaust gas, NO X in a reducing catalyst An exhaust gas purification device (SCR system) that selectively reduces and purifies is known.

このような排気浄化装置の一態様として、排気管に固定された還元剤噴射弁に向けて液体還元剤を圧送し、還元剤噴射弁を開閉制御することによって液体還元剤を排気管内に噴射供給する方式の排気浄化装置がある。かかる方式の排気浄化装置において、液体還元剤として尿素溶液を用いた場合には、尿素溶液が過度に高温になると、尿素溶液が還元剤噴射弁から噴射される前に尿素が加水分解して結晶化し、液体還元剤の供給系が部分的に又は完全に詰まるおそれがあることに着目し、尿素溶液の温度を十分に低く維持するために、十分な尿素溶液の供給速度と熱交換流体の経路によって、熱交換時にエンジン冷却剤等の熱交換流体をライン又は噴射器に対して通過させるようにしたNOX排出を削減する方法が提案されている(特許文献1参照)。 As one aspect of such an exhaust purification device, the liquid reducing agent is pumped toward the reducing agent injection valve fixed to the exhaust pipe, and the reducing agent injection valve is controlled to open and close to supply the liquid reducing agent into the exhaust pipe. There is an exhaust purification device of the type. In such an exhaust purification apparatus, when a urea solution is used as a liquid reducing agent, if the urea solution becomes excessively high in temperature, the urea is hydrolyzed before the urea solution is injected from the reducing agent injection valve. In view of the possibility of partial or complete clogging of the liquid reducing agent supply system, sufficient urea solution supply rate and heat exchange fluid path to keep the temperature of the urea solution sufficiently low Accordingly, a method of reducing NO X emissions was to pass the line or injector heat exchange fluid, such as engine coolant when the heat exchanger has been proposed (see Patent Document 1).

また、かかる還元剤噴射弁として用いられる電磁制御式の弁は、その制御部分や樹脂部分が比較的熱に弱いにもかかわらず排気管に直接取付けられるため、排気管から伝わる熱によって熱損傷を受けやすくなっている。
そこで、還元剤として燃料(HC)を使用するものではあるが、NOX触媒への還元剤添加用インジェクタの耐久性を向上可能なディーゼルエンジンの排気浄化装置が提案されている。より具体的には、エンジンの排気通路に介装されたNOX触媒と、NOX触媒よりも排気通路の上流側部分に設けられたNOX還元剤添加用のインジェクタとを備えたディーゼルエンジンの排気浄化装置において、インジェクタに設けられた冷却水通路と、冷却水通路とエンジンの冷却水通路とを接続する循環通路と、冷却水を循環通路を介して冷却水通路とエンジンの冷却水経路間で循環させる循環手段を備える排気浄化装置が開示されている(特許文献2参照)。
In addition, an electromagnetically controlled valve used as such a reducing agent injection valve is directly attached to the exhaust pipe even though its control part and resin part are relatively weak against heat, and thus heat damage is caused by heat transmitted from the exhaust pipe. It is easy to receive.
Therefore, there has been proposed a diesel engine exhaust gas purification device that can improve the durability of the injector for adding the reducing agent to the NO x catalyst, although fuel (HC) is used as the reducing agent. More specifically, the NO X catalyst interposed in an exhaust passage of the engine, a diesel engine equipped with an injector of the NO X reducing agent additives provided upstream portion of the exhaust passage than the NO X catalyst In the exhaust emission control device, a cooling water passage provided in the injector, a circulation passage connecting the cooling water passage and the engine cooling water passage, and the cooling water between the cooling water passage and the engine cooling water passage through the circulation passage. An exhaust emission control device provided with a circulation means for circulation is disclosed (see Patent Document 2).

特表2001−518830号公報 (請求項11、第8頁第7行〜10行)JP-T-2001-518830 (Claim 11, page 8, line 7 to line 10) 特開平9−96212号公報 (全文 全図)Japanese Patent Laid-Open No. 9-96212 (full text)

しかしながら、エンジンの冷却水を循環させて還元剤噴射弁を冷却する場合、エンジンの冷却水の循環量は比較的大量であるために効率的に還元剤噴射弁が冷却される一方で、冷却水の循環量が大量であるが故に還元剤噴射弁が冷却されすぎる場合がある。その結果、特許文献1で着目されているような、尿素溶液が高温になり還元剤供給系内で分解することによる尿素の結晶化以外にも、還元剤噴射弁の噴孔付近で、溶媒が自然蒸発することによる尿素の結晶化を生じるおそれがある。   However, when the reducing agent injection valve is cooled by circulating engine cooling water, the amount of engine cooling water circulating is relatively large, so that the reducing agent injection valve is efficiently cooled. In some cases, the reductant injection valve is cooled too much because of the large amount of circulation. As a result, in addition to urea crystallization caused by the urea solution becoming high temperature and being decomposed in the reducing agent supply system as noted in Patent Document 1, the solvent is present near the nozzle hole of the reducing agent injection valve. There is a risk of crystallization of urea due to spontaneous evaporation.

すなわち、エンジンの冷却水は、例えば70〜80℃程度に保たれているため、還元剤噴射弁に対して循環させる冷却水の循環量が大量になると、還元剤噴射弁の温度が例えば80〜100℃程度にまで冷却される場合がある。他方、還元剤供給弁に流入する尿素水溶液は、還元剤噴射弁の熱の影響を受けたとしても、100℃未満の温度に維持されたまま噴孔に送られる。したがって、還元剤噴射弁から噴射される尿素水溶液は、比較的大気圧に近い状態の排気通路内では沸点以下となるため、速やかに気化されずに噴孔付近に付着しやすくなる。100℃未満に維持された尿素水溶液は、大気圧に比較的近い環境下では溶媒としての水分の自然蒸発による析出を生じやすい状態になっているとともに、還元剤噴射弁の噴孔付近には排気ガスの流れが生じていることも重なって、尿素水溶液中の水分の自然蒸発がさらに起こりやすい状態になっており、尿素の析出が促進されることになる。このような、還元剤噴射弁の噴孔付近での尿素の結晶化を生じると、尿素水溶液の噴霧に悪影響を与えるとともに、噴孔の詰まりを生じるおそれもある。   That is, since the engine cooling water is maintained at, for example, about 70 to 80 ° C., when the circulation amount of the cooling water to be circulated with respect to the reducing agent injection valve is large, the temperature of the reducing agent injection valve is, for example, 80 to 80 ° C. It may be cooled to about 100 ° C. On the other hand, the urea aqueous solution flowing into the reducing agent supply valve is sent to the nozzle hole while being maintained at a temperature of less than 100 ° C. even if it is affected by the heat of the reducing agent injection valve. Therefore, since the urea aqueous solution injected from the reducing agent injection valve has a boiling point or less in the exhaust passage in a state close to atmospheric pressure, the urea aqueous solution is not quickly vaporized and easily adheres to the vicinity of the injection hole. The urea aqueous solution maintained at a temperature lower than 100 ° C. is in a state in which it is likely to cause precipitation due to spontaneous evaporation of water as a solvent in an environment relatively close to atmospheric pressure, and is exhausted near the nozzle hole of the reducing agent injection valve. The gas flow is also overlapped, and natural evaporation of water in the urea aqueous solution is more likely to occur, and the precipitation of urea is promoted. If the crystallization of urea in the vicinity of the nozzle hole of the reducing agent injection valve occurs, the spraying of the urea aqueous solution may be adversely affected and the nozzle hole may be clogged.

そこで、本発明の発明者らは鋭意努力し、エンジンの冷却水を循環させて尿素溶液の冷却を行う構成の還元剤供給装置において、冷却水の循環量を制御する手段を備えることにより、このような問題を解決できることを見出し、本発明を完成させたものである。すなわち、本発明の目的は、還元剤噴射弁の温度に応じて冷却水の循環量を調節することにより、還元剤噴射弁の熱損傷を防ぐとともに、液体還元剤が冷却されすぎることによる尿素溶液の結晶化を防止することができる還元剤供給装置及びその制御方法を提供することである。   Therefore, the inventors of the present invention have made diligent efforts and provided a means for controlling the circulation amount of the cooling water in the reducing agent supply device configured to circulate the cooling water of the engine to cool the urea solution. The present invention has been completed by finding that such problems can be solved. That is, an object of the present invention is to prevent the thermal damage of the reducing agent injection valve by adjusting the circulation amount of the cooling water according to the temperature of the reducing agent injection valve, and to prevent the urea solution from being overcooled. It is providing the reducing agent supply apparatus which can prevent crystallization, and its control method.

本発明によれば、内燃機関の排気通路に配設された還元触媒の排気上流側に尿素溶液を還元剤として噴射供給し、還元触媒で排気ガス中の窒素酸化物を還元浄化する排気浄化装置に用いられ、還元触媒の排気上流側で排気管に固定された還元剤噴射弁を備えた還元剤供給装置であって、還元剤噴射弁を冷却するために内燃機関の冷却水の少なくとも一部を循環させるための冷却水循環通路と、冷却水循環通路を流れる冷却水の流量を調節するための流量制御手段と、還元剤噴射弁の温度を検出するための温度検出手段と、還元剤噴射弁の温度に基づいて流量制御手段を制御するための制御手段と、を備えることを特徴とする還元剤供給装置が提供され、上述した問題を解決することができる。   According to the present invention, an exhaust gas purification apparatus that injects and supplies urea solution as a reducing agent to the exhaust upstream side of a reduction catalyst disposed in an exhaust passage of an internal combustion engine, and reduces and purifies nitrogen oxides in exhaust gas with the reduction catalyst. A reductant supply device having a reductant injection valve fixed to an exhaust pipe on the exhaust upstream side of the reduction catalyst, wherein at least part of the cooling water of the internal combustion engine for cooling the reductant injection valve A cooling water circulation passage for circulating the coolant, a flow rate control means for adjusting the flow rate of the cooling water flowing through the cooling water circulation passage, a temperature detection means for detecting the temperature of the reducing agent injection valve, and a reducing agent injection valve And a control means for controlling the flow rate control means based on the temperature. A reducing agent supply device is provided, which can solve the above-described problems.

また、本発明の還元剤供給装置を構成するにあたり、制御手段は、還元剤噴射弁の温度が還元剤噴射弁の耐熱温度未満に維持されるように流量制御手段を制御することが好ましい。   In configuring the reducing agent supply apparatus of the present invention, it is preferable that the control means controls the flow rate control means so that the temperature of the reducing agent injection valve is maintained below the heat resistant temperature of the reducing agent injection valve.

また、本発明の還元剤供給装置を構成するにあたり、制御手段は、還元剤噴射弁の温度が尿素溶液の沸点以上に維持されるように流量制御手段を制御することが好ましい。   In configuring the reducing agent supply apparatus of the present invention, it is preferable that the control means controls the flow rate control means so that the temperature of the reducing agent injection valve is maintained at or above the boiling point of the urea solution.

また、本発明の還元剤供給装置を構成するにあたり、温度検出手段は、排気ガスの温度、排気ガスの流量、液体還元剤の温度、冷却水の温度、外気温度、及び還元剤噴射弁からの噴射供給量のうちの少なくとも一つに基づいて還元剤噴射弁の先端温度を演算することが好ましい。   Further, in configuring the reducing agent supply device of the present invention, the temperature detecting means includes the exhaust gas temperature, the exhaust gas flow rate, the liquid reducing agent temperature, the cooling water temperature, the outside air temperature, and the reducing agent injection valve. It is preferable to calculate the tip temperature of the reducing agent injection valve based on at least one of the injection supply amounts.

また、本発明の還元剤供給装置を構成するにあたり、上記冷却水循環通路、流量制御手段、及び制御手段を、それぞれ第1の冷却水循環通路、第1の流量制御手段、及び第1の制御手段としたときに、尿素溶液を貯蔵する貯蔵タンク内の尿素溶液の温度を調節するために内燃機関の冷却水の少なくとも一部を循環させるための第2の冷却水循環通路と、第2の冷却水循環通路を流れる冷却水の流量を調節するための第2の流量制御手段と、貯蔵タンク内の尿素溶液の温度に基づいて第2の流量制御手段を制御するための第2の制御手段と、を備えることが好ましい。   In configuring the reducing agent supply apparatus of the present invention, the cooling water circulation passage, the flow rate control means, and the control means are respectively referred to as a first cooling water circulation passage, a first flow rate control means, and a first control means. A second cooling water circulation passage for circulating at least a part of the cooling water of the internal combustion engine to adjust the temperature of the urea solution in the storage tank for storing the urea solution, and a second cooling water circulation passage Second flow rate control means for adjusting the flow rate of the cooling water flowing through the storage tank, and second control means for controlling the second flow rate control means based on the temperature of the urea solution in the storage tank. It is preferable.

また、本発明の別の態様は、内燃機関の排気通路に配設された還元触媒の排気上流側に液体還元剤を噴射供給し、還元触媒で排気中の窒素酸化物を還元浄化する排気浄化装置に用いられ、還元触媒の排気上流側で排気管に固定された還元剤噴射弁を備えた還元剤供給装置の制御方法であって、還元剤噴射弁は、内燃機関の冷却水の少なくとも一部を循環させることによって冷却されるようになっており、還元剤噴射弁の温度を検出するとともに、燃料制御弁の温度が所定範囲内に維持されるように、冷却水の流量を制御することを特徴とする還元剤供給装置の制御方法である。   Another aspect of the present invention is an exhaust purification system in which a liquid reducing agent is injected and supplied to an exhaust upstream side of a reduction catalyst disposed in an exhaust passage of an internal combustion engine, and nitrogen oxides in exhaust gas are reduced and purified by the reduction catalyst. A control method for a reducing agent supply device that is used in the apparatus and includes a reducing agent injection valve that is fixed to an exhaust pipe upstream of the reduction catalyst, wherein the reducing agent injection valve is at least one of cooling water for an internal combustion engine. The coolant is cooled by circulating the part, and the flow rate of the cooling water is controlled so that the temperature of the fuel injection valve is maintained within a predetermined range while detecting the temperature of the reducing agent injection valve. This is a control method for a reducing agent supply apparatus.

本発明の還元剤供給装置によれば、内燃機関の冷却水を利用して還元剤噴射弁を効率的に冷却することができるとともに、還元剤噴射弁の先端温度を検出しながら、その温度に応じて冷却水の流量を調節できるため、還元剤噴射弁が過度に冷却されることが防止される。したがって、還元剤噴射弁の熱損傷を防ぐことができるとともに、還元剤噴射弁の噴孔付近での尿素の結晶化を防ぐことができ、還元剤の安定的な噴霧を実現することができる。   According to the reducing agent supply apparatus of the present invention, the reducing agent injection valve can be efficiently cooled using the cooling water of the internal combustion engine, and the temperature of the reducing agent injection valve is detected while detecting the tip temperature of the reducing agent injection valve. Accordingly, since the flow rate of the cooling water can be adjusted, the reducing agent injection valve is prevented from being excessively cooled. Therefore, thermal damage to the reducing agent injection valve can be prevented, and urea crystallization in the vicinity of the injection hole of the reducing agent injection valve can be prevented, and stable spraying of the reducing agent can be realized.

また、本発明の還元剤供給装置において、制御手段が、還元剤噴射弁の温度が耐熱温度未満に維持されるように制御を行うことにより、還元剤噴射弁の熱損傷を確実に防止することができる。   Further, in the reducing agent supply apparatus of the present invention, the control means controls the reducing agent injection valve so that the temperature of the reducing agent injection valve is maintained below the heat resistance temperature, thereby reliably preventing thermal damage to the reducing agent injection valve. Can do.

また、本発明の還元剤供給装置において、制御手段が、還元剤噴射弁の温度が尿素溶液の沸点以上に維持されるように制御を行うことにより、排気管内に晒された尿素溶液が排気熱も相俟って速やかに気化し、噴孔付近での尿素の結晶化を確実に防止することができる。   In the reducing agent supply apparatus of the present invention, the control means performs control so that the temperature of the reducing agent injection valve is maintained at the boiling point or higher of the urea solution, whereby the urea solution exposed in the exhaust pipe is exhausted. In combination with this, it is possible to quickly vaporize and reliably prevent crystallization of urea in the vicinity of the nozzle hole.

また、本発明の還元剤供給装置において、温度検出手段が、還元剤噴射弁の先端温度を演算する手段であることにより、新たに温度センサを使用することなく従来の装置構成を利用して還元剤噴射弁の先端温度を推定することができる。   Further, in the reducing agent supply apparatus of the present invention, since the temperature detection means is a means for calculating the tip temperature of the reducing agent injection valve, the reduction is performed using the conventional apparatus configuration without newly using a temperature sensor. The tip temperature of the agent injection valve can be estimated.

また、本発明の還元剤供給装置において、内燃機関の冷却水を利用して貯蔵タンク内の尿素溶液の温度を調節することにより、尿素溶液の温度が沸点以下のまま還元剤噴射弁から噴射されることが防止され、噴孔付近での尿素の結晶化をより確実に防止することができる。   Further, in the reducing agent supply apparatus of the present invention, the temperature of the urea solution in the storage tank is adjusted using the cooling water of the internal combustion engine, so that the urea solution is injected from the reducing agent injection valve while the temperature is below the boiling point. It is possible to prevent crystallization of urea in the vicinity of the nozzle hole more reliably.

また、本発明の還元剤供給装置の制御方法によれば、内燃機関の冷却水を循環させて還元剤噴射弁を冷却する際に、還元剤噴射弁の温度に基づいて冷却水の循環量を調節することにより、還元剤噴射弁の熱損傷を防止するとともに、還元剤噴射弁が冷却されすぎることによる尿素の結晶化を防止することができる。したがって、還元剤の安定的な噴霧を実現することができる。   Further, according to the control method for the reducing agent supply device of the present invention, when the reducing agent injection valve is cooled by circulating the cooling water of the internal combustion engine, the circulation amount of the cooling water is set based on the temperature of the reducing agent injection valve. By adjusting, it is possible to prevent thermal damage to the reducing agent injection valve and to prevent crystallization of urea due to excessive cooling of the reducing agent injection valve. Therefore, stable spraying of the reducing agent can be realized.

以下、図面を参照して、本発明の還元剤供給装置及び還元剤供給装置の制御方法に関する実施の形態について具体的に説明する。ただし、かかる実施形態は、本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の範囲内で任意に変更することが可能である。
なお、それぞれの図中、同じ符号を付してあるものについては同一の部材を示しており、適宜説明が省略されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments relating to a reducing agent supply apparatus and a reducing agent supply apparatus control method according to the present invention will be specifically described below with reference to the drawings. However, this embodiment shows one aspect of the present invention and does not limit the present invention, and can be arbitrarily changed within the scope of the present invention.
In addition, in each figure, what has attached | subjected the same code | symbol has shown the same member, and description is abbreviate | omitted suitably.

1.排気浄化装置
まず、本実施形態の還元剤供給装置が備えられる排気浄化装置の構成の一例について図1を参照しつつ説明する。
図1に示す排気浄化装置10は、液体還元剤としての尿素水溶液を、排気通路中に配設された還元触媒13の上流側に噴射供給し、還元触媒13において排気ガス中に含まれるNOXを選択的に還元浄化する排気浄化装置10である。この排気浄化装置10は、内燃機関5に接続された排気管11の途中に配設され、排気ガス中に含まれるNOXを選択的に還元するための還元触媒13と、還元触媒13の上流側で排気管11内に尿素水溶液を噴射供給するための還元剤噴射弁31を含む還元剤供給装置20とを主たる要素として構成されている。
1. Exhaust Purification Device First, an example of the configuration of an exhaust purification device provided with the reducing agent supply device of the present embodiment will be described with reference to FIG.
The exhaust purification device 10 shown in FIG. 1 injects and supplies a urea aqueous solution as a liquid reducing agent to the upstream side of the reduction catalyst 13 disposed in the exhaust passage, and the NO x contained in the exhaust gas in the reduction catalyst 13. Is an exhaust purification device 10 that selectively reduces and purifies the exhaust gas. The exhaust purification device 10 is disposed in the middle of an exhaust pipe 11 connected to the internal combustion engine 5, and a reduction catalyst 13 for selectively reducing NO x contained in the exhaust gas, and an upstream of the reduction catalyst 13. The main component is a reducing agent supply device 20 including a reducing agent injection valve 31 for injecting and supplying an aqueous urea solution into the exhaust pipe 11 on the side.

2.還元剤供給装置
本実施形態の排気浄化装置10に備えられた還元剤供給装置20は、還元触媒13の上流側で排気管11に固定された還元剤噴射弁31と、尿素水溶液が貯蔵された貯蔵タンク50と、貯蔵タンク50内の尿素水溶液を還元剤噴射弁31に対して圧送するポンプ41を含むポンプモジュール40と、排気管11内に噴射供給する還元剤の噴射量を制御するために、還元剤噴射弁31やポンプ41の制御を行う制御装置(以下、「DCU:Dosing Control Unit」と称する。)60を備えている。また、ポンプモジュール40と還元剤噴射弁31とは第1の供給通路58によって接続され、貯蔵タンク50とポンプモジュール40とは第2の供給通路57によって接続され、さらに、ポンプモジュール40と貯蔵タンク50とは循環通路59によって接続されている。
2. Reducing agent supply device A reducing agent supply device 20 provided in the exhaust purification device 10 of the present embodiment stores a reducing agent injection valve 31 fixed to the exhaust pipe 11 on the upstream side of the reduction catalyst 13 and a urea aqueous solution. In order to control the storage tank 50, the pump module 40 including the pump 41 that pumps the urea aqueous solution in the storage tank 50 to the reducing agent injection valve 31, and the injection amount of the reducing agent injected and supplied into the exhaust pipe 11. A control device (hereinafter referred to as “DCU: Dosing Control Unit”) 60 for controlling the reducing agent injection valve 31 and the pump 41 is provided. The pump module 40 and the reducing agent injection valve 31 are connected by a first supply passage 58, the storage tank 50 and the pump module 40 are connected by a second supply passage 57, and the pump module 40 and the storage tank. 50 is connected by a circulation passage 59.

還元剤噴射弁31としては、例えば、DUTY制御により開弁のON−OFFが制御されるON−OFF弁を使用することができる。ポンプモジュール40から還元剤噴射弁31に圧送される尿素水溶液は所定の圧力で維持されるようになっており、DCU60から送られてくる制御信号によって還元剤噴射弁31が開かれたときに尿素水溶液が排気通路中に噴射されるようになっている。   As the reducing agent injection valve 31, for example, an ON-OFF valve whose ON / OFF is controlled by DUTY control can be used. The aqueous urea solution pumped from the pump module 40 to the reducing agent injection valve 31 is maintained at a predetermined pressure. When the reducing agent injection valve 31 is opened by a control signal sent from the DCU 60, the urea solution The aqueous solution is injected into the exhaust passage.

また、還元剤噴射弁31には冷却水通路37が設けられ、内燃機関5の冷却水を利用して還元剤噴射弁31の冷却が行われるようになっている。本実施形態における還元剤供給装置20の例では、還元剤噴射弁31の冷却水通路37を含む第1の冷却水循環通路85が備えられ、内燃機関5の冷却水は、冷却水循環ポンプ73によって内燃機関5の冷却水通路75を循環するとともに、冷却水通路75から分岐して第1の冷却水循環通路85にも流入するようになっている。第1の冷却水循環通路85に流入した冷却水は、途中、還元剤噴射弁31に設けられた冷却水通路37を通って、再び内燃機関5の冷却水通路75に戻され、還元剤噴射弁31の冷却が行われる。   The reducing agent injection valve 31 is provided with a cooling water passage 37 so that the reducing agent injection valve 31 is cooled using the cooling water of the internal combustion engine 5. In the example of the reducing agent supply device 20 in the present embodiment, the first cooling water circulation passage 85 including the cooling water passage 37 of the reducing agent injection valve 31 is provided, and the cooling water of the internal combustion engine 5 is internalized by the cooling water circulation pump 73. While circulating through the cooling water passage 75 of the engine 5, it branches from the cooling water passage 75 and also flows into the first cooling water circulation passage 85. The cooling water flowing into the first cooling water circulation passage 85 passes through the cooling water passage 37 provided in the reducing agent injection valve 31 and is returned to the cooling water passage 75 of the internal combustion engine 5 again. 31 is cooled.

この第1の冷却水循環通路85における還元剤噴射弁31よりも上流側には、第1の冷却水循環通路85を流れる冷却水の流量を調節するための第1の冷却水流量制御弁81が備えられている。第1の冷却水流量制御弁81としては、例えば、電磁制御式のON−OFF弁や、電磁比例流量制御弁を使用することができ、後述するDCU60によって制御される。この第1の冷却水流量制御弁81は通常開弁されており、冷却水によって還元剤噴射弁31が冷却されるようになっている。一方、還元剤噴射弁31が冷却されすぎるおそれがある場合には、第1の冷却水流量制御弁81を閉弁して冷却水の循環を遮断するか、あるいは、第1の冷却水流量制御弁81の開度を減少させて冷却水の流量を減少させ、還元剤噴射弁31が冷却されすぎないように調節される。   A first coolant flow control valve 81 for adjusting the flow rate of the coolant flowing through the first coolant circulation passage 85 is provided upstream of the reducing agent injection valve 31 in the first coolant circulation passage 85. It has been. As the first cooling water flow rate control valve 81, for example, an electromagnetic control type ON-OFF valve or an electromagnetic proportional flow rate control valve can be used, which is controlled by the DCU 60 described later. The first coolant flow control valve 81 is normally opened, and the reducing agent injection valve 31 is cooled by the coolant. On the other hand, when the reducing agent injection valve 31 may be cooled too much, the first cooling water flow rate control valve 81 is closed to interrupt the circulation of the cooling water, or the first cooling water flow rate control is performed. The flow rate of the cooling water is decreased by decreasing the opening degree of the valve 81, and the reducing agent injection valve 31 is adjusted so as not to be cooled too much.

また、還元剤噴射弁31に接続された第1の供給通路58のうち、還元剤噴射弁31の入口部分には、還元剤噴射弁31に流入する尿素水溶液の温度を検知するための温度センサ33が備えられている。さらに、第1の冷却水循環通路85のうち、還元剤噴射弁31の上流側の入口部分には、還元剤噴射弁31に流入する冷却水の温度を検知するための温度センサ35が備えられている。これらの温度センサ33、35で検知された温度情報は、DCU60に送られるようになっている。   A temperature sensor for detecting the temperature of the urea aqueous solution flowing into the reducing agent injection valve 31 is provided at the inlet of the reducing agent injection valve 31 in the first supply passage 58 connected to the reducing agent injection valve 31. 33 is provided. Furthermore, a temperature sensor 35 for detecting the temperature of the cooling water flowing into the reducing agent injection valve 31 is provided in the inlet portion of the first cooling water circulation passage 85 on the upstream side of the reducing agent injection valve 31. Yes. The temperature information detected by these temperature sensors 33 and 35 is sent to the DCU 60.

また、本実施形態の還元剤供給装置20では、内燃機関5の冷却水通路75から分岐する第1の冷却水循環通路85における第1の冷却水流量制御弁81よりも上流側から、さらに第2の冷却水循環通路87が分岐して設けられている。この第2の冷却水循環通路87は貯蔵タンク50内を通過するように配設されており、再び第1の冷却水循環通路85に合流するようになっている。また、第2の冷却水循環通路87における貯蔵タンク50よりも上流側には、第2の冷却水循環通路87を流れる冷却水の流量を調節するための第2の冷却水流量制御弁83が備えられている。   Further, in the reducing agent supply device 20 of the present embodiment, the second coolant is further supplied from the upstream side of the first coolant flow control valve 81 in the first coolant circulation passage 85 branched from the coolant passage 75 of the internal combustion engine 5. The cooling water circulation passage 87 is branched. The second cooling water circulation passage 87 is disposed so as to pass through the storage tank 50, and joins the first cooling water circulation passage 85 again. Further, a second cooling water flow rate control valve 83 for adjusting the flow rate of the cooling water flowing through the second cooling water circulation passage 87 is provided upstream of the storage tank 50 in the second cooling water circulation passage 87. ing.

この第2の冷却水循環通路87を循環する内燃機関5の冷却水は、貯蔵タンク50内の尿素水溶液の加熱手段として利用されるものである。内燃機関5の冷却水は、例えば70〜80℃程度に維持されるようになっているため、貯蔵タンク50内の尿素水溶液の温度が低下したときに第2の冷却水流量制御弁83を開弁して貯蔵タンク50内に冷却水を循環させ、尿素水溶液の温度が過度に低下したり、尿素水溶液が凍結したりしないように制御される。
第2の冷却水流量制御弁83についても、第1の冷却水流量制御弁81と同様に、電磁制御式のON−OFF弁や電磁比例流量制御弁を使用することができ、DCU60によって制御されるようになっている。すなわち、尿素水溶液が貯蔵された貯蔵タンク50には、タンク内の尿素水溶液の温度を検知するための温度センサ51が備えられており、温度センサ51によって検知された値は信号としてDCU60に対して出力され、この温度情報に基づいて第2の冷却水流量制御弁83が制御される。
The cooling water of the internal combustion engine 5 that circulates in the second cooling water circulation passage 87 is used as a heating means for the urea aqueous solution in the storage tank 50. Since the cooling water of the internal combustion engine 5 is maintained at, for example, about 70 to 80 ° C., the second cooling water flow rate control valve 83 is opened when the temperature of the urea aqueous solution in the storage tank 50 decreases. The cooling water is circulated in the storage tank 50 and controlled so that the temperature of the urea aqueous solution does not decrease excessively and the urea aqueous solution does not freeze.
Similarly to the first cooling water flow rate control valve 81, the second cooling water flow rate control valve 83 can use an electromagnetically controlled ON-OFF valve or an electromagnetic proportional flow rate control valve, and is controlled by the DCU 60. It has become so. That is, the storage tank 50 in which the urea aqueous solution is stored is provided with a temperature sensor 51 for detecting the temperature of the urea aqueous solution in the tank, and the value detected by the temperature sensor 51 is a signal to the DCU 60. The second coolant flow control valve 83 is controlled based on this temperature information.

また、ポンプモジュール40にはポンプ41が備えられ、第2の供給通路57を介して貯蔵タンク50内の尿素水溶液を汲み上げるとともに、第1の供給通路58を介して還元剤噴射弁31に圧送するようになっている。このポンプ41は、例えば電動ギアポンプからなり、DCU60から送られてくる信号によってDUTY制御されるようにすることができる。また、第1の供給通路58には圧力センサ43が備えられており、圧力センサ43によって検知された値は信号としてDCU60に出力され、第1の供給通路58内の圧力値が所定値に維持されるようにポンプ41の駆動DUTYが制御されるようになっている。すなわち、第1の供給通路58内の圧力が所定値よりも低下するような状態においては、ポンプ41の駆動DUTYは大きくなるように制御され、第1の供給通路58内の圧力が所定値よりも上昇するような状態においては、ポンプ41の駆動DUTYは小さくなるように制御される。
なお、「ポンプの駆動DUTY」とは、PWM(pulse width modulation)制御において、1周期当たりに占めるポンプの駆動時間の割合を意味している。
The pump module 40 is provided with a pump 41, which pumps up the urea aqueous solution in the storage tank 50 through the second supply passage 57 and pumps it to the reducing agent injection valve 31 through the first supply passage 58. It is like that. The pump 41 is composed of an electric gear pump, for example, and can be DUTY controlled by a signal sent from the DCU 60. Further, the first supply passage 58 is provided with a pressure sensor 43, and a value detected by the pressure sensor 43 is output as a signal to the DCU 60, and the pressure value in the first supply passage 58 is maintained at a predetermined value. As a result, the drive DUTY of the pump 41 is controlled. That is, in a state where the pressure in the first supply passage 58 is lower than a predetermined value, the drive DUTY of the pump 41 is controlled to increase, and the pressure in the first supply passage 58 is lower than the predetermined value. In such a state that also rises, the drive DUTY of the pump 41 is controlled to be small.
Note that “pump drive DUTY” means the ratio of pump drive time per cycle in PWM (pulse width modulation) control.

また、第1の供給通路58にはメインフィルタ47が備えられ、還元剤噴射弁31に圧送される尿素水溶液中の異物が捕集されるようになっている。また、ポンプ41とメインフィルタ47との間の第1の供給通路58から循環通路59が分岐して設けられ、貯蔵タンク50に接続されている。この循環通路59の途中にはオリフィス45が備えられるとともに、オリフィス45よりも貯蔵タンク50側に圧力制御弁49が備えられている。このような循環通路59を備えることにより、圧力センサ43の検出値をもとにフィードバック制御されるポンプ41によって尿素水溶液が圧送される状態で、第1の供給通路58内の圧力値が所定値を超えた場合に、圧力制御弁49が開弁し、尿素水溶液の一部が貯蔵タンク50内に還流されるようになっている。圧力制御弁49は、例えば、公知のチェック弁等を使用することができる。   In addition, the first supply passage 58 is provided with a main filter 47 so that foreign substances in the urea aqueous solution pumped to the reducing agent injection valve 31 are collected. A circulation passage 59 is branched from the first supply passage 58 between the pump 41 and the main filter 47 and is connected to the storage tank 50. An orifice 45 is provided in the middle of the circulation passage 59, and a pressure control valve 49 is provided closer to the storage tank 50 than the orifice 45. By providing such a circulation passage 59, the pressure value in the first supply passage 58 is a predetermined value in a state where the urea aqueous solution is pumped by the pump 41 that is feedback-controlled based on the detection value of the pressure sensor 43. When the pressure exceeds the value, the pressure control valve 49 is opened so that a part of the urea aqueous solution is recirculated into the storage tank 50. As the pressure control valve 49, for example, a known check valve or the like can be used.

また、ポンプモジュール40にはリバーティングバルブ71が備えられ、還元剤供給装置20が尿素水溶液の噴射制御を行わない場合等において、ポンプモジュール40や還元剤噴射弁31、第1の供給通路58、第2の供給通路57等を含む還元剤供給系の尿素水溶液が貯蔵タンク50に回収できるようになっている。したがって、冷寒時等、尿素水溶液が凍結しやすい温度条件下において、内燃機関5を停止させ、還元剤供給装置20の制御を行わないような場合に、還元剤供給系内での尿素水溶液の凍結が防止され、その後内燃機関の運転を再開したときに、詰まりによる噴射不良がないようにされている。
このリバーティングバルブ71は、例えば、尿素水溶液の流路を、貯蔵タンク50からポンプモジュール40へ向かう順方向から、ポンプモジュール40から貯蔵タンク50へ向かう逆方向に切り替える機能を持った切換弁であり、内燃機関のイグニッションスイッチをオフにしたときに、流路を逆方向に切り換えることにより尿素水溶液を貯蔵タンク50内に回収することができる。
Further, the pump module 40 is provided with a reverting valve 71, and when the reducing agent supply device 20 does not perform the injection control of the urea aqueous solution, the pump module 40, the reducing agent injection valve 31, the first supply passage 58, The reducing agent supply system urea aqueous solution including the second supply passage 57 and the like can be recovered in the storage tank 50. Accordingly, when the internal combustion engine 5 is stopped and the reducing agent supply device 20 is not controlled under a temperature condition in which the aqueous urea solution is likely to freeze, such as in cold weather, the urea aqueous solution in the reducing agent supply system is not used. When freezing is prevented and then the operation of the internal combustion engine is resumed, there is no injection failure due to clogging.
The reverting valve 71 is, for example, a switching valve having a function of switching the flow path of the urea aqueous solution from the forward direction from the storage tank 50 to the pump module 40 to the reverse direction from the pump module 40 to the storage tank 50. When the ignition switch of the internal combustion engine is turned off, the urea aqueous solution can be recovered in the storage tank 50 by switching the flow path in the reverse direction.

また、還元剤供給装置20の還元剤供給系の各部位にはそれぞれヒーター92〜97が備えられている。これらのヒーター92〜97は、冷寒時等において尿素水溶液が還元剤供給系内に存在する場合に、尿素水溶液が凍結して部分的に又は完全に還元剤供給系を塞いでしまい、還元剤噴射弁31による還元剤の噴射制御を正確に行えなくなることを防ぐために備えられている。また、これらのヒーター92〜97は、DCU60によって通電が制御されるようになっている。例えば、尿素水溶液の温度や外気温度等をもとにして、還元剤供給系で尿素水溶液が凍結を生じるような温度条件下にあると判断されたときに、バッテリーから電圧が供給され、加熱されるようになっている。
これらのヒーター92〜97についても、特に制限されるものではなく、例えば、電熱線等を使用することができる。
Each part of the reducing agent supply system of the reducing agent supply apparatus 20 is provided with heaters 92 to 97, respectively. When the aqueous urea solution is present in the reducing agent supply system during cold weather or the like, these heaters 92 to 97 freeze the urea aqueous solution partially or completely to block the reducing agent supply system. It is provided in order to prevent the injection control of the reducing agent by the injection valve 31 from being performed accurately. In addition, energization of these heaters 92 to 97 is controlled by the DCU 60. For example, when the reducing agent supply system determines that the urea aqueous solution is freezing based on the temperature of the aqueous urea solution or the outside air temperature, the battery is supplied with voltage and heated. It has become so.
These heaters 92 to 97 are not particularly limited, and for example, a heating wire can be used.

3.還元剤供給装置の制御装置(DCU)
図2は、本実施形態の還元剤供給装置を制御するためのDCU60の構成を示している。このDCU60は、公知の構成からなるマイクロコンピュータを中心に構成されており、図1の第1の冷却水流量制御弁81及び第2の冷却水流量制御弁83の動作制御に関する部分について、機能的なブロックに表された構成例が示されている。
本実施形態におけるDCU60は、還元剤噴射弁の温度を検出する噴射弁温度検出部(「Injector-Temp検出」と表記)と、第1の冷却水流量制御弁を制御する第1の制御部(「Injector-Cooling制御」と表記)と、第2の冷却水流量制御弁を制御する第2の制御部(「Tank-Heating制御」と表記)等を主要な要素として構成されている。これらの各部は、具体的にはマイクロコンピュータ(図示せず)によるプログラムの実行によって実現されるものである。
3. Reducing agent supply unit control unit (DCU)
FIG. 2 shows a configuration of the DCU 60 for controlling the reducing agent supply apparatus of the present embodiment. The DCU 60 is configured with a microcomputer having a known configuration as the center, and functionally controls a part related to operation control of the first cooling water flow rate control valve 81 and the second cooling water flow rate control valve 83 in FIG. An example of the configuration shown in each block is shown.
The DCU 60 in the present embodiment includes an injection valve temperature detection unit (indicated as “Injector-Temp detection”) that detects the temperature of the reducing agent injection valve, and a first control unit that controls the first coolant flow control valve ( The main components are an “Injector-Cooling control” and a second control unit (described as “Tank-Heating control”) for controlling the second cooling water flow rate control valve. Each of these units is specifically realized by executing a program by a microcomputer (not shown).

このうち、噴射弁温度検出部は、還元剤噴射弁の温度を検出し、第1の制御部に温度情報を送るようになっている。還元剤噴射弁の温度の検出方法については特に制限されるものではなく、還元剤噴射弁に温度センサを備え付けて直接的に検知してもよく、あるいは、演算により推定することもできる。
本実施形態のDCU60では、噴射弁温度検出部は、内燃機関の運転状態から推定される排気ガス温度Tg及び排気ガスの流量Ve、貯蔵タンク内の尿素水溶液の温度Tu1、還元剤噴射弁に流入する尿素水溶液の温度Tu2、還元剤噴射弁に流入する冷却水の温度Tr、外気温度To、DCU60から還元剤噴射弁に送られる噴射指示値Qu、及び車両速度Sの各情報をもとに、還元剤噴射弁の先端温度Tiを推定するようになっている。
Among these, the injection valve temperature detection part detects the temperature of a reducing agent injection valve, and sends temperature information to a 1st control part. The method for detecting the temperature of the reducing agent injection valve is not particularly limited, and the reducing agent injection valve may be directly detected by providing a temperature sensor, or may be estimated by calculation.
In the DCU 60 of the present embodiment, the injection valve temperature detection unit flows into the exhaust gas temperature Tg and the exhaust gas flow rate Ve estimated from the operating state of the internal combustion engine, the temperature Tu1 of the urea aqueous solution in the storage tank, and the reducing agent injection valve. Based on the information on the temperature Tu2 of the urea aqueous solution, the temperature Tr of the cooling water flowing into the reducing agent injection valve, the outside air temperature To, the injection instruction value Qu sent from the DCU 60 to the reducing agent injection valve, and the vehicle speed S, The tip temperature Ti of the reducing agent injection valve is estimated.

噴射弁温度検出部によって還元剤噴射弁の先端温度Tiを推定するのは、尿素水溶液中の水分の蒸発による尿素の結晶化が生じやすい噴孔付近の温度をもとにして冷却水の流量を制御することができるためである。また、還元剤噴射弁が加熱されるのは排気管を介して伝達される排気熱によるものであり、最も高温になる還元剤噴射弁の先端部分の温度を耐熱温度以下に維持しておけば、還元剤噴射弁全体を耐熱温度以下にすることができるためである。
なお、還元剤噴射弁の先端温度Tiを推定するにあたり、上述したすべての情報を参照する必要はなく、それらの一部の情報をもとにして推定するようにしてもよい。
The tip temperature Ti of the reducing agent injection valve is estimated by the injection valve temperature detection part because the flow rate of the cooling water is determined based on the temperature near the injection hole where urea crystallization is likely to occur due to evaporation of water in the urea aqueous solution. This is because it can be controlled. In addition, the reducing agent injection valve is heated by exhaust heat transmitted through the exhaust pipe. If the temperature of the tip of the reducing agent injection valve, which is the highest temperature, is kept below the heat-resistant temperature. This is because the entire reducing agent injection valve can be kept at a heat resistant temperature or lower.
In estimating the tip temperature Ti of the reducing agent injection valve, it is not necessary to refer to all the information described above, and it may be estimated based on some of the information.

また、第1の冷却水流量制御弁の制御を行う第1の制御部では、噴射弁温度検出部から送られてくる還元剤噴射弁の先端温度Tiをもとにして、第1の冷却水流量制御弁の開閉の制御信号を出力するようになっている。
例えば、内燃機関の通常運転時には、還元剤噴射弁の先端温度Tiが耐熱温度未満に維持されるように、第1の冷却水流量制御弁を開いて比較的大量の冷却水を第1の冷却水循環通路85を循環させる。還元剤噴射弁の樹脂部分や電磁制御部を耐熱温度以下とするための先端温度Tiは、還元剤噴射弁の種類によって異なるが、例えば、先端温度Tiが140〜160℃未満に維持されるように冷却水を循環させる。
一方、還元剤噴射弁が冷却水によって冷却されすぎると、噴孔付近において尿素の結晶化を生じるおそれがあることから、第1の冷却水流量制御弁を閉じて冷却水を遮断するか、あるいは、開度を小さくして冷却水の流量を低下させる。例えば、噴孔を通過して噴射される尿素水溶液が速やかに蒸発して気化されるようにするには、還元剤噴射弁の先端温度Tiが尿素水溶液の沸点以上に維持されるように冷却水の流量を調節する。尿素水溶液の沸点は濃度によって変動するものの、例えば、先端温度Tiが100〜110℃以上に維持されるように冷却水の流量を調節する。
The first control unit that controls the first cooling water flow rate control valve uses the first cooling water based on the tip temperature Ti of the reducing agent injection valve sent from the injection valve temperature detection unit. A control signal for opening and closing the flow control valve is output.
For example, during normal operation of the internal combustion engine, the first cooling water flow rate control valve is opened so that a relatively large amount of cooling water is first cooled so that the tip temperature Ti of the reducing agent injection valve is maintained below the heat resistance temperature. The water circulation passage 85 is circulated. The tip temperature Ti for setting the resin part of the reducing agent injection valve and the electromagnetic control unit to the heat resistant temperature or less varies depending on the type of the reducing agent injection valve. For example, the tip temperature Ti is maintained at 140 to 160 ° C. or less. Circulate the cooling water.
On the other hand, if the reducing agent injection valve is cooled too much by the cooling water, urea may be crystallized in the vicinity of the nozzle hole, so the first cooling water flow control valve is closed to shut off the cooling water, or Reduce the flow rate of cooling water by reducing the opening. For example, in order to quickly evaporate and vaporize the urea aqueous solution injected through the nozzle hole, the cooling water is maintained so that the tip temperature Ti of the reducing agent injection valve is maintained at the boiling point or higher of the urea aqueous solution. Adjust the flow rate. Although the boiling point of the urea aqueous solution varies depending on the concentration, for example, the flow rate of the cooling water is adjusted so that the tip temperature Ti is maintained at 100 to 110 ° C. or higher.

すなわち、本実施形態のDCU60における第1の制御部では、噴射弁温度検出部から送られてくる還元剤噴射弁の先端温度Tiの情報をもとにして、還元剤噴射弁の先端温度Tiが、排気通路内における尿素水溶液の沸点以上、還元剤噴射弁の耐熱温度未満となるように、第1の冷却水流量制御弁の開閉をフィードバック制御するようになっている。その結果、還元剤噴射弁の熱損傷が防止され耐久性が向上するとともに、還元剤噴射弁の噴孔付近での尿素の結晶化が防止され、安定的な尿素水溶液の噴霧が可能となる。
なお、本実施形態の例では、還元剤噴射弁の先端温度Tiが尿素水溶液の沸点以上となるように制御を行っているが、噴射後に尿素水溶液が排気熱の影響を受けて速やかに気化されるようであれば、先端温度Tiが尿素水溶液の沸点未満であっても構わない。
That is, in the first control unit in the DCU 60 of the present embodiment, the tip temperature Ti of the reducing agent injection valve is determined based on the information on the tip temperature Ti of the reducing agent injection valve sent from the injection valve temperature detection unit. The opening and closing of the first cooling water flow rate control valve is feedback-controlled so that the boiling point of the urea aqueous solution in the exhaust passage is equal to or higher than the heat resistance temperature of the reducing agent injection valve. As a result, thermal damage to the reducing agent injection valve is prevented and durability is improved, and urea crystallization is prevented in the vicinity of the injection hole of the reducing agent injection valve, thereby enabling stable spraying of the urea aqueous solution.
In the example of the present embodiment, control is performed so that the tip temperature Ti of the reducing agent injection valve is equal to or higher than the boiling point of the urea aqueous solution, but the urea aqueous solution is quickly vaporized under the influence of exhaust heat after injection. If so, the tip temperature Ti may be less than the boiling point of the urea aqueous solution.

また、第2の制御部は、貯蔵タンク内に備えられた温度センサによって検知される尿素水溶液の温度をもとにして、第2の冷却水流量制御弁の開閉の制御信号を出力するようになっている。
例えば、貯蔵タンク内の尿素水溶液の温度が氷点下になると、尿素水溶液が凍結して還元剤噴射弁に対して供給することができなくなる。また、氷点下を超える場合であっても、例えば80℃以上になっていると、尿素水溶液が変質してしまうおそれがある。
そのため、本実施形態のDCU60における第2の制御部では、貯蔵タンク内の尿素水溶液の温度が60℃未満の時には第2の冷却水流量制御弁を開くことにより、貯蔵タンク内の尿素水溶液が加熱され、尿素水溶液の凍結が防止される。一方、貯蔵タンク内の尿素水溶液の温度が60℃以上になったときには第2の冷却水流量制御弁を閉じることにより、内燃機関の冷却水による加熱が停止され、貯蔵タンク内の尿素水溶液の変質が防止される。
Further, the second control unit outputs a control signal for opening and closing the second cooling water flow rate control valve based on the temperature of the urea aqueous solution detected by a temperature sensor provided in the storage tank. It has become.
For example, when the temperature of the aqueous urea solution in the storage tank falls below freezing point, the aqueous urea solution freezes and cannot be supplied to the reducing agent injection valve. Even when the temperature is below the freezing point, if the temperature is, for example, 80 ° C. or higher, the urea aqueous solution may be altered.
Therefore, in the second control unit in the DCU 60 of the present embodiment, when the temperature of the urea aqueous solution in the storage tank is less than 60 ° C., the urea aqueous solution in the storage tank is heated by opening the second cooling water flow rate control valve. Thus, freezing of the urea aqueous solution is prevented. On the other hand, when the temperature of the urea aqueous solution in the storage tank becomes 60 ° C. or higher, the heating by the cooling water of the internal combustion engine is stopped by closing the second cooling water flow rate control valve, and the alteration of the urea aqueous solution in the storage tank is performed. Is prevented.

4.還元剤噴射制御
次に、図1の排気浄化装置10に備えられた還元剤供給装置20によって行われる還元剤噴射制御について説明する。
内燃機関の運転時において、貯蔵タンク50内の液体還元剤は、ポンプ41によって汲み上げられ、還元剤噴射弁31に圧送される。このとき、ポンプ41の下流側の第1の供給通路58に備えられた圧力センサ43による検出値をフィードバックし、所定の圧力値を示すように制御される。例えば、検出値が所定値未満の場合にはポンプ41の出力を高める一方、圧力値が所定値を超える場合にはポンプ41の出力を低下させるとともに圧力制御弁49を介して液体還元剤が貯蔵タンク50に還流されて減圧される。これによって、還元剤噴射弁31側に圧送される還元剤の圧力がほぼ一定の値に維持される。
4). Reducing Agent Injection Control Next, reducing agent injection control performed by the reducing agent supply device 20 provided in the exhaust purification device 10 of FIG. 1 will be described.
During operation of the internal combustion engine, the liquid reducing agent in the storage tank 50 is pumped up by the pump 41 and pumped to the reducing agent injection valve 31. At this time, the detection value by the pressure sensor 43 provided in the first supply passage 58 on the downstream side of the pump 41 is fed back and controlled to show a predetermined pressure value. For example, when the detected value is less than a predetermined value, the output of the pump 41 is increased. On the other hand, when the pressure value exceeds the predetermined value, the output of the pump 41 is decreased and the liquid reducing agent is stored via the pressure control valve 49. It is returned to the tank 50 and depressurized. As a result, the pressure of the reducing agent pumped toward the reducing agent injection valve 31 is maintained at a substantially constant value.

また、ポンプモジュール40から還元剤噴射弁31に圧送された還元剤は、ほぼ一定の圧力値に維持されており、還元剤噴射弁31が開いたときに排気通路内に噴射されるようになっている。DCU60は、内燃機関の運転状態や排気温度、還元触媒13の温度、さらには還元触媒13の下流側で測定される、還元されずに還元触媒13を通過したNOX量等の情報をもとに噴射すべき還元剤の噴射供給量を決定し、それに応じた制御信号を生成して還元剤噴射弁31に対して出力する。還元剤噴射弁31はこの制御信号によってDUTY制御が行われ、適切な量の還元剤が排気通路中に噴射供給される。排気通路中に噴射された還元剤は、還元触媒13に流入し、排気ガス中に含まれるNOXの還元反応に用いられる。 Further, the reducing agent pumped from the pump module 40 to the reducing agent injection valve 31 is maintained at a substantially constant pressure value, and is injected into the exhaust passage when the reducing agent injection valve 31 is opened. ing. The DCU 60 is based on information such as the operating state of the internal combustion engine, the exhaust temperature, the temperature of the reduction catalyst 13, and the amount of NO x that has passed through the reduction catalyst 13 without being reduced, measured on the downstream side of the reduction catalyst 13. The amount of reducing agent to be injected is determined, and a control signal corresponding to the amount is generated and output to the reducing agent injection valve 31. The reducing agent injection valve 31 is subjected to DUTY control by this control signal, and an appropriate amount of reducing agent is injected and supplied into the exhaust passage. The reducing agent injected into the exhaust passage flows into the reduction catalyst 13 and is used for the reduction reaction of NO x contained in the exhaust gas.

5.冷却水循環制御
次に、図2に示す本実施形態の還元剤供給装置の制御装置(DCU)60による冷却水の循環制御のルーチンの一例について、図3及び図4に示す制御フローを参照しつつ説明する。
5). Cooling Water Circulation Control Next, an example of a cooling water circulation control routine by the control unit (DCU) 60 of the reducing agent supply apparatus of the present embodiment shown in FIG. 2 will be described with reference to the control flow shown in FIGS. explain.

まず、図3に示すように、スタート後のステップS1において、還元剤噴射弁の温度を検出する。上述したように、本実施形態のDCU60では、排気ガス温度Tg、排気ガスの流量Ve、貯蔵タンク内の尿素水溶液の温度Tu1、還元剤噴射弁に流入する尿素水溶液の温度Tu2、還元剤噴射弁に流入する冷却水の温度Tr、外気温度To、DCU60から還元剤噴射弁に送られる噴射指示値Qu、及び車両速度Sの各情報をもとに、還元剤噴射弁の先端温度Tiが演算される。   First, as shown in FIG. 3, in step S1 after the start, the temperature of the reducing agent injection valve is detected. As described above, in the DCU 60 of the present embodiment, the exhaust gas temperature Tg, the flow rate Ve of the exhaust gas, the temperature Tu1 of the urea aqueous solution in the storage tank, the temperature Tu2 of the urea aqueous solution flowing into the reducing agent injection valve, the reducing agent injection valve The tip temperature Ti of the reducing agent injection valve is calculated on the basis of the information on the temperature Tr of the cooling water flowing in, the outside air temperature To, the injection command value Qu sent from the DCU 60 to the reducing agent injection valve, and the vehicle speed S. The

次いで、ステップS2では、検出された還元剤噴射弁の先端温度Tiが下限値Ti1未満となっているか否かが判別される。本実施形態では、下限値Ti1は、尿素水溶液の沸点に設定されている。そして、還元剤噴射弁の先端温度Tiが下限値Ti1未満となっている場合には、ステップS3に進み、第1の冷却水流量制御弁を全閉あるいは開度を減少させた後、スタートに戻される。その結果、還元剤噴射弁に設けられた冷却水通路を流れる冷却水の流量が減らされるとともに、排気管によって伝達される排気熱の影響を受けて、還元剤噴射弁の先端温度Tiは上昇する。   Next, in step S2, it is determined whether or not the detected tip temperature Ti of the reducing agent injection valve is lower than a lower limit value Ti1. In the present embodiment, the lower limit value Ti1 is set to the boiling point of the urea aqueous solution. If the tip temperature Ti of the reducing agent injection valve is less than the lower limit Ti1, the process proceeds to step S3, where the first cooling water flow rate control valve is fully closed or the opening degree is decreased, and then the start is started. Returned. As a result, the flow rate of the cooling water flowing through the cooling water passage provided in the reducing agent injection valve is reduced, and the tip temperature Ti of the reducing agent injection valve rises due to the influence of the exhaust heat transmitted by the exhaust pipe. .

一方、ステップS2において還元剤噴射弁の先端温度Tiが下限値Ti1以上となっている場合には、ステップS4に進み、還元剤噴射弁の先端温度Tiが上限値Ti2以上となっているか否かが判別される。本実施形態では、上限値Ti2は、還元剤噴射弁の耐熱温度に設定されている。そして、還元剤噴射弁の先端温度Tiが上限値Ti2未満となっている場合にはそのままスタートに戻される一方、先端温度Tiが上限値Ti2以上となっている場合には、ステップS5に進み、第1の冷却水流量制御弁を全開あるいは開度を増大させた後、スタートに戻される。その結果、還元剤噴射弁に設けられた冷却水通路を流れる冷却水の流量が増加し、還元剤噴射弁が冷却されて先端温度Tiは低下する。   On the other hand, when the tip temperature Ti of the reducing agent injection valve is not less than the lower limit value Ti1 in step S2, the process proceeds to step S4, and whether or not the tip temperature Ti of the reducing agent injection valve is not less than the upper limit value Ti2. Is determined. In the present embodiment, the upper limit value Ti2 is set to the heat resistant temperature of the reducing agent injection valve. Then, when the tip temperature Ti of the reducing agent injection valve is less than the upper limit value Ti2, the process returns to the start as it is, whereas when the tip temperature Ti is equal to or higher than the upper limit value Ti2, the process proceeds to step S5. After the first coolant flow control valve is fully opened or the opening degree is increased, the operation is returned to the start. As a result, the flow rate of the cooling water flowing through the cooling water passage provided in the reducing agent injection valve increases, the reducing agent injection valve is cooled, and the tip temperature Ti decreases.

本実施形態の還元剤供給装置の制御方法では、上述した第1の冷却水流量制御弁の開閉制御による還元剤噴射弁の温度制御と併せて、第2の冷却水流量制御弁の開閉制御による貯蔵タンク内の尿素水溶液の温度制御が行われる。
図4は、貯蔵タンク内の尿素水溶液の温度制御のフローを示しており、まず、ステップS11において、貯蔵タンク内の尿素水溶液の温度Tu1を検出する。本実施形態の還元剤供給装置の場合、貯蔵タンク内に配置された温度センサによって検知される温度情報が読み込まれる。
In the control method of the reducing agent supply device of the present embodiment, the opening / closing control of the second coolant flow control valve is performed together with the temperature control of the reducing agent injection valve by the opening / closing control of the first cooling water flow control valve described above. Temperature control of the urea aqueous solution in the storage tank is performed.
FIG. 4 shows a flow of temperature control of the aqueous urea solution in the storage tank. First, in step S11, the temperature Tu1 of the aqueous urea solution in the storage tank is detected. In the case of the reducing agent supply device of this embodiment, temperature information detected by a temperature sensor arranged in the storage tank is read.

次いで、ステップS12では、検出された尿素水溶液の温度Tu1が基準値Tu0以下となっているか否かが判別される。このときの基準値Tu0は、例えば、貯蔵タンク内の尿素水溶液が変質せずに維持される温度を目安にして60℃に設定されている。
そして、尿素水溶液の温度Tu1が基準値Tu0以下となっている場合には、ステップS13に進んで第2の冷却水流量制御弁を全開あるいは開度を増大させた後、スタートに戻される。その結果、70〜80℃に維持されている内燃機関の冷却水によって貯蔵タンク内の尿素水溶液が加熱される。
Next, in step S12, it is determined whether or not the detected temperature Tu1 of the urea aqueous solution is equal to or lower than a reference value Tu0. The reference value Tu0 at this time is set to 60 ° C., for example, with reference to the temperature at which the urea aqueous solution in the storage tank is maintained without being altered.
When the temperature Tu1 of the urea aqueous solution is equal to or lower than the reference value Tu0, the process proceeds to step S13, where the second cooling water flow rate control valve is fully opened or the opening degree is increased, and then returned to the start. As a result, the urea aqueous solution in the storage tank is heated by the cooling water of the internal combustion engine maintained at 70 to 80 ° C.

一方、検出された尿素水溶液の温度Tu1が基準値Tu0を超えている場合には、貯蔵タンク内の尿素水溶液の温度が上昇しすぎて変質するおそれがあることから、ステップS14に進んで第2の冷却水流量制御弁を全閉又は開度を減少させた後、スタートに戻される。
このように、貯蔵タンク内の尿素水溶液の温度が、例えば60〜80℃の範囲内に維持されるように制御することにより、尿素水溶液の凍結及び変質が防止されるとともに、還元剤噴射弁から噴射されたときに速やかに気化されて、排気ガス中に均一に分散しやすくなる。
なお、本実施形態における第2の冷却水流量制御弁の開閉制御の例では、尿素水溶液の温度Tu1が基準値Tu0を超えるか超えないかのみを判別して流量制御を行っているが、さらに、基準値Tu0とは別の第2の基準値Tu2を定め、貯蔵タンク内の尿素水溶液の温度の範囲をより細分化して、内燃機関の冷却水による貯蔵タンク内の尿素水溶液の冷却制御を行うようにしてもよい。
On the other hand, if the detected temperature Tu1 of the urea aqueous solution exceeds the reference value Tu0, the temperature of the urea aqueous solution in the storage tank may be excessively increased and deteriorated. The cooling water flow rate control valve is fully closed or the opening degree is decreased, and then returned to the start.
Thus, by controlling so that the temperature of the urea aqueous solution in the storage tank is maintained within a range of, for example, 60 to 80 ° C., the urea aqueous solution is prevented from freezing and denatured, and from the reducing agent injection valve. When it is injected, it is quickly vaporized and easily dispersed uniformly in the exhaust gas.
In the example of the opening / closing control of the second cooling water flow rate control valve in this embodiment, the flow rate control is performed only by determining whether the temperature Tu1 of the urea aqueous solution exceeds or does not exceed the reference value Tu0. The second reference value Tu2 different from the reference value Tu0 is determined, the temperature range of the urea aqueous solution in the storage tank is further subdivided, and the cooling control of the urea aqueous solution in the storage tank is performed by the cooling water of the internal combustion engine You may do it.

排気浄化装置の構成例を示す図である。It is a figure which shows the structural example of an exhaust gas purification apparatus. 排気浄化装置に備えられた還元剤供給装置制御装置(DCU)の構成例を示すブロック図である。It is a block diagram which shows the structural example of the reducing agent supply apparatus control apparatus (DCU) with which the exhaust gas purification apparatus was equipped. 内燃機関の冷却水を利用した還元剤噴射弁の温度制御の一例を示すフローチャートである。It is a flowchart which shows an example of the temperature control of the reducing agent injection valve using the cooling water of an internal combustion engine. 内燃機関の冷却水を利用した尿素水溶液の温度制御の一例を示すフローチャートである。It is a flowchart which shows an example of the temperature control of the urea aqueous solution using the cooling water of an internal combustion engine.

符号の説明Explanation of symbols

10:排気浄化装置、11:排気管、13:還元触媒、15・16:温度センサ、17:NOXセンサ、20:還元剤供給装置、31:還元剤噴射弁、33・35:温度センサ、40:ポンプモジュール、41:ポンプ、43:圧力センサ、45:オリフィス、47:メインフィルタ、49:圧力制御弁、50:貯蔵タンク、51:温度センサ、57:第2の供給通路、58:第1の供給通路、59:循環経路、60:還元剤供給装置制御装置(DCU)、71:リバーティングバルブ、73:冷却水循環ポンプ、75:内燃機関の冷却水通路、81:第1の冷却水流量制御弁、83:第2の冷却水流量制御弁、85:第1の冷却水循環通路、87:第2の冷却水循環通路、92・93・94・95・96・97:ヒーター 10: exhaust purification device, 11: exhaust pipe, 13: reduction catalyst, 15 · 16: temperature sensor, 17: NO X sensor, 20: reducing agent supply device, 31: reducing agent injection valve, 33/35: temperature sensor, 40: pump module, 41: pump, 43: pressure sensor, 45: orifice, 47: main filter, 49: pressure control valve, 50: storage tank, 51: temperature sensor, 57: second supply passage, 58: first 1 supply passage, 59: circulation path, 60: reducing agent supply device control unit (DCU), 71: reverting valve, 73: cooling water circulation pump, 75: cooling water passage of internal combustion engine, 81: first cooling water Flow control valve, 83: second cooling water flow control valve, 85: first cooling water circulation passage, 87: second cooling water circulation passage, 92, 93, 94, 95, 96, 97: heater

Claims (6)

内燃機関の排気通路に配設された還元触媒の排気上流側に尿素溶液を還元剤として噴射供給し、前記還元触媒で排気ガス中の窒素酸化物を還元浄化する排気浄化装置に用いられ、前記還元触媒の排気上流側で排気管に固定された還元剤噴射弁を備えた還元剤供給装置において、
前記還元剤噴射弁を冷却するために前記内燃機関の冷却水の少なくとも一部を循環させるための冷却水循環通路と、
前記冷却水循環通路を流れる前記冷却水の流量を調節するための流量制御手段と、
前記還元剤噴射弁の温度を検出するための温度検出手段と、
前記還元剤噴射弁の温度に基づいて前記流量制御手段を制御するための制御手段と、
を備えることを特徴とする還元剤供給装置。
A urea solution is injected and supplied as a reducing agent to the exhaust upstream side of a reduction catalyst disposed in an exhaust passage of an internal combustion engine, and is used in an exhaust purification device that reduces and purifies nitrogen oxides in exhaust gas with the reduction catalyst, In the reducing agent supply device provided with the reducing agent injection valve fixed to the exhaust pipe on the exhaust upstream side of the reduction catalyst,
A cooling water circulation passage for circulating at least a part of the cooling water of the internal combustion engine to cool the reducing agent injection valve;
Flow rate control means for adjusting the flow rate of the cooling water flowing through the cooling water circulation passage;
Temperature detecting means for detecting the temperature of the reducing agent injection valve;
Control means for controlling the flow rate control means based on the temperature of the reducing agent injection valve;
A reducing agent supply device comprising:
前記制御手段は、前記還元剤噴射弁の温度が前記還元剤噴射弁の耐熱温度未満に維持されるように前記流量制御手段を制御することを特徴とする請求項1に記載の還元剤供給装置。   2. The reducing agent supply apparatus according to claim 1, wherein the control unit controls the flow rate control unit so that a temperature of the reducing agent injection valve is maintained below a heat resistant temperature of the reducing agent injection valve. . 前記制御手段は、前記還元剤噴射弁の温度が前記尿素溶液の沸点以上に維持されるように前記流量制御手段を制御することを特徴とする請求項1又は2に記載の還元剤供給装置。   3. The reducing agent supply apparatus according to claim 1, wherein the control unit controls the flow rate control unit so that a temperature of the reducing agent injection valve is maintained at a temperature equal to or higher than a boiling point of the urea solution. 前記温度検出手段は、前記排気ガスの温度、前記排気ガスの流量、前記液体還元剤の温度、前記冷却水の温度、外気温度、及び前記還元剤噴射弁からの噴射供給量のうちの少なくとも一つに基づいて前記還元剤噴射弁の先端温度を演算することを特徴とする請求項1〜3のいずれか一項に記載の還元剤供給装置。   The temperature detection means is at least one of the temperature of the exhaust gas, the flow rate of the exhaust gas, the temperature of the liquid reducing agent, the temperature of the cooling water, the outside air temperature, and the injection supply amount from the reducing agent injection valve. The reducing agent supply apparatus according to any one of claims 1 to 3, wherein a tip temperature of the reducing agent injection valve is calculated based on the flow rate. 前記冷却水循環通路、前記流量制御手段、及び前記制御手段を、それぞれ第1の冷却水循環通路、第1の流量制御手段、及び第1の制御手段としたときに、
前記尿素溶液を貯蔵する貯蔵タンク内の前記尿素溶液の温度を調節するために前記内燃機関の冷却水の少なくとも一部を循環させるための第2の冷却水循環通路と、
前記第2の冷却水循環通路を流れる前記冷却水の流量を調節するための第2の流量制御手段と、
前記貯蔵タンク内の尿素溶液の温度に基づいて前記第2の流量制御手段を制御するための第2の制御手段と、
を備えることを特徴とする請求項1〜4のいずれか一項に記載の還元剤供給装置。
When the cooling water circulation passage, the flow rate control means, and the control means are respectively a first cooling water circulation passage, a first flow rate control means, and a first control means,
A second cooling water circulation passage for circulating at least a portion of the cooling water of the internal combustion engine to adjust the temperature of the urea solution in a storage tank for storing the urea solution;
Second flow rate control means for adjusting the flow rate of the cooling water flowing through the second cooling water circulation passage;
Second control means for controlling the second flow rate control means based on the temperature of the urea solution in the storage tank;
The reducing agent supply device according to any one of claims 1 to 4, further comprising:
内燃機関の排気通路に配設された還元触媒の排気上流側に液体還元剤を噴射供給し、前記還元触媒で前記排気中の窒素酸化物を還元浄化する排気浄化装置に用いられ、前記還元触媒の排気上流側で排気管に固定された還元剤噴射弁を備えた還元剤供給装置の制御方法において、
前記還元剤噴射弁は、前記内燃機関の冷却水の少なくとも一部を循環させることによって冷却されるようになっており、
前記還元剤噴射弁の温度を検出するとともに、前記燃料制御弁の温度が所定範囲内に維持されるように、前記冷却水の流量を制御することを特徴とする還元剤供給装置の制御方法。
The reduction catalyst is used in an exhaust purification device that injects and supplies a liquid reducing agent to the exhaust upstream side of a reduction catalyst disposed in an exhaust passage of an internal combustion engine, and reduces and purifies nitrogen oxides in the exhaust with the reduction catalyst. In the control method of the reducing agent supply device provided with the reducing agent injection valve fixed to the exhaust pipe on the exhaust upstream side of
The reducing agent injection valve is cooled by circulating at least a part of the cooling water of the internal combustion engine,
A control method for a reducing agent supply device, wherein the temperature of the reducing agent injection valve is detected and the flow rate of the cooling water is controlled so that the temperature of the fuel control valve is maintained within a predetermined range.
JP2007272370A 2007-10-19 2007-10-19 Device and method for controlling reducing agent supplying device Pending JP2009097479A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007272370A JP2009097479A (en) 2007-10-19 2007-10-19 Device and method for controlling reducing agent supplying device
US12/738,414 US20100242439A1 (en) 2007-10-19 2008-09-01 Control unit and control method for reductant supply device
PCT/JP2008/065641 WO2009050948A1 (en) 2007-10-19 2008-09-01 Controller of reducing agent supply unit and method of controlling the same
CN200880112164A CN101828011A (en) 2007-10-19 2008-09-01 Controller of reducing agent supply unit and method of controlling the same
US13/738,050 US20130118155A1 (en) 2007-10-19 2013-01-10 Control unit and control method for reductant supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007272370A JP2009097479A (en) 2007-10-19 2007-10-19 Device and method for controlling reducing agent supplying device

Publications (1)

Publication Number Publication Date
JP2009097479A true JP2009097479A (en) 2009-05-07

Family

ID=40567225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007272370A Pending JP2009097479A (en) 2007-10-19 2007-10-19 Device and method for controlling reducing agent supplying device

Country Status (4)

Country Link
US (1) US20100242439A1 (en)
JP (1) JP2009097479A (en)
CN (1) CN101828011A (en)
WO (1) WO2009050948A1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138773A (en) * 2008-12-11 2010-06-24 Caterpillar Japan Ltd Reducing agent feeder for exhaust emission control catalyst
WO2011145568A1 (en) * 2010-05-17 2011-11-24 いすゞ自動車株式会社 Exhaust gas purification system
WO2011148809A1 (en) * 2010-05-25 2011-12-01 いすゞ自動車株式会社 Selective catalytic reduction apparatus
JP2012007511A (en) * 2010-06-23 2012-01-12 Hino Motors Ltd Exhaust purification device
CN102575551A (en) * 2009-06-18 2012-07-11 康明斯知识产权公司 Apparatus, system, and method for reductant line heating control
KR101278574B1 (en) 2011-07-29 2013-06-26 자동차부품연구원 Apparatus for purifying engine exhaust gas and vehicle using the same
KR101278573B1 (en) 2011-07-29 2013-06-26 자동차부품연구원 Apparatus for purifying engine exhaust gas and vehicle using the same
JP2014501876A (en) * 2010-12-22 2014-01-23 フォス・アウトモーティヴ・ゲー・エム・ベー・ハー Ready-made media conduits and their use in SCR catalyst systems
WO2014030241A1 (en) * 2012-08-23 2014-02-27 トヨタ自動車 株式会社 Reducing agent supply device
JP2014101865A (en) * 2012-11-22 2014-06-05 Sumitomo (Shi) Construction Machinery Co Ltd Construction machine
US20140202136A1 (en) * 2011-08-25 2014-07-24 Jörg Sprute Exhaust gas treatment device, method for processing exhaust gas, and motor vehicle
JP5636511B1 (en) * 2013-09-25 2014-12-03 株式会社小松製作所 Work vehicle
JP2015025419A (en) * 2013-07-26 2015-02-05 トヨタ自動車株式会社 Exhaust emission control device of internal combustion engine
JP2015040480A (en) * 2013-08-20 2015-03-02 トヨタ自動車株式会社 Additive supply device for internal combustion engine
JP2015071962A (en) * 2013-10-02 2015-04-16 株式会社デンソー Exhaust emission control system for engine
JP2015511682A (en) * 2012-04-03 2015-04-20 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling device for connecting members
KR20150096329A (en) * 2014-02-14 2015-08-24 도이츠 악티엔게젤샤프트 Method for purifying diesel engine exhaust gases
JP2015229996A (en) * 2014-06-06 2015-12-21 日立建機株式会社 Construction machine
JP2016061274A (en) * 2014-09-22 2016-04-25 株式会社クボタ Engine exhaust purification device
JP2016109086A (en) * 2014-12-09 2016-06-20 株式会社デンソー Exhaust emission control device
KR101744828B1 (en) * 2015-12-08 2017-06-08 현대자동차 주식회사 Cooling system for vehicle
JP2017160817A (en) * 2016-03-08 2017-09-14 株式会社Soken Control device of internal combustion engine
JP2018003669A (en) * 2016-06-30 2018-01-11 トヨタ自動車株式会社 Cooling device for exhaust emission control system
JP2018003667A (en) * 2016-06-30 2018-01-11 トヨタ自動車株式会社 Cooling device for exhaust emission control system
US9903245B2 (en) 2014-12-02 2018-02-27 Hyundai Motor Company System for cooling vehicle SCR and method for controlling the same
JP2018066326A (en) * 2016-10-20 2018-04-26 株式会社デンソー Urea water injection control device
CN107965373A (en) * 2013-06-06 2018-04-27 康明斯排放处理公司 The nozzle cooling system and technology of diesel exhaust gas fluid injection system
WO2018198554A1 (en) * 2017-04-25 2018-11-01 ヤンマー株式会社 Engine system

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007017458A1 (en) * 2007-04-03 2008-10-09 Daimler Ag A method for heating a Reduktionsmitteldosierventils in an SCR system for exhaust aftertreatment of an internal combustion engine
DE102008030756A1 (en) * 2008-06-27 2010-01-07 Emitec Gesellschaft Für Emissionstechnologie Mbh Method for operating a HWL dosing system
US20100114463A1 (en) * 2008-10-30 2010-05-06 Caterpillar Inc. System for cold starting machine
US8122710B2 (en) * 2008-12-01 2012-02-28 International Engine Intellectual Property Company, Llc Thermal management of urea dosing components in an engine exhaust after-treatment system
DE102009035940C5 (en) * 2009-08-03 2017-04-20 Cummins Ltd. SCR exhaust treatment device
US8413427B2 (en) * 2009-08-25 2013-04-09 GM Global Technology Operations LLC Dosing control systems and methods
DE102010013695A1 (en) * 2010-04-01 2011-10-06 Emitec Gesellschaft Für Emissionstechnologie Mbh Method for operating a delivery unit for a reducing agent
EP2375023B1 (en) * 2010-04-07 2012-09-19 Ford Global Technologies, LLC Method of controlling urea dosing in an exhaust system of a vehicle
JP5573351B2 (en) * 2010-05-17 2014-08-20 いすゞ自動車株式会社 SCR system
SE535930C2 (en) * 2010-06-21 2013-02-26 Scania Cv Ab Method and apparatus for avoiding overheating of a dosing unit in an SCR system
SE537643C2 (en) * 2010-06-21 2015-09-08 Scania Cv Ab Method and apparatus for cooling an HC dosing unit for exhaust gas purification
SE537642C2 (en) * 2010-06-21 2015-09-08 Scania Cv Ab Method and apparatus for cooling a reducing agent dosing unit
US20120020857A1 (en) * 2010-07-21 2012-01-26 Isada Raymond Upano Dosing system having recirculation heating and vacuum draining
US8516800B2 (en) * 2010-12-22 2013-08-27 Caterpillar Inc. System and method for introducing a reductant agent
CN103261601B (en) * 2010-12-27 2015-11-25 博世株式会社 The controlling method of emission control system and emission control system
DE102011009620A1 (en) * 2011-01-28 2012-08-02 Emitec Gesellschaft Für Emissionstechnologie Mbh Exhaust treatment device with an injector for supplying a fluid
US8661785B2 (en) 2011-04-15 2014-03-04 Ford Global Technologies, Llc System and method for liquid reductant injection
WO2012150395A1 (en) 2011-05-02 2012-11-08 Peugeot Citroen Automobiles Sa Exhaust line and vehicle fitted with this line
EP2527609A1 (en) * 2011-05-23 2012-11-28 Inergy Automotive Systems Research (Société Anonyme) Additive delivery system and method for controlling said system
EP2549072A1 (en) * 2011-07-20 2013-01-23 Inergy Automotive Systems Research (Société Anonyme) Vehicular fluid injection system, controller and method for heating said fluid injection system
US8754720B2 (en) 2011-08-03 2014-06-17 Mi Yan Two-stage pulse signal controller
DE102011088221A1 (en) * 2011-12-12 2013-06-13 Robert Bosch Gmbh Dosing arrangement for a liquid exhaust aftertreatment agent and dosing
DE102011088217A1 (en) * 2011-12-12 2013-06-13 Robert Bosch Gmbh Dosing arrangement for a liquid exhaust aftertreatment agent and dosing
DE102011088549A1 (en) 2011-12-14 2013-06-20 Robert Bosch Gmbh Dosing module for introducing reducing agent into exhaust gas treatment system of internal combustion engine, has passive valve for controlling flow of cooling medium through channels based on dosing module temperature
DE102012011991A1 (en) * 2012-06-16 2013-12-19 Volkswagen Aktiengesellschaft Method for operating a metering valve and for operating an internal combustion engine
CN103670629B (en) * 2012-09-20 2016-01-13 北汽福田汽车股份有限公司 The urea pipe method for heating and controlling of the SCR aftertreatment system of motor
GB201223357D0 (en) * 2012-12-24 2013-02-06 Valtra Oy Ab Auxiliary cooling means for a dosing mocule in an exhaust treatment system
JP6024478B2 (en) * 2013-01-28 2016-11-16 いすゞ自動車株式会社 Urea water pipe blockage detection device for urea SCR
CN103114896B (en) * 2013-03-01 2015-04-22 江苏大学 Urea solution metering injector and control method thereof
US8959903B2 (en) 2013-03-01 2015-02-24 Cummins Emission Solutions Inc. Systems and techniques for heating urea injection systems
WO2014141478A1 (en) * 2013-03-15 2014-09-18 株式会社小松製作所 Exhaust gas aftertreatment unit, and construction vehicle equipped with same
US9822685B2 (en) 2013-08-16 2017-11-21 Tenneco Automotive Operating Company Inc. Water injection exhaust treatment system
US9221014B2 (en) 2013-11-20 2015-12-29 Tenneco Automotive Operating Company Inc. Fluid injection control system
GB201322576D0 (en) * 2013-12-19 2014-02-05 Equigerminal Sa Urea delivery system for scr system
DE112013000260B4 (en) * 2013-12-27 2016-10-20 Komatsu Ltd. working vehicle
JP6217408B2 (en) * 2014-01-24 2017-10-25 コベルコ建機株式会社 Exhaust treatment device for construction machine and construction machine
FR3017653B1 (en) * 2014-02-14 2018-11-02 Psa Automobiles Sa. METHOD FOR CONTROLLING A CATALYTIC REDUCTION SYSTEM INJECTOR
KR101796560B1 (en) * 2014-02-21 2017-12-12 두산인프라코어 주식회사 Cooling device for reducing agent dosing module
US9303388B2 (en) * 2014-02-26 2016-04-05 Komatsu Ltd. Work vehicle
DE102014003580A1 (en) 2014-03-11 2015-09-17 Daimler Ag Cooling arrangement and method for cooling a metering device
CN103835789B (en) * 2014-03-12 2016-07-27 安徽江淮汽车股份有限公司 A kind of light bus SCR heating-cooling coil structure
US9488088B2 (en) 2014-05-16 2016-11-08 Komatsu Ltd. Work vehicle and method of controlling work vehicle
JP6365099B2 (en) 2014-08-08 2018-08-01 いすゞ自動車株式会社 Urea water temperature management system and urea water temperature management method
CN105507994A (en) * 2014-10-13 2016-04-20 天纳克汽车经营有限公司 Water injection exhaust treatment system
JP2016094863A (en) 2014-11-13 2016-05-26 いすゞ自動車株式会社 Urea water injection system and method of preventing crystallization of urea water injection device
CN105673154B (en) 2014-11-21 2019-11-08 天纳克(苏州)排放系统有限公司 Common rail, the application of the common rail, urea injection system and its control method
ES2743221T3 (en) 2014-11-27 2020-02-18 Siemens Mobility GmbH Procedure for heating an operating agent, as well as reservoir heating system and operating agent heating system
ES2731605T3 (en) 2014-11-27 2019-11-18 Siemens Mobility GmbH Procedure for heating an operating agent, as well as operating agent heating system
JP6501794B2 (en) 2014-12-25 2019-04-17 ボルボトラックコーポレーション Engine exhaust purification system
JP6187505B2 (en) * 2015-03-02 2017-08-30 トヨタ自動車株式会社 Exhaust purification device
CN104863672A (en) * 2015-04-07 2015-08-26 西南交通大学 Simple pneumatic urea dosing system
DE102016100284A1 (en) 2016-01-11 2017-07-13 Eberspächer Exhaust Technology GmbH & Co. KG Exhaust system for an internal combustion engine and method for operating an exhaust system
WO2017187640A1 (en) * 2016-04-28 2017-11-02 株式会社小松製作所 Exhaust gas post-treatment unit and working vehicle
CN107435570B (en) * 2016-05-25 2021-07-27 罗伯特·博世有限公司 Diesel engine tail gas aftertreatment system and fluid working system
CN106523094A (en) * 2016-12-29 2017-03-22 雷沃重工股份有限公司 Control device for adjusting SCR temperature and agricultural machinery
KR102322256B1 (en) * 2017-05-08 2021-11-04 현대자동차 주식회사 Fuel Reforming System
JP6719425B2 (en) * 2017-07-05 2020-07-08 ヤンマーパワーテクノロジー株式会社 Urea water supply device
DE102017217134B4 (en) * 2017-09-26 2021-04-01 Bayerische Motoren Werke Aktiengesellschaft Device for feeding a liquid cleaning medium into a motor vehicle exhaust line
WO2019121019A1 (en) * 2017-12-21 2019-06-27 Robert Bosch Gmbh Dosing module including temperature based control of a coolant circuit
US10794253B2 (en) * 2018-06-15 2020-10-06 GM Global Technology Operations LLC Engine and coolant system control systems and methods
JP7109143B2 (en) * 2018-06-28 2022-07-29 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング heating system
DE102018124380A1 (en) * 2018-10-02 2020-04-02 Fpt Motorenforschung Ag Coolant circuit with integrated dosing module, method for cooling a dosing module integrated in a coolant circuit
JP7383445B2 (en) * 2019-10-14 2023-11-20 ボッシュ株式会社 Exhaust purification device and control method for the exhaust purification device
JP7320194B2 (en) * 2019-11-25 2023-08-03 いすゞ自動車株式会社 vehicle reductant thawing device
US11225894B1 (en) * 2020-06-30 2022-01-18 Faurecia Emissions Control Technologies, Usa, Llc Exhaust aftertreatment system with thermally controlled reagent doser

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0996212A (en) * 1995-10-03 1997-04-08 Mitsubishi Motors Corp Exhaust gas purifier for diesel engine
JP2003269145A (en) * 2002-03-11 2003-09-25 Mitsubishi Fuso Truck & Bus Corp NOx PURIFICATION DEVICE OF INTERNAL COMBUSTION ENGINE
JP2005113687A (en) * 2003-10-02 2005-04-28 Nissan Diesel Motor Co Ltd Engine exhaust emission control device
JP2005127318A (en) * 2003-09-19 2005-05-19 Nissan Diesel Motor Co Ltd Engine exhaust emission control device
JP2005315206A (en) * 2004-04-30 2005-11-10 Bosch Corp Liquid supply device for exhaust gas aftertreatment device
JP2007040118A (en) * 2005-08-01 2007-02-15 Osaka Gas Co Ltd Aqueous urea nozzle device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522218A (en) * 1994-08-23 1996-06-04 Caterpillar Inc. Combustion exhaust purification system and method
DE4436397B4 (en) * 1994-10-12 2006-06-08 Robert Bosch Gmbh Device for aftertreatment of exhaust gases
US5976475A (en) * 1997-04-02 1999-11-02 Clean Diesel Technologies, Inc. Reducing NOx emissions from an engine by temperature-controlled urea injection for selective catalytic reduction
DE19827678B4 (en) * 1998-06-22 2010-05-20 Hjs Fahrzeugtechnik Gmbh & Co Emission control system for removing exhaust gases from combustion units
JP3751962B2 (en) * 2003-09-05 2006-03-08 日産ディーゼル工業株式会社 Engine exhaust purification system
DE102004015805B4 (en) * 2004-03-29 2007-07-26 J. Eberspächer GmbH & Co. KG Device for introducing a liquid into an exhaust gas line
JP3686670B1 (en) * 2004-10-29 2005-08-24 日産ディーゼル工業株式会社 Exhaust purification device
JP4656039B2 (en) * 2006-10-19 2011-03-23 株式会社デンソー Engine exhaust purification system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0996212A (en) * 1995-10-03 1997-04-08 Mitsubishi Motors Corp Exhaust gas purifier for diesel engine
JP2003269145A (en) * 2002-03-11 2003-09-25 Mitsubishi Fuso Truck & Bus Corp NOx PURIFICATION DEVICE OF INTERNAL COMBUSTION ENGINE
JP2005127318A (en) * 2003-09-19 2005-05-19 Nissan Diesel Motor Co Ltd Engine exhaust emission control device
JP2005113687A (en) * 2003-10-02 2005-04-28 Nissan Diesel Motor Co Ltd Engine exhaust emission control device
JP2005315206A (en) * 2004-04-30 2005-11-10 Bosch Corp Liquid supply device for exhaust gas aftertreatment device
JP2007040118A (en) * 2005-08-01 2007-02-15 Osaka Gas Co Ltd Aqueous urea nozzle device

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138773A (en) * 2008-12-11 2010-06-24 Caterpillar Japan Ltd Reducing agent feeder for exhaust emission control catalyst
CN105065092A (en) * 2009-06-18 2015-11-18 康明斯知识产权公司 Apparatus, system, and method for reductant line heating control
CN104806328A (en) * 2009-06-18 2015-07-29 康明斯知识产权公司 Apparatus, System, and Method for Reductant Line Heating Control
CN102575551A (en) * 2009-06-18 2012-07-11 康明斯知识产权公司 Apparatus, system, and method for reductant line heating control
WO2011145568A1 (en) * 2010-05-17 2011-11-24 いすゞ自動車株式会社 Exhaust gas purification system
JP2011241738A (en) * 2010-05-17 2011-12-01 Isuzu Motors Ltd Exhaust emission control system
US9217352B2 (en) 2010-05-17 2015-12-22 Isuzu Motors Limited Exhaust gas purification system
CN102906384A (en) * 2010-05-17 2013-01-30 五十铃自动车株式会社 Exhaust gas purification system
JP2011247135A (en) * 2010-05-25 2011-12-08 Isuzu Motors Ltd Scr system
CN102985650A (en) * 2010-05-25 2013-03-20 五十铃自动车株式会社 Selective catalytic reduction apparatus
US9328643B2 (en) 2010-05-25 2016-05-03 Isuzu Motors Limited Selective catalytic reduction system
WO2011148809A1 (en) * 2010-05-25 2011-12-01 いすゞ自動車株式会社 Selective catalytic reduction apparatus
JP2012007511A (en) * 2010-06-23 2012-01-12 Hino Motors Ltd Exhaust purification device
JP2014501876A (en) * 2010-12-22 2014-01-23 フォス・アウトモーティヴ・ゲー・エム・ベー・ハー Ready-made media conduits and their use in SCR catalyst systems
US9353662B2 (en) 2010-12-22 2016-05-31 Voss Automotive Gmbh Fabricated media line and use in an SCR catalyst system
KR101278574B1 (en) 2011-07-29 2013-06-26 자동차부품연구원 Apparatus for purifying engine exhaust gas and vehicle using the same
KR101278573B1 (en) 2011-07-29 2013-06-26 자동차부품연구원 Apparatus for purifying engine exhaust gas and vehicle using the same
US9562454B2 (en) * 2011-08-25 2017-02-07 Volkswagen Aktiengesellschaft Exhaust gas treatment device, method for processing exhaust gas, and motor vehicle
US20140202136A1 (en) * 2011-08-25 2014-07-24 Jörg Sprute Exhaust gas treatment device, method for processing exhaust gas, and motor vehicle
JP2015511682A (en) * 2012-04-03 2015-04-20 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling device for connecting members
JP5664796B2 (en) * 2012-08-23 2015-02-04 トヨタ自動車株式会社 Reducing agent supply device
WO2014030241A1 (en) * 2012-08-23 2014-02-27 トヨタ自動車 株式会社 Reducing agent supply device
JP2014101865A (en) * 2012-11-22 2014-06-05 Sumitomo (Shi) Construction Machinery Co Ltd Construction machine
CN107965373A (en) * 2013-06-06 2018-04-27 康明斯排放处理公司 The nozzle cooling system and technology of diesel exhaust gas fluid injection system
JP2015025419A (en) * 2013-07-26 2015-02-05 トヨタ自動車株式会社 Exhaust emission control device of internal combustion engine
JP2015040480A (en) * 2013-08-20 2015-03-02 トヨタ自動車株式会社 Additive supply device for internal combustion engine
CN104769242A (en) * 2013-09-25 2015-07-08 株式会社小松制作所 Working vehicle
JP5636511B1 (en) * 2013-09-25 2014-12-03 株式会社小松製作所 Work vehicle
CN104769242B (en) * 2013-09-25 2016-04-06 株式会社小松制作所 Working truck
US9726065B2 (en) 2013-09-25 2017-08-08 Komatsu Ltd. Work vehicle
WO2015045023A1 (en) * 2013-09-25 2015-04-02 株式会社小松製作所 Working vehicle
JP2015071962A (en) * 2013-10-02 2015-04-16 株式会社デンソー Exhaust emission control system for engine
KR20150096329A (en) * 2014-02-14 2015-08-24 도이츠 악티엔게젤샤프트 Method for purifying diesel engine exhaust gases
KR102309224B1 (en) * 2014-02-14 2021-10-05 도이츠 악티엔게젤샤프트 Method for purifying diesel engine exhaust gases
JP2015229996A (en) * 2014-06-06 2015-12-21 日立建機株式会社 Construction machine
JP2016061274A (en) * 2014-09-22 2016-04-25 株式会社クボタ Engine exhaust purification device
US9903245B2 (en) 2014-12-02 2018-02-27 Hyundai Motor Company System for cooling vehicle SCR and method for controlling the same
JP2016109086A (en) * 2014-12-09 2016-06-20 株式会社デンソー Exhaust emission control device
KR101744828B1 (en) * 2015-12-08 2017-06-08 현대자동차 주식회사 Cooling system for vehicle
JP2017160817A (en) * 2016-03-08 2017-09-14 株式会社Soken Control device of internal combustion engine
JP2018003669A (en) * 2016-06-30 2018-01-11 トヨタ自動車株式会社 Cooling device for exhaust emission control system
JP2018003667A (en) * 2016-06-30 2018-01-11 トヨタ自動車株式会社 Cooling device for exhaust emission control system
JP2018066326A (en) * 2016-10-20 2018-04-26 株式会社デンソー Urea water injection control device
WO2018198554A1 (en) * 2017-04-25 2018-11-01 ヤンマー株式会社 Engine system
JP2018184857A (en) * 2017-04-25 2018-11-22 ヤンマー株式会社 Engine system

Also Published As

Publication number Publication date
WO2009050948A1 (en) 2009-04-23
CN101828011A (en) 2010-09-08
US20100242439A1 (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP2009097479A (en) Device and method for controlling reducing agent supplying device
JP5294446B2 (en) Temperature sensor rationality diagnostic device, rationality diagnostic method, and exhaust purification device for internal combustion engine
JP5573351B2 (en) SCR system
US20130118155A1 (en) Control unit and control method for reductant supply device
JP5139765B2 (en) Control device and control method for reducing agent supply system
JP4137838B2 (en) Liquid supply device for exhaust gas aftertreatment device
US9255511B2 (en) Exhaust purification system and method for controlling exhaust purification system
JP6663680B2 (en) Control device for reducing agent injection device
JP5678475B2 (en) SCR system
US20130283769A1 (en) Exhaust gas purification system and method for controlling the same
JP2009168013A (en) Heating system for chemical used in exhaust purification system
US10240504B2 (en) Control device and control method for reducing agent injection device, and reducing agent injection device
JP6088865B2 (en) Control method for reducing agent supply device
JP2011080397A (en) Exhaust emission control device for internal combustion engine
EP3533978B1 (en) Urea water supply system and control method therefor
JP2009228616A (en) Reducer feeding device and cooling water circulation control device
US20120085080A1 (en) FUEL-FIRED BURNER AND HEAT EXCHANGER SYSTEM FOR HEATING A NOx REDUCING AGENT SUPPLY TANK
US10844768B2 (en) Abnormality determination device
JP2010180801A (en) Abnormality diagnostic device of exhaust gas purifying system
JP5533363B2 (en) SCR system
EP2682580B1 (en) Exhaust emission control system for internal combustion engine, and control method for exhaust emission control system
US9759111B2 (en) Control techniques of exhaust purification system and exhaust purification system
JPH10252578A (en) Egr device with egr cooler
JP6753949B2 (en) Heater control device and heater control method
JP2015017576A (en) Reducer feeding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130107

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130411

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130705