JP2010013975A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2010013975A
JP2010013975A JP2008173430A JP2008173430A JP2010013975A JP 2010013975 A JP2010013975 A JP 2010013975A JP 2008173430 A JP2008173430 A JP 2008173430A JP 2008173430 A JP2008173430 A JP 2008173430A JP 2010013975 A JP2010013975 A JP 2010013975A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst device
air
fuel ratio
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008173430A
Other languages
Japanese (ja)
Inventor
Kenji Sakurai
健治 櫻井
Shigeki Miyashita
茂樹 宮下
Masaoki Iwasaki
正興 岩崎
Hisayuki Tanaka
寿幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2008173430A priority Critical patent/JP2010013975A/en
Publication of JP2010013975A publication Critical patent/JP2010013975A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device capable of satisfactorily restraining NO<SB>x</SB>from being produced from ammonia in a reversible fashion as well as sufficiently reducing an amount of discharged ammonia to the atmosphere, produced in an NO<SB>x</SB>occlusion reduction catalyst device by the passage of an exhaust gas with a rich air-fuel ratio. <P>SOLUTION: The exhaust emission control device is equipped with the NO<SB>x</SB>occlusion reduction catalyst device 2 arranged in an engine exhaust system and a downstream-side catalytic device 3 arranged on a downstream side of the NO<SB>x</SB>occlusion reduction catalyst device to carry an iron-based catalyst. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

希薄燃焼の排気ガス中に比較的多く含まれるNOXを浄化するために、機関排気系にはNOX吸蔵還元触媒装置が配置されている。このNOX吸蔵還元触媒装置は、排気ガスの空燃比がリーンである時には排気ガス中のNOXを良好に吸蔵し、排気ガス中の空燃比がリッチになると吸蔵したNOXを放出し、こうして放出されたNOXがリッチ空燃比の排気ガス中の還元物質によって還元浄化される。 In order to purify NO x contained in the lean combustion exhaust gas in a relatively large amount, a NO x storage reduction catalyst device is arranged in the engine exhaust system. This the NO X storage reduction catalyst device, when the air-fuel ratio of the exhaust gas is lean satisfactorily absorb NO X in the exhaust gas, the air-fuel ratio in the exhaust gas to release NO X occluding becomes rich, thus The released NO x is reduced and purified by the reducing substance in the exhaust gas having a rich air-fuel ratio.

また、希薄燃焼の排気ガス中には、SOXも含まれており、NOX吸蔵還元触媒装置は、NOXと同様なメカニズムによってSOXも吸蔵する。こうして吸蔵されたSOXを放出させるためには、NOX吸蔵還元触媒装置を昇温して排気ガスの空燃比をリッチとすることが必要である。 Further, the exhaust gas of lean combustion contains SO x , and the NO x storage reduction catalyst device also stores SO x by the same mechanism as that of NO x . In order to release the stored SO X , it is necessary to raise the temperature of the NO X storage reduction catalyst device so that the air-fuel ratio of the exhaust gas becomes rich.

このようにNOX吸蔵還元触媒装置にはリッチ空燃比の排気ガスを通過させることがあり、この時には、NOX吸蔵還元触媒装置に担持された貴金属触媒によって排気ガス中の一部のNOXが還元されてアンモニアNH3が生成されてしまう。 Thus NO is the X occluding and reducing catalyst device might be passed through the exhaust gas of a rich air-fuel ratio, at this time, a part of NO X in the exhaust gas by the supported noble metal catalyst to the NO X occluding and reducing catalyst device It is reduced and ammonia NH 3 is produced.

このように生成されたアンモニアを吸着するために、NOX選択還元触媒装置をNOX吸蔵還元触媒装置の下流側に配置することが提案されている(例えば、特許文献1参照)。こうしてNOX選択還元触媒装置に吸着されたアンモニアは、排気ガス中のNOXを還元浄化するのに使用される。 In order to adsorb the ammonia thus generated, it has been proposed to dispose the NO X selective reduction catalyst device downstream of the NO X storage reduction catalyst device (see, for example, Patent Document 1). The ammonia thus adsorbed on the NO x selective reduction catalyst device is used to reduce and purify NO x in the exhaust gas.

特表2007−527314Special table 2007-527314 特開2000−265828JP 2000-265828 A 特開2008−51009JP2008-51009 特開2007−56682JP2007-56682

前述の背景技術において、NOX選択還元触媒装置に白金系触媒が担持されている場合、流入するアンモニアの一部から可逆的にNOXを生成し、大気中へ放出してしまう。 In the background art described above, when a platinum-based catalyst is supported on the NO x selective reduction catalyst device, NO x is reversibly generated from a part of the inflowing ammonia and released into the atmosphere.

従って、本発明の目的は、リッチ空燃比の排気ガスの通過によりNOX吸蔵還元触媒装置において生成されるアンモニアの大気放出量を十分に低減すると共に、アンモニアから可逆的にNOXが生成されることも十分に抑制することができる内燃機関の排気浄化装置を提供することである。 Accordingly, an object of the present invention is to sufficiently reduce the atmospheric emissions of ammonia produced in the NO X storage reduction catalyst device by passing the exhaust gas of a rich air-fuel ratio, is reversibly NO X from the ammonia generated It is another object of the present invention to provide an exhaust emission control device for an internal combustion engine that can be sufficiently suppressed.

本発明による請求項1に記載の内燃機関の排気浄化装置は、機関排気系に配置されたNOX吸蔵還元触媒装置と、前記NOX吸蔵還元触媒装置の下流側に配置されて鉄系触媒を担持する下流側触媒装置とを具備することを特徴とする。 An exhaust purification system of an internal combustion engine according to claim 1 according to the present invention includes a the NO X storage reduction catalyst device disposed in the exhaust system, the the NO X storage reduction catalyst device is disposed on the downstream side iron catalyst And a downstream catalyst device to be supported.

本発明による請求項2に記載の内燃機関の排気浄化装置は、請求項1に記載の内燃機関の排気浄化装置において、前記NOX吸蔵還元触媒装置からSOXを放出させる時には、理論空燃比より僅かにリッチな空燃比の排気ガスを前記NOX吸蔵還元触媒装置へ流入させることを特徴とする。 According to a second aspect of the present invention, there is provided an exhaust gas purification apparatus for an internal combustion engine according to the first aspect of the present invention, in which the SO X is released from the NO X storage reduction catalyst apparatus according to the stoichiometric air-fuel ratio. A slightly rich air-fuel ratio exhaust gas is caused to flow into the NO x storage reduction catalyst device.

本発明による請求項3に記載の内燃機関の排気浄化装置は、請求項2に記載の内燃機関の排気浄化装置において、理論空燃比より僅かにリッチな空燃比の前記排気ガスは、前記NOX吸蔵還元触媒装置の上流側において、リッチ空燃比の排気ガスと、リーン空燃比の排気ガス又は空気とを混合させることにより形成することを特徴とする。 According to a third aspect of the present invention, there is provided an exhaust gas purification apparatus for an internal combustion engine according to the second aspect, wherein the exhaust gas having an air-fuel ratio slightly richer than the stoichiometric air-fuel ratio is the NO x. It is formed by mixing a rich air-fuel ratio exhaust gas and a lean air-fuel ratio exhaust gas or air on the upstream side of the storage reduction catalyst device.

本発明による請求項4に記載の内燃機関の排気浄化装置は、請求項2又は3に記載の内燃機関の排気浄化装置において、前記NOX吸蔵還元触媒装置からSOXを放出させる時には、前記NOX吸蔵還元触媒装置の下流側において、理論空燃比より僅かにリッチな空燃比の前記排気ガスに空気を混入させて僅かにリーンな空燃比の排気ガスを前記下流側触媒装置へ流入させることを特徴とする。 According to a fourth aspect of the present invention, there is provided an exhaust gas purification apparatus for an internal combustion engine according to the second or third aspect of the present invention, wherein the NO X storage reduction catalyst apparatus releases the SO X in the exhaust gas purification apparatus for the internal combustion engine according to the second or third aspect. X On the downstream side of the NOx storage reduction catalyst device, air is mixed into the exhaust gas having an air / fuel ratio slightly richer than the stoichiometric air / fuel ratio, and the exhaust gas having a slightly lean air / fuel ratio is allowed to flow into the downstream catalyst device. Features.

本発明による請求項5に記載の内燃機関の排気浄化装置は、請求項4に記載の内燃機関の排気浄化装置において、前記下流側触媒装置には、白金系酸化触媒も担持されていることを特徴とする。   According to a fifth aspect of the present invention, there is provided an exhaust gas purification apparatus for an internal combustion engine according to the fourth aspect, wherein the downstream side catalyst device also carries a platinum-based oxidation catalyst. Features.

本発明による請求項1に記載の内燃機関の排気浄化装置によれば、機関排気系に配置されたNOX吸蔵還元触媒装置と、NOX吸蔵還元触媒装置の下流側に配置されて鉄系触媒を担持する下流側触媒装置とを具備しており、それにより、排気ガスの空燃比がリッチとされる時にNOX吸蔵還元触媒装置において生成されるアンモニアは、下流側触媒装置に担持された鉄系触媒によって可逆的にNOXが殆ど生成されることなく良好に窒素及び水に分解され、アンモニアの大気放出量を十分に低減することができる。 According to the exhaust purification device for an internal combustion engine according to claim 1 of the present invention, the NO x storage reduction catalyst device disposed in the engine exhaust system, and the iron catalyst disposed downstream of the NO x storage reduction catalyst device Thus, the ammonia produced in the NO x storage reduction catalyst device when the air-fuel ratio of the exhaust gas is made rich is reduced to the iron supported on the downstream catalyst device. The system catalyst can be satisfactorily decomposed into nitrogen and water with almost no NO x reversibly generated, and the amount of ammonia released into the atmosphere can be sufficiently reduced.

本発明による請求項2に記載の内燃機関の排気浄化装置によれば、請求項1に記載の内燃機関の排気浄化装置において、NOX吸蔵還元触媒装置からSOXを放出させる時には、理論空燃比より僅かにリッチな空燃比の排気ガスをNOX吸蔵還元触媒装置へ流入させるようになっており、それにより、NOX吸蔵還元触媒装置から放出されたSOXが殆ど硫化水素に還元されることはない。 According to the exhaust gas purification apparatus for an internal combustion engine according to claim 2 of the present invention, in the exhaust gas purification apparatus for the internal combustion engine according to claim 1, when the SO x is released from the NO x storage reduction catalyst apparatus, the stoichiometric air-fuel ratio. It has become a more slightly richer air-fuel ratio of the exhaust gas so as to flow into the NO X storage reduction catalyst device, whereby the the NO X storage reduction catalyst device sO X released from is reduced to almost hydrogen sulfide There is no.

本発明による請求項3に記載の内燃機関の排気浄化装置によれば、請求項2に記載の内燃機関の排気浄化装置において、理論空燃比より僅かにリッチな空燃比の排気ガスは、NOX吸蔵還元触媒装置の上流側において、リッチ空燃比の排気ガスと、リーン空燃比の排気ガス又は空気とを混合させることにより形成するようになっており、それにより、リッチ空燃比の排気ガス中の未燃燃料がリーン空燃比の排気ガス中又は空気中の酸素を使用してNOX吸蔵還元触媒装置において燃焼するために、NOX吸蔵還元触媒装置を良好に昇温することができる。 According to the exhaust gas purification apparatus for an internal combustion engine according to claim 3 of the present invention, in the exhaust gas purification apparatus for the internal combustion engine according to claim 2, the exhaust gas having an air-fuel ratio slightly richer than the stoichiometric air-fuel ratio is NO x. It is formed by mixing the rich air-fuel ratio exhaust gas and the lean air-fuel ratio exhaust gas or air on the upstream side of the storage reduction catalyst device. Since the unburned fuel burns in the NO x storage reduction catalyst device using oxygen in the exhaust gas having a lean air-fuel ratio or in the air, the temperature of the NO x storage reduction catalyst device can be raised satisfactorily.

本発明による請求項4に記載の内燃機関の排気浄化装置によれば、請求項2又は3に記載の内燃機関の排気浄化装置において、NOX吸蔵還元触媒装置からSOXを放出させる時には、NOX吸蔵還元触媒装置の下流側において、理論空燃比より僅かにリッチな空燃比の排気ガスに空気を混入させて僅かにリーンな空燃比の排気ガスを下流側触媒装置へ流入させるようになっており、それにより、NOX吸蔵還元触媒装置からSOXを放出させるためのリッチ空燃比の排気ガス中に含まれるHC及びCOを下流側触媒装置において酸化浄化することができる。 According to the exhaust gas purification apparatus for an internal combustion engine according to claim 4 of the present invention, in the exhaust gas purification apparatus for an internal combustion engine according to claim 2 or 3, when SO x is released from the NO x storage reduction catalyst device, On the downstream side of the X storage reduction catalyst device, air is mixed into the exhaust gas having an air-fuel ratio slightly richer than the stoichiometric air-fuel ratio, and the exhaust gas having a slightly lean air-fuel ratio flows into the downstream catalyst device. Thus, HC and CO contained in the rich air-fuel ratio exhaust gas for releasing SO X from the NO X storage reduction catalyst device can be oxidized and purified in the downstream catalyst device.

本発明による請求項5に記載の内燃機関の排気浄化装置によれば、請求項4に記載の内燃機関の排気浄化装置において、下流側触媒装置には、白金系酸化触媒も担持されており、それにより、NOX吸蔵還元触媒装置からSOXを放出させるためのリッチ空燃比の排気ガス中に含まれるHC及びCOを下流側触媒装置において良好に酸化浄化することができる。 According to the exhaust gas purification apparatus for an internal combustion engine according to claim 5 of the present invention, in the exhaust gas purification apparatus for the internal combustion engine according to claim 4, the downstream catalyst device also carries a platinum-based oxidation catalyst, Thus, HC and CO contained in the rich air-fuel ratio exhaust gas for releasing SO X from the NO X storage reduction catalyst device can be favorably oxidized and purified in the downstream side catalyst device.

図1は本発明による内燃機関の排気浄化装置を示す概略図である。本排気浄化装置は、ディーゼルエンジン又は筒内噴射式火花点火内燃機関のような希薄燃焼を実施する内燃機関のためのものである。図1において、1は機関本体近傍に配置されて機関始動時に早期に活性化して排気ガスを浄化する上流側触媒装置であり、例えば、三元触媒装置である。2はNOX吸蔵還元触媒装置であり、3は下流側触媒装置であり、例えばゼオライトを担体として触媒としての鉄系触媒が担持されたNOX選択還元触媒装置である。 FIG. 1 is a schematic view showing an exhaust gas purification apparatus for an internal combustion engine according to the present invention. The exhaust emission control device is for an internal combustion engine that performs lean combustion, such as a diesel engine or a direct injection spark ignition internal combustion engine. In FIG. 1, reference numeral 1 denotes an upstream side catalyst device that is disposed in the vicinity of the engine body and is activated early when the engine is started to purify exhaust gas, for example, a three-way catalyst device. Reference numeral 2 denotes a NO X storage reduction catalyst device, and reference numeral 3 denotes a downstream side catalyst device, for example, a NO X selective reduction catalyst device in which an iron-based catalyst as a catalyst is supported using zeolite as a carrier.

NOX吸蔵還元触媒装置2は、例えば、アルミナを担体として、例えば、カリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類金属、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つをNOX吸蔵触媒として担持すると共に、貴金属酸化触媒(例えば、白金)を担持するものである。 The NO x storage reduction catalyst device 2 uses, for example, alumina as a carrier, for example, an alkali metal such as potassium K, sodium Na, lithium Li, and cesium Cs, an alkaline earth metal such as barium Ba and calcium Ca, and lanthanum La. In addition, at least one selected from rare earths such as yttrium Y is supported as a NO x storage catalyst, and also supports a noble metal oxidation catalyst (for example, platinum).

これらのNOX吸蔵触媒は、排気ガスの空燃比がリーン状態の時に排気ガス中のNOXを良好に吸蔵し、排気ガスの空燃比が理論空燃比又はリッチ状態となると吸蔵したNOXを放出するものである。NOX吸蔵還元触媒装置2は無制限にNOXを吸蔵することはできず、定期的に、又は、設定量のNOXが吸蔵された時に、排気ガスの空燃比をリッチ状態としてNOX吸蔵還元触媒装置2に吸蔵されたNOXを放出させて、排気ガス中の還元物質により還元浄化する再生処理が実施される。 These of the NO X storage catalyst, the air-fuel ratio of the exhaust gas is satisfactorily absorb NO X in the exhaust gas when the lean state, release the air-fuel ratio of the exhaust gas becomes the stoichiometric air-fuel ratio or rich state occluded NO X To do. The NO X storage reduction catalyst device 2 is not able to absorb unlimited NO X, periodically, or when a set amount of the NO X is occluded, the NO X storage reduction air-fuel ratio of the exhaust gas as a rich state A regeneration process is performed in which NO x stored in the catalyst device 2 is released and reduced and purified by a reducing substance in the exhaust gas.

また、NOX吸蔵還元触媒装置2はNOXと同様なメカニズムによって排気ガス中のSOXも吸蔵してしまう。こうしてSOXが吸蔵されると、SOXは硫酸塩として硝酸塩より安定的に吸蔵されるために、硝酸塩を分解してNOXを放出させる再生処理では放出させることができず、NOX吸蔵可能量を低下させる(S被毒)。それにより、定期的に、又は、設定量のSOXが吸蔵された時に、NOX吸蔵還元触媒装置2を約700℃まで昇温して排気ガスの空燃比をリッチ状態とするS被毒回復処理が実施される。 Further, the NO X storage reduction catalyst device 2 also stores SO X in the exhaust gas by the same mechanism as NO X. Thus the SO X is occluded, SO X can not be released in the regeneration process of releasing in order to be stably absorbing than nitrate as the sulphate, the NO X by decomposing nitrates, NO X storable Reduce the amount (S poisoning). As a result, when the set amount of SO x is occluded regularly or when the NO x occlusion reduction catalyst device 2 is heated to about 700 ° C., the S-poisoning recovery is performed so that the air-fuel ratio of the exhaust gas becomes rich. Processing is performed.

このように、再生処理及びS被毒回復処理において、排気ガスの空燃比はリッチ状態とされ、この時に、上流側触媒装置1及びNOX吸蔵還元触媒装置2に担持されている貴金属触媒によって排気ガス中のNOXが還元されてアンモニアNH3が生成される。しかしながら、こうして生成されたアンモニアは、下流側触媒装置3としてのNOX選択還元触媒装置3がその一部を吸着して排気ガスの空燃比がリーン状態の時にNOXを還元浄化するのに使用されると共に、残りをNOX選択還元触媒装置3が担持する鉄系触媒が窒素及び水に分解するために殆ど大気中へ放出されることはない。 Thus, in the regeneration process and the S poison recovery process, the air-fuel ratio of the exhaust gas is made rich, and at this time, the exhaust gas is exhausted by the noble metal catalyst supported on the upstream side catalyst device 1 and the NO x storage reduction catalyst device 2. NO x in the gas is reduced to produce ammonia NH 3 . However, the ammonia produced in this way is used to reduce and purify NO x when the NO x selective reduction catalytic device 3 as the downstream side catalytic device 3 adsorbs part of the ammonia and the air-fuel ratio of the exhaust gas is lean. At the same time, the iron-based catalyst supported by the NO x selective reduction catalyst device 3 is decomposed into nitrogen and water, so that it is hardly released into the atmosphere.

再生処理においては排気ガスの空燃比がリッチとされるのは数秒であるが、S被毒回復処理では排気ガスの空燃比を数十分の間リッチとすることとなり、この間においても前述のようにしてアンモニアが殆ど大気中へ放出されない。図3は、ゼオライトを担体として鉄を担持する第一触媒装置(マル印)と、セリアを担体として白金を担持する第二触媒装置(バツ印)とに、アンモニア含有ガスを流入させた場合の入りガス温度に対するNOX生成率の変化を示す実験結果である。同図に示すように、第二触媒装置ではアンモニアからNOXが生成されるのに対して、第一触媒装置では殆どNOXが生成されず、アンモニアは窒素と水とに分解されていることが解る。 In the regeneration process, the air-fuel ratio of the exhaust gas is made rich for several seconds, but in the S poison recovery process, the air-fuel ratio of the exhaust gas is made rich for several tens of minutes. Thus, almost no ammonia is released into the atmosphere. FIG. 3 shows a case where ammonia-containing gas is introduced into a first catalyst device (marked by a circle) supporting iron using zeolite as a carrier and a second catalyst device (cross mark) supporting platinum using ceria as a support. the experimental results showing the variation of the NO X generation rate for incoming gas temperature. As shown in the figure, whereas the NO X from the ammonia in the second catalyst device is produced, in the first catalyst device is hardly NO X is produced, that the ammonia is decomposed into nitrogen and water I understand.

本実施形態では、下流側触媒装置3が鉄系触媒を担持するNOX選択還元触媒装置3としたが、鉄系触媒を担持する単なる酸化触媒装置としても、アンモニアを窒素及び水に良好に分解してアンモニアの大気放出量を十分に低減することができる。 In the present embodiment, the downstream catalyst device 3 is the NO x selective reduction catalyst device 3 carrying the iron-based catalyst, but ammonia can be satisfactorily decomposed into nitrogen and water as a simple oxidation catalyst device carrying the iron-based catalyst. Thus, the amount of ammonia released into the atmosphere can be sufficiently reduced.

ところで、S被毒回復処理においては、NOX吸蔵還元触媒装置2を約700℃まで昇温させなければならない。そのために、本実施形態では、機関本体においてリッチ空燃比(12から13.5)での運転を実施するか、又は、膨張行程又は排気行程において気筒内へ燃料を噴射して、機関本体から排出される排気ガスの空燃比をリッチ状態(12から13.5)とし、NOX吸蔵還元触媒装置2の上流側において、第一空気供給装置4から排気ガス中へ空気を混入させて排気ガスの空燃比を僅かにリッチ状態(14.0以上14.6未満)とする。 By the way, in the S poisoning recovery process, the NO x storage reduction catalyst device 2 must be heated to about 700 ° C. Therefore, in the present embodiment, the engine body is operated at a rich air-fuel ratio (12 to 13.5), or fuel is injected into the cylinder in the expansion stroke or the exhaust stroke and discharged from the engine body. The air-fuel ratio of the exhaust gas is made rich (12 to 13.5), and air is mixed into the exhaust gas from the first air supply device 4 on the upstream side of the NO x storage reduction catalyst device 2 to The air-fuel ratio is made slightly rich (14.0 to less than 14.6).

それにより、NOX吸蔵還元触媒装置2において、担持された白金等の酸化触媒により、排気ガス中の未燃燃料を、供給された空気中の酸素を使用して燃焼させ、この燃焼熱によってNOX吸蔵還元触媒装置2を約700℃へ容易に昇温することができる。こうして昇温されて僅かなリッチ状態とされたNOX吸蔵還元触媒装置2からはSOXが放出されるが、SOXが硫化水素へ還元されることはなく、硫化水素が大気中へ放出されることは殆どない。 As a result, in the NO x storage reduction catalyst device 2, the unburned fuel in the exhaust gas is burned using the oxygen in the supplied air by the supported oxidation catalyst such as platinum, and this combustion heat causes NO to be burned. The temperature of the X storage reduction catalyst device 2 can be easily raised to about 700 ° C. SO x is released from the NO x storage reduction catalyst device 2 that has been heated to a slight rich state in this way, but SO x is not reduced to hydrogen sulfide, and hydrogen sulfide is released into the atmosphere. There is hardly anything.

また、NOX吸蔵還元触媒装置2から流出する僅かにリッチ状態の排気ガス中には、僅かにHC及びCOが含まれているために、これらを浄化することが好ましい。そのためには、NOX吸蔵還元触媒装置2の下流側において、第二吸気供給装置5から排気ガス中へ空気を混入させて排気ガスの空燃比を僅かにリーン状態(14.6より大きく17以下)として、下流側触媒装置3へ流入させ、下流側触媒装置3の鉄系触媒によって混入させた空気中の酸素を使用してHC及びCOを酸化させる。 Further, since the slightly rich exhaust gas flowing out from the NO x storage reduction catalyst device 2 contains slightly HC and CO, it is preferable to purify them. For this purpose, air is mixed into the exhaust gas from the second intake air supply device 5 on the downstream side of the NO x storage reduction catalyst device 2 to slightly reduce the air-fuel ratio of the exhaust gas (greater than 14.6 to 17 or less). ) And HC and CO are oxidized using oxygen in the air that is introduced into the downstream side catalyst device 3 and mixed by the iron-based catalyst of the downstream side catalyst device 3.

また、このようにNOX吸蔵還元触媒装置2の下流側において、第二吸気供給装置5から排気ガス中へ空気を混入させて排気ガスの空燃比をリーン状態とすれば、NOX吸蔵還元触媒装置2に流入する排気ガスの空燃比がリッチ過ぎて放出されたSOXが硫化水素に還元されても、再び酸化されてSOXへ戻すことができる。 Further, if the air is mixed into the exhaust gas from the second intake air supply device 5 and the air-fuel ratio of the exhaust gas is made lean in the downstream side of the NO X storage reduction catalyst device 2 in this way, the NO X storage reduction catalyst. also SO X when the air-fuel ratio of the exhaust gas was released too rich flowing into the apparatus 2 is reduced to hydrogen sulfide, it can be re-oxidized back to the SO X.

図4は、ゼオライトを担体として鉄を担持する第一触媒装置(マル印)と、セリアを担体として白金を担持する第二触媒装置(バツ印)とに、酸素及びCOを含むガスを流入させた場合の入りガス温度に対するCO浄化率の変化を示す実験結果である。同図に示すように、第一触媒装置ではCOの浄化率が低いのに対して、第二触媒装置では良好にCOを浄化することができる。それにより、下流側触媒装置3には、鉄系触媒だけでなく、白金系酸化触媒も担持させることにより、S被毒回復処理においてHC及びCOをさらに良好に酸化浄化させることができる。   FIG. 4 shows that a gas containing oxygen and CO is allowed to flow into a first catalyst device (marked by a circle) supporting iron using zeolite as a carrier and a second catalyst device (cross mark) supporting platinum using ceria as a support. It is an experimental result which shows the change of the CO purification | cleaning rate with respect to the inlet gas temperature in the case of. As shown in the figure, the first catalyst device has a low CO purification rate, whereas the second catalyst device can purify CO well. Thereby, the downstream catalyst device 3 supports not only the iron-based catalyst but also the platinum-based oxidation catalyst, so that HC and CO can be further oxidized and purified in the S poison recovery process.

この場合において、下流側触媒装置3の上流側には鉄系触媒を担持させ、下流側に白金系酸化触媒を担持させることが好ましい。それにより、下流側触媒装置3へ流入する排気ガス中のアンモニアは、白金系酸化触媒によってNOXへ変換される前に、鉄系触媒によって窒素及び水へ分解することができる。もちろん、下流側触媒装置3を、鉄系触媒を担持する上流側と、白金系酸化触媒を担持する下流側とに分割しても良い。 In this case, it is preferable to support the iron-based catalyst on the upstream side of the downstream side catalyst device 3 and to support the platinum-based oxidation catalyst on the downstream side. Thus, ammonia in the exhaust gas flowing into the downstream side catalyst device 3 can be decomposed into nitrogen and water by the iron-based catalyst before being converted to NO x by the platinum-based oxidation catalyst. Of course, the downstream side catalyst device 3 may be divided into an upstream side carrying an iron-based catalyst and a downstream side carrying a platinum-based oxidation catalyst.

下流側触媒装置3へ流入させる排気ガスの空燃比のリーン状態が理論空燃比に近いほど、下流側触媒装置3でのHC及びCOの酸化が不十分となり易くなるために、第二吸気供給装置5から排気ガス中へ空気を混入させて制御する排気ガスの制御空燃比が、理論空燃比に近いほど、下流側触媒装置3の鉄系触媒及び白金系酸化触媒の全担持量に対する白金系酸化触媒の担持量の割合を多くすることが好ましい。   As the lean state of the air-fuel ratio of the exhaust gas flowing into the downstream side catalyst device 3 is closer to the stoichiometric air-fuel ratio, the oxidation of HC and CO in the downstream side catalyst device 3 tends to become insufficient. As the control air-fuel ratio of the exhaust gas controlled by mixing air into the exhaust gas from 5 is closer to the theoretical air-fuel ratio, the platinum-based oxidation with respect to the total supported amount of the iron-based catalyst and the platinum-based oxidation catalyst of the downstream side catalyst device 3 It is preferable to increase the ratio of the amount of catalyst supported.

図2は本発明によるもう一つの内燃機関の排気浄化装置を示す概略図である。図1の排気浄化装置との違いについてのみ以下に説明する。本排気浄化装置は、S被毒回復処理において、機関本体から排出される排気ガスの空燃比の制御、及び、第一空気供給装置4及び第二空気供給装置5から供給される空気量の制御の結果として、NOX吸蔵還元触媒装置2の下流側の排気ガスの空燃比が変化する場合において、切換弁6を切り換えて、排気ガスを第一下流側触媒装置3a及び第二下流側触媒装置3bのいずれかに通過させるかを選択するようになっている。 FIG. 2 is a schematic view showing another exhaust gas purification apparatus for an internal combustion engine according to the present invention. Only the difference from the exhaust emission control device of FIG. 1 will be described below. This exhaust purification device controls the air-fuel ratio of exhaust gas discharged from the engine body and controls the amount of air supplied from the first air supply device 4 and the second air supply device 5 in the S poison recovery process. As a result, when the air-fuel ratio of the exhaust gas on the downstream side of the NO x storage reduction catalyst device 2 changes, the switching valve 6 is switched to send the exhaust gas to the first downstream catalyst device 3a and the second downstream catalyst device. 3b is selected to be passed.

例えば、第一下流側触媒装置3aにおいて、白金系酸化触媒の担持量と鉄系触媒の担持量との比が6:4とされ、第二下流側触媒装置3bにおいて、白金系酸化触媒の担持量と鉄系触媒の担持量との比が4:6とされている。好ましくは、第一下流側触媒装置3a及び第二下流側触媒装置3bのそれぞれにおいて、上流側には鉄系触媒を、下流側には白金系酸化触媒を担持させる。第二空気供給装置5により空気が混入された後の排気ガスの空燃比を空燃比センサ(図示せず)により検出し、それが15.5よりリッチ側である時には、排気ガスが第一下流側触媒装置3aを通過するように切換弁6が切り換えられ、また、検出された空燃比が15.5よりリーン側である時には、排気ガスが第二下流側触媒装置3bを通過するように切換弁6が切り換えられる。   For example, in the first downstream catalyst device 3a, the ratio of the supported amount of platinum-based oxidation catalyst to the supported amount of iron-based catalyst is 6: 4, and in the second downstream-side catalyst device 3b, the support of the platinum-based oxidation catalyst is performed. The ratio of the amount and the amount of iron-based catalyst supported is 4: 6. Preferably, in each of the first downstream catalyst device 3a and the second downstream catalyst device 3b, an iron-based catalyst is supported on the upstream side and a platinum-based oxidation catalyst is supported on the downstream side. The air-fuel ratio of the exhaust gas after the air is mixed by the second air supply device 5 is detected by an air-fuel ratio sensor (not shown), and when it is richer than 15.5, the exhaust gas is in the first downstream The switching valve 6 is switched so as to pass through the side catalytic device 3a, and when the detected air-fuel ratio is leaner than 15.5, switching is performed so that the exhaust gas passes through the second downstream side catalytic device 3b. Valve 6 is switched.

それにより、S被毒回復処理においてHC及びCOを白金系酸化触媒により良好に酸化浄化させることができると共に、アンモニアを鉄系触媒により良好に窒素及び水へ分解することができる。本実施形態において、再生処理時には、排気ガスが第二下流側触媒装置3bを通過するように切り換えられ、アンモニアを多量の鉄系触媒により良好に窒素及び水へ分解することが好ましい。   Thereby, HC and CO can be favorably oxidized and purified by the platinum-based oxidation catalyst in the S poisoning recovery treatment, and ammonia can be favorably decomposed into nitrogen and water by the iron-based catalyst. In the present embodiment, at the time of regeneration treatment, it is preferable that the exhaust gas is switched so as to pass through the second downstream side catalyst device 3b, and ammonia is favorably decomposed into nitrogen and water by a large amount of iron-based catalyst.

S被毒回復処理に際して、比較的多量の未燃燃料を含む排気ガスに第一空気供給装置4により空気を供給して僅かにリッチな空燃比とした排気ガスがNOX吸蔵還元触媒装置2へ流入するようにしたが、V型エンジンの場合には、一方のバンクから排出される排気ガス中には比較的多量の未燃燃料が含まれるようにし、他方のバンクから排出される排気ガス中には比較的多量の酸素が含まれるようにして、これらのリッチ空燃比の排気ガスとリーン空燃比の排気ガスとが混合して(好ましくは、僅かにリッチな空燃比となって硫化水素が生成されないようにして)NOX吸蔵還元触媒装置2へ流入するようにしても良い。 During the S poisoning recovery process, the exhaust gas containing a relatively large amount of unburned fuel is supplied with air by the first air supply device 4 to make the air-fuel ratio slightly rich, and the exhaust gas is supplied to the NO x storage reduction catalyst device 2. In the case of a V-type engine, the exhaust gas discharged from one bank contains a relatively large amount of unburned fuel, and the exhaust gas discharged from the other bank Is mixed with the rich air-fuel ratio exhaust gas and the lean air-fuel ratio exhaust gas (preferably with a slightly rich air-fuel ratio and hydrogen sulfide It may be allowed to flow into the NO x storage reduction catalyst device 2 (without being generated).

もちろん、V型エンジンではなく、直列型エンジンにおいても、一部の気筒から排出される排気ガス中には比較的多量の未燃燃料が含まれるようにし、他方のバンクから排出される排気ガス中には比較的多量の酸素が含まれるようにして、これらのリッチ空燃比の排気ガスとリーン空燃比の排気ガスとが混合して(好ましくは、僅かにリッチな空燃比となって硫化水素が生成されないようにして)NOX吸蔵還元触媒装置2へ流入するようにしても良い。 Of course, not only in the V-type engine but also in the in-line engine, the exhaust gas discharged from some cylinders contains a relatively large amount of unburned fuel and the exhaust gas discharged from the other bank. Is mixed with the rich air-fuel ratio exhaust gas and the lean air-fuel ratio exhaust gas (preferably with a slightly rich air-fuel ratio and hydrogen sulfide It may be allowed to flow into the NO x storage reduction catalyst device 2 (without being generated).

本発明による内燃機関の排気浄化装置を示す概略図である。It is the schematic which shows the exhaust gas purification apparatus of the internal combustion engine by this invention. 本発明によるもう一つの内燃機関の排気浄化装置を示す概略図である。It is the schematic which shows the exhaust gas purification apparatus of another internal combustion engine by this invention. 鉄を担持する第一触媒装置と、白金を担持する第二触媒装置とに、アンモニア含有ガスを流入させた場合の入りガス温度に対するNOX生成率の変化を示す実験結果である。A first catalyst device carrying an iron, in the second catalyst device carrying the platinum, the experimental results showing the variation of the NO X generation rate for incoming gas temperature when allowed to flow into the ammonia-containing gas. 鉄を担持する第一触媒装置と、白金を担持する第二触媒装置とに、酸素及びCOを含むガスを流入させた場合の入りガス温度に対するCO浄化率の変化を示す実験結果である。It is an experimental result which shows the change of CO purification | cleaning rate with respect to inlet gas temperature at the time of flowing the gas containing oxygen and CO into the 1st catalyst apparatus which carry | supports iron, and the 2nd catalyst apparatus which carries platinum.

符号の説明Explanation of symbols

1 上流側触媒装置
2 NOX吸蔵還元触媒装置
3,3a,3b 下流側触媒装置
1 upstream catalyst device 2 NO X occluding and reducing catalyst device 3, 3a, 3b downstream catalyst unit

Claims (5)

機関排気系に配置されたNOX吸蔵還元触媒装置と、前記NOX吸蔵還元触媒装置の下流側に配置されて鉄系触媒を担持する下流側触媒装置とを具備することを特徴とする内燃機関の排気浄化装置。 An internal combustion engine comprising: a NO x storage reduction catalyst device disposed in an engine exhaust system; and a downstream catalyst device disposed downstream of the NO x storage reduction catalyst device and carrying an iron catalyst. Exhaust purification equipment. 前記NOX吸蔵還元触媒装置からSOXを放出させる時には、理論空燃比より僅かにリッチな空燃比の排気ガスを前記NOX吸蔵還元触媒装置へ流入させることを特徴とする請求項1に記載の内燃機関の排気浄化装置。 The NO from X occluding and reducing catalyst device when releasing the SO X is according to the exhaust gas slightly richer than the stoichiometric air-fuel ratio to claim 1, characterized in that to flow into the NO X occluding and reducing catalyst device An exhaust purification device for an internal combustion engine. 理論空燃比より僅かにリッチな空燃比の前記排気ガスは、前記NOX吸蔵還元触媒装置の上流側において、リッチ空燃比の排気ガスと、リーン空燃比の排気ガス又は空気とを混合させることにより形成することを特徴とする請求項2に記載の内燃機関の排気浄化装置。 The exhaust gas slightly richer than the stoichiometric air-fuel ratio on the upstream side of the the NO X storage reduction catalyst device and an exhaust gas of a rich air-fuel ratio, by mixing the exhaust gas or air lean The exhaust emission control device for an internal combustion engine according to claim 2, wherein the exhaust gas purification device is formed. 前記NOX吸蔵還元触媒装置からSOXを放出させる時には、前記NOX吸蔵還元触媒装置の下流側において、理論空燃比より僅かにリッチな空燃比の前記排気ガスに空気を混入させて僅かにリーンな空燃比の排気ガスを前記下流側触媒装置へ流入させることを特徴とする請求項2又は3に記載の内燃機関の排気浄化装置。 The NO from X occluding and reducing catalyst device when releasing the SO X, the NO X occluding and reducing downstream of the catalytic converter, slightly lean by mixing air to the exhaust gas slightly richer than the stoichiometric air-fuel ratio The exhaust gas purification apparatus for an internal combustion engine according to claim 2 or 3, wherein an exhaust gas having a low air-fuel ratio is caused to flow into the downstream side catalyst device. 前記下流側触媒装置には、白金系酸化触媒も担持されていることを特徴とする請求項4に記載の内燃機関の排気浄化装置。   The exhaust gas purification apparatus for an internal combustion engine according to claim 4, wherein a platinum-based oxidation catalyst is also carried on the downstream side catalyst device.
JP2008173430A 2008-07-02 2008-07-02 Exhaust emission control device of internal combustion engine Withdrawn JP2010013975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008173430A JP2010013975A (en) 2008-07-02 2008-07-02 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008173430A JP2010013975A (en) 2008-07-02 2008-07-02 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010013975A true JP2010013975A (en) 2010-01-21

Family

ID=41700305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008173430A Withdrawn JP2010013975A (en) 2008-07-02 2008-07-02 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010013975A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012095728A1 (en) 2011-01-14 2012-07-19 Toyota Motor Co Ltd Base metal exhaust gas control apparatus and base metal exhaust gas control system for internal combustion engine
JP2013019390A (en) * 2011-07-14 2013-01-31 Hino Motors Ltd Exhaust emission control device
WO2013035159A1 (en) * 2011-09-06 2013-03-14 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012095728A1 (en) 2011-01-14 2012-07-19 Toyota Motor Co Ltd Base metal exhaust gas control apparatus and base metal exhaust gas control system for internal combustion engine
JP2013019390A (en) * 2011-07-14 2013-01-31 Hino Motors Ltd Exhaust emission control device
WO2013035159A1 (en) * 2011-09-06 2013-03-14 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JPWO2013035159A1 (en) * 2011-09-06 2015-03-23 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Similar Documents

Publication Publication Date Title
KR101393221B1 (en) Exhaust purification system of internal combustion engine
WO2012029187A1 (en) Exhaust gas purification device for internal combustion engine
US20080295498A1 (en) Exhaust gas purifying apparatus for international combustion
JP2006070834A (en) Exhaust gas purification method and exhaust gas purification system
WO2005103461A1 (en) Exhaust purifying device for internal combustion engine
JP2007100578A (en) Exhaust emission control device of internal combustion engine
JP2012127295A (en) Exhaust emission control device for internal combustion engine
WO2014033836A1 (en) Exhaust purification device for spark ignition internal combustion engine
JPWO2012029190A1 (en) Exhaust gas purification device for internal combustion engine
JPWO2010146718A1 (en) Exhaust gas purification device for internal combustion engine
JP5994931B2 (en) Exhaust gas purification device for internal combustion engine
JP2010013975A (en) Exhaust emission control device of internal combustion engine
WO2014016965A1 (en) Exhaust purification device of internal combustion engine
JP2008298024A (en) Exhaust emission control device
WO2012111171A1 (en) Exhaust-gas purifying device for internal-combustion engine
JP5561059B2 (en) Exhaust gas purification device for internal combustion engine
JP5168410B2 (en) Exhaust gas purification device for internal combustion engine
JP2009019515A (en) Nox purification system and control method thereof
JP2003286827A (en) Exhaust emission control device for internal combustion engine
JP2000080913A (en) Exhaust emission control device for internal combustion engine
WO2014024311A1 (en) Exhaust purification device of spark ignition internal combustion engine
JP2007113497A (en) Exhaust emission control device of internal combustion engine
JP2013122179A (en) Exhaust emission control device for internal combustion engine
JP5746008B2 (en) Exhaust gas purification device for internal combustion engine
JP2007040280A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110906