JP2013122179A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2013122179A
JP2013122179A JP2011270325A JP2011270325A JP2013122179A JP 2013122179 A JP2013122179 A JP 2013122179A JP 2011270325 A JP2011270325 A JP 2011270325A JP 2011270325 A JP2011270325 A JP 2011270325A JP 2013122179 A JP2013122179 A JP 2013122179A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
internal combustion
combustion engine
catalyst device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011270325A
Other languages
Japanese (ja)
Inventor
Takahiro Hayashi
高弘 林
Akira Morikawa
彰 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2011270325A priority Critical patent/JP2013122179A/en
Publication of JP2013122179A publication Critical patent/JP2013122179A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To improve deterioration in fuel consumption for NOreduction in exhaust gas, in an exhaust emission control device for an internal combustion engine provided with a NOreduction catalyst device carrying a base metal catalyst and having low NOreduction performance.SOLUTION: An exhaust emission control device for an internal combustion engine includes: a first NOreduction catalyst device 40 carrying a base metal catalyst disposed at an exhaust passage 30; a second NOreduction catalyst device 50 disposed at the exhaust passage at a downstream side of the first NOreduction catalyst device and having ammonia storage capability; and a first NOsensor 80 disposed at the exhaust passage at a downstream side of the second NOreduction catalyst device. After a combustion air-fuel ratio of the internal combustion engine is made richer than a theoretical air-fuel ratio, the combustion air-fuel ratio of the internal combustion engine is made leaner than the theoretical air-fuel ratio. When the combustion air-fuel ratio of the internal combustion engine is made leaner than the theoretical air-fuel ratio, if NOis detected by the first NOsensor, the combustion air-fuel ratio of the internal combustion engine is made richer than the theoretical air-fuel ratio.

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

排気ガス中のHC、CO、及びNOXを浄化するために、三元触媒装置を機関排気系に配置することが公知である。しかしながら、三元触媒装置に一般的に使用される白金等の貴金属触媒は高価であり、貴金属触媒に代えて卑金属触媒を使用することが提案されている(特許文献1参照)。 HC in exhaust gas, CO, and to purify NO X, it is known to place a three-way catalytic converter in the engine exhaust system. However, a noble metal catalyst such as platinum generally used in a three-way catalyst device is expensive, and it has been proposed to use a base metal catalyst instead of the noble metal catalyst (see Patent Document 1).

しかしながら、こうして三元触媒装置において、貴金属触媒を代えて卑金属触媒を使用したり、又は、貴金属触媒の一部を卑金属触媒に置き換えたりすると、NOX還元触媒装置としてNOXの還元性能が低下するために、燃焼空燃比を理論空燃比より僅かにリッチにして、排気ガス中にHC及びCO等の還元物質の濃度を高めてNOXを還元し易くすることが考えられる。 However, this way the three-way catalytic converter, or use a base metal catalyst instead of the noble metal catalyst, or, when a portion of a noble metal catalyst or replace the base metal catalyst, reduction performance of the NO X is reduced as NO X reducing catalyst device for the, the combustion air-fuel ratio in the slightly richer than the stoichiometric air-fuel ratio, it is considered possible to facilitate the reduction of NO X by increasing the concentration of the reducing substance such as HC and CO in the exhaust gas.

特開2011−125862JP2011-125862A

前述のように、卑金属触媒を担持してNOXの還元性能が低いNOX還元触媒装置を備える内燃機関の排気浄化装置において、NOXを良好に還元するのに燃焼空燃比を理論空燃比よりリッチにしたのでは、燃料消費が大幅に悪化してしまう。 As described above, in the exhaust purification system for an internal combustion engine having a reducing capability is low NO X reduction catalyst device of the NO X carries a base metal catalyst, the combustion air-fuel ratio to satisfactorily reduce NO X than the stoichiometric air-fuel ratio If it is made rich, fuel consumption will be greatly degraded.

従って、本発明の目的は、卑金属触媒を担持してNOXの還元性能が低いNOX還元触媒装置を備える内燃機関の排気浄化装置において、排気ガス中のNOXの還元のための燃料消費の悪化を改善することである。 Accordingly, the present invention purposes, in the exhaust purification system for an internal combustion engine having a reducing capability is low NO X reduction catalyst device of the NO X carries a base metal catalyst, the fuel consumption for the reduction of the NO X in the exhaust gas It is to improve the deterioration.

本発明による請求項1に記載の内燃機関の排気浄化装置は、排気通路に配置された卑金属触媒を担持する第一NOX還元触媒装置と、前記排気通路の前記第一NOX還元触媒装置の下流側に配置されたアンモニア吸蔵能力を有する第二NOX還元触媒装置と、前記排気通路の前記第二NOX還元触媒装置の下流側に配置された第一NOXセンサとを具備し、内燃機関の燃焼空燃比が理論空燃比よりリッチとされた後に内燃機関の燃焼空燃比を理論空燃比よりリーンとし、内燃機関の燃焼空燃比が理論空燃比よりリーンとされているときに前記第一NOXセンサによりNOXが検出された時には内燃機関の燃焼空燃比を理論空燃比よりリッチにすることを特徴とする。 An exhaust purification system of an internal combustion engine according to claim 1 according to the present invention comprises a first NO X reduction catalyst device carrying the disposed in an exhaust passage base metal catalyst, the first NO X reduction catalyst device of the exhaust passage A second NO x reduction catalyst device having ammonia storage capacity arranged on the downstream side, and a first NO x sensor arranged on the exhaust passage downstream of the second NO x reduction catalyst device; When the combustion air-fuel ratio of the internal combustion engine is made leaner than the stoichiometric air-fuel ratio after the combustion air-fuel ratio of the engine is made richer than the stoichiometric air-fuel ratio, and when the combustion air-fuel ratio of the internal combustion engine is made leaner than the stoichiometric air-fuel ratio, the first when the NO X is detected by the NO X sensor is characterized in that the richer than the stoichiometric air-fuel ratio combustion air-fuel ratio of the internal combustion engine.

本発明による請求項2に記載の内燃機関の排気浄化装置は、請求項1に記載の内燃機関の排気浄化装置において、前記排気通路の前記第一NOXセンサの下流側に配置された酸化触媒装置と、前記排気通路の前記第二NOX還元触媒装置と前記酸化触媒装置との間に二次空気を供給する二次空気供給装置と、前記排気通路の前記酸化触媒装置の下流側に配置された第二NOXセンサとを具備し、少なくとも内燃機関の燃焼空燃比が理論空燃比よりリッチとされるときには、前記二次空気供給装置は二次空気を供給し、前記第二NOXセンサによりNOXが検出されたときには、内燃機関の燃焼空燃比を理論空燃比よりリーンにすることを特徴とする。 An exhaust purification system of an internal combustion engine according to claim 2 of the present invention, in the exhaust purification system of an internal combustion engine according to claim 1, an oxidation catalyst disposed downstream of the first NO X sensor of the exhaust passage A secondary air supply device for supplying secondary air between the second NO x reduction catalyst device and the oxidation catalyst device in the exhaust passage, and a downstream side of the oxidation catalyst device in the exhaust passage ; and a second NO X sensors, when the combustion air-fuel ratio of at least the internal combustion engine is made rich than the stoichiometric air-fuel ratio, said secondary air supply device supplies the secondary air, the second NO X sensor by the time the NO X is detected, characterized in that the lean of the stoichiometric air-fuel ratio of the combustion air-fuel ratio of an internal combustion engine.

本発明による請求項1に記載の内燃機関の排気浄化装置によれば、排気通路に配置された卑金属触媒を担持する第一NOX還元触媒装置と、排気通路の第一NOX還元触媒装置の下流側に配置されたアンモニア吸蔵能力を有する第二NOX還元触媒装置と、排気通路の第二NOX還元触媒装置の下流側に配置された第一NOXセンサとを具備し、内燃機関の燃焼空燃比が理論空燃比よりリッチとされることにより、NOXの還元能力が低い第一NOX還元触媒装置によっても、排気ガス中のNOXをリッチ空燃比の排気ガス中に含まれるHC及びCOを使用して良好に還元することができる。 According to the exhaust purification system of an internal combustion engine according to claim 1 according to the present invention, a first NO X reduction catalyst device carrying the disposed in an exhaust passage base metal catalyst, the first NO X reduction catalyst device in the exhaust passage comprising a second NO X reduction catalyst device having arranged ammonia storage capacity downstream, and a first NO X sensor arranged downstream of the second NO X reduction catalyst device in the exhaust passage, the internal combustion engine by combustion air-fuel ratio is made rich than the stoichiometric air-fuel ratio, by NO X reducing ability is low first NO X reduction catalyst device includes a NO X in the exhaust gas in the exhaust gas of a rich air-fuel ratio HC And CO can be used to reduce well.

第一NOX還元触媒装置でのNOXの還元によってアンモニアが生成され、こうして生成されたアンモニアは、第一NOX還元触媒装置の下流側に配置されたアンモニア吸蔵能力を有する第二NOX還元触媒装置に吸蔵される。それにより、内燃機関の燃焼空燃比が理論空燃比よりリッチとされた後に内燃機関の燃焼空燃比を理論空燃比よりリーンとしても、排気ガス中のNOXは、第二NOX還元触媒装置において、吸蔵されているアンモニアを使用して良好に還元される。こうして、内燃機関の燃焼空燃比を常に理論空燃比よりリッチにする場合に比較して、排気ガス中のNOXの還元のための燃料消費の悪化を改善することができる。 Ammonia is produced by reduction of the NO X in the first NO X reduction catalyst device, thus ammonia produced, the second NO X reduction having a first NO X reducing ammonia storage capacity which is disposed downstream of the catalytic converter Occluded in the catalyst device. Accordingly, even if the combustion air-fuel ratio of the internal combustion engine is made richer than the stoichiometric air-fuel ratio after the combustion air-fuel ratio of the internal combustion engine is made richer than the stoichiometric air-fuel ratio, NO X in the exhaust gas is reduced in the second NO X reduction catalyst device. Reduced well using occluded ammonia. In this way, compared with the case where the combustion air-fuel ratio of the internal combustion engine is always made richer than the stoichiometric air-fuel ratio, it is possible to improve the deterioration of fuel consumption due to the reduction of NO x in the exhaust gas.

内燃機関の燃焼空燃比を理論空燃比よりリーンとしているときにおいて、第二NOX還元触媒装置に吸蔵されているアンモニアにより排気ガス中のNOXを十分に還元することができなくなれば、排気通路の第二NOX還元触媒装置の下流側に配置された第一NOXセンサがNOXを検出するようになり、このときには、内燃機関の燃焼空燃比を理論空燃比よりリッチにし、排気ガス中のNOXを第一NOX還元触媒装置により還元するようにし、このときに生成されるアンモニアを第二NOX還元触媒装置において吸蔵し、次に内燃機関の燃焼空燃比が理論空燃比よりリーンとされるときの第二NOX還元触媒装置によるNOXの還元に備える。 In case it is leaner than the stoichiometric air-fuel ratio combustion air-fuel ratio of the internal combustion engine, if it is impossible to sufficiently reduce the NO X in the exhaust gas by ammonia which is stored in the second NO X reduction catalyst device, an exhaust passage The first NO x sensor disposed downstream of the second NO x reduction catalyst device detects NO x , and at this time, the combustion air-fuel ratio of the internal combustion engine is made richer than the stoichiometric air-fuel ratio, was of the NO X to be reduced by the first NO X reduction catalyst device, the ammonia generated in this case occludes the second NO X reduction catalyst device, then leaner than the combustion air-fuel ratio is the stoichiometric air-fuel ratio of an internal combustion engine In preparation for the reduction of NO x by the second NO x reduction catalyst device.

また、本発明による請求項2に記載の内燃機関の排気浄化装置によれば、請求項1に記載の内燃機関の排気浄化装置において、排気通路の第一NOXセンサの下流側に配置された酸化触媒装置と、排気通路の第二NOX還元触媒装置と酸化触媒装置との間に二次空気を供給する二次空気供給装置と、排気通路の酸化触媒装置の下流側に配置された第二NOXセンサとを具備し、少なくとも内燃機関の燃焼空燃比が理論空燃比よりリッチとされるときには、二次空気供給装置は二次空気を供給するようになっており、それにより、内燃機関の燃焼空燃比が理論空燃比よりリッチとされるときに、第一及び第二NOX還元触媒装置を通過するHC及びCOを、下流側の酸化触媒装置において二次空気中の酸素を使用して酸化することができる。 Further, according to the exhaust purification system of an internal combustion engine according to claim 2 according to the present invention, in the exhaust purification system of an internal combustion engine according to claim 1, arranged downstream of the first NO X sensor of the exhaust passage the oxidation catalyst device, which is disposed downstream of the oxidation catalyst device for a secondary air supply device and an exhaust passage for supplying secondary air between the second NO X reduction catalyst device in the exhaust passage and the oxidation catalyst device comprising a two NO X sensor, when the combustion air-fuel ratio of at least the internal combustion engine is made rich than the stoichiometric air-fuel ratio, the secondary air supply apparatus is arranged to supply secondary air, whereby the internal combustion engine When the combustion air-fuel ratio is made richer than the stoichiometric air-fuel ratio, HC and CO that pass through the first and second NO x reduction catalyst devices are used, and oxygen in the secondary air is used in the downstream oxidation catalyst device. Can be oxidized.

また、内燃機関の燃焼空燃比が理論空燃比よりリッチにされているときに、第一NOX還元触媒装置において生成されるアンモニアを吸蔵する第二NOX還元触媒装置において、アンモニア吸蔵能力が飽和すると、第二NOX還元触媒装置からアンモニアが流出し、第二NOX還元触媒装置の下流側に配置された酸化触媒装置に流入して二次空気中の酸素を使用して酸化され、NOXが生成される。それにより、第二NOXセンサによりNOXが検出されたときには、第二NOX還元触媒装置には飽和量のアンモニアが吸蔵されていることとなり、内燃機関の燃焼空燃比を理論空燃比よりリーンにするようになっている。 In addition, when the combustion air-fuel ratio of the internal combustion engine is made richer than the stoichiometric air-fuel ratio, the ammonia storage capacity is saturated in the second NO X reduction catalyst device that stores ammonia generated in the first NO X reduction catalyst device. then, the ammonia flows out from the second NO X reduction catalyst device is oxidized using a second NO X reduction of oxygen flows into the arranged oxidation catalyst device on the downstream side secondary air in the catalytic converter, NO X is generated. Accordingly, when NO X is detected by the second NO X sensor, the second NO X reduction catalyst device stores a saturated amount of ammonia, and the combustion air-fuel ratio of the internal combustion engine is made leaner than the stoichiometric air-fuel ratio. It is supposed to be.

本発明による内燃機関の排気浄化装置を示す概略図である。1 is a schematic view showing an exhaust gas purification apparatus for an internal combustion engine according to the present invention. 図1の排気浄化装置の制御を示すフローチャートである。It is a flowchart which shows control of the exhaust gas purification apparatus of FIG.

図1は本発明による内燃機関の排気浄化装置を示す概略図である。内燃機関10は例えば筒内噴射式火花点火の四気筒内燃機関である。内燃機関10のエキゾーストマニホルド20の下流側の排気通路30には、第一NOX還元触媒装置40が配置されている。第一NOX還元触媒装置40は、ハニカム構造の基体上に、一般的な三元触媒装置のような白金Pt等の高価な貴金属触媒ではなく、銅Cu、鉄Fe、銀Ag、又は、金Au等の卑金属触媒をアルミナ又はセリア等を担体として担持したものである。また、第一NOX還元触媒装置40は、一般的な三元触媒装置の貴金属触媒の一部を卑金属触媒に置換するなどして、高価な貴金属触媒の使用量を減少させたものでも良い。 FIG. 1 is a schematic view showing an exhaust gas purification apparatus for an internal combustion engine according to the present invention. The internal combustion engine 10 is, for example, an in-cylinder injection spark ignition four-cylinder internal combustion engine. A first NO x reduction catalyst device 40 is disposed in the exhaust passage 30 on the downstream side of the exhaust manifold 20 of the internal combustion engine 10. The first NO x reduction catalyst device 40 is not an expensive noble metal catalyst such as platinum Pt such as a general three-way catalyst device, but a copper Cu, iron Fe, silver Ag, or gold on a substrate having a honeycomb structure. A base metal catalyst such as Au is supported on alumina or ceria as a carrier. Further, the first NO x reduction catalyst device 40 may be one in which the amount of expensive noble metal catalyst used is reduced by replacing a part of the noble metal catalyst of a general three-way catalyst device with a base metal catalyst.

また、排気通路30の第一NOX還元触媒装置40の下流側には、第二NOX還元触媒装置50が配置されている。第二NOX還元触媒装置50は、ハニカム構造の基体上に、例えば、超強酸処理したジルコニアZrO2や、銅Cu又は鉄FeをゼオライトZSM5又はSAPOを担体として担持したものであり、アンモニア吸蔵機能を有している。それにより、第二NOX還元触媒装置50は、排気ガスの空燃比がリーンでも吸蔵したアンモニアを還元剤として使用してNOXを還元することができる。また、排気通路30の第二NOX還元触媒装置50の下流側には、卑金属触媒(又は貴金属触媒)を担持する酸化触媒装置60が配置されている。 Further, a second NO X reduction catalyst device 50 is disposed downstream of the first NO X reduction catalyst device 40 in the exhaust passage 30. The second NO X reduction catalyst device 50, on the substrate of the honeycomb structure, for example, or zirconia ZrO 2 was super acid treatment, copper Cu, or iron Fe is obtained by carrying zeolite ZSM5 or SAPO as the carrier, ammonia storage function have. Thereby, the second NO x reduction catalyst device 50 can reduce NO x using ammonia stored as a reducing agent even when the air-fuel ratio of the exhaust gas is lean. Further, an oxidation catalyst device 60 that supports a base metal catalyst (or a noble metal catalyst) is disposed downstream of the second NO x reduction catalyst device 50 in the exhaust passage 30.

また、排気通路30の第二NOX還元触媒装置50と酸化触媒装置60との間には、二次空気を供給する二次空気供給装置70が配置されている。また、排気通路30の第二NOX還元触媒装置50と酸化触媒装置60との間には、第一NOXセンサ80が配置され、排気通路30の酸化触媒装置60の下流側には、第二NOXセンサ90が配置されている。第一NOXセンサ80及び第二NOXセンサ90は、排気ガス中のNOX濃度を検出することができる。排気通路30の第一NOX還元触媒装置40の上流側には、内燃機関の燃焼空燃比を制御するために排気ガスの空燃比を検出する空燃比センサ100が配置されている。 A secondary air supply device 70 for supplying secondary air is disposed between the second NO x reduction catalyst device 50 and the oxidation catalyst device 60 in the exhaust passage 30. A first NO x sensor 80 is disposed between the second NO x reduction catalyst device 50 and the oxidation catalyst device 60 in the exhaust passage 30, and the first NO x sensor 80 is disposed downstream of the oxidation catalyst device 60 in the exhaust passage 30. two NO X sensor 90 is arranged. The first NO x sensor 80 and the second NO x sensor 90 can detect the NO x concentration in the exhaust gas. An air-fuel ratio sensor 100 that detects the air-fuel ratio of the exhaust gas is disposed upstream of the first NO x reduction catalyst device 40 in the exhaust passage 30 in order to control the combustion air-fuel ratio of the internal combustion engine.

前述の第一NOX還元触媒装置40は、貴金属触媒を担持する一般的な三元触媒装置に比較して、還元性能が低下するために、理論空燃比の排気ガスではNOXを十分に還元浄化することができず、燃焼空燃比を理論空燃比より僅かにリッチ(例えば空燃比14)にして排気ガス中の還元物質の濃度を高めてNOXを十分に還元できるようにしなければならない。しかしながら、常に燃焼空燃比を理論空燃比よりリッチにしたのでは、燃料消費が悪化してしまう。 The first NO X reduction catalyst device 40 described above, as compared to the general three-way catalytic converter which carries a noble metal catalyst, for reduction performance decreases, sufficient reduction of NO X in the exhaust gas of the stoichiometric air-fuel ratio It cannot be purified, and the combustion air-fuel ratio must be slightly richer than the stoichiometric air-fuel ratio (for example, air-fuel ratio 14) to increase the concentration of the reducing substance in the exhaust gas so that NO x can be sufficiently reduced. However, if the combustion air-fuel ratio is always made richer than the stoichiometric air-fuel ratio, fuel consumption will deteriorate.

この問題を改善するために、本排気浄化装置は電子制御装置(図示せず)によって図2に示すフローチャートに従って制御される。本フローチャートは、機関始動と共に開始される。先ず、ステップ101において、フラグFが1であるか否かが判断される。機関停止と共にフラグFは0にリセットされるために、当初は、ステップ101の判断は否定されてステップ102へ進む。   In order to improve this problem, the exhaust emission control device is controlled by an electronic control device (not shown) according to the flowchart shown in FIG. This flowchart is started when the engine is started. First, in step 101, it is determined whether or not the flag F is 1. Since the flag F is reset to 0 when the engine is stopped, the determination in step 101 is initially denied and the process proceeds to step 102.

ステップ102では、内燃機関の燃焼空燃比を理論空燃比より僅かにリッチ(例えば空燃比14)にする。次いで、ステップ103において、二次空気供給装置70から酸化触媒装置60の上流側への二次空気の供給を実施する。   In step 102, the combustion air-fuel ratio of the internal combustion engine is made slightly richer (for example, air-fuel ratio 14) than the stoichiometric air-fuel ratio. Next, in step 103, secondary air is supplied from the secondary air supply device 70 to the upstream side of the oxidation catalyst device 60.

内燃機関の燃焼空燃比が理論空燃比よりリッチにされているときには、内燃機関の燃焼空燃比が理論空燃比よりリーンとされるときに比較してNOXの生成量が少なくなると共に、内燃機関から排出される排気ガス中のNOXは、還元性能が低い第一NOX還元触媒装置40においても、排気ガス中に含まれるHC及びCOを使用して良好に還元される。このときに、一部のNOXからはアンモニアが生成される(CO+H2O→H2+CO2,2NO+2CO+3H2→2NH3+2CO2)。こうして生成されたアンモニアは、第二NOX還元触媒装置50に吸蔵される。 When the combustion air-fuel ratio of the internal combustion engine is made richer than the stoichiometric air-fuel ratio, the amount of NO x produced is smaller than when the combustion air-fuel ratio of the internal combustion engine is leaner than the stoichiometric air-fuel ratio, and the internal combustion engine NO X in the exhaust gas discharged from, even in a low reduction performance first NO X reduction catalyst device 40 is well reduced using HC and CO contained in the exhaust gas. At this time, ammonia is generated from a part of NO X (CO + H 2 O → H 2 + CO 2, 2NO + 2CO + 3H 2 → 2NH 3 + 2CO 2). The ammonia thus generated is occluded in the second NO x reduction catalyst device 50.

また、内燃機関の燃焼空燃比が理論空燃比よりリッチとされているときには、排気ガス中のHC及びCOの濃度が高くなり、一部のHC及びCOは、第一NOX還元触媒装置40において、NOXの還元に使用されることなく、また、酸化されることもなく、第一NOX還元触媒装置40から流出する。このように流出するHC及びCOは、第二NOX還元触媒装置50を通過して酸化触媒装置60へ流入し、二次空気供給装置70から供給される二次空気に含まれる酸素を使用して、酸化触媒装置60において酸化されるために、大気中へは殆ど放出されることはない。 Further, when the combustion air-fuel ratio of the internal combustion engine is richer than the stoichiometric air-fuel ratio, the concentrations of HC and CO in the exhaust gas become high, and some HC and CO are in the first NO x reduction catalyst device 40. The first NO x reduction catalyst device 40 flows out without being used for NO x reduction and without being oxidized. The HC and CO flowing out in this way pass through the second NO x reduction catalyst device 50 and flow into the oxidation catalyst device 60, and use oxygen contained in the secondary air supplied from the secondary air supply device 70. Therefore, since it is oxidized in the oxidation catalyst device 60, it is hardly released into the atmosphere.

次いで、ステップ104において、第二NOXセンサ90によって酸化触媒装置60から流出する排気ガス中にNOXが含まれているか否かが判断される。当初は、酸化触媒装置60から流出する排気ガス中には殆どNOXは含まれておらず、ステップ104の判断は否定されてステップ106へ進む。 Next, at step 104, it is determined by the second NO X sensor 90 whether NO X is contained in the exhaust gas flowing out from the oxidation catalyst device 60. Initially, the exhaust gas flowing out from the oxidation catalyst device 60 contains almost no NO x , and the determination at step 104 is denied and the routine proceeds to step 106.

ステップ106では、第一NOXセンサ80によって第二NOX還元触媒装置50から流出する排気ガス中にNOXが含まれているか否かが判断される。当初は、第二NOX還元触媒装置50から流出する排気ガス中には殆どNOXは含まれておらず、ステップ106の判断は否定されて、そのままステップ101へ戻る。 In step 106, it is determined whether or not NO x is contained in the exhaust gas flowing out from the second NO x reduction catalyst device 50 by the first NO x sensor 80. Initially, the exhaust gas flowing out from the second NO x reduction catalyst device 50 contains almost no NO x , the determination at step 106 is negative, and the routine returns directly to step 101.

こうして、内燃機関の燃焼空燃比が理論空燃比よりリッチにされ続けると、第一NOX還元触媒装置40において生成されるアンモニアが第二NOX還元触媒装置50に吸蔵され続け、遂には、第二NOX還元触媒装置50のアンモニア吸蔵量が上限値に達して、第二NOX還元触媒装置50からアンモニアが流出するようになる。このときには、燃焼空燃比を理論空燃比よりリーンとしても第二NOX還元触媒装置50によって排気ガス中のNOXの良好な還元が可能となる。第二NOX還元触媒装置50から流出するアンモニアは、酸化触媒装置60へ流入し、二次空気供給装置70から供給される二次空気に含まれる酸素を使用して、酸化触媒装置60において酸化されてNOXを生成する(4NH3+5O2→4NO+6H2O)。 Thus, if the combustion air-fuel ratio of the internal combustion engine continues to be richer than the stoichiometric air-fuel ratio, ammonia produced in the first NO x reduction catalyst device 40 continues to be occluded in the second NO x reduction catalyst device 50, and finally the first It reached a two NO X reduction upper limit ammonia storage amount of the catalyst device 50, so that the ammonia from the second NO X reduction catalyst device 50 flows out. At this time, even if the combustion air-fuel ratio is leaner than the stoichiometric air-fuel ratio, the second NO x reduction catalyst device 50 can satisfactorily reduce NO x in the exhaust gas. The ammonia flowing out of the second NO x reduction catalyst device 50 flows into the oxidation catalyst device 60 and is oxidized in the oxidation catalyst device 60 using oxygen contained in the secondary air supplied from the secondary air supply device 70. To produce NO x (4NH 3 + 5O 2 → 4NO + 6H 2 O).

それにより、第二NOXセンサ90がNOXを検出するために、ステップ104の判断が肯定され、ステップ105においてフラグFは1とされる。このときにおいて、依然として燃焼空燃比は理論空燃比よりリッチとされているために、第二NOX還元触媒装置50から流出する排気ガス中にはNOXは殆ど含まれておらず、ステップ106の判断が肯定されることはない。 Thereby, in order for the second NO X sensor 90 to detect NO X , the determination in step 104 is affirmed, and the flag F is set to 1 in step 105. At this time, since the combustion air-fuel ratio is still richer than the stoichiometric air-fuel ratio, the exhaust gas flowing out from the second NO x reduction catalyst device 50 contains almost no NO x , and in step 106 Judgment is never affirmed.

フラグFが1とされると、ステップ101の判断は肯定され、ステップ108において、内燃機関の燃焼空燃比を理論空燃比よりリーン(例えば空燃比15)とし、ステップ109において、二次空気供給装置70からの二次空気の供給を停止する(制御を簡素化するために二次空気の供給は常に実施するようにしても良い)。こうして、内燃機関の燃焼空燃比が理論空燃比よりリーンとされると、第一NOX還元触媒装置40は、排気ガス中のNOXを良好に還元することはできず、NOXを含む排気ガスが第二NOX還元触媒装置50へ流入する。 When the flag F is set to 1, the determination in step 101 is affirmed, and in step 108, the combustion air-fuel ratio of the internal combustion engine is made leaner than the stoichiometric air-fuel ratio (for example, air-fuel ratio 15), and in step 109, the secondary air supply device The supply of secondary air from 70 is stopped (in order to simplify the control, the supply of secondary air may always be performed). Thus, the combustion air-fuel ratio of the internal combustion engine is lean of the stoichiometric air-fuel ratio, the first NO X reduction catalyst device 40 is not able to satisfactorily reduce NO X in the exhaust gas, exhaust gas containing the NO X The gas flows into the second NO x reduction catalyst device 50.

第二NOX還元触媒装置50において、排気ガスの空燃比はリーンであるが、NOXは第二NOX還元触媒装置50の吸蔵されているアンモニアを還元剤として良好に還元される(6NO+4NH3→5N2+6H2O)。こうして、大気中へはNOXは殆ど放出されることはない。このときには、第二NOX還元触媒装置50からアンモニアがそのまま流出することはなく、ステップ104の判断は否定されるが、フラグFは1のままである。また、排気ガス中のNOXは第二NOX還元触媒装置50において還元されるために、ステップ106の判断も否定される。 In the second NO X reduction catalyst device 50, although the air-fuel ratio of the exhaust gas is lean, NO X is satisfactorily reduced ammonia that is occluded in the second NO X reducing catalyst device 50 as a reducing agent (6NO + 4NH 3 → 5N 2 + 6H 2 O). Thus, almost no NO x is released into the atmosphere. At this time, ammonia does not flow out from the second NO x reduction catalyst device 50 as it is, and the determination in step 104 is negative, but the flag F remains at 1. Further, since NO x in the exhaust gas is reduced by the second NO x reduction catalyst device 50, the determination in step 106 is also denied.

こうして、内燃機関の燃焼空燃比が理論空燃比よりリーンにされ続けると、第二NOX還元触媒装置50において吸蔵されたアンモニアがNOXの還元に使用され続け、遂には、第二NOX還元触媒装置50のアンモニア吸蔵量がゼロ又は非常に少なくなり、排気ガス中のNOXを十分に還元することができなくなる。 Thus, the combustion air-fuel ratio of the internal combustion engine continues to be lean of the stoichiometric air-fuel ratio, ammonia occluded in the second NO X reduction catalyst device 50 continues to be used for the reduction of NO X, finally, the second NO X reduction The ammonia storage amount of the catalyst device 50 becomes zero or very small, and NO x in the exhaust gas cannot be sufficiently reduced.

それにより、第二NOXセンサ90が酸化触媒装置60から流出する排気ガス中のNOXを検出してステップ105においてフラグFを1としても、第一NOXセンサ80が第二NOX還元触媒装置50から流出する排気ガス中のNOXを検出するために、ステップ106の判断が肯定され、ステップ107においてフラグFは0にリセットされる。 As a result, even if the second NO X sensor 90 detects NO X in the exhaust gas flowing out from the oxidation catalyst device 60 and sets the flag F to 1 in Step 105, the first NO X sensor 80 does not stop the second NO X reduction catalyst. In order to detect NO x in the exhaust gas flowing out from the apparatus 50, the determination in step 106 is affirmed, and the flag F is reset to 0 in step 107.

それにより、ステップ101の判断が否定され、ステップ102において、再び、内燃機関の燃焼空燃比を理論空燃比より僅かにリッチ(例えば空燃比14)にする。次いで、ステップ103において、二次空気供給装置70から酸化触媒装置60の上流側への二次空気の供給を実施する。このようにして、内燃機関の燃焼空燃比を交互にリッチ及びリーンとするが、前述したように、大気中へ殆どNOXが放出されないようにすることができ、内燃機関において燃焼空燃比を常に理論空燃比よりリッチにする場合に比較して、排気ガス中のNOXの還元のための燃料消費の悪化を改善することができる。 As a result, the determination in step 101 is denied, and in step 102, the combustion air-fuel ratio of the internal combustion engine is made slightly richer than the stoichiometric air-fuel ratio (for example, air-fuel ratio 14). Next, in step 103, secondary air is supplied from the secondary air supply device 70 to the upstream side of the oxidation catalyst device 60. In this way, the combustion air-fuel ratio of the internal combustion engine is made rich and lean alternately, but as described above, almost no NO x can be released into the atmosphere, and the combustion air-fuel ratio is always reduced in the internal combustion engine. Compared with the case where the stoichiometric air-fuel ratio is made richer, it is possible to improve the deterioration of fuel consumption due to the reduction of NO x in the exhaust gas.

また、第二NOX還元触媒装置50に例えばゼオライト系の材料を使用すると、アンモニア吸蔵能力だけでなく、炭化水素HCの吸蔵能力を有するようにすることができる。それにより、内燃機関の燃焼空燃比が理論空燃比よりリッチとされるときに、第二NOX還元触媒装置50は、第一NOX還元触媒装置40において生成されるアンモニアだけでなく、第一NOX還元触媒装置40から流出するHCも吸蔵することができる。その結果、内燃機関の燃焼空燃比が理論空燃比よりリーンとされるときに、排気ガス中のNOXを吸蔵アンモニアに加えて、吸蔵HCによっても還元することができ、内燃機関の燃焼空燃比を理論空燃比よりリーンとする期間を長くして、燃料消費をさらに改善することができる。 Further, when, for example, a zeolite-based material is used for the second NO x reduction catalyst device 50, not only the ammonia storage capacity but also the hydrocarbon HC storage capacity can be provided. Thereby, when the combustion air-fuel ratio of the internal combustion engine is made richer than the stoichiometric air-fuel ratio, the second NO x reduction catalyst device 50 not only produces the first NO x reduction catalyst device 40 but also the first NO x reduction catalyst device 40. HC flowing out from the NO x reduction catalyst device 40 can also be occluded. As a result, when the combustion air-fuel ratio of the internal combustion engine is made leaner than the stoichiometric air-fuel ratio, NO X in the exhaust gas can be reduced by the stored HC in addition to the stored ammonia, and the combustion air-fuel ratio of the internal combustion engine can be reduced. The fuel consumption can be further improved by lengthening the period during which the air-fuel ratio is leaner than the stoichiometric air-fuel ratio.

10 内燃機関
30 排気通路
40 第一NOX還元触媒装置
50 第二NOX還元触媒装置
60 酸化触媒装置
70 二次空気供給装置
80 第一NOXセンサ
90 第二NOXセンサ
10 internal combustion engine 30 exhaust passage 40 first NO X reduction catalyst device 50 second NO X reduction catalyst device 60 oxidation catalyst device 70 a secondary air supply device 80 first NO X sensor 90 second NO X sensor

Claims (2)

排気通路に配置された卑金属触媒を担持する第一NOX還元触媒装置と、前記排気通路の前記第一NOX還元触媒装置の下流側に配置されたアンモニア吸蔵能力を有する第二NOX還元触媒装置と、前記排気通路の前記第二NOX還元触媒装置の下流側に配置された第一NOXセンサとを具備し、内燃機関の燃焼空燃比が理論空燃比よりリッチとされた後に内燃機関の燃焼空燃比を理論空燃比よりリーンとし、内燃機関の燃焼空燃比が理論空燃比よりリーンとされているときに前記第一NOXセンサによりNOXが検出された時には内燃機関の燃焼空燃比を理論空燃比よりリッチにすることを特徴とする内燃機関の排気浄化装置。 Second NO X reduction catalyst having a first NO X reduction catalyst device carrying the placed base metal catalyst in the exhaust passage, the first NO X reducing ammonia storage capacity which is disposed downstream of the catalytic converter of the exhaust passage An internal combustion engine after the combustion air-fuel ratio of the internal combustion engine is made richer than the stoichiometric air-fuel ratio, and a first NO x sensor disposed downstream of the second NO x reduction catalyst device in the exhaust passage combustion air-fuel ratio is lean than the stoichiometric air-fuel ratio, combustion air-fuel ratio of the internal combustion engine when the NO X is detected by the first NO X sensor when the combustion air-fuel ratio of the internal combustion engine is lean than the stoichiometric air-fuel ratio of An exhaust purification device for an internal combustion engine, characterized in that the air-fuel ratio is made richer than the stoichiometric air-fuel ratio. 前記排気通路の前記第一NOXセンサの下流側に配置された酸化触媒装置と、前記排気通路の前記第二NOX還元触媒装置と前記酸化触媒装置との間に二次空気を供給する二次空気供給装置と、前記排気通路の前記酸化触媒装置の下流側に配置された第二NOXセンサとを具備し、少なくとも内燃機関の燃焼空燃比が理論空燃比よりリッチとされるときには、前記二次空気供給装置は二次空気を供給し、前記第二NOXセンサによりNOXが検出されたときには、内燃機関の燃焼空燃比を理論空燃比よりリーンにすることを特徴とする請求項1に記載の内燃機関の排気浄化装置。 Two said supplying an oxidation catalyst device disposed downstream of the first NO X sensor in the exhaust passage, the secondary air between the second NO X reduction catalyst device of the exhaust passage and the oxidation catalyst device A secondary NO x sensor disposed downstream of the oxidation catalyst device in the exhaust passage, and at least when the combustion air-fuel ratio of the internal combustion engine is richer than the stoichiometric air-fuel ratio, The secondary air supply device supplies secondary air, and when NO x is detected by the second NO x sensor, the combustion air-fuel ratio of the internal combustion engine is made leaner than the stoichiometric air-fuel ratio. 2. An exhaust gas purification apparatus for an internal combustion engine according to 1.
JP2011270325A 2011-12-09 2011-12-09 Exhaust emission control device for internal combustion engine Pending JP2013122179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011270325A JP2013122179A (en) 2011-12-09 2011-12-09 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011270325A JP2013122179A (en) 2011-12-09 2011-12-09 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2013122179A true JP2013122179A (en) 2013-06-20

Family

ID=48774290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011270325A Pending JP2013122179A (en) 2011-12-09 2011-12-09 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2013122179A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096721A (en) * 2013-09-26 2015-05-21 ゼネラル・エレクトリック・カンパニイ System and method for monitoring catalyst deactivation and controlling air/fuel ratio
JP2016040449A (en) * 2014-08-12 2016-03-24 日野自動車株式会社 Exhaust emission purifying device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133032A (en) * 1995-11-10 1997-05-20 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2003097313A (en) * 2001-09-25 2003-04-03 Nissan Motor Co Ltd Exhaust emission control device for engine
JP2008528281A (en) * 2005-01-31 2008-07-31 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Microwave-assisted desulfurization of nitrogen oxide storage reduction catalyst
JP2008223576A (en) * 2007-03-12 2008-09-25 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2010203267A (en) * 2009-03-02 2010-09-16 Samson Co Ltd Nox removal device
WO2011061820A1 (en) * 2009-11-18 2011-05-26 トヨタ自動車株式会社 Exhaust emission purification system for internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133032A (en) * 1995-11-10 1997-05-20 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2003097313A (en) * 2001-09-25 2003-04-03 Nissan Motor Co Ltd Exhaust emission control device for engine
JP2008528281A (en) * 2005-01-31 2008-07-31 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Microwave-assisted desulfurization of nitrogen oxide storage reduction catalyst
JP2008223576A (en) * 2007-03-12 2008-09-25 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2010203267A (en) * 2009-03-02 2010-09-16 Samson Co Ltd Nox removal device
WO2011061820A1 (en) * 2009-11-18 2011-05-26 トヨタ自動車株式会社 Exhaust emission purification system for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096721A (en) * 2013-09-26 2015-05-21 ゼネラル・エレクトリック・カンパニイ System and method for monitoring catalyst deactivation and controlling air/fuel ratio
JP2016040449A (en) * 2014-08-12 2016-03-24 日野自動車株式会社 Exhaust emission purifying device

Similar Documents

Publication Publication Date Title
JP2009079523A (en) Exhaust emission control device for internal combustion engine
JP4370238B2 (en) Exhaust gas purification device for internal combustion engine
EP2487343A1 (en) Exhaust gas purifier for internal combustion engine
EP2460998B1 (en) Method of purifying exhaust gas exhausted from an internal combustion engine
WO2014076816A1 (en) Exhaust gas purification device for internal-combustion engine
JP2012057571A (en) Exhaust emission control apparatus of internal combustion engine
JP4911245B2 (en) Exhaust gas purification device for internal combustion engine
US10077744B2 (en) Exhaust gas control apparatus for internal combustion engine
RU2008123510A (en) DEVICE AND METHOD FOR CLEANING EXHAUST GAS
JP2013122179A (en) Exhaust emission control device for internal combustion engine
WO2012111171A1 (en) Exhaust-gas purifying device for internal-combustion engine
JPWO2014167652A1 (en) Exhaust gas purification device for internal combustion engine
JP5561059B2 (en) Exhaust gas purification device for internal combustion engine
JP2019178617A (en) Exhaust emission control device for internal combustion engine
JP5746008B2 (en) Exhaust gas purification device for internal combustion engine
JP4507018B2 (en) Exhaust gas purification device for internal combustion engine
US8465702B2 (en) Exhaust purification system of internal combustion engine
JP5880781B2 (en) Exhaust gas purification device for internal combustion engine
JP2010013975A (en) Exhaust emission control device of internal combustion engine
JP5653894B2 (en) Exhaust gas purification device for internal combustion engine
JP5476770B2 (en) Exhaust gas purification system and control method of exhaust gas purification system
JP5476771B2 (en) Exhaust gas purification system and control method of exhaust gas purification system
JP4924756B2 (en) Exhaust gas purification device for internal combustion engine
JP5741643B2 (en) Exhaust gas purification device for internal combustion engine
JP5782710B2 (en) Exhaust gas purification apparatus and exhaust gas purification method for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150616