JP2009097469A - Exhaust emission control system for internal combustion engine - Google Patents

Exhaust emission control system for internal combustion engine Download PDF

Info

Publication number
JP2009097469A
JP2009097469A JP2007271533A JP2007271533A JP2009097469A JP 2009097469 A JP2009097469 A JP 2009097469A JP 2007271533 A JP2007271533 A JP 2007271533A JP 2007271533 A JP2007271533 A JP 2007271533A JP 2009097469 A JP2009097469 A JP 2009097469A
Authority
JP
Japan
Prior art keywords
temperature
fuel ratio
air
exhaust
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007271533A
Other languages
Japanese (ja)
Inventor
Kenji Sakurai
健治 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007271533A priority Critical patent/JP2009097469A/en
Publication of JP2009097469A publication Critical patent/JP2009097469A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for increasing a NOx conversion rate by an exhaust emission control system for an internal combustion engine provided with an SCR. <P>SOLUTION: This exhaust emission control system includes the SCR 3 arranged in an exhaust passage 5 of the internal combustion engine 1 and selectively reducing NOx by using NH<SB>3</SB>as a reducing agent, generates NH<SB>3</SB>in exhaust gas by supplying a rich component into the exhaust gas by bank control or a rich spike, and supplies the generated NH<SB>3</SB>to the SCR 3. When a temperature of the exhaust gas made to flow into the SCR 3 exceeds a reference temperature which is controlled based on the upper limit of a temperature at which a NOx reduction reaction using the NH<SB>3</SB>as the reducing agent proceeds in the SCR 3, a channel selector valve 11 changes over an exhaust gas distribution channel to a passage passing through a U-shaped pipe 10. An air-fuel ratio difference between banks is reduced in the latter period of the bank control, and thereby the temperature of the SCR 3 immediately after the termination of the bank control does not exceed a reference temperature. The temperature of the SCR 3 does not exceed the reference temperature, and the NOx reduction reaction in the SCR 3 proceeds favorably. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関の排気浄化システムに関する。   The present invention relates to an exhaust gas purification system for an internal combustion engine.

内燃機関からの排気中に含まれる窒素酸化物(NOx)の大気への排出量を低減する技術として、排気通路の途中にアンモニア(NH)を還元剤として選択的にNOxをNに還元して無害化する選択還元型NOx触媒(SCR)を備えた排気浄化システムが知られている。なお、関連する技術が特許文献1に記載されている。
特開平10−47041号公報 特開2000−18026号公報 特開2000−265828号公報 特開平8−189388号公報
As a technique for reducing the amount of nitrogen oxides (NOx) contained in the exhaust gas from an internal combustion engine to the atmosphere, NOx is selectively reduced to N 2 using ammonia (NH 3 ) as a reducing agent in the exhaust passage. An exhaust gas purification system including a selective reduction type NOx catalyst (SCR) that is rendered harmless is known. A related technique is described in Patent Document 1.
Japanese Patent Laid-Open No. 10-47041 Japanese Patent Laid-Open No. 2000-18026 JP 2000-265828 A JP-A-8-189388

本発明はSCRを備えた排気浄化システムによるNOx浄化率を高めることを目的とする。   An object of the present invention is to increase the NOx purification rate by an exhaust purification system equipped with an SCR.

上記目的を達成するため、本発明の内燃機関の排気浄化システムは、
内燃機関の排気通路に配置され、NHを還元剤としてNOxを選択的に還元するSCRと、
前記SCRにNHを供給するNH供給手段と、
前記NH供給手段によって供給されたNHを還元剤として前記SCRにおいてNOx還元反応が行われる時に、前記SCRの温度が、前記NH供給手段によって供給されたNHを還元剤とするNOx還元反応が進む温度の上限値に基づいて定められる所定の基準温度以下になるように、前記SCRの温度を制御する温度制御手段と、
を備えることを特徴とする。
In order to achieve the above object, an exhaust purification system for an internal combustion engine of the present invention comprises:
An SCR disposed in an exhaust passage of the internal combustion engine for selectively reducing NOx using NH 3 as a reducing agent;
NH 3 supply means for supplying NH 3 to the SCR;
When the NOx reduction reaction takes place in the SCR and NH 3 supplied by the NH 3 supply means as a reducing agent, NOx reduction temperature of the SCR is to the NH 3 supplied by the NH 3 supply means and a reducing agent Temperature control means for controlling the temperature of the SCR so as to be equal to or lower than a predetermined reference temperature determined based on the upper limit value of the temperature at which the reaction proceeds,
It is characterized by providing.

SCRにおけるNHを還元剤としたNOx還元反応は、発熱反応であり、低温環境下ほど進行し易い。逆に、SCRの温度が高くなり過ぎると、SCRに還元剤としてのNHが供給されても、当該NHによるNOx還元反応が進行しにくくなり、SCRにおいて十分なNOx浄化率が得られなくなる虞がある。この点、本発明の排気浄化システムでは、上記のように、温度制御手段によってSCRの温度が所定の基準温度以下になるように制御される。所定の基準温度は、SCRの温度が該基準温度より低ければNHを還元剤とするNOx還元反応が好適に進むような温度であり、NHを還元剤とするNOx還元反応が進む温度の上限値に基づいて、予め実験やシミュレーション等によって求められる。本発明により、SCRにおいて好適にNOx還元反応が進行する状態が維持されるので、SCRによるNOx浄化率を高めることができる。 NOx reduction reactions with a reducing agent to NH 3 in the SCR is an exothermic reaction, it tends to progress as a low-temperature environment. Conversely, if the temperature of the SCR becomes too high, even if NH 3 as a reducing agent is supplied to the SCR, the NOx reduction reaction by the NH 3 is difficult to proceed, and a sufficient NOx purification rate cannot be obtained in the SCR. There is a fear. In this regard, in the exhaust purification system of the present invention, as described above, the temperature control means controls the SCR temperature to be equal to or lower than a predetermined reference temperature. The predetermined reference temperature is a temperature at which the NOx reduction reaction using NH 3 as a reducing agent suitably proceeds if the SCR temperature is lower than the reference temperature, and the temperature at which the NOx reduction reaction using NH 3 as a reducing agent advances. Based on the upper limit value, it is obtained in advance through experiments, simulations, or the like. According to the present invention, since the state in which the NOx reduction reaction proceeds suitably in the SCR is maintained, the NOx purification rate by the SCR can be increased.

NH供給手段は、SCRにNHを供給可能な手段であればどのような手段であっても良い。例えば、SCRより上流の排気通路に吸蔵還元型NOx触媒(NSR)や三元触媒(TWC)が配置されたシステムの場合には、NSRやTWCに炭化水素(HC)や水素(H)等のリッチ成分を供給することによって、それらリッチ成分と排気中のNOxやNSRから脱離するNOxとが反応してNHが生成されるので、これらの触媒より下流に配置されたSCRにNHを供給することができる。また、SCRより上流の排気中に尿素水を噴射供給することによって、高温の排気中で当該尿素水が分解してNHが生
成される反応が進むので、SCRにNHを供給することができる。
The NH 3 supply means may be any means as long as it can supply NH 3 to the SCR. For example, in the case of a system in which an NOx storage reduction catalyst (NSR) or a three-way catalyst (TWC) is arranged in the exhaust passage upstream from the SCR, hydrocarbon (HC), hydrogen (H 2 ), etc. by supplying the rich component, since the NOx desorbed from the NOx and NSR in exhaust those rich component is NH 3 reacts generated, NH 3 in the SCR that is disposed downstream of these catalysts Can be supplied. Also, by supplying urea water into the exhaust gas upstream from the SCR, a reaction in which the urea water is decomposed and NH 3 is generated in the high-temperature exhaust gas proceeds, so NH 3 can be supplied to the SCR. it can.

ここで、「NH供給手段によって供給されたNHを還元剤としてSCRにおいてNOx還元反応が行われる時」とは、例えば、NH供給手段によって供給されるNHと排気中のNOxとが、SCRにおいて反応する場合には、「NH供給手段によってNHが供給される時」を意味する。また、SCRはゼオライト構造を有し、NHを吸着する性質がある。NH供給手段によって供給されたNHがSCRに吸着し、当該吸着したNHとSCRに流入するNOxとがNH供給手段によってNHの供給が行われた後にSCRにおいて反応する場合には、「NH供給手段によってNHの供給が行われた後であって、SCRにNOxが流入する時」を意味する。例えば、SCRにおけるNOx還元反応はリーン環境下で好適に進行する性質がある。従って、NH供給手段がリッチ成分を排気中に供給することによってNHを発生させる手段である場合には、リッチ成分の供給が終了してSCRの周囲雰囲気がリーンとなった時に、SCRにおいてNOx還元反応が行われる。 Here, the "when NOx reduction reaction is carried out in the SCR as a reducing agent and NH 3 supplied by NH 3 supply means", for example, and the NOx in the exhaust and NH 3 supplied by the NH 3 supply means , in the case of the reaction in the SCR, it means "when the NH 3 is supplied by the NH 3 supply means." The SCR has a zeolite structure and has a property of adsorbing NH 3 . When the NH 3 NH 3 supplied by the supply means is adsorbed to the SCR, the NOx flowing into the NH 3 and the SCR that the adsorbed reacts in SCR after the supply of NH 3 is performed by the NH 3 supply means means "even after the supply of NH 3 is performed by the NH 3 supply means, when the NOx flows into the SCR." For example, the NOx reduction reaction in SCR has a property that proceeds favorably in a lean environment. Therefore, if the NH 3 supply means is a means for generating NH 3 by supplying the rich component in the exhaust gas, when the ambient atmosphere SCR ended supply of the rich component becomes lean, the SCR A NOx reduction reaction is performed.

本発明において、温度制御手段は、SCRの温度を取得する手段を有し、取得した温度が基準温度より低くなるように、SCRの温度制御をするようにしても良い。この場合、SCRの温度は、SCRにおけるNOx還元反応の温度環境条件を推定又は測定可能などのような手段によって取得しても良い。例えば、SCRの触媒床温を直接測定又は内燃機関の運転状態等に基づいて推定する手段や、SCRに流入する排気の温度に基づいてSCRの温度を推定する手段等とすることができる。   In the present invention, the temperature control means may have means for acquiring the temperature of the SCR, and may control the temperature of the SCR so that the acquired temperature is lower than the reference temperature. In this case, the temperature of the SCR may be acquired by any means capable of estimating or measuring the temperature environment condition of the NOx reduction reaction in the SCR. For example, it can be a means for estimating the SCR catalyst bed temperature directly or based on the operating state of the internal combustion engine, or a means for estimating the SCR temperature based on the temperature of the exhaust gas flowing into the SCR.

例えば、SCRに流入する排気の温度を取得する温度取得手段を備えた構成とした場合、SCRに流入する排気を冷却する排気冷却手段を更に備え、
前記温度制御手段は、前記NH供給手段によって供給されたNHを還元剤として前記SCRにおいてNOx還元反応が行われる時に、前記温度取得手段によって取得される温度が前記基準温度より高い場合、前記排気冷却手段によって前記SCRに流入する排気を冷却するようにしても良い。
For example, in the case of a configuration provided with a temperature acquisition means for acquiring the temperature of the exhaust gas flowing into the SCR, it further comprises an exhaust cooling means for cooling the exhaust gas flowing into the SCR,
Said temperature control means, the NH 3 supplied by the NH 3 supply means when the NOx reduction reaction takes place in the SCR as a reducing agent, if the temperature acquired by the temperature acquiring unit is higher than the reference temperature, the The exhaust gas flowing into the SCR may be cooled by an exhaust cooling means.

この構成において、排気冷却手段は、SCRに流入する排気を冷却可能であればどのような手段であっても良い。例えば、
前記SCRより上流の排気通路から分岐して前記SCRより上流の排気通路に再び合流するように設けられた分岐排気通路と、
前記SCRより上流を流れる排気の流通経路を、前記分岐排気通路を通過する経路又は前記分岐排気通路を通過しない経路に切り替える流路切替手段と、
を更に備え、
前記分岐排気通路は、排気が前記分岐排気通路を通過する経路を流通する場合に失う熱量が、排気が前記分岐排気通路を通過しない経路を流通する場合に失う熱量と比較して大きくなるように構成されている場合、
前記排気冷却手段は、前記SCRより上流を流れる排気の流通経路を、前記流路切替手段によって前記分岐排気通路を通過する経路に切り替えることにより、前記SCRに流入する排気を冷却するようにしても良い。
In this configuration, the exhaust cooling means may be any means as long as the exhaust flowing into the SCR can be cooled. For example,
A branch exhaust passage provided so as to branch from the exhaust passage upstream of the SCR and merge again with the exhaust passage upstream of the SCR;
A flow path switching means for switching a flow path of the exhaust flowing upstream from the SCR to a path passing through the branch exhaust passage or a path not passing through the branch exhaust passage;
Further comprising
The branch exhaust passage is such that the amount of heat lost when exhaust flows through a route passing through the branch exhaust passage is larger than the amount of heat lost when exhaust passes through a route not passing through the branch exhaust passage. If configured,
The exhaust cooling means cools the exhaust gas flowing into the SCR by switching the flow path of the exhaust gas flowing upstream from the SCR to a path passing through the branch exhaust passage by the flow path switching means. good.

上記構成によれば、SCRに流入する排気の温度が基準温度より高い場合には、排気の流通経路が分岐排気通路を経由してSCRに流入する経路に切り替えられる。排気が分岐排気通路を通過する経路を流通するとき、分岐排気通路を通過しない経路を流通する場合と比較して、より多くの熱を奪われるので、排気はSCRに流入する前に冷却される。従って、SCRの温度を低下させることができる。分岐排気通路を通過する経路の経路長を長くしたり、分岐排気通路内壁面の表面積が大きくなるように、分岐排気通路を構成したりすることによって、分岐排気通路を流通するときにより多くの熱が排気から奪われるよ
うにすることができる。
According to the above configuration, when the temperature of the exhaust gas flowing into the SCR is higher than the reference temperature, the exhaust flow path is switched to the path flowing into the SCR via the branch exhaust passage. When exhaust flows through a route that passes through the branch exhaust passage, more heat is taken away than when the exhaust passes through a route that does not pass through the branch exhaust passage, so that the exhaust is cooled before flowing into the SCR. . Therefore, the SCR temperature can be lowered. By increasing the length of the path that passes through the branch exhaust passage, or by configuring the branch exhaust passage so that the surface area of the inner wall surface of the branch exhaust passage is increased, more heat is circulated through the branch exhaust passage. Can be taken away from the exhaust.

排気冷却手段としては、その他、エンジン冷却水や空冷によって排気を冷却するクーラをSCRより上流の排気通路に配置するとともに、該クーラをバイパスするバイパス通路を設け、SCRに流入する排気の温度が基準温度より高い場合には、排気の流通経路としてクーラを通過する経路を選択し、それ以外の場合にはバイパス通路を通過する経路を選択するようにしても良い。   As the exhaust cooling means, a cooler that cools the exhaust by engine cooling water or air cooling is disposed in the exhaust passage upstream of the SCR, and a bypass passage that bypasses the cooler is provided, and the temperature of the exhaust flowing into the SCR is a reference. When the temperature is higher than the temperature, a route passing through the cooler may be selected as the exhaust flow route, and in other cases, a route passing through the bypass passage may be selected.

ところで、排気中には燃焼行程や、排気中のリッチ成分(炭化水素(HC)や水素(H)等)と酸素(O)との反応等によって発生した水蒸気が存在する。水蒸気は100℃を超えてさらに加熱されることにより、非常に反応性の高い過熱水蒸気となる。過熱水蒸気の存在下でSCRにおけるNOx還元反応が活性化される。また、過熱水蒸気存在下で排気中のNOxが窒素(N)とOとに分解する分解反応が促進される。また、過熱水蒸気は水性ガスシフト反応(CO+HO→CO+H)によってHを生じ、該Hを還元剤とするNOx還元反応も促進される。 By the way, in the exhaust, there is a combustion stroke, and water vapor generated by a reaction between rich components (hydrocarbon (HC), hydrogen (H 2 ), etc.) and oxygen (O 2 ) in the exhaust. When the steam is further heated above 100 ° C., it becomes superheated steam with very high reactivity. The NOx reduction reaction in the SCR is activated in the presence of superheated steam. In addition, a decomposition reaction in which NOx in the exhaust gas is decomposed into nitrogen (N 2 ) and O 2 in the presence of superheated steam is promoted. Further, the superheated steam generates H 2 by a water gas shift reaction (CO + H 2 O → CO 2 + H 2 ), and the NOx reduction reaction using the H 2 as a reducing agent is also promoted.

このような過熱水蒸気によるNOx浄化効果を有効に活用するために、本発明の排気浄化システムでは、
前記SCRに流入する排気を昇温する排気昇温手段を更に備え、
前記温度制御手段は、前記NH供給手段によって供給されたNHを還元剤として前記SCRにおいてNOxの還元反応が行われる時に、前記SCRの温度が、前記SCRにおいて水蒸気が過熱水蒸気として存在するための温度の下限値に基づいて定められる所定の第2基準温度より低い場合、前記排気昇温手段によって前記SCRに流入する排気を昇温するようにしても良い。
In order to effectively utilize the NOx purification effect by such superheated steam, in the exhaust purification system of the present invention,
An exhaust temperature raising means for raising the temperature of the exhaust gas flowing into the SCR;
It said temperature control means, the NH 3 supplied by the NH 3 supply means when the reduction reaction of NOx is performed in the SCR as a reducing agent, the temperature of the SCR is present water vapor as superheated steam in the SCR If the temperature is lower than a predetermined second reference temperature determined based on the lower limit value of the temperature, the exhaust gas flowing into the SCR may be heated by the exhaust gas temperature raising means.

こうすることにより、上記のような過熱水蒸気によるNOx還元反応の促進効果やNOx分解反応の促進効果等を有効に活用し、排気浄化システムのNOx浄化率をより一層高めることができる。ここで、所定の第2基準温度は、SCRにおいて水蒸気が過熱水蒸気として存在するための温度の下限値に基づいて定められる温度であり、予め実験やシミュレーション等によって求められる。   By doing so, it is possible to effectively utilize the effect of promoting the NOx reduction reaction and the effect of promoting the NOx decomposition reaction by the superheated steam as described above, and further increase the NOx purification rate of the exhaust purification system. Here, the predetermined second reference temperature is a temperature determined based on the lower limit value of the temperature at which the water vapor exists as superheated water vapor in the SCR, and is obtained in advance by experiments, simulations, or the like.

なお、SCRはNHやHOを吸着する性質があるが、その吸着量はSCRの温度が低いほど多い傾向がある。本発明によれば、SCRの温度が基準温度より高くならないように温度制御が行われるため、SCRの温度が過剰に高くなることが抑制される。従って、NH供給手段によって供給されるNHや排気中のHOをより多くSCRの吸着させることができ、NHによるNOx還元反応やHOによる上記諸効果によるNOx浄化効果をより一層高めることができる。 The SCR has a property of adsorbing NH 3 and H 2 O, but the amount of adsorption tends to increase as the temperature of the SCR decreases. According to the present invention, since temperature control is performed so that the temperature of the SCR does not become higher than the reference temperature, the temperature of the SCR is suppressed from becoming excessively high. Therefore, it is possible to more SCR adsorption of H 2 O NH 3 and in the exhaust gas supplied by the NH 3 supply means, more NOx purification effect due to the various effects of NOx reduction reaction and H 2 O by NH 3 It can be further enhanced.

ここで、排気昇温手段は、SCRに流入する排気を昇温可能であればどのような手段であっても良い。例えば、排気の空燃比を目標空燃比を中心として振動させることによって排気の温度を上昇させる手段とすることができる。ここで、「空燃比を振動させる」とは、空燃比を、ある空燃比を中心として、該空燃比の上下に比較的微小な変動幅で比較的短い時間間隔で繰り返し変動させることを意味する。変動幅は変動の中心となる空燃比に対して対称であっても非対称であっても良い。また、変動の繰り返しは周期的であっても良いし周期性を持たない変動であっても良い。このように空燃比を振動させる制御を以下パータベーション制御と称する。   Here, the exhaust temperature raising means may be any means as long as the temperature of the exhaust flowing into the SCR can be raised. For example, the temperature of the exhaust gas can be increased by oscillating the air-fuel ratio of the exhaust gas around the target air-fuel ratio. Here, “vibrating the air-fuel ratio” means that the air-fuel ratio is repeatedly changed at a relatively short time interval with a relatively small fluctuation range above and below the air-fuel ratio with a certain air-fuel ratio as the center. . The fluctuation range may be symmetric or asymmetric with respect to the air-fuel ratio that is the center of fluctuation. In addition, the repetition of the fluctuation may be periodic or may have no periodicity. Such control for oscillating the air-fuel ratio is hereinafter referred to as perturbation control.

パータベーション制御を行うことにより、目標空燃比よりリーン側の空燃比の排気とリッチ側の空燃比の排気とが混在することになる。リーン側の空燃比の排気中にはOが比較的多く含まれ、リッチ側の空燃比の排気中にはリッチ成分が比較的多く含まれる。従っ
て、これらの排気が混在すると、これらOとリッチ成分とで酸化還元反応が進み、その反応熱によって排気の温度が上昇する。ここで、目標空燃比は、内燃機関の運転状態や排気浄化システムの状態等に応じて設定される排気の空燃比である。
By performing the perturbation control, the air-fuel ratio on the lean side of the target air-fuel ratio and the exhaust gas on the rich-side air-fuel ratio are mixed. The lean air-fuel ratio exhaust gas contains a relatively large amount of O 2 , and the rich air-fuel ratio exhaust gas contains a relatively large amount of rich components. Therefore, when these exhaust gases coexist, an oxidation-reduction reaction proceeds between these O 2 and rich components, and the temperature of the exhaust increases due to the reaction heat. Here, the target air-fuel ratio is the air-fuel ratio of the exhaust gas set according to the operating state of the internal combustion engine, the state of the exhaust purification system, and the like.

また、排気通路にTWCを備えた構成においては、ストイキ近傍の空燃比を中心として空燃比を振動させるパータベーション制御を行っても良い。特に、空燃比の振動範囲を、TWCによるHC浄化率が最大となる空燃比とCOの浄化率が最大となる空燃比とを含む範囲になるようにすれば、TWCにおけるHCの酸化反応とCOの酸化反応との反応性を高めることができるので、排気昇温効果をより一層高めることができる。   Further, in a configuration in which the exhaust passage is provided with a TWC, perturbation control for oscillating the air-fuel ratio around the air-fuel ratio in the vicinity of the stoichiometry may be performed. In particular, if the vibration range of the air-fuel ratio is set to a range including an air-fuel ratio at which the HC purification rate by the TWC is maximum and an air-fuel ratio at which the CO purification rate is maximum, the HC oxidation reaction in the TWC and the CO Since the reactivity with the oxidation reaction can be enhanced, the exhaust gas temperature raising effect can be further enhanced.

本発明において、NH供給手段は、前記SCRより上流の排気中にリッチ成分を供給することによって前記SCRより上流の排気中にNHを発生させる手段とすることができる。 In the present invention, the NH 3 supply means may be means for generating NH 3 in the exhaust gas upstream of the SCR by supplying a rich component in the exhaust gas upstream of the SCR.

排気中にリッチ成分(HCやH等)が供給されると、これらのリッチ成分と排気中のNOxとが反応してNHが発生する。SCRにおけるNHによるNOx還元反応はリーン雰囲気下で好適に進む性質があるので、リッチ成分が排気中へ供給されることによって発生したNHは、主にSCRのゼオライト構造に吸着し、リッチ成分の排気への供給が終了してSCRがリーン雰囲気となった時に、当該吸着したNHによってSCRに流入するNOxの還元反応が進む。従って、この構成の場合、「NH供給手段によって供給されたNHを還元剤としてSCRにおいてNOx還元反応が行われる時」とは、リッチ成分の排気への供給が終了してSCRがリーン雰囲気となった時である。 When the rich components in the exhaust gas (HC, H 2 or the like) is supplied, the NOx in the exhaust gas and these rich component is NH 3 reacts to occur. Since the NOx reduction reaction by NH 3 in the SCR has a property that proceeds favorably in a lean atmosphere, NH 3 generated by supplying the rich component into the exhaust is mainly adsorbed on the zeolite structure of the SCR, and the rich component When the supply of exhaust gas to the exhaust gas ends and the SCR becomes a lean atmosphere, the reduction reaction of NOx flowing into the SCR proceeds by the adsorbed NH 3 . Thus, in this configuration, the "NH 3 when the NOx reduction reaction is carried out in the SCR as a reducing agent and NH 3 supplied by the supply means", SCR lean atmosphere supply is terminated to exhaust gas of a rich component It is time to become.

SCRより上流の排気中にリッチ成分が供給される場合としては、リーン燃焼可能な内燃機関において、内燃機関のリーン運転中に排気の空燃比を一時的にリッチに制御するリッチスパイクが行われる場合を例示できる。リッチスパイクが実行されると、リッチスパイクによって排気中に供給されるリッチ成分と、排気中のNOxやNSRから放出されるNOxとが反応して、NHが発生する。当該発生したNHはSCRに吸着し、リッチスパイクが終了して通常のリーン運転に復帰した時に、当該吸着したNHによって排気中のNOxが還元される。リッチスパイクは、一時的に排気の空燃比をストイキ又はリッチ雰囲気とする必要がある場合等に実行される。例えば、NSRを備えた内燃機関において、公知のNOx脱離還元処理やSOx被毒回復処理が行われる場合等にリッチスパイクが実行される。 The case where a rich component is supplied to the exhaust gas upstream of the SCR is a case where a rich spike that temporarily controls the air-fuel ratio of the exhaust gas to a rich state is performed during the lean operation of the internal combustion engine in the lean combustion internal combustion engine. Can be illustrated. When the rich spike is executed, the rich component supplied into the exhaust gas by the rich spike reacts with the NOx in the exhaust gas or the NOx released from the NSR to generate NH 3 . The generated NH 3 is adsorbed by the SCR, and when the rich spike ends and the normal lean operation is restored, the adsorbed NH 3 reduces NOx in the exhaust gas. The rich spike is executed when it is necessary to temporarily change the air-fuel ratio of the exhaust to a stoichiometric or rich atmosphere. For example, in an internal combustion engine equipped with NSR, a rich spike is executed when a known NOx desorption reduction process or SOx poisoning recovery process is performed.

本発明において、NH供給手段は、複数の気筒を有する内燃機関において、複数の気筒のうち一部の気筒の空燃比を目標空燃比よりリーン側の空燃比とするとともに他の気筒の空燃比を目標空燃比よりリッチ側の空燃比とし、トータルの空燃比が目標空燃比となるように制御する気筒別空燃比制御を行う手段とすることができる。気筒別空燃比制御が実行されると、リーン側の空燃比に制御される気筒からの排気中にはより多くのNOxが含まれ、リッチ側の空燃比に制御される気筒からの排気中にはより多くのリッチ成分が含まれる。これらの排気が混合することで、NOxとリッチ成分とが反応してNHが発生する。 In the present invention, in the internal combustion engine having a plurality of cylinders, the NH 3 supply means sets the air-fuel ratio of some of the plurality of cylinders to an air-fuel ratio leaner than the target air-fuel ratio, and the air-fuel ratios of the other cylinders Can be used as means for performing cylinder-by-cylinder air-fuel ratio control in which the air-fuel ratio richer than the target air-fuel ratio is controlled so that the total air-fuel ratio becomes the target air-fuel ratio. When the cylinder-by-cylinder air-fuel ratio control is executed, more NOx is contained in the exhaust from the cylinder controlled to the lean side air-fuel ratio, and the exhaust from the cylinder controlled to the rich side air-fuel ratio is included Contains more rich ingredients. By mixing these exhaust gases, NOx and rich components react to generate NH 3 .

気筒別空燃比制御は、例えば、NSRのNOx脱離還元処理やSOx被毒回復処理、パティキュレートマターを捕集するフィルタの再生処理に際して排気を昇温する場合等に実行される。目標空燃比は内燃機関の運転状態や排気浄化システムの状態等に応じて定められる。例えば、NSRのNOx脱離還元処理やSOx被毒回復処理を行う場合の気筒別空燃比制御では、NSRからNOxやSOxが脱離するための空燃比(ストイキ又はリッチ)となるように目標空燃比を設定する。   The cylinder-by-cylinder air-fuel ratio control is executed, for example, when the temperature of the exhaust gas is raised during NSR NOx desorption reduction processing, SOx poisoning recovery processing, filter regeneration processing for collecting particulate matter, and the like. The target air-fuel ratio is determined according to the operating state of the internal combustion engine, the state of the exhaust purification system, and the like. For example, in the NSR NOx desorption reduction process and the SOx poisoning recovery process, the target air-fuel ratio control is performed so that the air-fuel ratio (stoichiometric or rich) for desorbing NOx and SOx from the NSR is obtained. Set the fuel ratio.

本発明において、NH供給手段は、複数の気筒群を有する内燃機関において、複数の気筒群のうち一部の気筒群の空燃比を目標空燃比よりリーン側の空燃比とするとともに他の気筒群の空燃比を目標空燃比よりリッチ側の空燃比とし、トータルの空燃比が目標空燃比となるように制御する気筒群別空燃比制御を行う手段とすることができる。気筒群別空燃比制御が実行されると、リーン側の空燃比に制御される気筒群からの排気中にはより多くのNOxが含まれ、リッチ側の空燃比に制御される気筒群からの排気中にはより多くのリッチ成分が含まれる。これらの排気が混合することで、NOxとリッチ成分とが反応してNHが発生する。 In the present invention, in the internal combustion engine having a plurality of cylinder groups, the NH 3 supply means sets the air-fuel ratio of a part of the plurality of cylinder groups to an air-fuel ratio leaner than the target air-fuel ratio, and other cylinders The group air-fuel ratio may be a means for performing air-fuel ratio control for each cylinder group that controls the air-fuel ratio richer than the target air-fuel ratio so that the total air-fuel ratio becomes the target air-fuel ratio. When the air-fuel ratio control for each cylinder group is executed, more NOx is contained in the exhaust from the cylinder group controlled to the lean side air-fuel ratio, and from the cylinder group controlled to the rich side air-fuel ratio. More rich components are contained in the exhaust. By these exhaust gas is mixed, NH 3 is produced by the reaction of the NOx and the rich components.

気筒群別空燃比制御は、気筒別空燃比制御と同様、排気を昇温する必要がある場合等に実行される。目標空燃比は内燃機関の運転状態や排気浄化システムの状態等に応じて定められる。例えば、NSRのNOx脱離還元処理やSOx被毒回復処理を行う場合のバンク制御では、NSRからNOxやSOxが脱離するための空燃比(ストイキ又はリッチ)となるように目標空燃比を設定する。   The cylinder group-specific air-fuel ratio control is executed when it is necessary to raise the temperature of the exhaust gas similarly to the cylinder-specific air-fuel ratio control. The target air-fuel ratio is determined according to the operating state of the internal combustion engine, the state of the exhaust purification system, and the like. For example, in bank control when NSR NOx desorption reduction processing or SOx poisoning recovery processing is performed, the target air-fuel ratio is set so that the air-fuel ratio (stoichiometric or rich) for desorbing NOx and SOx from NSR is set. To do.

上述のように、SCRにおけるNHを還元剤としたNOx還元反応は、低温環境下で好適に進行する。ところが、気筒群別空燃比制御による排気昇温制御が終了した直後は、排気の温度が高くなっているため、SCRにおけるNOx還元反応が進みにくい。そのため、気筒群別空燃比制御によって還元剤としてのNHを発生させてSCRに吸着させても、気筒群別空燃比制御終了直後はSCRにおいて十分なNOx浄化率が得られない虞がある。 As described above, the NOx reduction reaction using NH 3 in the SCR as a reducing agent suitably proceeds in a low temperature environment. However, immediately after the exhaust gas temperature raising control by the cylinder group air-fuel ratio control is finished, the temperature of the exhaust gas is high, so that the NOx reduction reaction in the SCR is difficult to proceed. Therefore, even if NH 3 as a reducing agent is generated by the air-fuel ratio control for each cylinder group and adsorbed to the SCR, there is a possibility that a sufficient NOx purification rate cannot be obtained in the SCR immediately after the air-fuel ratio control for each cylinder group is finished.

そこで、気筒群別空燃比制御をNH供給手段としてSCRにNHを供給する構成の場合、前記温度制御手段は、気筒群別空燃比制御が行われる期間の後半では、気筒群別空燃比制御においてリーン側の空燃比とされる気筒群の空燃比とリッチ側の空燃比とされる気筒群の空燃比との差(気筒群間空燃比差)を、気筒群別空燃比制御が行われる期間の前半における気筒群間空燃比差よりも小さくするようにしても良い。 Therefore, in the case where NH 3 is supplied to the SCR using the cylinder group air-fuel ratio control as the NH 3 supply means, the temperature control means performs the cylinder group air-fuel ratio in the latter half of the period during which the cylinder group air-fuel ratio control is performed. In the control, the difference between the air-fuel ratio of the cylinder group that is the lean side air-fuel ratio and the air-fuel ratio of the cylinder group that is the rich-side air-fuel ratio (inter-cylinder group air-fuel ratio difference) is performed by the air-fuel ratio control for each cylinder group. It may be made smaller than the air-fuel ratio difference between the cylinder groups in the first half of the period.

気筒群別空燃比制御においては、気筒群間空燃比差が大きくなるほど排気昇温効果は大きくなる。逆に、その差を小さくすることによって、気筒群別空燃比制御による排気昇温効果は小さくすることができる。上記構成によれば、気筒群別空燃比制御の後半においては気筒群間空燃比差が小さくされるので、気筒群別空燃比制御の後半における排気昇温効果が小さくなる。よって、気筒群別空燃比制御終了後にSCRに流入する排気の温度を速やかに基準温度以下の温度にまで低下させることができる。従って、気筒群別空燃比制御後のSCRにおいて高いNOx浄化率を得ることが可能になる。   In the air-fuel ratio control for each cylinder group, the exhaust gas temperature increasing effect increases as the air-fuel ratio difference between the cylinder groups increases. Conversely, by reducing the difference, the exhaust gas temperature raising effect by the cylinder group air-fuel ratio control can be reduced. According to the above configuration, the difference in air-fuel ratio between the cylinder groups is reduced in the second half of the cylinder group air-fuel ratio control, so that the exhaust gas temperature raising effect in the second half of the cylinder group air-fuel ratio control is reduced. Therefore, the temperature of the exhaust gas flowing into the SCR after the completion of the cylinder group air-fuel ratio control can be quickly reduced to a temperature equal to or lower than the reference temperature. Accordingly, it is possible to obtain a high NOx purification rate in the SCR after the air-fuel ratio control for each cylinder group.

ここで、気筒群別空燃比制御の後半における気筒群間空燃比差は、気筒群別空燃比制御終了後のSCRの温度と、気筒群別空燃比制御の目的と、の両方を考慮して設定することが好ましい。例えば、NSRのSOx被毒回復処理のための排気昇温を目的とした気筒群別空燃比制御では、排気の温度が、NSRからSOxが脱離可能な温度の下限値より低くならない範囲でできるだけ低くなるように、気筒群別空燃比制御の後半における気筒群間の空燃比差を設定することが好ましい。こうすることによって、NSRのSOx被毒回復処理を適切に継続しつつ、気筒群別空燃比制御終了後に、SCRにおけるNOx還元反応が好適に進行可能な温度環境を早期に実現することが可能になる。   Here, the inter-cylinder group air-fuel ratio difference in the latter half of the cylinder group air-fuel ratio control takes into account both the temperature of the SCR after the cylinder group air-fuel ratio control and the purpose of the cylinder group air-fuel ratio control. It is preferable to set. For example, in the air-fuel ratio control by cylinder group for the purpose of increasing the exhaust gas temperature for the SOx poisoning recovery process of NSR, the exhaust gas temperature is as low as possible within a range that does not fall below the lower limit of the temperature at which SOx can be desorbed from NSR. It is preferable to set the air-fuel ratio difference between the cylinder groups in the second half of the cylinder-group air-fuel ratio control so as to be low. By doing so, it is possible to quickly realize a temperature environment in which the NOx reduction reaction in the SCR can proceed favorably after the completion of the air-fuel ratio control for each cylinder group while properly continuing the SOx poisoning recovery process of the NSR. Become.

また、気筒群別空燃比制御において、温度制御手段は、排気の温度が排気中で水性ガスシフト反応が進む温度の上限値に基づいて定められる所定の第3基準温度より低くなるように、気筒群間空燃比差を設定するようにしても良い。   Further, in the air-fuel ratio control for each cylinder group, the temperature control means is configured so that the temperature of the exhaust gas becomes lower than a predetermined third reference temperature determined based on the upper limit value of the temperature at which the water gas shift reaction proceeds in the exhaust gas. An inter-air-fuel ratio difference may be set.

水性ガスシフト反応とは、排気中の一酸化炭素(CO)と水蒸気(HO)から二酸化
炭素(CO)とHが生じる発熱反応である。この反応は過剰に高温の環境下では進行しにくい性質がある。上記第3基準温度は、この水性ガスシフト反応が好適に進む温度の上限値に基づいて定められる温度であり、予め実験やシミュレーション等によって求められる。上記構成によれば、排気温度が第3基準温度より低くなるように気筒群別空燃比制御における気筒群間空燃比差が設定されるので、気筒群別空燃比制御の実行中に排気中で水性ガスシフト反応が好適に進む。これにより、排気中により多くのHを発生させることができる。このHと排気中のNOxとからNHが発生するので、本発明によれば、気筒群別空燃比制御中により多くのNHを発生させ、SCRに供給することが可能になる。また、該H自体が還元剤としてNOxを還元する反応が進行するので、排気浄化システムのNOx浄化率をより一層高めることができる。
The water gas shift reaction is an exothermic reaction in which carbon dioxide (CO 2 ) and H 2 are generated from carbon monoxide (CO) and water vapor (H 2 O) in exhaust gas. This reaction has a property that it is difficult to proceed in an excessively high temperature environment. The third reference temperature is a temperature determined based on the upper limit value of the temperature at which the water gas shift reaction suitably proceeds, and is obtained in advance by experiments, simulations, or the like. According to the above configuration, the inter-cylinder group air-fuel ratio difference in the air-fuel ratio control for each cylinder group is set so that the exhaust gas temperature is lower than the third reference temperature. The water gas shift reaction preferably proceeds. As a result, more H 2 can be generated in the exhaust gas. Since NH 3 is generated from this H 2 and NOx in the exhaust, according to the present invention, more NH 3 can be generated and supplied to the SCR during the air-fuel ratio control for each cylinder group. Further, since the reaction for reducing NOx by the H 2 itself as a reducing agent proceeds, the NOx purification rate of the exhaust purification system can be further increased.

気筒群別空燃比制御を行う構成において、各気筒群が複数の気筒を有する場合、前記NH供給手段は、前記複数の気筒群のうち少なくとも1つの気筒群に関して、前記気筒群別空燃比制御において、当該気筒群の一部の気筒の空燃比と当該気筒群の他の気筒の空燃比とを異ならせるとともに、当該気筒群のトータルの空燃比が前記気筒群別空燃比制御における当該気筒群の目標空燃比となるように制御する気筒別空燃比制御を行うようにしても良い。 In the configuration in which the cylinder group air-fuel ratio control is performed, when each cylinder group has a plurality of cylinders, the NH 3 supply unit performs the cylinder group air-fuel ratio control for at least one cylinder group among the plurality of cylinder groups. The air-fuel ratio of some cylinders in the cylinder group differs from the air-fuel ratios of other cylinders in the cylinder group, and the total air-fuel ratio of the cylinder group is the cylinder group in the cylinder-group air-fuel ratio control. It is also possible to perform cylinder-by-cylinder air-fuel ratio control that controls the air-fuel ratio to be the target air-fuel ratio.

例えば、気筒群別空燃比制御よって所定のリーン空燃比に制御される気筒群に属する複数の気筒のうち、一部の気筒の空燃比を当該所定リーン空燃比よりややリーンの空燃比とし、当該気筒群のその他の気筒の空燃比を当該所定リーン空燃比よりややリッチの空燃比とし、当該気筒群のトータルの空燃比が当該所定リーン空燃比となるように制御する。さらに、当該気筒群に属する複数の気筒間で、当該所定リーン空燃比よりややリーンの空燃比とされる気筒と、当該所定リーン空燃比よりややリッチの空燃比とされる気筒と、を一又は複数サイクル毎に順次切り替えるようにしても良い。   For example, among a plurality of cylinders belonging to a cylinder group controlled to a predetermined lean air-fuel ratio by the cylinder group air-fuel ratio control, the air-fuel ratio of some cylinders is set to be slightly leaner than the predetermined lean air-fuel ratio, The air-fuel ratio of the other cylinders in the cylinder group is set to be slightly richer than the predetermined lean air-fuel ratio, and the total air-fuel ratio of the cylinder group is controlled to be the predetermined lean air-fuel ratio. Further, between a plurality of cylinders belonging to the cylinder group, one or a cylinder having an air / fuel ratio slightly leaner than the predetermined lean air / fuel ratio and a cylinder having an air / fuel ratio slightly richer than the predetermined lean air / fuel ratio You may make it switch sequentially for every several cycles.

このように、気筒群別空燃比制御における各気筒群に属する気筒に対して気筒別空燃比制御を行うことで、ある気筒群に属する複数の気筒からの排気の間でも、リッチ成分を多く含む排気とNOxを多く含む排気とが混在することになり、より多くのNHを発生させることができる。従って、気筒群別空燃比制御中により多くのNHをSCRに供給することが可能になり、気筒群別空燃比制御後にSCRにおけるNOx浄化率をより一層高めることができる。 In this way, by performing cylinder-by-cylinder air-fuel ratio control on the cylinders belonging to each cylinder group in the cylinder group-by-cylinder air-fuel ratio control, a lot of rich components are included even between exhausts from a plurality of cylinders belonging to a certain cylinder group. Exhaust gas and exhaust gas containing a large amount of NOx are mixed, and more NH 3 can be generated. Therefore, more NH 3 can be supplied to the SCR during the cylinder group air-fuel ratio control, and the NOx purification rate in the SCR can be further increased after the cylinder group air-fuel ratio control.

本発明においては、SCRを、排気通路におけるなるべく内燃機関から離れた位置に配置するようにしても良い。こうすることで、SCRに流入する排気の温度を低下させることができるので、SCRに流入する排気の温度が前記基準温度を超えてしまうことをより確実に抑制することができる。従って、SCRによるNOx浄化率を高めることができる。   In the present invention, the SCR may be arranged in a position as far away from the internal combustion engine as possible in the exhaust passage. By doing so, the temperature of the exhaust gas flowing into the SCR can be lowered, so that it is possible to more reliably suppress the temperature of the exhaust gas flowing into the SCR from exceeding the reference temperature. Therefore, the NOx purification rate by SCR can be increased.

本発明により、NHを還元剤としてNOxを選択的に還元するSCRを備えた排気浄化システムによるNOx浄化率を高めることができる。 According to the present invention, it is possible to increase the NOx purification rate by the exhaust purification system provided with the SCR that selectively reduces NOx using NH 3 as a reducing agent.

以下、本発明に係る内燃機関の排気浄化システムの具体的な実施態様について図面に基づいて説明する。   A specific embodiment of an exhaust gas purification system for an internal combustion engine according to the present invention will be described below with reference to the drawings.

図1は、本実施例に係る内燃機関とその排気系の概略構成を示す図である。内燃機関1は左バンク12及び右バンク13を備えた6気筒V型エンジンである。左バンク12に属
する各気筒(#1、#2、#3)の燃焼室は左バンク排気通路6に通じている。右バンク13に属する各気筒(#4、#5、#6)の燃焼室は右バンク排気通路7に通じている。左バンク排気通路6と右バンク排気通路7とは合流部14において合流し、排気通路5に接続する。排気通路5には合流部14から下流に向かって三元触媒(TWC)4、吸蔵還元型NOx触媒(NSR)2、選択還元型NOx触媒(SCR)3が配置されている。NSR2は流入する排気の空燃比がリーンの時に排気中にNOxを吸蔵し、流入する排気の空燃比がストイキ又はリッチで且つ還元剤の存在下で吸蔵していたNOxを還元する機能を有する。また、SCR3は、NHを還元剤として排気中のNOxを選択的に還元する機能を有する。例えば、一酸化窒素(NO)は4NO+4NH+O→4N+6HOなる反応によってNに還元される。また、二酸化窒素(NO)は6NO+8NH→7N+12HOなる反応によってNに還元される。TWC4は、流入する排気の空燃比がストイキ近傍の所定の空燃比領域内にある時に、排気中のNOxを還元するとともに、排気中のHC及びCOを酸化する機能を有する。その他、排気中のパティキュレートマターを捕集するフィルタ等の排気浄化装置が排気通路5に設けられていても良い。
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine and its exhaust system according to the present embodiment. The internal combustion engine 1 is a 6-cylinder V-type engine having a left bank 12 and a right bank 13. The combustion chamber of each cylinder (# 1, # 2, # 3) belonging to the left bank 12 communicates with the left bank exhaust passage 6. The combustion chamber of each cylinder (# 4, # 5, # 6) belonging to the right bank 13 communicates with the right bank exhaust passage 7. The left bank exhaust passage 6 and the right bank exhaust passage 7 join at the junction 14 and are connected to the exhaust passage 5. A three-way catalyst (TWC) 4, an occlusion reduction type NOx catalyst (NSR) 2, and a selective reduction type NOx catalyst (SCR) 3 are arranged in the exhaust passage 5 downstream from the junction 14. The NSR 2 has a function of storing NOx in the exhaust when the air-fuel ratio of the inflowing exhaust gas is lean, and reducing the NOx stored in the presence of a reducing agent when the air-fuel ratio of the inflowing exhaust gas is stoichiometric or rich. The SCR 3 has a function of selectively reducing NOx in the exhaust gas using NH 3 as a reducing agent. For example, nitric oxide (NO) is reduced to N 2 by a reaction of 4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O. Nitrogen dioxide (NO 2 ) is reduced to N 2 by a reaction of 6NO 2 + 8NH 3 → 7N 2 + 12H 2 O. The TWC 4 has a function of reducing NOx in the exhaust and oxidizing HC and CO in the exhaust when the air-fuel ratio of the inflowing exhaust is within a predetermined air-fuel ratio region near the stoichiometric. In addition, an exhaust gas purification device such as a filter that collects particulate matter in the exhaust gas may be provided in the exhaust gas passage 5.

SCR3より上流且つNSR2より下流の排気通路5には、2つの分岐箇所を有する分岐部15が設けられている。分岐部15には、分岐部15の一方の分岐箇所と他方の分岐箇所とを接続するU字管10が接続されている。U字管10を通過する経路の経路長はU字管10を通過しない経路の経路長より長いため、排気がU字管10を通過する経路を通過するときに失う熱量は、排気がU字管10を通過しない経路を通過する場合に失う熱量より大きい。従って、本実施例のU字管10は本発明の分岐排気通路に相当する。分岐部15には流路切替弁11が設けられている。流路切替弁11は、排気通路5を流通する排気の流通経路を、U字管10を通過する経路又はU字管10を通過しない経路に切り替える弁である。本実施例の流路切替弁11は本発明の流路切替手段に相当する。SCR3の直前の排気通路5には排気の温度を測定する温度センサ9が備えられている。本実施例の温度センサ9は本発明の温度取得手段に相当する。   The exhaust passage 5 upstream of the SCR 3 and downstream of the NSR 2 is provided with a branch portion 15 having two branch points. Connected to the branch portion 15 is a U-shaped tube 10 that connects one branch location of the branch portion 15 to the other branch location. Since the path length of the path that passes through the U-shaped tube 10 is longer than the path length of the path that does not pass through the U-shaped pipe 10, the amount of heat lost when the exhaust gas passes through the path that passes through the U-shaped tube 10 It is greater than the amount of heat lost when passing through a path that does not pass through the tube 10. Therefore, the U-shaped tube 10 of this embodiment corresponds to the branch exhaust passage of the present invention. The branching unit 15 is provided with a flow path switching valve 11. The flow path switching valve 11 is a valve that switches the flow path of the exhaust gas flowing through the exhaust passage 5 to a path that passes through the U-shaped tube 10 or a path that does not pass through the U-shaped tube 10. The flow path switching valve 11 of the present embodiment corresponds to the flow path switching means of the present invention. The exhaust passage 5 immediately before the SCR 3 is provided with a temperature sensor 9 for measuring the exhaust temperature. The temperature sensor 9 of the present embodiment corresponds to the temperature acquisition means of the present invention.

以上説明したように構成された内燃機関1には、内燃機関1を制御するためのコンピュータであるECU8が併設されている。ECU8は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御する機能を有する。ECU8には上記温度センサ9の他各種のセンサが接続され、各センサの出力信号がECU8に入力される。また、ECU8には上記流路切替弁11の他各種の機器が接続され、各機器の動作がECU8から出力される制御信号によって制御される。   The internal combustion engine 1 configured as described above is provided with an ECU 8 that is a computer for controlling the internal combustion engine 1. The ECU 8 has a function of controlling the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the request of the driver. Various sensors other than the temperature sensor 9 are connected to the ECU 8, and output signals from the sensors are input to the ECU 8. Various devices other than the flow path switching valve 11 are connected to the ECU 8, and the operation of each device is controlled by a control signal output from the ECU 8.

NSR2に吸蔵されたNOxをNSR2から放出させ還元する処理(NOx脱離還元処理という)や、NSR2に吸蔵されたSOxをNSR2から脱離させる処理(SOx被毒回復処理という)を行う場合、NSR2の周囲雰囲気をストイキ又はリッチとし、且つNSR2を昇温する必要がある。本実施例の排気浄化システムでは、NOx脱離還元処理又はSOx被毒回復処理を実行すべき条件が成立した場合には、左バンク12に属する気筒の空燃比をリーン(例えばA/F15)とし、右バンク13に属する気筒の空燃比をリッチ(例えばA/F12)とし、合流部14における排気の空燃比がストイキ近傍の空燃比(例えばA/F14.6)となるように空燃比制御を行う。このような空燃比制御を以下バンク制御と称する。本実施例のバンク制御は、本発明における気筒群別空燃比制御に相当する。バンク制御の実行時には、左バンク12に属する気筒からはOを比較的多く含む排気が排出され、右バンク13に属する気筒からはCOやHC等のリッチ成分が多く含まれる排気が排出される。これらの排気は合流部14で合流し、排気通路5やTWC4においてこれら排気中のOとリッチ成分とで酸化還元反応が進行し、その反応熱によって排気の温度が上昇する。これにより、NSR2の温度が上昇する。また、トータルの排気空燃比がストイキよりややリッチの空燃比とされるため、NSR2に吸蔵されたNOxが放出され、NOx脱離還元処理が行われる。また、バンク制御における左バンク12の空
燃比と右バンク13の空燃比との差(バンク間空燃比差という)をより大きくすれば(例えば、左バンク12の空燃比=A/F18、右バンク13の空燃比=A/F12とする)、バンク制御による排気昇温効果が高くなり、NSR2の温度をSOx被毒回復処理を実行可能な程度にまで昇温することができる。
When performing the process of releasing and reducing NOx occluded in NSR2 (referred to as NOx desorption reduction process) or the process of desorbing SOx occluded in NSR2 (referred to as SOx poisoning recovery process), NSR2 It is necessary to make the ambient atmosphere of the stoichiometric or rich and raise the temperature of NSR2. In the exhaust purification system of the present embodiment, when the condition for executing the NOx desorption reduction process or the SOx poisoning recovery process is satisfied, the air-fuel ratio of the cylinder belonging to the left bank 12 is set to lean (for example, A / F15). The air-fuel ratio of the cylinders belonging to the right bank 13 is made rich (for example, A / F12), and the air-fuel ratio control is performed so that the air-fuel ratio of the exhaust gas at the junction 14 becomes the air-fuel ratio in the vicinity of the stoichiometric (for example, A / F14.6). Do. Such air-fuel ratio control is hereinafter referred to as bank control. The bank control of the present embodiment corresponds to the cylinder group air-fuel ratio control in the present invention. When the bank control is executed, the exhaust gas containing a relatively large amount of O 2 is discharged from the cylinders belonging to the left bank 12, and the exhaust gas containing a rich component such as CO or HC is discharged from the cylinders belonging to the right bank 13. . These exhaust gases are merged at the merge section 14, and an oxidation-reduction reaction proceeds between O 2 and rich components in the exhaust gas in the exhaust passage 5 and the TWC 4, and the temperature of the exhaust gas is increased by the reaction heat. Thereby, the temperature of NSR2 rises. Further, since the total exhaust air-fuel ratio is made slightly richer than stoichiometric, NOx occluded in NSR2 is released, and NOx desorption reduction processing is performed. Further, if the difference between the air-fuel ratio of the left bank 12 and the air-fuel ratio of the right bank 13 (referred to as the inter-bank air-fuel ratio difference) in the bank control is made larger (for example, the air-fuel ratio of the left bank 12 = A / F18, 13), the effect of increasing the exhaust gas temperature by the bank control is increased, and the temperature of the NSR 2 can be increased to such an extent that the SOx poisoning recovery process can be performed.

バンク制御を実行すると、TWC4やNSR2において、右バンク13に属する気筒からの排気中に含まれるHCやH等のリッチ成分と、排気中のNOxやNSR2から放出されるNOxとが反応して、NHが発生する。また、排気中のNとHとからNHが合成される反応も進行する。すなわち、本実施例においてバンク制御を実行する装置(図示しない燃料噴射システム、及びそれを制御するECU8)が、本発明のNH供給手段に相当する。また、バンク制御に伴ってHOも発生する。これらバンク制御に伴って発生するNHやHOは、主にSCR3に吸着される。そして、NOx脱離還元処理やSOx被毒回復処理を終了する条件が成立してバンク制御が終了し、通常運転モード(リーンバーンモード)に復帰すると、SCR3に流入する排気中のNOxが前記SCR3に吸着されたNHを還元剤として還元され浄化される。 When you run a bank control, in TWC4 and NSR2, and rich component of HC, H 2 or the like contained in the exhaust from the cylinders belonging to the right bank 13, and the NOx released from the NOx and NSR2 in the exhaust gas reacts , NH 3 is generated. In addition, a reaction in which NH 3 is synthesized from N 2 and H 2 in the exhaust gas also proceeds. That is, in the present embodiment, a device that executes bank control (a fuel injection system (not shown) and an ECU 8 that controls the device) corresponds to the NH 3 supply means of the present invention. Further, H 2 O is also generated with the bank control. NH 3 and H 2 O generated by the bank control are mainly adsorbed by the SCR 3 . When the conditions for ending the NOx desorption reduction process and the SOx poisoning recovery process are satisfied and the bank control is completed and the normal operation mode (lean burn mode) is restored, the NOx in the exhaust gas flowing into the SCR3 is converted into the SCR3. It is reduced and purified using NH 3 adsorbed on the reducing agent.

ところで、SCR3におけるNHを還元剤とするNOx還元反応は、発熱反応である。従って、SCR3の温度が過剰に高い場合、SCR3においてNHによるNOx還元反応が進みにくくなり、十分なNOx浄化率が得られない虞がある。そこで、本実施例のシステムでは、バンク制御終了後、温度センサ9によってSCR3に流入する排気の温度を測定し、測定された温度Tが所定の基準温度Tより高い場合(T>T)、流路切替弁11によって排気の流通経路をU字管10を通過する経路に切り替えるようにした。上記のように、SCR3に流入する前に排気がU字管10を通過することによって、排気が冷却される。こうして、SCR3に流入する排気の温度が基準温度T以下になるようにすることにより、SCR3におけるNHを還元剤としたNOx還元反応を好適に進行させることが可能となるので、SCR3によるNOx浄化率を高めることができる。ここで、基準温度TはSCR3においてNHによるNOx還元反応が好適に進む温度の上限値に基づいて定められる温度であり、本実施例ではT=300℃とする。 By the way, the NOx reduction reaction using NH 3 as a reducing agent in SCR 3 is an exothermic reaction. Therefore, when the temperature of the SCR 3 is excessively high, the NOx reduction reaction by NH 3 hardly proceeds in the SCR 3 , and there is a possibility that a sufficient NOx purification rate cannot be obtained. Therefore, the system of this embodiment, after the bank control end, the temperature of the exhaust gas flowing into the SCR3 by the temperature sensor 9 measures, if the measured temperature T is higher than the predetermined reference temperature T 1 (T> T 1) The flow path switching valve 11 switches the exhaust flow path to a path that passes through the U-shaped tube 10. As described above, the exhaust gas is cooled by passing through the U-shaped tube 10 before flowing into the SCR 3. Thus, by making the temperature of the exhaust gas flowing into the SCR 3 equal to or lower than the reference temperature T 1 , the NOx reduction reaction using NH 3 in the SCR 3 as a reducing agent can be suitably advanced. The purification rate can be increased. Here, the reference temperature T 1 is a temperature determined based on the upper limit value of the temperature at which the NOx reduction reaction by NH 3 proceeds favorably in SCR 3 , and in this embodiment, T 1 = 300 ° C.

ここで、排気中には燃焼行程や、排気中のリッチ成分(HC、H等)とOとの反応等によって発生した水蒸気(HO)が存在する。水蒸気は100℃を超えてさらに加熱されることにより、非常に反応性の高い過熱水蒸気となる。過熱水蒸気の存在下でSCR3におけるNOx還元反応が活性化される。また、過熱水蒸気の存在下で排気中のNOxがNとOとに分解するNOx分解反応が促進される。また、過熱水蒸気は水性ガスシフト反応(CO+HO→CO+H)によってHを生じるので、このHを還元剤とするNOx還元反応も促進される。 Here, in the exhaust, there is a steam (H 2 O) generated by a combustion process, a reaction between rich components (HC, H 2, etc.) in the exhaust and O 2 or the like. When the steam is further heated above 100 ° C., it becomes superheated steam with very high reactivity. The NOx reduction reaction in SCR3 is activated in the presence of superheated steam. Further, the NOx decomposition reaction in which NOx in the exhaust gas is decomposed into N 2 and O 2 in the presence of superheated steam is promoted. Moreover, since superheated steam produces H 2 by a water gas shift reaction (CO + H 2 O → CO 2 + H 2 ), a NOx reduction reaction using this H 2 as a reducing agent is also promoted.

このような過熱水蒸気によるNOx浄化効果を有効に活用するため、本実施例の排気浄化システムでは、温度センサ9によって測定されるSCR3に流入する排気の温度が過剰に低く、第2基準温度Tを下回る場合には、SCR3に流入する排気の温度を、上記基準温度Tを超えない範囲で若干昇温するようにした。第2基準温度Tは排気中のHOが少なくともSCR2において過熱水蒸気として存在し得る温度の下限値に基づいて定められる温度であり、本実施例ではT=200℃とする。こうすることにより、SCR3においてHOが過熱水蒸気として好適に機能するので、上記のような過熱水蒸気による種々のNOx浄化効果を有効に活用することが可能になる。 In order to effectively utilize such NOx purification effect by superheated steam, in the exhaust purification system of the present embodiment, the temperature of the exhaust gas flowing into the SCR 3 measured by the temperature sensor 9 is excessively low, and the second reference temperature T 2. If below, the temperature of the exhaust gas flowing into the SCR3, and so as to slightly Atsushi Nobori not exceeding the reference temperature T 1. The second reference temperature T 2 is a temperature determined based on the lower limit value of the temperature at which H 2 O in the exhaust gas can exist as superheated steam at least in the SCR 2 , and in this embodiment, T 2 = 200 ° C. By doing so, H 2 O suitably functions as superheated steam in the SCR 3, so that it is possible to effectively utilize the various NOx purification effects by the superheated steam as described above.

本実施例では、温度センサ9によって測定される温度が第2基準温度Tを下回る場合には、空燃比を比較的短周期で微小振動させる制御を実行することによって、排気の昇温を行うようにした。このような空燃比制御を以下パータベーション制御と称する。パータベーション制御は、空燃比を、その時点での目標空燃比に対して若干リーン側の空燃比と
若干リッチ側の空燃比との間で振動させる制御である。本実施例では、バンク制御終了後のリーンバーンモードで運転中にパータベーション制御が行われることになるので、例えばA/F25±0.3の範囲で空燃比を振動させる。パータベーション制御を実行することにより、リーンな排気中においてもO濃度が若干濃い排気とリッチ成分濃度若干濃い排気とが混在することになるので、これらOとリッチ成分との間の酸化還元反応の反応熱により、排気が昇温される。なお、本実施例において空燃比のパータベーション制御を行う装置(図示しない燃料噴射システム、吸入空気制御システム、それらを制御するECU8)が本発明における排気昇温手段に相当する。
In this embodiment, when the temperature measured by the temperature sensor 9 is below a second reference temperature T 2 by executing the control to small vibrations in a relatively short period of air-fuel ratio, performs a Atsushi Nobori of the exhaust I did it. Such air-fuel ratio control is hereinafter referred to as perturbation control. The perturbation control is a control for causing the air-fuel ratio to oscillate between a slightly leaner air-fuel ratio and a slightly richer air-fuel ratio with respect to the target air-fuel ratio at that time. In this embodiment, the perturbation control is performed during the operation in the lean burn mode after the end of the bank control. Therefore, the air-fuel ratio is oscillated in the range of A / F 25 ± 0.3, for example. By executing the perturbation control, the exhaust gas having a slightly rich O 2 concentration and the exhaust gas having a slightly rich rich component concentration coexist even in the lean exhaust gas. Therefore, the redox between these O 2 and the rich component is mixed. The exhaust gas is heated by the reaction heat of the reaction. In the present embodiment, a device for performing air-fuel ratio perturbation control (a fuel injection system, an intake air control system, and an ECU 8 for controlling them) not shown corresponds to the exhaust gas temperature raising means in the present invention.

以上説明したように、本実施例の排気浄化システムによれば、バンク制御後のリーンバーンモードにおいて、SCR3に流入する排気の温度が第2基準温度T以上基準温度T以下の温度範囲内に入るように温度制御が行われる。これにより、SCR3においてNHを還元剤とするNOx還元反応が好適に進行可能な程度の低温環境が実現されるとともに、排気中の水蒸気がSCR3において過熱水蒸気として存在可能な程度の高温環境が実現される。従って、極めて高いNOx浄化率を達成することが可能となる。本実施例においては、SCR3に流入する排気の温度がT以上T以下の温度範囲に入るように流路切替弁11の制御及び空燃比パータベーション制御を行うECU8が、本発明の温度制御手段に相当する。 As described above, according to the exhaust gas purification system according to the present embodiment, the lean-burn mode after bank control, the temperature of the exhaust gas flowing into the SCR3 second reference temperature T 2 higher than the reference temperature T 1 of the following temperatures Temperature control is performed to enter. This realizes a low temperature environment in which the NOx reduction reaction using NH 3 as the reducing agent can proceed suitably in SCR3, and a high temperature environment in which the water vapor in the exhaust can exist as superheated water vapor in SCR3. Is done. Therefore, it is possible to achieve an extremely high NOx purification rate. In the present embodiment, ECU 8 that performs control of the channel switching valve 11 and the air-fuel ratio perturbation control to enter the temperature range temperature of T 2 or T 1 or less of the exhaust gas flowing into the SCR3 is, the temperature control of the present invention Corresponds to means.

ここで、本実施例の排気温度制御の具体的な実行定順について、図2に基づいて説明する。図2は、本実施例の排気温度制御ルーチンを表すフローチャートである。このルーチンは内燃機関1の稼働中所定期間毎に繰り返し実行される。   Here, a specific execution order of the exhaust gas temperature control of the present embodiment will be described with reference to FIG. FIG. 2 is a flowchart showing an exhaust temperature control routine of the present embodiment. This routine is repeatedly executed at predetermined intervals during the operation of the internal combustion engine 1.

まず、ステップS101において、ECU8は、バンク制御実行条件が成立したか否かを判定する。バンク制御実行条件は、例えば、NOx脱離還元処理を実行すべき条件やSOx被毒回復処理を実行すべき条件が成立した場合に成立する。NOx脱離還元処理の実行条件やSOx被毒回復処理の実行条件は既知の条件を用いることができる。ステップS101で肯定判定された場合、ECU8はステップS102に進む。一方、ステップS101で否定判定された場合、ECU8は、ステップS105に進む。   First, in step S101, the ECU 8 determines whether or not a bank control execution condition is satisfied. The bank control execution condition is satisfied when, for example, a condition for executing the NOx desorption reduction process or a condition for executing the SOx poisoning recovery process is satisfied. Known conditions can be used as the execution condition of the NOx desorption reduction process and the execution condition of the SOx poisoning recovery process. If an affirmative determination is made in step S101, the ECU 8 proceeds to step S102. On the other hand, if a negative determination is made in step S101, the ECU 8 proceeds to step S105.

ステップS102において、ECU8は、バンク制御を開始する。   In step S102, the ECU 8 starts bank control.

ステップS103において、ECU8は、バンク制御終了条件が成立したか否かを判定する。バンク制御終了条件は、例えば、NOx脱離還元処理を終了すべき条件やSOx被毒回復処理を終了すべき条件が成立した場合に成立する。NOx脱離還元処理の終了条件やSOx被毒回復処理の終了条件は既知の条件を用いることができる。ステップS103は肯定判定されるまで繰り替え実行される。   In step S103, the ECU 8 determines whether or not a bank control end condition is satisfied. The bank control end condition is satisfied when, for example, a condition for ending the NOx desorption reduction process or a condition for ending the SOx poisoning recovery process is satisfied. Known conditions can be used as the termination condition of the NOx desorption reduction process and the termination condition of the SOx poisoning recovery process. Step S103 is repeated until an affirmative determination is made.

ステップS104において、ECU8は、バンク制御を終了し、通常のリーンバーンモードに移行する。   In step S104, the ECU 8 ends the bank control and shifts to a normal lean burn mode.

ステップS105において、ECU8は、SCR3に流入する排気の温度Tを取得する。具体的には、ECU8に入力される温度センサ9の検出信号を読み込む。   In step S105, the ECU 8 acquires the temperature T of the exhaust gas flowing into the SCR 3. Specifically, the detection signal of the temperature sensor 9 input to the ECU 8 is read.

ステップS106において、ECU8は、ステップS105で取得した温度Tが基準温度Tより高いか否かを判定する。ステップS106で肯定判定された場合(T>T)、ECU8はステップS107に進む。一方、ステップS106で否定判定された場合(T≦T)、ECU8はステップS108に進む。 In step S106, ECU 8 determines whether or not higher than the temperature T is a reference temperature T 1 of acquired in step S105. If an affirmative determination is made in step S106 (T> T 1 ), the ECU 8 proceeds to step S107. On the other hand, if a negative determination is made in step S106 (T ≦ T 1 ), the ECU 8 proceeds to step S108.

ステップS107において、ECU8は、流路切替弁11によって、排気の流通経路を
U字管10を通過する経路に切り替える。
In step S <b> 107, the ECU 8 switches the exhaust flow path to a path that passes through the U-shaped tube 10 by the flow path switching valve 11.

ステップS108において、ECU8は、ステップS105で取得した温度Tが第2基準温度Tより低いか否かを判定する。ステップS108で肯定判定された場合(T<T)、ECU8はステップS109に進む。一方、ステップS108で否定判定された場合(T≧T)、ECU8は本ルーチンの実行を終了する。 In step S108, ECU 8, the temperature T acquired in step S105 determines whether lower or not than the second reference temperature T 2. If an affirmative determination is made in step S108 (T <T 2 ), the ECU 8 proceeds to step S109. On the other hand, when a negative determination is made in step S108 (T ≧ T 2 ), the ECU 8 ends the execution of this routine.

ステップS109において、ECU8は、空燃比のパータベーション制御を行う。   In step S109, the ECU 8 performs air-fuel ratio perturbation control.

以上のルーチンを実行することにより、SCR3の温度Tが第2基準温度T以上基準温度T以下の温度範囲に入るようにフィードバック制御されるので、SCR3によるNOx浄化率を高めることが可能となる。 By executing the above routine, since SCR3 temperature T is feedback controlled to enter the second reference temperature T 2 higher than the reference temperature T 1 of less temperature range can be improved NOx purification rate due to SCR3 and Become.

次に、本発明の実施例2について説明する。図3は、本実施例に係る内燃機関とその排気系の概略構成を示す図である。図1を参照してすでに説明した実施例1の内燃機関とその排気系と実質的に同一の構成要素には同一の名称及び符号を用い、詳しい説明を省略する。本実施例では、排気通路5の上流側から順にTWC4、NSR2、SCR3が配置されている。また、TWC4の触媒温度を測定する温度センサ16、NSR2の触媒温度を測定する温度センサ17、SCR3の触媒温度を測定する温度センサ18がそれぞれ備えられている。なお、これらの各温度センサは、実施例1の温度センサ9と同様に、各触媒に流入する排気の温度を測定するセンサであっても良いし、各触媒の触媒床温を測定するセンサであっても良い。本実施例では、TWC4やNSR2と比較してSCR3は内燃機関1からより離れた位置に配置されている。   Next, a second embodiment of the present invention will be described. FIG. 3 is a diagram showing a schematic configuration of the internal combustion engine and its exhaust system according to the present embodiment. Components that are substantially the same as those of the internal combustion engine and its exhaust system of the first embodiment already described with reference to FIG. 1 are denoted by the same names and symbols, and detailed description thereof is omitted. In this embodiment, TWC4, NSR2, and SCR3 are arranged in this order from the upstream side of the exhaust passage 5. A temperature sensor 16 for measuring the catalyst temperature of the TWC 4, a temperature sensor 17 for measuring the catalyst temperature of the NSR 2, and a temperature sensor 18 for measuring the catalyst temperature of the SCR 3 are provided. Each of these temperature sensors may be a sensor that measures the temperature of the exhaust gas flowing into each catalyst, similarly to the temperature sensor 9 of Example 1, or a sensor that measures the catalyst bed temperature of each catalyst. There may be. In the present embodiment, the SCR 3 is arranged at a position farther from the internal combustion engine 1 than the TWC 4 and the NSR 2.

本実施例では、実施例1と同様に、NSR2のNOx脱離還元処理やSOx被毒回復処理に際して排気を昇温する必要がある場合に、バンク制御が行われる。以下、SOx被毒回復処理に際して排気を昇温する場合について説明する。SOx被毒回復処理においては、NSR2の温度を600−700℃の非常に高い温度にまで昇温する必要がある。そのため、バンク制御終了直後は排気の温度が非常に高温の状態となり、SCR3の温度が実施例1で説明した基準温度Tを超える状態となり易い。従って、バンク制御終了直後、SCR3におけるNOxの還元反応が好適に進まず、SCR3によるNOx浄化率が低下する虞がある。 In the present embodiment, as in the first embodiment, bank control is performed when it is necessary to raise the temperature of the exhaust gas during the NOx desorption reduction process or the SOx poisoning recovery process of NSR2. Hereinafter, a case where the temperature of exhaust gas is raised during the SOx poisoning recovery process will be described. In the SOx poisoning recovery process, it is necessary to raise the temperature of NSR2 to a very high temperature of 600 to 700 ° C. Therefore, immediately after the bank control is finished, the temperature of the exhaust gas is very high, and the temperature of the SCR 3 tends to exceed the reference temperature T 1 described in the first embodiment. Therefore, immediately after the end of bank control, the NOx reduction reaction in the SCR 3 does not proceed favorably, and the NOx purification rate by the SCR 3 may decrease.

そこで、本実施例では、バンク制御が行われる期間を前期、中期、後期の3つの期間に分割し、各期間におけるバンク制御の制御態様を異ならせるようにした。具体的には、バンク制御前期においては、NSR2をより確実に昇温すべく、バンク間空燃比差をより大きくする。例えば、TWC4の温度目標値を600℃、NSR2の温度目標値を700℃とし、リーン空燃比に制御される左バンク12の空燃比をA/F18、リッチ空燃比に制御される右バンク13の空燃比をA/F10に設定してバンク制御を行う。このように、バンク間空燃比差を大きくすることによって、バンク制御による排気昇温効果が高まり、NSR2を早期にSOx被毒回復処理を実行可能な温度にまで昇温し、またNSR2からのSOx脱離反応を活性化することができる。   Therefore, in this embodiment, the period during which bank control is performed is divided into three periods, the first period, the middle period, and the second period, and the control mode of bank control in each period is made different. Specifically, in the first half of bank control, the inter-bank air-fuel ratio difference is further increased in order to raise the temperature of NSR 2 more reliably. For example, the temperature target value of TWC4 is 600 ° C., the temperature target value of NSR2 is 700 ° C., the air / fuel ratio of the left bank 12 controlled to a lean air / fuel ratio is A / F18, and the right bank 13 is controlled to a rich air / fuel ratio. Bank control is performed by setting the air-fuel ratio to A / F10. Thus, by increasing the inter-bank air-fuel ratio difference, the effect of exhaust gas temperature increase by bank control is increased, and the temperature of NSR2 is increased to a temperature at which SOx poisoning recovery processing can be performed at an early stage, and the SOx from NSR2 is increased. The elimination reaction can be activated.

次に、バンク制御中期には、バンク制御によるNH発生量を多くすべく、各バンク内で気筒間空燃比を異ならせる制御を行う。例えば、TWC4の温度目標値を580℃、NSR2の温度目標値を670℃とし、リーン空燃比に制御される左バンク12の空燃比をA/F18、リッチ空燃比に制御される右バンク13の空燃比をA/F10に設定する。 Next, in the middle period of bank control, control is performed to vary the air-fuel ratio between cylinders in each bank in order to increase the amount of NH 3 generated by bank control. For example, the temperature target value of TWC4 is 580 ° C., the temperature target value of NSR2 is 670 ° C., the air / fuel ratio of the left bank 12 controlled to a lean air / fuel ratio is A / F18, and the right bank 13 is controlled to a rich air / fuel ratio. The air-fuel ratio is set to A / F10.

さらに、左バンク12の気筒#1、#2、#3のうちいずれか1つの気筒の空燃比をA
/F18より若干リッチな空燃比A/F17.6とし、他の2つの気筒の空燃比をA/F18より若干リーンなA/F18.2とし、左バンク12トータルとしては空燃比A/F18だが、左バンク12を構成する気筒間でリーン側の空燃比とリッチ側の空燃比とが混在するようにする。そして、左バンク12の気筒の中で若干リッチな空燃比とされる対象となる気筒を、1又は複数サイクル毎に#1、#2、#3から順番に選択する。
Further, the air-fuel ratio of any one of the cylinders # 1, # 2, and # 3 in the left bank 12 is set to A.
The air / fuel ratio A / F 17.6 is slightly richer than / F18, the air / fuel ratio of the other two cylinders is A / F18.2 slightly leaner than A / F18, and the left bank 12 total is the air / fuel ratio A / F18. The lean side air-fuel ratio and the rich side air-fuel ratio are mixed between the cylinders constituting the left bank 12. Then, the cylinders to be set to be slightly rich in the air-fuel ratio among the cylinders in the left bank 12 are selected in order from # 1, # 2, and # 3 every one or a plurality of cycles.

また、右バンク13の気筒#4、#5、#6のうちいずれか1つの気筒の空燃比をA/F10より若干リーンな空燃比A/F10.4とし、他の2つの気筒の空燃比をA/F10より若干リッチなA/F9.8とし、右バンク13トータルとしては空燃比A/F10だが、右バンク13を構成する気筒間でリッチ側の空燃比とリーン側の空燃比とが混在するようにする。そして、右バンク13の気筒の中で若干リーンな空燃比とされる対象となる気筒を、1又は複数サイクル毎に#4、#5、#6から順番に選択する。   In addition, the air-fuel ratio of one of the cylinders # 4, # 5, and # 6 in the right bank 13 is set to an air-fuel ratio A / F10.4 that is slightly leaner than A / F10, and the air-fuel ratios of the other two cylinders The A / F 9.8 is slightly richer than the A / F 10, and the right bank 13 total is the air-fuel ratio A / F 10, but the rich air-fuel ratio and the lean air-fuel ratio are different between the cylinders constituting the right bank 13. Try to mix. Then, among the cylinders in the right bank 13, a cylinder to be a slightly lean air-fuel ratio is selected in order from # 4, # 5, and # 6 every one or a plurality of cycles.

このような制御を行うことによって、同一バンクに属する気筒からの排気であっても、若干リッチ側の空燃比とされた気筒からの排気にはHがより多く含まれ、若干リーン側の空燃比とされた気筒からの排気にはNOxがより多く含まれることになる。そして、これらの排気が各バンクの排気マニホールド(不図示)や各バンク排気通路6、7で混合することで、HとNOxとが反応し、より多くのNHが発生する。 By performing such control, even if the exhaust gas is from the cylinders belonging to the same bank, the exhaust gas from the cylinder having a slightly rich air-fuel ratio contains a larger amount of H 2 , and the lean air-fuel ratio is slightly higher. The exhaust from the cylinder having the fuel ratio contains more NOx. These exhaust gases are mixed in the exhaust manifolds (not shown) and the bank exhaust passages 6 and 7 of each bank, whereby H 2 and NOx react to generate more NH 3 .

また、この場合排気昇温効果が若干抑えられるので、排気中において水性ガスシフト反応(CO+HO→CO+H)が好適に進行する条件が成立し、これによってもHが発生する。水性ガスシフト反応によって発生したHによって、排気中でのNH発生が促進される。なお、水性ガスシフト反応が好適に進行する温度は一般に200−400℃程度とされるが、出願人の研究によって、本実施例の構成においては、600℃前後の温度まで水性ガスシフト反応が好適に進行することが見出された。従って、バンク制御中期のTWC4の温度目標値は580℃としている。発生したNHはSCR3に吸着し、バンク制御終了後のリーンバーンモードでの運転時にSCR3に流入するNOxを還元する還元剤として機能するので、NH発生量が増加することでSCR3によるNOx浄化効果を高めることができる。 Further, in this case, the effect of raising the temperature of the exhaust gas is suppressed to some extent, so that the condition that the water gas shift reaction (CO + H 2 O → CO 2 + H 2 ) proceeds favorably in the exhaust gas is satisfied, and H 2 is also generated. The generation of NH 3 in the exhaust is promoted by H 2 generated by the water gas shift reaction. The temperature at which the water gas shift reaction suitably proceeds is generally about 200-400 ° C. However, according to the study of the applicant, the water gas shift reaction suitably proceeds to a temperature around 600 ° C. in the configuration of this example. It was found to be. Therefore, the temperature target value of the TWC 4 in the middle of the bank control is set to 580 ° C. The generated NH 3 is adsorbed on the SCR 3 and functions as a reducing agent that reduces NOx flowing into the SCR 3 during operation in the lean burn mode after the end of the bank control. Therefore, the increase in the amount of NH 3 generated increases the NOx purification by the SCR 3 The effect can be enhanced.

次に、バンク制御後期には、バンク制御終了後にSCR3の温度環境をより早期にNHとNOxとの酸化還元反応が好適に進行可能な条件を満足する温度環境とすべく、バンク間空燃比差を縮小する。ここで、バンク間空燃比差は、NSR2の温度が、NSR2からのSOx脱離反応が進行可能な温度の下限値を下回らないように定められる。例えば、NSR2の温度目標値を650℃、SCR3の温度目標値を基準温度の300℃とし、リーン空燃比に制御される左バンク12の空燃比をA/F15、リッチ空燃比に制御される右バンク13の空燃比をA/F12に設定してバンク制御を行う。このように、バンク間空燃比差を小さくすることによって、バンク制御による排気昇温効果が抑えられる。従って、バンク制御終了後速やかに、SCR3の温度を、NHによるNOx還元反応が好適に進行する基準温度以下に低下させることができる。また、本実施例の構成では、SCR3がNSR2やTWC4より内燃機関1からより離れた位置に配置されているため、SCR3より上流の排気通路5を流通する過程で排気の温度が冷却され易く、より確実にSCR3を基準温度以下の低温にすることができる。 Next, in the second half of the bank control, the inter-bank air-fuel ratio is set so that the temperature environment of the SCR 3 after the bank control is finished satisfies the conditions that allow the oxidation-reduction reaction between NH 3 and NOx to proceed appropriately. Reduce the difference. Here, the inter-bank air-fuel ratio difference is determined such that the temperature of NSR2 does not fall below the lower limit value of the temperature at which the SOx desorption reaction from NSR2 can proceed. For example, the temperature target value of NSR2 is 650 ° C., the temperature target value of SCR 3 is 300 ° C. of the reference temperature, the air / fuel ratio of the left bank 12 controlled to a lean air / fuel ratio is A / F15, and the right air / fuel ratio is controlled to a rich air / fuel ratio. Bank control is performed by setting the air-fuel ratio of the bank 13 to A / F12. In this way, by reducing the inter-bank air-fuel ratio difference, the exhaust gas temperature raising effect by the bank control can be suppressed. Therefore, immediately after the bank control is completed, the temperature of the SCR 3 can be lowered to a reference temperature or lower at which the NOx reduction reaction by NH 3 proceeds favorably. Further, in the configuration of the present embodiment, since the SCR 3 is disposed at a position farther from the internal combustion engine 1 than the NSR 2 and the TWC 4, the temperature of the exhaust gas is easily cooled in the process of flowing through the exhaust passage 5 upstream from the SCR 3. The SCR 3 can be more reliably lowered to a reference temperature or lower.

バンク制御の実行期間はNSR2に吸蔵されたSOxをNSR2から脱離し尽くさせることが可能な期間として決定される。例えば、前回SOx被毒回復処理が実行されてからの燃料噴射量の総量等に基づいて決定することができる。また、バンク間空燃比差が縮小されるバンク制御後期の長さは、バンク制御後期が開始してからバンク制御が終了するまでの間に、SCR3の温度を基準温度T以下の温度にまで低下させることが可能な期間として実験等により求めることができる。 The bank control execution period is determined as a period during which SOx occluded in NSR2 can be completely desorbed from NSR2. For example, it can be determined based on the total amount of fuel injection since the previous SOx poisoning recovery process was executed. Further, the length of the bank control late period in which the inter-bank air-fuel ratio difference is reduced is that the temperature of the SCR 3 is reduced to a temperature equal to or lower than the reference temperature T 1 between the start of the bank control late period and the end of the bank control. The period that can be reduced can be obtained by experiments or the like.

このように、本実施例のバンク制御では、バンク制御後期において排気昇温効果を抑制し、SCR3の温度を低下させるようにしているので、バンク制御終了後速やかに、SCR3を、NHによるNOx還元反応が好適に進行可能な基準温度T以下の低温状態にすることができる。これにより、バンク制御によってSOx被毒回復処理やNOx脱離還元処理のための排気昇温を行うシステムにおいても、SCR3によるNOx浄化率を高めることが可能になる。 As described above, in the bank control of this embodiment, the exhaust gas temperature rising effect is suppressed and the temperature of the SCR 3 is lowered in the latter half of the bank control. Therefore, immediately after the bank control is finished, the SCR 3 is quickly converted into NOx by NH 3. reduction reaction can be suitably proceeds possible reference temperature T 1 of the following low temperature. This makes it possible to increase the NOx purification rate by the SCR 3 even in a system that raises the exhaust gas temperature for SOx poisoning recovery processing and NOx desorption reduction processing by bank control.

ここで、本実施例のバンク制御の具体的な実行手順について、図4に基づいて説明する。図4は、本実施例のバンク制御ルーチンを表すフローチャートである。このルーチンは内燃機関1の稼働中所定期間毎に繰り返し実行される。   Here, a specific execution procedure of the bank control of the present embodiment will be described with reference to FIG. FIG. 4 is a flowchart showing the bank control routine of this embodiment. This routine is repeatedly executed at predetermined intervals during the operation of the internal combustion engine 1.

まず、ステップS201において、ECU8は、バンク制御実行条件が成立したか否かを判定する。バンク制御実行条件は、本実施例では、SOx被毒回復処理を実行すべき条件が成立した場合に成立する。SOx被毒回復処理の実行条件は既知の条件を用いることができる。例えば、前回SOx被毒回復処理が実行されてからの燃料噴射量の総量等に基づいてSOx被毒回復処理の実行条件の成立を判定する。ステップS201で肯定判定された場合、ECU8はステップS202に進む。一方、ステップS201で否定判定された場合、ECU8は本ルーチンの実行を一旦終了する。   First, in step S201, the ECU 8 determines whether or not a bank control execution condition is satisfied. In this embodiment, the bank control execution condition is satisfied when the condition for executing the SOx poisoning recovery process is satisfied. Known conditions can be used as conditions for executing the SOx poisoning recovery process. For example, the establishment of the execution condition for the SOx poisoning recovery process is determined based on the total amount of fuel injection since the previous SOx poisoning recovery process was executed. If an affirmative determination is made in step S201, the ECU 8 proceeds to step S202. On the other hand, if a negative determination is made in step S201, the ECU 8 once ends the execution of this routine.

ステップS202において、ECU8は、前期バンク制御を開始する。前記バンク制御は上述したバンク制御前期に行われる制御である。すなわち、TWC4の目標温度を600℃、NSR2の目標温度を700℃とし、左バンクの空燃比をA/F18、右バンクの空燃比をA/F10に設定し、温度センサ16及び17によって測定される温度が前記各目標温度となるようにフィードバック制御する。温度のフィードバック制御においては、バンク制御におけるバンク間空燃比差の他、点火時期の制御等の既知の排気温度制御手段を併用しても良い。   In step S202, the ECU 8 starts the previous bank control. The bank control is control performed in the first half of the bank control described above. That is, the target temperature of TWC4 is set to 600 ° C., the target temperature of NSR2 is set to 700 ° C., the air / fuel ratio of the left bank is set to A / F18, and the air / fuel ratio of the right bank is set to A / F10. Feedback control is performed so that the target temperature becomes the target temperature. In the temperature feedback control, in addition to the inter-bank air-fuel ratio difference in bank control, known exhaust temperature control means such as ignition timing control may be used in combination.

ステップS203において、ECU8は、前期バンク制御が開始されてからの経過時間Δtが第1期間Δt10に達したか否かを判定する。第1期間Δt10は、NSR2におけるSOx吸蔵量、前期バンク制御、中期バンク制御(上述したバンク制御中期に行われる制御)、及び、後期バンク制御(上述したバンク制御後期に行われる制御)の各々におけるSOx脱離反応の進み易さ(SOx脱離速度)等に基づいて決定される。ステップS203で肯定判定されるまで、ECU8は前期バンク制御を継続する。ステップS203で肯定判定された場合、ECU8は前期バンク制御を終了してステップS204に進む。 In step S203, ECU 8 is the elapsed time Delta] t 1 from when the previous year bank control is started is determined whether reaches the first period Delta] t 10. The first period Δt 10 includes each of the SOx occlusion amount in the NSR 2, the first-term bank control, the middle-term bank control (control performed during the above-described bank control middle period), and the second-stage bank control (control performed during the above-described latter bank control). This is determined based on the easiness of the SOx desorption reaction (SOx desorption rate) and the like. The ECU 8 continues the previous bank control until an affirmative determination is made in step S203. If an affirmative determination is made in step S203, the ECU 8 ends the previous bank control and proceeds to step S204.

ステップS204において、ECU8は、中期バンク制御を開始する。すなわち、TWC4の目標温度を580℃、NSR2の目標温度を670℃とし、左バンクの空燃比をA/F18、右バンクの空燃比をA/F10に設定し、さらに各バンク内で気筒別に空燃比を異ならせる。そして、温度センサ16及び17によって測定される温度が前記各目標温度となるようにフィードバック制御する。温度のフィードバック制御においては、バンク制御におけるバンク間空燃比差、バンク内の気筒間空燃比差の他、点火時期の制御等の既知の排気温度制御手段を併用しても良い。   In step S204, the ECU 8 starts mid-term bank control. That is, the target temperature of TWC4 is set to 580 ° C., the target temperature of NSR2 is set to 670 ° C., the air / fuel ratio of the left bank is set to A / F18, the air / fuel ratio of the right bank is set to A / F10, Change the fuel ratio. Then, feedback control is performed so that the temperatures measured by the temperature sensors 16 and 17 become the target temperatures. In the temperature feedback control, in addition to the inter-bank air-fuel ratio difference in the bank control and the inter-cylinder air-fuel ratio difference in the bank, known exhaust temperature control means such as ignition timing control may be used in combination.

ステップS205において、ECU8は、中期バンク制御が開始されてからの経過時間Δtが第2期間Δt20に達したか否かを判定する。第2期間Δt20は、第1期間Δt10と同様に決定される。ステップS205で肯定判定されるまで、ECU8は中期バンク制御を継続する。ステップS205で肯定判定された場合、ECU8は中期バンク制御を終了してステップS206に進む。 In step S205, ECU 8 is the elapsed time Delta] t 2 from medium-term bank control is started is determined whether reaches the second period Delta] t 20. The second period Δt 20 is determined in the same manner as the first period Δt 10 . The ECU 8 continues the mid-term bank control until an affirmative determination is made in step S205. If an affirmative determination is made in step S205, the ECU 8 ends the medium-term bank control and proceeds to step S206.

ステップS206において、ECU8は、後期バンク制御を開始する。すなわち、NSR2の目標温度を650℃、SCR3の目標温度を300℃とし、左バンクの空燃比をA/F15、右バンクの空燃比をA/F12に設定し、温度センサ17及び18によって測定される温度が前記各目標温度となるようにフィードバック制御する。温度のフィードバック制御においては、バンク制御におけるバンク間空燃比差の他、点火時期の制御等の既知の排気昇温制御手段を併用しても良い。   In step S206, the ECU 8 starts late bank control. That is, the target temperature of NSR2 is set to 650 ° C., the target temperature of SCR 3 is set to 300 ° C., the air / fuel ratio of the left bank is set to A / F15, and the air / fuel ratio of the right bank is set to A / F12. Feedback control is performed so that the target temperature becomes the target temperature. In the temperature feedback control, in addition to the inter-bank air-fuel ratio difference in the bank control, known exhaust temperature raising control means such as ignition timing control may be used in combination.

ステップS207において、ECU8は、後期バンク制御が開始されてからの経過時間Δtが第3期間Δt30に達したか否かを判定する。第3期間Δt30は、第1期間Δt10、第2期間Δt20のようにNSR2におけるSOx吸蔵量や、各バンク制御期間におけるSOx脱離速度に加えて、SCR3の温度が基準温度Tに低下するのに要する時間に基づいて決定される。ステップS207で肯定判定されるまで、ECU8は後期バンク制御を継続する。ステップS207で肯定判定された場合、ECU8はステップS208に進み、バンク制御を終了する。 In step S207, ECU 8 determines whether the elapsed time Delta] t 3 from late bank control is started has reached a third period Delta] t 30. In the third period Δt 30 , in addition to the SOx occlusion amount in the NSR 2 and the SOx desorption rate in each bank control period as in the first period Δt 10 and the second period Δt 20 , the temperature of the SCR 3 becomes the reference temperature T 1 . It is determined on the basis of the time required to decrease. The ECU 8 continues the late bank control until an affirmative determination is made in step S207. If an affirmative determination is made in step S207, the ECU 8 proceeds to step S208 and ends the bank control.

以上のルーチンを実行することにより、バンク制御終了直後においても、SCR3においてNHによるNOx還元反応が好適に進行可能な低温環境がSCR3において早期に実現されるので、SCR3によるNOx浄化率を高めることが可能になる。 By executing the above routine, a low temperature environment in which the NOx reduction reaction by NH 3 can proceed appropriately in SCR 3 is realized early in SCR 3 even immediately after the end of bank control, so that the NOx purification rate by SCR 3 is increased. Is possible.

なお、以上述べた実施例は本発明を説明するための一例であって、本発明の本旨を逸脱しない範囲内において上記の実施例には種々の変更を加え得る。   The above-described embodiment is an example for explaining the present invention, and various modifications can be made to the above-described embodiment without departing from the gist of the present invention.

例えば、上記実施例では6気筒V型エンジンに本発明を適用した実施例について説明したが、本発明は気筒の本数や配列形式によらずに適用することが可能である。例えば、直列型エンジンの場合、バンク制御の代わりにリッチスパイクや気筒間で空燃比を異ならせる空燃比制御を行うことによって排気中にリッチ成分を供給することによって排気中でNHを発生させ、当該発生させたNHをSCR3に供給することができる。例えば、リッチスパイク後のリーン運転中に温度センサ9によって測定される排気温度に応じて、流路切替弁11を切り替えるようにすれば、SCR3に流入する排気の温度が基準温度を超えないようにSCR3の温度制御をすることができる。 For example, in the above embodiment, the embodiment in which the present invention is applied to a 6-cylinder V-type engine has been described. However, the present invention can be applied regardless of the number of cylinders and the arrangement form. For example, in the case of a straight engine, to generate NH 3 in the exhaust gas by supplying the rich components in the exhaust by performing the air-fuel ratio control for varying the air-fuel ratio between the rich spike or cylinders in place of the bank control, The generated NH 3 can be supplied to the SCR 3 . For example, if the flow path switching valve 11 is switched according to the exhaust temperature measured by the temperature sensor 9 during the lean operation after the rich spike, the temperature of the exhaust gas flowing into the SCR 3 does not exceed the reference temperature. The temperature of the SCR 3 can be controlled.

また、U字管10や分岐部15からSCR3までの経路長は、SCR3の温度が基準温度を超えないように延長・短縮して目標NOx浄化率に適合させると良い。   Further, the path length from the U-shaped tube 10 or the branching portion 15 to the SCR 3 is preferably extended or shortened so that the temperature of the SCR 3 does not exceed the reference temperature to be adapted to the target NOx purification rate.

また、上記実施例では、SCR3に流入する排気の温度が基準温度を超えている場合には、流路切替弁11によって排気の流通経路をU字管10を通過する経路に切り替えることによって排気を冷却するようにしたが、排気を冷却する手段はこれに限られない。   Further, in the above embodiment, when the temperature of the exhaust gas flowing into the SCR 3 exceeds the reference temperature, the exhaust gas is switched by switching the exhaust flow path to the path passing through the U-shaped tube 10 by the flow path switching valve 11. Although cooling is performed, the means for cooling the exhaust is not limited to this.

例えば、U字管10はSCR3より上流の排気通路5のある箇所で分岐して当該箇所に再び戻るように設けられた分岐通路だが、SCR3より上流の排気通路5のある箇所で分岐してSCR3より上流の排気通路5の他の場所に戻るように設けられた分岐通路であって、当該分岐通路を通過する経路を排気が通過する際に失う熱量が当該分岐通路を通過しない経路を排気が通過する際に失う熱量より大きい分岐通路を備え、排気の流通経路を当該分岐通路を通過する経路又は当該分岐通路を通過しない経路のいずれかに切り替え可能な装置を備え、SCR3に流入する排気の温度が基準温度を超えている場合には、当該装置によって排気の流通経路を当該分岐通路を通過する経路に切り替えることによって排気を冷却することもできる。   For example, the U-shaped pipe 10 is a branch passage provided so as to branch at a location where the exhaust passage 5 is upstream from the SCR 3 and return to the location again, but branches at a location where the exhaust passage 5 is upstream from the SCR 3 and branches to the SCR 3. A branch passage provided so as to return to another place in the upstream exhaust passage 5, where the exhaust gas passes through a route where the amount of heat lost when the exhaust passes through the route passing through the branch passage does not pass through the branch passage. A branch passage larger than the amount of heat lost when passing through, a device capable of switching the flow path of the exhaust to either a path passing through the branch passage or a path not passing through the branch passage, and for the exhaust flowing into the SCR 3 When the temperature exceeds the reference temperature, the exhaust gas can be cooled by switching the flow path of the exhaust gas to a path passing through the branch passage by the device.

また、例えば、SCR3より上流の排気通路5に、エンジン冷却水や空冷等によって排
気を冷却する排気ガスクーラを配置するとともに、この排気ガスクーラをバイパスするバイパス通路を設け、排気の流通経路をバイパス通路を通過する経路又は排気ガスクーラを通過する経路に切り替える切替弁を設け、SCR3に流入する排気の温度が基準温度を超える場合には、切替弁によって排気の流通経路を排気ガスクーラを通過する経路に切り替えるようにしても良い。その他、排気を冷却する機能を有する手段であればどのような手段を用いても良い。
In addition, for example, an exhaust gas cooler that cools the exhaust gas by engine cooling water, air cooling, or the like is disposed in the exhaust passage 5 upstream from the SCR 3, and a bypass passage that bypasses the exhaust gas cooler is provided, and the exhaust passage is routed through the bypass passage. A switching valve that switches to a path that passes through or a path that passes through the exhaust gas cooler is provided, and when the temperature of the exhaust gas flowing into the SCR 3 exceeds a reference temperature, the switching valve switches the exhaust flow path to a path that passes through the exhaust gas cooler. Anyway. Any other means may be used as long as it has a function of cooling the exhaust.

また、上記実施例では、SCR3に流入する排気の温度が第2基準温度を下回る場合には、空燃比のパータベーション制御を行うことによって排気を昇温するようにしたが、排気を昇温する手段はこれに限られない。例えば、点火時期の遅角制御、マルチ噴射や副噴射や噴射時期等の燃料噴射制御、EGR制御等の既知の排気昇温制御を用いて排気を昇温するようにしても良い。   In the above embodiment, when the temperature of the exhaust gas flowing into the SCR 3 is lower than the second reference temperature, the exhaust gas is heated by performing the air-fuel ratio perturbation control, but the exhaust gas is heated. The means is not limited to this. For example, the exhaust gas may be heated using known exhaust gas temperature raising control such as ignition timing retard control, fuel injection control such as multi-injection, sub-injection, and injection timing, and EGR control.

また、上記実施例では、SCR3に流入する排気の温度を温度センサ9によって測定し、測定された温度が所定範囲(第2基準温度以上基準温度以下の温度範囲)に入るように温度制御する実施例について説明したが、SCR3に流入する排気の温度を例えば内燃機関1の運転状態等に基づく推定によって取得するようにしても良い。また、SCR3の触媒床温を直接測定するセンサを設け、SCR3におけるNOx還元反応の温度環境を直接的に取得するようにしても良い。   In the above embodiment, the temperature of the exhaust gas flowing into the SCR 3 is measured by the temperature sensor 9, and the temperature is controlled so that the measured temperature falls within a predetermined range (a temperature range between the second reference temperature and the reference temperature). Although the example has been described, the temperature of the exhaust gas flowing into the SCR 3 may be acquired by estimation based on, for example, the operating state of the internal combustion engine 1. Further, a sensor that directly measures the catalyst bed temperature of the SCR 3 may be provided to directly acquire the temperature environment of the NOx reduction reaction in the SCR 3.

実施例1に係る排気浄化システムの内燃機関とその排気系の概略構成を表す図である。1 is a diagram illustrating a schematic configuration of an internal combustion engine and an exhaust system of an exhaust purification system according to Embodiment 1. FIG. 実施例1における排気温度制御のルーチンを表すフローチャートである。3 is a flowchart illustrating a routine for exhaust gas temperature control in the first embodiment. 実施例2に係る排気浄化システムの内燃機関とその排気系の概略構成を表す図である。It is a figure showing schematic structure of the internal combustion engine of the exhaust gas purification system which concerns on Example 2, and its exhaust system. 実施例2におけるバンク制御のルーチンを表すフローチャートである。10 is a flowchart illustrating a bank control routine according to the second embodiment.

符号の説明Explanation of symbols

1 内燃機関
2 吸蔵還元型NOx触媒(NSR)
3 選択還元型NOx触媒(SCR)
4 三元触媒(TWC)
5 排気通路
6 左バンク排気通路
7 右バンク排気通路
8 ECU
9 温度センサ
10 U字管
11 流路切替弁
12 左バンク
13 右バンク
14 合流部
15 分岐部
1 Internal combustion engine 2 NOx storage reduction catalyst (NSR)
3 Selective reduction type NOx catalyst (SCR)
4 Three-way catalyst (TWC)
5 Exhaust passage 6 Left bank exhaust passage 7 Right bank exhaust passage 8 ECU
9 Temperature sensor 10 U-shaped tube 11 Flow path switching valve 12 Left bank 13 Right bank 14 Merge section 15 Branch section

Claims (7)

内燃機関の排気通路に配置され、NHを還元剤としてNOxを選択的に還元する選択還元型NOx触媒と、
前記選択還元型NOx触媒にNHを供給するNH供給手段と、
前記NH供給手段によって供給されたNHを還元剤として前記選択還元型NOx触媒においてNOx還元反応が行われる時に、前記選択還元型NOx触媒の温度が、前記NH供給手段によって供給されたNHを還元剤とするNOx還元反応が進む温度の上限値に基づいて定められる所定の基準温度以下になるように、前記選択還元型NOx触媒の温度を制御する温度制御手段と、
を備えることを特徴とする内燃機関の排気浄化システム。
Disposed in the exhaust passage of the internal combustion engine, a NOx selective reduction catalyst that selectively reduces NOx and NH 3 as a reducing agent,
And NH 3 supply means for supplying NH 3 to the selective reduction type NOx catalyst,
The NH 3 supplied by the NH 3 supply means when the NOx reduction reaction is performed in the NOx selective reduction catalyst as a reducing agent, the temperature of the selective reduction type NOx catalyst, supplied by the NH 3 supply means NH Temperature control means for controlling the temperature of the selective reduction type NOx catalyst so as to be equal to or lower than a predetermined reference temperature determined based on an upper limit value of the temperature at which the NOx reduction reaction using 3 as a reducing agent proceeds
An exhaust gas purification system for an internal combustion engine, comprising:
請求項1において、
前記選択還元型NOx触媒に流入する排気の温度を取得する温度取得手段と、
前記選択還元型NOx触媒に流入する排気を冷却する排気冷却手段と、
を備え、
前記温度制御手段は、前記温度取得手段によって取得される温度が前記基準温度より高い場合、前記排気冷却手段によって前記選択還元型NOx触媒に流入する排気を冷却することを特徴とする内燃機関の排気浄化システム。
In claim 1,
Temperature acquisition means for acquiring the temperature of the exhaust gas flowing into the selective reduction type NOx catalyst;
An exhaust cooling means for cooling the exhaust flowing into the selective reduction type NOx catalyst;
With
The temperature control means cools the exhaust gas flowing into the selective reduction type NOx catalyst by the exhaust cooling means when the temperature acquired by the temperature acquisition means is higher than the reference temperature. Purification system.
請求項2において、
前記選択還元型NOx触媒より上流の排気通路から分岐して前記選択還元型NOx触媒より上流の排気通路に再び合流するように設けられた分岐排気通路と、
前記選択還元型NOx触媒より上流を流れる排気の流通経路を、前記分岐排気通路を通過する経路又は前記分岐排気通路を通過しない経路に切り替える流路切替手段と、
を更に備え、
前記分岐排気通路は、排気が前記分岐排気通路を通過する経路を流通する場合に失う熱量が、排気が前記分岐排気通路を通過しない経路を流通する場合に失う熱量と比較して大きくなるように構成され、
前記排気冷却手段は、前記選択還元型NOx触媒より上流を流れる排気の流通経路を、前記流路切替手段によって前記分岐排気通路を通過する経路に切り替えることにより、前記選択還元型NOx触媒に流入する排気を冷却することを特徴とする内燃機関の排気浄化システム。
In claim 2,
A branched exhaust passage provided so as to branch from an exhaust passage upstream from the selective reduction type NOx catalyst and rejoin the exhaust passage upstream from the selective reduction type NOx catalyst;
A flow path switching means for switching a flow path of exhaust flowing upstream from the selective reduction type NOx catalyst to a path passing through the branch exhaust passage or a path not passing through the branch exhaust passage;
Further comprising
The branch exhaust passage is such that the amount of heat lost when exhaust flows through a route passing through the branch exhaust passage is larger than the amount of heat lost when exhaust passes through a route not passing through the branch exhaust passage. Configured,
The exhaust cooling means flows into the selective reduction NOx catalyst by switching a flow path of exhaust flowing upstream from the selective reduction NOx catalyst to a path passing through the branch exhaust passage by the flow path switching means. An exhaust gas purification system for an internal combustion engine, wherein the exhaust gas is cooled.
請求項2又は3において、
前記選択還元型NOx触媒に流入する排気を昇温する排気昇温手段を更に備え、
前記温度制御手段は、前記NH供給手段によって供給されたNHを還元剤として前記選択還元型NOx触媒においてNOxの還元反応が行われる時に、前記選択還元型NOx触媒の温度が、前記選択還元型NOx触媒において水蒸気が過熱水蒸気として存在するための温度の下限値に基づいて定められる所定の第2基準温度より低い場合、前記排気昇温手段によって前記選択還元型NOx触媒に流入する排気を昇温することを特徴とする内燃機関の排気浄化システム。
In claim 2 or 3,
Exhaust temperature raising means for raising the temperature of the exhaust gas flowing into the selective reduction type NOx catalyst,
Said temperature control means, the NH 3 supplied by the NH 3 supply means when the reduction reaction of NOx is performed in the NOx selective reduction catalyst as a reducing agent, the temperature of the selective reduction type NOx catalyst, the selective reduction When the temperature of the NOx catalyst is lower than a predetermined second reference temperature determined based on the lower limit value of the temperature at which the water vapor exists as superheated water vapor, the exhaust gas temperature riser raises the exhaust flowing into the selective reduction NOx catalyst. An exhaust purification system for an internal combustion engine characterized by heating.
請求項4において、
前記排気昇温手段は、排気の空燃比を目標空燃比を中心として振動させることによって、前記選択還元型NOx触媒に流入する排気を昇温することを特徴とする内燃機関の排気浄化システム。
In claim 4,
The exhaust gas purifying system for an internal combustion engine, wherein the exhaust gas temperature raising means raises the temperature of the exhaust gas flowing into the selective reduction type NOx catalyst by oscillating the air fuel ratio of the exhaust gas around the target air fuel ratio.
請求項1乃至5のいずれか1項において、
前記内燃機関は複数の気筒群を有し、該複数の気筒群のうち一部の気筒群の気筒の空燃
比を目標空燃比よりリーン側の空燃比とするとともに他の気筒群の気筒の空燃比を目標空燃比よりリッチ側の空燃比とし、トータルの空燃比が目標空燃比となるように制御する気筒群別空燃比制御を行う手段を更に備え、
前記温度制御手段は、前記気筒群別空燃比制御が行われる期間の後半では、前記気筒群別空燃比制御における前記リーン側の空燃比と前記リッチ側の空燃比との差を、前記気筒群別空燃比制御が行われる期間の前半における前記リーン側の空燃比と前記リッチ側の空燃比との差より小さくすることを特徴とする内燃機関の排気浄化システム。
In any one of Claims 1 thru | or 5,
The internal combustion engine has a plurality of cylinder groups, and the air-fuel ratio of some cylinder groups among the plurality of cylinder groups is set to an air-fuel ratio leaner than the target air-fuel ratio, and the cylinders of other cylinder groups are empty. Means for performing air-fuel ratio control for each cylinder group for controlling the air-fuel ratio to be richer than the target air-fuel ratio and controlling the total air-fuel ratio to be the target air-fuel ratio;
In the second half of the period during which the cylinder group air-fuel ratio control is performed, the temperature control means calculates the difference between the lean side air-fuel ratio and the rich side air-fuel ratio in the cylinder group air-fuel ratio control. An exhaust gas purification system for an internal combustion engine, characterized in that it is made smaller than the difference between the lean side air-fuel ratio and the rich side air-fuel ratio in the first half of the period during which the separate air-fuel ratio control is performed.
請求項6において、
前記温度制御手段は、排気の温度が排気中で水性ガスシフト反応が進む温度の上限値に基づいて定められる所定の第3基準温度より低くなるように、前記気筒群別空燃比制御における前記リーン側の空燃比と前記リッチ側の空燃比との差を設定することを特徴とする内燃機関の排気浄化システム。
In claim 6,
The temperature control means is configured to control the lean side in the cylinder group air-fuel ratio control so that the temperature of the exhaust gas is lower than a predetermined third reference temperature determined based on an upper limit value of the temperature at which the water gas shift reaction proceeds in the exhaust gas. An exhaust gas purification system for an internal combustion engine, wherein a difference between the air-fuel ratio of the engine and the rich-side air-fuel ratio is set.
JP2007271533A 2007-10-18 2007-10-18 Exhaust emission control system for internal combustion engine Withdrawn JP2009097469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007271533A JP2009097469A (en) 2007-10-18 2007-10-18 Exhaust emission control system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007271533A JP2009097469A (en) 2007-10-18 2007-10-18 Exhaust emission control system for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009097469A true JP2009097469A (en) 2009-05-07

Family

ID=40700702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007271533A Withdrawn JP2009097469A (en) 2007-10-18 2007-10-18 Exhaust emission control system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2009097469A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048666A1 (en) 2009-10-20 2011-04-28 トヨタ自動車株式会社 Exhaust emission purification system of internal combustion engine
WO2013035159A1 (en) * 2011-09-06 2013-03-14 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2013146462A1 (en) * 2012-03-27 2013-10-03 いすゞ自動車株式会社 Exhaust gas purification system of internal combustion engine
JP2015102088A (en) * 2013-11-22 2015-06-04 現代自動車株式会社 Exhaust gas control system and exhaust gas control method
JP2016169664A (en) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2016223386A (en) * 2015-06-02 2016-12-28 トヨタ自動車株式会社 Control device of internal combustion engine
JP2017036700A (en) * 2015-08-10 2017-02-16 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2018162722A (en) * 2017-03-27 2018-10-18 株式会社豊田中央研究所 Diesel engine system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048666A1 (en) 2009-10-20 2011-04-28 トヨタ自動車株式会社 Exhaust emission purification system of internal combustion engine
JP5333598B2 (en) * 2009-10-20 2013-11-06 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
US8769934B2 (en) 2009-10-20 2014-07-08 Toyota Jidosha Kabushiki Kaisha Exhaust purifying system for internal combustion engine
WO2013035159A1 (en) * 2011-09-06 2013-03-14 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JPWO2013035159A1 (en) * 2011-09-06 2015-03-23 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2013146462A1 (en) * 2012-03-27 2013-10-03 いすゞ自動車株式会社 Exhaust gas purification system of internal combustion engine
JP2015102088A (en) * 2013-11-22 2015-06-04 現代自動車株式会社 Exhaust gas control system and exhaust gas control method
JP2016169664A (en) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
CN105971751A (en) * 2015-03-12 2016-09-28 丰田自动车株式会社 Exhaust purification system of internal combustion engine
CN105971751B (en) * 2015-03-12 2018-12-21 丰田自动车株式会社 The emission-control equipment of internal combustion engine
JP2016223386A (en) * 2015-06-02 2016-12-28 トヨタ自動車株式会社 Control device of internal combustion engine
JP2017036700A (en) * 2015-08-10 2017-02-16 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
US10107163B2 (en) 2015-08-10 2018-10-23 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for an internal combustion engine
JP2018162722A (en) * 2017-03-27 2018-10-18 株式会社豊田中央研究所 Diesel engine system

Similar Documents

Publication Publication Date Title
JP4304539B2 (en) NOx purification system control method and NOx purification system
US9702310B2 (en) Method for regenerating lean NOx trap of exhaust purification system provided with lean NOx trap and selective catalytic reduction catalyst and exhaust purification system
JP2009097469A (en) Exhaust emission control system for internal combustion engine
US8978367B2 (en) Exhaust gas purifying system of internal combustion engine
US9777654B2 (en) Method and apparatus for improved lightoff performance of aftertreatment catalysts
JP4816599B2 (en) Exhaust gas purification system for internal combustion engine
US20100037597A1 (en) Exhaust emission control system for lean engines and method for operating the system
JP5625872B2 (en) Exhaust gas purification device for internal combustion engine
WO2008022751A3 (en) Method for operating an exhaust-gas purification system in a lean-burn spark-ignition engine
JP5708806B2 (en) Exhaust gas purification device for internal combustion engine
JP5163809B2 (en) Exhaust gas purification device for internal combustion engine
JP4983536B2 (en) Exhaust gas purification system for internal combustion engine
JP5994931B2 (en) Exhaust gas purification device for internal combustion engine
JP2009085178A (en) Exhaust emission control device for internal combustion engine
WO2012111171A1 (en) Exhaust-gas purifying device for internal-combustion engine
JP5392411B1 (en) Exhaust gas purification device for internal combustion engine
JP5561059B2 (en) Exhaust gas purification device for internal combustion engine
JP2019178617A (en) Exhaust emission control device for internal combustion engine
JP5880781B2 (en) Exhaust gas purification device for internal combustion engine
JP2010013975A (en) Exhaust emission control device of internal combustion engine
JP2019044706A (en) Exhaust emission control system of internal combustion engine and exhaust emission control method of internal combustion engine
JP5746008B2 (en) Exhaust gas purification device for internal combustion engine
JP4506348B2 (en) Exhaust gas purification device for internal combustion engine
JP2004011493A (en) Exhaust emission control device for internal combustion engine
JP2021195905A (en) Exhaust emission control system for hydrogen-fueled engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110104