JP2010138773A - Reducing agent feeder for exhaust emission control catalyst - Google Patents

Reducing agent feeder for exhaust emission control catalyst Download PDF

Info

Publication number
JP2010138773A
JP2010138773A JP2008315248A JP2008315248A JP2010138773A JP 2010138773 A JP2010138773 A JP 2010138773A JP 2008315248 A JP2008315248 A JP 2008315248A JP 2008315248 A JP2008315248 A JP 2008315248A JP 2010138773 A JP2010138773 A JP 2010138773A
Authority
JP
Japan
Prior art keywords
reducing agent
engine
heat storage
heat exchanger
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008315248A
Other languages
Japanese (ja)
Other versions
JP5137135B2 (en
Inventor
Shigeo Kajita
重夫 梶田
Takashi Yoneda
敬 米田
Nobuaki Matoba
信明 的場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Japan Ltd
Original Assignee
Caterpillar Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Japan Ltd filed Critical Caterpillar Japan Ltd
Priority to JP2008315248A priority Critical patent/JP5137135B2/en
Publication of JP2010138773A publication Critical patent/JP2010138773A/en
Application granted granted Critical
Publication of JP5137135B2 publication Critical patent/JP5137135B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reducing agent feeder for an exhaust emission control catalyst, improving fuel consumption by controlling such that a liquid reducing agent is maintained at a minimum appropriate temperature. <P>SOLUTION: A reducing agent tank 33 stores the liquid reducing agent supplied to the exhaust system 19 of an engine 15. A heat exchanger 35 is supplied with engine cooling water heated by heat exchange with the engine 15 and heats the liquid reducing agent in the reducing agent tank 33 through heat storage fluid 32. A radiator 18 cools the engine cooling water routed through the heat exchanger 35 and circulates it to the engine 15. The amount of engine cooling water returned from the engine 15 to the radiator 18 by bypassing the heat exchanger 35 is proportionally adjusted in a reducing direction by a solenoid proportional valve 38 when the amount of engine cooling water returned from the engine 15 to the radiator 18 through the heat exchanger 35 is proportionally adjusted in an increasing direction. A controller 43 adjusts the solenoid proportional valve 38 based on the temperature of the liquid reducing agent detected by a temperature detector 41 and controls the temperature of the liquid reducing agent constant. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、エンジン冷却水の熱を利用して保温した排気ガス浄化触媒用還元剤をエンジンの排気装置に供給する排気ガス浄化触媒用還元剤供給装置に関する。   The present invention relates to an exhaust gas purifying catalyst reducing agent supply device for supplying an exhaust gas purifying catalyst reducing agent, which is kept warm by utilizing heat of engine cooling water, to an engine exhaust device.

従来のエンジンの排気浄化に用いる還元剤の凍結防止技術としては、内燃機関の排気マニホールド、排気管、マフラからなる排気系内に配置された排気ガス浄化用触媒の上流側に噴射供給される液体還元剤をその貯蔵タンク及びポンプを含む供給管系において凍結から防ぐ保温装置で、液体還元剤貯蔵タンク及びポンプを含む供給管系の外表面の全体ないし主要部分にわたって電熱線を配置し、その上に断熱材の包囲層を設け、さらに必要に応じて貯蔵タンク内にも電熱線加熱手段を設け、液体還元剤温度及び/または外気温に応じてそれらの電熱線に外部電源から通電し、そしてその通電を遮断し、液体還元剤の温度を凍結を防止するのに適切な温度範囲に維持する構成としたエンジンの排気ガス浄化触媒用還元剤保温装置及びそれを組込んだ排気ガス浄化装置がある(例えば、特許文献1参照)。   As a conventional technique for preventing freezing of a reducing agent used for exhaust purification of an engine, a liquid injected and supplied to an upstream side of an exhaust gas purification catalyst disposed in an exhaust system including an exhaust manifold, an exhaust pipe, and a muffler of an internal combustion engine A heat retention device that prevents the reducing agent from freezing in the supply pipe system including the storage tank and the pump, and the heating wire is arranged over the whole or the main part of the outer surface of the supply pipe system including the liquid reducing agent storage tank and the pump. In addition, a heating wire heating means is provided in the storage tank as necessary, and the heating wires are energized from an external power source according to the liquid reductant temperature and / or outside air temperature. Reducing agent heat retention device for engine exhaust gas purification catalyst, which is configured to cut off the energization and maintain the temperature of the liquid reductant in an appropriate temperature range to prevent freezing, and incorporating the same It is an exhaust gas purification device (e.g., see Patent Document 1).

また、還元剤の凍結防止のために還元剤を貯蔵する還元剤タンクにエンジンの冷却水循環配管を配管して、エンジンにより加熱された冷却水を還元剤タンクに導くようにした排気浄化装置がある。これは、冷却水循環配管の途中に冷却水遮断弁を設け、この冷却水遮断弁を制御手段により特定の条件下で所定時間だけ開いて、冷却水を循環するように制御している(例えば、特許文献2参照)。
特開2000−027627号公報(第3頁、図1) 特開2006−125331号公報(第5頁、図2)
In addition, there is an exhaust purification device in which a cooling water circulation pipe of an engine is connected to a reducing agent tank that stores the reducing agent to prevent the freezing of the reducing agent, and the cooling water heated by the engine is guided to the reducing agent tank. . This is provided with a cooling water shut-off valve in the middle of the cooling water circulation pipe, and this cooling water shut-off valve is controlled to open for a predetermined time under a specific condition by the control means so as to circulate the cooling water (for example, Patent Document 2).
JP 2000-027627 A (page 3, FIG. 1) Japanese Patent Laying-Open No. 2006-125331 (5th page, FIG. 2)

上記特許文献1に記載された従来技術を油圧ショベルなどの作業機械に適用した場合、タンク内の液体還元剤の凍結を防止するために過大な電力を要し、油圧ショベルなどの作業機械のバッテリでは対応が困難である。特に、寒冷地または山の上などの高地で作業機械を用いる場合は、尿素水などの液体還元剤が凍ってしまい、配管が破裂するおそれがあるので、常時この液体還元剤を温める必要があり、そのために、常時電力を供給するためにエンジンを継続的に駆動する必要があり、燃費が悪い。   When the prior art described in Patent Document 1 is applied to a working machine such as a hydraulic excavator, excessive power is required to prevent the liquid reducing agent in the tank from freezing, and the battery of the working machine such as a hydraulic excavator is used. Then, it is difficult to respond. In particular, when working machines are used in cold regions or highlands such as on a mountain, it is necessary to always warm the liquid reducing agent because the liquid reducing agent such as urea water may freeze and the pipe may burst. In addition, it is necessary to continuously drive the engine in order to constantly supply electric power, resulting in poor fuel consumption.

また、作業機械では、作業内容に応じてエンジン負荷が変化し、そのエンジン負荷によってエンジン冷却水の温度変化が著しいので、特許文献2に記載された従来技術のように、冷却水循環配管の途中に冷却水遮断弁を設け、この冷却水遮断弁を制御手段により特定の条件下で所定時間だけ開いて、冷却水を循環するように制御するものでは、液体還元剤の温度を一定に保持することが難しい。   Further, in the work machine, the engine load changes depending on the work content, and the engine coolant temperature changes significantly due to the engine load. Therefore, as in the prior art described in Patent Document 2, the engine load is changed in the middle of the coolant circulation pipe. In the case where a cooling water shut-off valve is provided, and the cooling water shut-off valve is controlled to circulate the cooling water by opening the cooling water shut-off valve for a predetermined time under specific conditions by the control means, the temperature of the liquid reducing agent is kept constant. Is difficult.

本発明は、このような点に鑑みなされたもので、液体還元剤を必要最小限の適切な温度に保持できるように制御することで、燃費を向上できる排気ガス浄化触媒用還元剤供給装置を提供することを目的とする。   The present invention has been made in view of the above points, and provides a reducing agent supply device for an exhaust gas purification catalyst that can improve fuel efficiency by controlling the liquid reducing agent so that it can be maintained at an appropriate minimum temperature. The purpose is to provide.

請求項1に記載された発明は、エンジンの排気装置に供給される液体還元剤を収容した還元剤タンクと、エンジンとの熱交換により加熱されたエンジン冷却水の供給を受けて還元剤タンク内の液体還元剤を温める熱交換器と、熱交換器を経たエンジン冷却水を冷却してエンジンに循環させる冷却器と、エンジンから熱交換器を経て冷却器に戻されるエンジン冷却水量を指令信号に応じて比例調整する電磁比例弁と、液体還元剤の温度を検出する温度検出器と、温度検出器で検出された液体還元剤の温度に基づいて電磁比例弁を調整して液体還元剤の温度を一定に制御するコントローラとを具備した排気ガス浄化触媒用還元剤供給装置である。   According to the first aspect of the present invention, there is provided a reducing agent tank containing a liquid reducing agent supplied to an exhaust device of an engine and an engine cooling water heated by heat exchange between the engine and the inside of the reducing agent tank. The heat exchanger that warms the liquid reductant, the cooler that cools the engine coolant that has passed through the heat exchanger and circulates it to the engine, and the amount of engine coolant that is returned from the engine to the cooler through the heat exchanger A proportional proportional valve, a temperature detector for detecting the temperature of the liquid reducing agent, and a temperature of the liquid reducing agent by adjusting the electromagnetic proportional valve based on the temperature of the liquid reducing agent detected by the temperature detector. Is a reducing agent supply device for an exhaust gas purifying catalyst.

請求項2に記載された発明は、請求項1記載の排気ガス浄化触媒用還元剤供給装置における電磁比例弁が、熱交換器にエンジン冷却水を供給する管路中に設けられ指令電流に比例して閉状態から開状態へと開度変化する一方の電磁比例弁と、熱交換器を通らないバイパス管路中に設けられ指令電流に比例して開状態から閉状態へと開度変化する他方の電磁比例弁とを具備した排気ガス浄化触媒用還元剤供給装置である。   According to a second aspect of the present invention, the electromagnetic proportional valve in the reducing agent supply device for the exhaust gas purifying catalyst according to the first aspect is provided in a conduit for supplying engine cooling water to the heat exchanger and is proportional to the command current. One solenoid proportional valve whose opening degree changes from the closed state to the open state, and the opening degree change from the open state to the closed state in proportion to the command current provided in the bypass pipe that does not pass through the heat exchanger It is a reducing agent supply apparatus for exhaust gas purification catalysts provided with the other electromagnetic proportional valve.

請求項3に記載された発明は、請求項1または2記載の排気ガス浄化触媒用還元剤供給装置において、蓄熱流体を内部に充填するとともに還元剤タンクを蓄熱流体中に内蔵した蓄熱タンクと、蓄熱タンクの外表面を覆ったタンク断熱材とを備え、熱交換器は、蓄熱タンクの内部に設けられエンジン冷却水の供給を受けて蓄熱タンク内の蓄熱流体を温めることで間接的に還元剤タンク内の液体還元剤を温めるようにした排気ガス浄化触媒用還元剤供給装置である。   The invention described in claim 3 is the regenerator supply device for exhaust gas purification catalyst according to claim 1 or 2, wherein the heat storage tank is filled with the heat storage fluid and the reductant tank is built in the heat storage fluid; A heat insulating tank that covers the outer surface of the heat storage tank, and the heat exchanger is provided inside the heat storage tank and receives supply of engine cooling water to indirectly heat the heat storage fluid in the heat storage tank, thereby reducing the reducing agent indirectly. It is a reducing agent supply device for an exhaust gas purification catalyst that warms a liquid reducing agent in a tank.

請求項1に記載された発明によれば、コントローラは、温度検出器で検出された液体還元剤の温度に基づいて電磁比例弁を調整して、還元剤タンク内の液体還元剤を温める熱交換器に供給されるエンジン冷却水量を制御することで、液体還元剤を必要最小限の適切な温度に保持できるように制御でき、燃費を向上できる。このとき、コントローラは、温度検出器により検出した液体還元剤の温度に基づき電磁比例弁を調整して、熱交換器に供給するエンジン冷却水量を調整することで、液体還元剤の温度を一定に制御するので、エンジンから放熱された熱をエンジン冷却水で回収して蓄熱流体を介し液体還元剤の保温に有効利用でき、その際に、コントローラおよび温度検出器により電磁比例弁を制御して、液体還元剤の温度を適正な範囲に保持できる。   According to the first aspect of the present invention, the controller adjusts the electromagnetic proportional valve based on the temperature of the liquid reducing agent detected by the temperature detector to heat the liquid reducing agent in the reducing agent tank. By controlling the amount of engine cooling water supplied to the vessel, the liquid reducing agent can be controlled so as to be maintained at an appropriate minimum temperature, and fuel efficiency can be improved. At this time, the controller adjusts the electromagnetic proportional valve based on the temperature of the liquid reducing agent detected by the temperature detector, and adjusts the amount of engine coolant supplied to the heat exchanger, thereby making the temperature of the liquid reducing agent constant. Because it controls, the heat dissipated from the engine can be recovered with the engine cooling water and effectively used for heat retention of the liquid reducing agent via the heat storage fluid, and at that time, the electromagnetic proportional valve is controlled by the controller and the temperature detector, The temperature of the liquid reducing agent can be maintained within an appropriate range.

請求項2に記載された発明によれば、一方の電磁比例弁により、エンジンから熱交換器を経て冷却器に戻されるエンジン冷却水量を増加させる方向に比例調整する場合は、他方の電磁比例弁により、エンジンから熱交換器をバイパスして冷却器に戻されるエンジン冷却水量を減少させる方向に比例調整することで、熱交換器から蓄熱流体に供給される熱量を調整する際でも、冷却器を通過するエンジン冷却水量は一定に保つことができ、冷却器による冷却能力を一定に保つことができる。   According to the second aspect of the present invention, in the case of proportionally adjusting the amount of engine coolant returned from the engine to the cooler through the heat exchanger by one electromagnetic proportional valve, the other electromagnetic proportional valve is used. Therefore, even when adjusting the amount of heat supplied from the heat exchanger to the heat storage fluid by proportionally adjusting the amount of engine coolant that bypasses the heat exchanger and returns to the cooler, the cooler The amount of engine coolant that passes through can be kept constant, and the cooling capacity of the cooler can be kept constant.

請求項3に記載された発明によれば、外表面をタンク断熱材で覆われ内部に蓄熱流体が充填された蓄熱タンクの内部に、蓄熱流体を温める熱交換器を設け、この熱交換器とともに蓄熱タンク内の蓄熱流体中に、エンジンの排気装置に供給される液体還元剤を収容した還元剤タンクを内蔵したので、タンク断熱材と、熱交換器により加熱された蓄熱流体の2重のタンク保温構造により、還元剤タンクおよびその内部の液体還元剤を効率良く保温でき、保温に要する熱効率を向上できる。   According to the invention described in claim 3, a heat exchanger for warming the heat storage fluid is provided inside the heat storage tank whose outer surface is covered with a tank heat insulating material and filled with the heat storage fluid, and together with this heat exchanger Since the reductant tank that contains the liquid reductant supplied to the engine exhaust system is built in the heat storage fluid in the heat storage tank, a double tank of the tank heat insulating material and the heat storage fluid heated by the heat exchanger With the heat retaining structure, the reducing agent tank and the liquid reducing agent inside thereof can be efficiently warmed, and the thermal efficiency required for warming can be improved.

以下、本発明を、図1乃至図3に示された一実施の形態を参照しながら詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to an embodiment shown in FIGS.

図2および図3に示されるように、作業機械としての油圧ショベル10は、下部走行体11に機体としての上部旋回体12が旋回可能に設けられ、この上部旋回体12にキャブ13、作業装置14およびエンジン15などが搭載されている。エンジン15は、エンジン本体16と、このエンジン本体16を冷却するためのウォータジャケット(図示せず)とを備えている。   As shown in FIGS. 2 and 3, a hydraulic excavator 10 as a work machine has a lower traveling body 11 provided with an upper revolving body 12 as a machine body so that the upper revolving body 12 can turn, and the upper revolving body 12 has a cab 13 and a working device. 14 and engine 15 are installed. The engine 15 includes an engine body 16 and a water jacket (not shown) for cooling the engine body 16.

エンジン15には、エンジン本体16の一側部から突設された回転軸に冷却ファン17が設けられ、この冷却ファン17に対向して冷却器としてのラジエータ18が配置されている。エンジン本体16の他側部上には、エンジン15から排出された排気ガスを消音・浄化処理する排気装置19が配置されている。   The engine 15 is provided with a cooling fan 17 on a rotating shaft projecting from one side of the engine body 16, and a radiator 18 as a cooler is disposed facing the cooling fan 17. An exhaust device 19 is disposed on the other side of the engine body 16 to silence and purify exhaust gas discharged from the engine 15.

上部旋回体12の後端部には、カウンタウエイト21が取付けられ、このカウンタウエイト21には、エンジン冷却水の熱を利用して保温した排気ガス浄化触媒用還元剤としての尿素水などの液体還元剤を排気装置19に供給する排気ガス浄化触媒用還元剤供給装置22の主要部分が内蔵されている。   A counterweight 21 is attached to the rear end portion of the upper swing body 12. The counterweight 21 is a liquid such as urea water as a reducing agent for an exhaust gas purification catalyst that is kept warm using the heat of engine cooling water. A main part of an exhaust gas purifying catalyst reducing agent supply device 22 for supplying the reducing agent to the exhaust device 19 is incorporated.

図1に示されるように、エンジン15の出力軸には、下部走行体11および上部旋回体12の油圧モータや作業装置14の油圧シリンダに対して作動油を供給する油圧ポンプ23,24が接続されている。エンジン15の排気装置19は、エンジン本体16に排気管25を介してマフラ本体26が接続され、このマフラ本体26の内部に排気ガス浄化触媒27と、この排気ガス浄化触媒27に対して液体還元剤を噴射するノズル28とが設けられている。   As shown in FIG. 1, hydraulic pumps 23 and 24 that supply hydraulic oil to the hydraulic motors of the lower traveling body 11 and the upper swing body 12 and the hydraulic cylinders of the work device 14 are connected to the output shaft of the engine 15. Has been. The exhaust device 19 of the engine 15 has a muffler body 26 connected to the engine body 16 via an exhaust pipe 25, an exhaust gas purification catalyst 27 inside the muffler body 26, and liquid reduction with respect to the exhaust gas purification catalyst 27 And a nozzle 28 for injecting the agent.

エンジン15の排気ガス浄化触媒用還元剤供給装置22は、蓄熱タンク31の内部にパラフィン、エマルジョン(乳化液)などの蓄熱流体32が充填され、この蓄熱流体32中に、エンジン15の排気装置19に供給される液体還元剤を収容した還元剤タンク33が内蔵され、また、蓄熱タンク31の外表面は、蓄熱流体32の保温のためのタンク断熱材34により覆われている。還元剤タンク33の上端部に設けられた液体還元剤を注入する注入口33aは、タンク断熱材34の上面に開口され、キャップ33bにより閉じられている。   The reducing agent supply device 22 for the exhaust gas purifying catalyst of the engine 15 is filled with a heat storage fluid 32 such as paraffin or emulsion (emulsified liquid) in the heat storage tank 31, and the exhaust device 19 of the engine 15 is filled in the heat storage fluid 32. A reductant tank 33 containing a liquid reductant supplied to the heat storage tank 31 is incorporated, and the outer surface of the heat storage tank 31 is covered with a tank heat insulating material 34 for keeping the heat storage fluid 32 warm. An inlet 33a for injecting a liquid reducing agent provided at the upper end of the reducing agent tank 33 is opened on the upper surface of the tank heat insulating material 34 and is closed by a cap 33b.

蓄熱タンク31の蓄熱流体32中には、エンジン15との熱交換により加熱されたエンジン冷却水の供給を受けて蓄熱流体32を温めることで還元剤タンク33内の液体還元剤を温める熱交換器35が配置されている。   In the heat storage fluid 32 of the heat storage tank 31, the heat exchanger that warms the liquid reductant in the reductant tank 33 by receiving the supply of engine cooling water heated by heat exchange with the engine 15 and warming the heat storage fluid 32 35 is arranged.

エンジン冷却水を循環させるエンジン冷却水回路36は、エンジン15のウォータジャケット(図示せず)と、エンジン冷却水を循環させるエンジン冷却水ポンプ37と、ソレノイド38s1に供給される指令電流により比例動作する一方の電磁比例弁38-1と、蓄熱タンク31内の熱交換器35と、熱交換器35を経たエンジン冷却水を冷却してエンジン15のウォータジャケットに循環させる冷却器としてのラジエータ18とが、管路39a,39bによって無端状に接続されている。   The engine coolant circuit 36 for circulating the engine coolant operates in proportion to a water jacket (not shown) of the engine 15, an engine coolant pump 37 for circulating the engine coolant, and a command current supplied to the solenoid 38s1. One electromagnetic proportional valve 38-1, a heat exchanger 35 in the heat storage tank 31, and a radiator 18 as a cooler for cooling the engine cooling water that has passed through the heat exchanger 35 and circulating it to the water jacket of the engine 15 The pipes 39a and 39b are connected endlessly.

エンジン冷却水ポンプ37と一方の電磁比例弁38-1との間の管路39aと、熱交換器35とラジエータ18との間の管路39bとの間には、これらの管路39a,39bを連通するバイパス管路39cが設けられ、このバイパス管路39c中にも、ソレノイド38s2に供給される指令電流により比例動作する他方の電磁比例弁38-2が設けられている。   Between the pipe line 39a between the engine coolant pump 37 and one electromagnetic proportional valve 38-1 and the pipe line 39b between the heat exchanger 35 and the radiator 18, these pipe lines 39a and 39b are provided. The other electromagnetic proportional valve 38-2 that is proportionally operated by a command current supplied to the solenoid 38s2 is also provided in the bypass conduit 39c.

一方の電磁比例弁38-1は、ソレノイド38s1に供給される指令電流に比例して閉状態から開状態へと開度変化するとともに、他方の電磁比例弁38-2は、ソレノイド38s2に供給される指令電流に比例して開状態から閉状態へと開度変化することで、熱交換器35に供給されるエンジン冷却水の供給流量を調整するものである。   One electromagnetic proportional valve 38-1 changes its opening degree from the closed state to the open state in proportion to the command current supplied to the solenoid 38s1, and the other electromagnetic proportional valve 38-2 is supplied to the solenoid 38s2. The supply flow rate of the engine coolant supplied to the heat exchanger 35 is adjusted by changing the opening degree from the open state to the closed state in proportion to the command current.

要するに、一方の電磁比例弁38-1および他方の電磁比例弁38-2で構成された電磁比例弁38は、エンジン15から熱交換器35を経てラジエータ18に戻されるエンジン冷却水量を一方の電磁比例弁38-1により増加させる方向に比例調整する場合は、エンジン15から熱交換器35をバイパスしてラジエータ18に戻されるエンジン冷却水量を他方の電磁比例弁38-2により減少させる方向に比例調整するものである。   In short, the electromagnetic proportional valve 38, which is composed of one electromagnetic proportional valve 38-1 and the other electromagnetic proportional valve 38-2, controls the amount of engine cooling water returned from the engine 15 to the radiator 18 via the heat exchanger 35. When proportionally adjusting in the direction of increasing by the proportional valve 38-1, the amount of engine coolant returned from the engine 15 to the radiator 18 by bypassing the heat exchanger 35 is proportional to the direction of decreasing by the other electromagnetic proportional valve 38-2. To be adjusted.

図示された電磁比例弁38は、2つの電磁比例弁38-1,38-2で構成されているが、1つの多方弁にまとめて構成しても良い。   The illustrated electromagnetic proportional valve 38 includes two electromagnetic proportional valves 38-1 and 38-2, but may be configured as a single multi-way valve.

この電磁比例弁38は、熱交換器35へのエンジン冷却水量を変化させることで熱交換器35から蓄熱流体32に供給される熱量を調整できるとともに、その際でもラジエータ18を通過するエンジン冷却水量は一定に保つことができ、すなわち、ラジエータ18による冷却能力を一定に保つことができる。   This electromagnetic proportional valve 38 can adjust the amount of heat supplied from the heat exchanger 35 to the heat storage fluid 32 by changing the amount of engine cooling water to the heat exchanger 35, and also the amount of engine cooling water that passes through the radiator 18 at this time Can be kept constant, that is, the cooling capacity of the radiator 18 can be kept constant.

還元剤タンク33には、液体還元剤の温度を検出する温度検出器41が接続され、この温度検出器41は、温度検出ライン42によりコントローラ43の検出信号入力部に接続されている。このコントローラ43の制御信号出力部は、制御信号ライン44,45により2つの電磁比例弁38-1,38-2の各ソレノイド38s1,38s2に接続され、還元剤タンク33内の液体還元剤の温度に基づいて2つの電磁比例弁38-1,38-2の開度を調整することで、蓄熱タンク31内の熱交換器35に供給されるエンジン冷却水量を制御し、熱交換器35での熱交換量を調整して液体還元剤の温度を一定に制御する機能を備えている。   A temperature detector 41 for detecting the temperature of the liquid reducing agent is connected to the reducing agent tank 33, and this temperature detector 41 is connected to a detection signal input unit of the controller 43 by a temperature detection line. The control signal output unit of the controller 43 is connected to the solenoids 38s1 and 38s2 of the two electromagnetic proportional valves 38-1 and 38-2 by the control signal lines 44 and 45, and the temperature of the liquid reducing agent in the reducing agent tank 33. The amount of engine coolant supplied to the heat exchanger 35 in the heat storage tank 31 is controlled by adjusting the opening of the two electromagnetic proportional valves 38-1 and 38-2 based on the It has a function of controlling the temperature of the liquid reducing agent to be constant by adjusting the amount of heat exchange.

エンジン15の排気装置19に液体還元剤を供給する還元剤供給回路51は、還元剤タンク33からマフラ本体26内のノズル28にわたって配設された還元剤供給パイプ52中に、還元剤供給ポンプ53と、還元剤の噴射量を調整する電磁弁54とが設けられたものである。   A reducing agent supply circuit 51 for supplying a liquid reducing agent to the exhaust device 19 of the engine 15 is provided with a reducing agent supply pump 53 in a reducing agent supply pipe 52 disposed from the reducing agent tank 33 to the nozzle 28 in the muffler body 26. And an electromagnetic valve 54 for adjusting the injection amount of the reducing agent.

蓄熱タンク31内の蓄熱流体32を循環させる蓄熱流体循環回路55は、還元剤供給回路51の外部を覆うように蓄熱流体32を流す蓄熱流体通路56の前半部56aが設けられ、この蓄熱流体通路56中に蓄熱流体循環ポンプ57が設けられている。この蓄熱流体通路56の外表面は、全長にわたって回路断熱材58により覆われている。   A heat storage fluid circulation circuit 55 that circulates the heat storage fluid 32 in the heat storage tank 31 is provided with a front half 56a of a heat storage fluid passage 56 that flows the heat storage fluid 32 so as to cover the outside of the reducing agent supply circuit 51. A heat storage fluid circulation pump 57 is provided in 56. The outer surface of the heat storage fluid passage 56 is covered with a circuit heat insulating material 58 over the entire length.

次に、図面に示された一実施の形態の作用を説明する。   Next, the operation of the embodiment shown in the drawings will be described.

エンジン運転時は、エンジン冷却水ポンプ37でエンジン冷却水を循環させ、エンジン冷却水が有する熱を蓄熱タンク31内の熱交換器35に供給し、熱交換器35から放出された熱により蓄熱タンク31内の蓄熱流体32を温め、還元剤タンク33内の液体還元剤を一定の設定温度に保つ。   During engine operation, the engine coolant is circulated by the engine coolant pump 37, the heat of the engine coolant is supplied to the heat exchanger 35 in the heat storage tank 31, and the heat stored in the heat storage tank by the heat released from the heat exchanger 35. The heat storage fluid 32 in 31 is warmed, and the liquid reducing agent in the reducing agent tank 33 is kept at a constant set temperature.

このとき、温度検出器41で液体還元剤の温度を検出し、液体還元剤の検出温度と設定温度との温度差に応じてコントローラ43から電磁比例弁38-1,38-2のソレノイド38s1,38s2に指令電流を出力し、この電流値に比例して電磁比例弁38-1,38-2の開度を相互に逆方向に制御することで、熱交換器35に供給されるエンジン冷却水の供給流量を調整するとともに、ラジエータ18に戻されるエンジン冷却水量を一定量に制御する。   At this time, the temperature detector 41 detects the temperature of the liquid reducing agent, and the controller 43 controls the solenoids 38s1 and 38-2 of the solenoid proportional valves 38-1 and 38-2 according to the temperature difference between the detected temperature of the liquid reducing agent and the set temperature. The engine coolant supplied to the heat exchanger 35 is output by outputting a command current to 38s2 and controlling the opening of the solenoid proportional valves 38-1 and 38-2 in opposite directions in proportion to the current value. The amount of engine cooling water returned to the radiator 18 is controlled to a constant amount.

例えば、還元剤タンク33内の液体還元剤の検出温度が設定温度より低温のときは、検出温度と設定温度との温度差に応じて、一方の電磁比例弁38-1の開度を大きくする方向に調整することで、熱交換器35に供給されるエンジン冷却水量を温度差に比例させて増加させるとともに、他方の電磁比例弁38-2は、開度を小さくする方向に調整して、バイパス管路39cでパイパスされるエンジン冷却水量を温度差に比例させて減少させることで、ラジエータ18に戻されるエンジン冷却水量が一定に保たれるように制御する。これにより、ラジエータ18の冷却能力を一定に保つようにする。   For example, when the detected temperature of the liquid reducing agent in the reducing agent tank 33 is lower than the set temperature, the opening degree of one electromagnetic proportional valve 38-1 is increased according to the temperature difference between the detected temperature and the set temperature. By adjusting in the direction, the amount of engine coolant supplied to the heat exchanger 35 is increased in proportion to the temperature difference, and the other electromagnetic proportional valve 38-2 is adjusted in the direction to reduce the opening degree, By controlling the amount of engine cooling water bypassed by the bypass line 39c in proportion to the temperature difference, the amount of engine cooling water returned to the radiator 18 is controlled to be kept constant. As a result, the cooling capacity of the radiator 18 is kept constant.

また、蓄熱タンク31内の蓄熱流体32は、蓄熱流体循環ポンプ57によって蓄熱タンク31から、還元剤供給回路51の外周部に沿った蓄熱流体通路56を流れて蓄熱タンク31に循環するので、蓄熱流体32が有する熱により還元剤供給回路51を保温し、この還元剤供給回路51により還元剤供給ポンプ53で還元剤タンク33からノズル28まで供給される液体還元剤を保温する。   In addition, the heat storage fluid 32 in the heat storage tank 31 flows from the heat storage tank 31 by the heat storage fluid circulation pump 57 through the heat storage fluid passage 56 along the outer periphery of the reducing agent supply circuit 51 and circulates to the heat storage tank 31. The reducing agent supply circuit 51 is kept warm by the heat of the fluid 32, and the reducing agent supply circuit 53 keeps the liquid reducing agent supplied from the reducing agent tank 33 to the nozzle 28 by the reducing agent supply circuit 51.

液体還元剤は、還元剤タンク33から還元剤供給ポンプ53により還元剤供給パイプ52を介して電磁弁54に加圧供給されるので、コントローラ43は、図示していないエンジン回転数、排気温度などのデータに基づき、還元剤の噴射量を演算し、その演算結果に基いて電磁弁54を調整して還元剤の噴射量を制御する。   Since the liquid reducing agent is pressurized and supplied from the reducing agent tank 33 by the reducing agent supply pump 53 to the electromagnetic valve 54 via the reducing agent supply pipe 52, the controller 43 has an engine speed, exhaust temperature, etc. not shown. Based on these data, the amount of reducing agent injection is calculated, and the electromagnetic valve 54 is adjusted based on the calculation result to control the amount of reducing agent injection.

次に、図面に示された一実施の形態の効果を説明する。   Next, effects of the embodiment shown in the drawings will be described.

コントローラ43は、温度検出器41で検出された液体還元剤の温度に基づいて電磁比例弁38を調整して、還元剤タンク33内の液体還元剤を蓄熱流体32を介し温める熱交換器35に供給されるエンジン冷却水量を制御することで、液体還元剤を必要最小限の適切な温度に保持できるように制御でき、燃費を向上できる。   The controller 43 adjusts the electromagnetic proportional valve 38 based on the temperature of the liquid reductant detected by the temperature detector 41 to the heat exchanger 35 that heats the liquid reductant in the reductant tank 33 via the heat storage fluid 32. By controlling the amount of engine coolant supplied, it is possible to control the liquid reducing agent so that it can be maintained at an appropriate minimum temperature, thereby improving fuel efficiency.

このとき、コントローラ43は、温度検出器41により検出した液体還元剤の温度に基づき電磁比例弁38を調整して、熱交換器35に供給するエンジン冷却水量を調整することで、液体還元剤の温度を一定に制御するので、エンジン15から放熱された熱をエンジン冷却水で回収して蓄熱流体32を介し液体還元剤の保温に有効利用でき、その際に、コントローラ43および温度検出器41により電磁比例弁38を制御して、液体還元剤の温度を適正な範囲に保持できる。   At this time, the controller 43 adjusts the electromagnetic proportional valve 38 based on the temperature of the liquid reducing agent detected by the temperature detector 41 and adjusts the amount of engine coolant supplied to the heat exchanger 35, thereby Since the temperature is controlled to be constant, the heat radiated from the engine 15 can be recovered by the engine cooling water and effectively used to keep the liquid reductant through the heat storage fluid 32. At that time, the controller 43 and the temperature detector 41 By controlling the electromagnetic proportional valve 38, the temperature of the liquid reducing agent can be maintained within an appropriate range.

特に、一方の電磁比例弁38-1により、エンジン15から熱交換器35を経てラジエータ18に戻されるエンジン冷却水量を増加させる方向に比例調整する場合は、他方の電磁比例弁38-2により、エンジン15から熱交換器35をバイパスしてラジエータ18に戻されるエンジン冷却水量を減少させる方向に比例調整することで、熱交換器35から蓄熱流体32に供給される熱量を調整する際でも、ラジエータ18を通過するエンジン冷却水量は一定に保つことができ、ラジエータ18による冷却能力を一定に保つことができる。   In particular, when adjusting proportionally in the direction of increasing the amount of engine coolant returned from the engine 15 through the heat exchanger 35 to the radiator 18 by one electromagnetic proportional valve 38-1, the other electromagnetic proportional valve 38-2 Even when adjusting the amount of heat supplied from the heat exchanger 35 to the heat storage fluid 32 by proportionally adjusting the amount of engine cooling water returned from the engine 15 to the radiator 18 by bypassing the heat exchanger 35, the radiator The amount of engine coolant passing through 18 can be kept constant, and the cooling capacity of the radiator 18 can be kept constant.

また、外表面をタンク断熱材34で覆われ内部に蓄熱流体32が充填された蓄熱タンク31の内部に、蓄熱流体32を温める熱交換器35を設け、この熱交換器35とともに蓄熱タンク31内の蓄熱流体32中に、エンジン15の排気装置19に供給される液体還元剤を収容した還元剤タンク33を内蔵したので、タンク断熱材34と、熱交換器35により加熱された蓄熱流体32の2重のタンク保温構造により、還元剤タンク33およびその内部の液体還元剤を効率良く保温でき、保温に要する熱効率を向上できる。   In addition, a heat exchanger 35 for warming the heat storage fluid 32 is provided in the heat storage tank 31 whose outer surface is covered with the tank heat insulating material 34 and filled with the heat storage fluid 32 therein. Since the reductant tank 33 containing the liquid reductant supplied to the exhaust device 19 of the engine 15 is incorporated in the heat storage fluid 32, the tank heat insulating material 34 and the heat storage fluid 32 heated by the heat exchanger 35 are stored. Due to the double tank heat insulation structure, the reducing agent tank 33 and the liquid reducing agent therein can be efficiently kept warm, and the thermal efficiency required for keeping warm can be improved.

さらに、エンジン15の排気装置19に液体還元剤を供給する還元剤供給回路51の外部を覆うように蓄熱流体循環回路55を設け、この蓄熱流体循環回路55の外部を回路断熱材58により覆うので、還元剤供給回路51を蓄熱流体循環回路55と回路断熱材58の2重の回路保温構造により効率良く保温でき、熱効率を向上できる。   Further, a heat storage fluid circulation circuit 55 is provided so as to cover the outside of the reducing agent supply circuit 51 that supplies the liquid reducing agent to the exhaust device 19 of the engine 15, and the outside of the heat storage fluid circulation circuit 55 is covered by the circuit heat insulating material 58. The reductant supply circuit 51 can be efficiently warmed by the double circuit heat retaining structure of the heat storage fluid circulation circuit 55 and the circuit heat insulating material 58, and the thermal efficiency can be improved.

エンジン15との熱交換により加熱されたエンジン冷却水の供給を受けた熱交換器35により、蓄熱タンク31内の蓄熱流体32を温め、その熱で還元剤タンク33内の液体還元剤を温めその温度を保持するので、従来技術のように電気を必要とせず、ラジエータ18により冷却される前のエンジン冷却水が有する熱を有効利用するので、電力に変換する場合より、発電用のエンジン駆動に要する燃料を節約でき、燃費を向上できる。   The heat exchanger 35 that has received the supply of engine coolant heated by heat exchange with the engine 15 warms the heat storage fluid 32 in the heat storage tank 31 and warms the liquid reductant in the reductant tank 33 with the heat. Since the temperature is maintained, electricity is not required as in the prior art, and the heat of the engine coolant before being cooled by the radiator 18 is effectively used. This saves fuel and improves fuel consumption.

油圧ショベルなどの作業機械におけるカウンタウエイト21に、蓄熱流体32を用いて熱を蓄える蓄熱タンク31などの排気ガス浄化触媒用還元剤供給装置22を設けることにより、大きな容量の蓄熱タンク31を設置でき、大熱容量の蓄熱流体32により液体還元剤を長時間保温できる。   By installing a reductant supply device 22 for exhaust gas purification catalyst such as a heat storage tank 31 that stores heat using a heat storage fluid 32 on a counterweight 21 in a work machine such as a hydraulic excavator, a large-capacity heat storage tank 31 can be installed. The liquid reductant can be kept warm for a long time by the heat storage fluid 32 having a large heat capacity.

カウンタウエイト21は、エンジン15および排気装置19の後方の近接位置に隣接しているので、エンジン冷却水回路36、還元剤供給回路51および蓄熱流体循環回路55の各配管を容易に配設できるとともに、供給元から供給先までの距離が短いので、エンジン冷却水、液体還元剤および蓄熱流体32が供給時に温度低下することを効果的に抑制できる。   Since the counterweight 21 is adjacent to the close position behind the engine 15 and the exhaust device 19, the piping of the engine coolant circuit 36, the reducing agent supply circuit 51, and the heat storage fluid circulation circuit 55 can be easily disposed. Since the distance from the supply source to the supply destination is short, it is possible to effectively suppress the temperature drop of the engine cooling water, the liquid reducing agent, and the heat storage fluid 32 during supply.

なお、本発明は、還元剤タンク33内の液体還元剤中または還元剤タンク33の外表面に、エンジン15から放出された熱を吸収したエンジン冷却水の供給を受けて液体還元剤を温めるタイプの熱交換器(図示せず)を配置する構成を含む場合もある。この場合は、蓄熱タンク31および蓄熱流体32が不要となる。   The present invention is a type in which the liquid reductant in the reductant tank 33 or on the outer surface of the reductant tank 33 receives the supply of engine cooling water that has absorbed heat released from the engine 15 and warms the liquid reductant. The heat exchanger (not shown) may be arranged. In this case, the heat storage tank 31 and the heat storage fluid 32 are not necessary.

本発明の排気ガス浄化触媒用還元剤供給装置22は、油圧ショベルなどの作業機械、自動車、産業機械などに用いられるエンジンに利用可能である。   The exhaust gas purifying catalyst reducing agent supply device 22 of the present invention can be used for an engine used in a working machine such as a hydraulic excavator, an automobile, an industrial machine, and the like.

本発明に係る排気ガス浄化触媒用還元剤供給装置の一実施の形態を示すシステム構成図である。1 is a system configuration diagram showing an embodiment of a reducing agent supply device for an exhaust gas purification catalyst according to the present invention. 同上還元剤供給装置を備えた作業機械の側面図である。It is a side view of the working machine provided with the reducing agent supply apparatus same as the above. 同上還元剤供給装置を備えた作業機械の平面図である。It is a top view of the working machine provided with the reducing agent supply apparatus same as the above.

符号の説明Explanation of symbols

15 エンジン
18 冷却器としてのラジエータ
19 排気装置
22 排気ガス浄化触媒用還元剤供給装置
31 蓄熱タンク
32 蓄熱流体
33 還元剤タンク
34 タンク断熱材
35 熱交換器
38 電磁比例弁
38-1 一方の電磁比例弁
38-2 他方の電磁比例弁
39a 管路
39c バイパス管路
41 温度検出器
43 コントローラ
15 engine
18 Radiator as a cooler
19 Exhaust system
22 Reductant supply device for exhaust gas purification catalyst
31 Thermal storage tank
32 Thermal storage fluid
33 Reductant tank
34 Tank insulation
35 heat exchanger
38 Solenoid proportional valve
38-1 One proportional solenoid valve
38-2 The other solenoid proportional valve
39a pipeline
39c Bypass line
41 Temperature detector
43 Controller

Claims (3)

エンジンの排気装置に供給される液体還元剤を収容した還元剤タンクと、
エンジンとの熱交換により加熱されたエンジン冷却水の供給を受けて還元剤タンク内の液体還元剤を温める熱交換器と、
熱交換器を経たエンジン冷却水を冷却してエンジンに循環させる冷却器と、
エンジンから熱交換器を経て冷却器に戻されるエンジン冷却水量を指令信号に応じて比例調整する電磁比例弁と、
液体還元剤の温度を検出する温度検出器と、
温度検出器で検出された液体還元剤の温度に基づいて電磁比例弁を調整して液体還元剤の温度を一定に制御するコントローラと
を具備したことを特徴とする排気ガス浄化触媒用還元剤供給装置。
A reducing agent tank containing a liquid reducing agent to be supplied to an engine exhaust device;
A heat exchanger that receives the supply of engine cooling water heated by heat exchange with the engine and warms the liquid reducing agent in the reducing agent tank;
A cooler that cools the engine coolant that has passed through the heat exchanger and circulates it in the engine;
An electromagnetic proportional valve for proportionally adjusting the amount of engine coolant returned from the engine to the cooler through the heat exchanger according to the command signal;
A temperature detector for detecting the temperature of the liquid reducing agent;
A reducing agent supply for an exhaust gas purification catalyst, comprising: a controller that adjusts an electromagnetic proportional valve based on the temperature of the liquid reducing agent detected by the temperature detector to control the temperature of the liquid reducing agent to be constant. apparatus.
電磁比例弁は、
熱交換器にエンジン冷却水を供給する管路中に設けられ指令電流に比例して閉状態から開状態へと開度変化する一方の電磁比例弁と、
熱交換器を通らないバイパス管路中に設けられ指令電流に比例して開状態から閉状態へと開度変化する他方の電磁比例弁と
を具備したことを特徴とする請求項1記載の排気ガス浄化触媒用還元剤供給装置。
The solenoid proportional valve
One electromagnetic proportional valve that is provided in a pipe that supplies engine coolant to the heat exchanger and that changes in opening degree from a closed state to an open state in proportion to a command current;
2. The exhaust according to claim 1, further comprising: another electromagnetic proportional valve provided in a bypass pipe that does not pass through the heat exchanger and whose opening degree is changed from an open state to a closed state in proportion to a command current. Reducing agent supply device for gas purification catalyst.
蓄熱流体を内部に充填するとともに還元剤タンクを蓄熱流体中に内蔵した蓄熱タンクと、
蓄熱タンクの外表面を覆ったタンク断熱材とを備え、
熱交換器は、蓄熱タンクの内部に設けられエンジン冷却水の供給を受けて蓄熱タンク内の蓄熱流体を温めることで間接的に還元剤タンク内の液体還元剤を温める
ことを特徴とする請求項1または2記載の排気ガス浄化触媒用還元剤供給装置。
A heat storage tank in which the heat storage fluid is filled and a reducing agent tank is built in the heat storage fluid;
A tank insulation covering the outer surface of the heat storage tank,
The heat exchanger is provided inside the heat storage tank, receives the supply of engine cooling water, and warms the heat storage fluid in the heat storage tank to indirectly heat the liquid reductant in the reductant tank. 3. A reducing agent supply device for an exhaust gas purifying catalyst according to 1 or 2.
JP2008315248A 2008-12-11 2008-12-11 Reducing agent supply device for exhaust gas purification catalyst Expired - Fee Related JP5137135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008315248A JP5137135B2 (en) 2008-12-11 2008-12-11 Reducing agent supply device for exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008315248A JP5137135B2 (en) 2008-12-11 2008-12-11 Reducing agent supply device for exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2010138773A true JP2010138773A (en) 2010-06-24
JP5137135B2 JP5137135B2 (en) 2013-02-06

Family

ID=42349116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008315248A Expired - Fee Related JP5137135B2 (en) 2008-12-11 2008-12-11 Reducing agent supply device for exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP5137135B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140014497A (en) * 2012-07-24 2014-02-06 볼보 컨스트럭션 이큅먼트 에이비 Nox reduction device of construction machine
KR20140127496A (en) * 2013-04-25 2014-11-04 현대중공업 주식회사 Exhaust gas purification system of diesel engine
KR20150115053A (en) * 2014-04-02 2015-10-14 현대중공업 주식회사 Construction equipment with Selective Catalytic Reduction
CN108049945A (en) * 2017-12-04 2018-05-18 南京金龙新能源汽车研究院有限公司 A kind of SCR system water circulation system
CN110657006A (en) * 2018-06-28 2020-01-07 罗伯特·博世有限公司 Heating system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000027627A (en) * 1998-07-13 2000-01-25 Hino Motors Ltd Reducing agent thermal insulating device for exhaust gas cleaning catalyst, and exhaust emission control device provided with this thermal insulating device
JP2005083223A (en) * 2003-09-05 2005-03-31 Nissan Diesel Motor Co Ltd Exhaust emission control device of engine
JP2005090431A (en) * 2003-09-19 2005-04-07 Nissan Diesel Motor Co Ltd Engine emission control device
JP2006316684A (en) * 2005-05-12 2006-11-24 Nissan Diesel Motor Co Ltd Exhaust emission control device for engine
JP2008101535A (en) * 2006-10-19 2008-05-01 Denso Corp Exhaust emission control device for engine
JP2009097479A (en) * 2007-10-19 2009-05-07 Bosch Corp Device and method for controlling reducing agent supplying device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000027627A (en) * 1998-07-13 2000-01-25 Hino Motors Ltd Reducing agent thermal insulating device for exhaust gas cleaning catalyst, and exhaust emission control device provided with this thermal insulating device
JP2005083223A (en) * 2003-09-05 2005-03-31 Nissan Diesel Motor Co Ltd Exhaust emission control device of engine
JP2005090431A (en) * 2003-09-19 2005-04-07 Nissan Diesel Motor Co Ltd Engine emission control device
JP2006316684A (en) * 2005-05-12 2006-11-24 Nissan Diesel Motor Co Ltd Exhaust emission control device for engine
JP2008101535A (en) * 2006-10-19 2008-05-01 Denso Corp Exhaust emission control device for engine
JP2009097479A (en) * 2007-10-19 2009-05-07 Bosch Corp Device and method for controlling reducing agent supplying device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140014497A (en) * 2012-07-24 2014-02-06 볼보 컨스트럭션 이큅먼트 에이비 Nox reduction device of construction machine
KR20140127496A (en) * 2013-04-25 2014-11-04 현대중공업 주식회사 Exhaust gas purification system of diesel engine
KR20150115053A (en) * 2014-04-02 2015-10-14 현대중공업 주식회사 Construction equipment with Selective Catalytic Reduction
CN108049945A (en) * 2017-12-04 2018-05-18 南京金龙新能源汽车研究院有限公司 A kind of SCR system water circulation system
CN110657006A (en) * 2018-06-28 2020-01-07 罗伯特·博世有限公司 Heating system

Also Published As

Publication number Publication date
JP5137135B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
CN103628968B (en) The independent cooling of cylinder cover and cylinder block
JP4497082B2 (en) Engine coolant circulation device
US6955141B2 (en) Engine cooling system
RU2678926C2 (en) Method (versions) of cooling vehicle engine and vehicle cabin heating system
JP5787994B2 (en) INTERNAL COMBUSTION ENGINE HAVING COOLANT COLLECTION TUBE FOR COOLING DURING COLD OR OPERATION
JP4877057B2 (en) Internal combustion engine cooling system device
CN103216306B (en) There is the explosive motor of pump of arrangement and its operational approach in coolant circuit
JP5223389B2 (en) Cooling device for internal combustion engine
JP4706660B2 (en) Reducing agent supply device
JP5137135B2 (en) Reducing agent supply device for exhaust gas purification catalyst
JP2000265839A (en) Internal combustion engine with separated cooling circuit for cooling cylinder head and engine block
CN101529061A (en) Engine cooling system
RU2605493C2 (en) Coolant circuit
JP2006348793A (en) Exhaust gas recirculation device for internal combustion engine
JP2008232031A (en) Exhaust heat recovery device
JP2010138848A (en) Reducing agent feeder for exhaust emission control catalyst
JP2006161806A (en) Cooling device for liquid cooling type internal combustion engine
US9010118B2 (en) Output controller for stirling engine
US8297238B2 (en) Variable cooling circuit for thermoelectric generator and engine and method of control
JP2010138849A (en) Work machine
JP2009222042A (en) Engine cooling system
JP5267654B2 (en) Engine cooling system
JP2001082143A (en) Cooling device for internal combustion engine
JP5801593B2 (en) Thermal storage heating system for vehicles
JP2008175125A (en) Exhaust gas heat recovery device of internal combustion engine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100817

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100817

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees