JP2013019390A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2013019390A
JP2013019390A JP2011155282A JP2011155282A JP2013019390A JP 2013019390 A JP2013019390 A JP 2013019390A JP 2011155282 A JP2011155282 A JP 2011155282A JP 2011155282 A JP2011155282 A JP 2011155282A JP 2013019390 A JP2013019390 A JP 2013019390A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
nox
selective reduction
nox adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011155282A
Other languages
Japanese (ja)
Other versions
JP5913849B2 (en
Inventor
Keiichi Hayashizaki
圭一 林崎
Mitsuru Hosoya
満 細谷
Hiroshi Hirabayashi
浩 平林
Shinya Sato
信也 佐藤
Yoshihiro Kawada
吉弘 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2011155282A priority Critical patent/JP5913849B2/en
Publication of JP2013019390A publication Critical patent/JP2013019390A/en
Application granted granted Critical
Publication of JP5913849B2 publication Critical patent/JP5913849B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To reduce NOx over a wide temperature range from the low temperature range to the high temperature range of an exhaust gas.SOLUTION: A first selective reduction type catalyst 21 composed of a silver based catalyst is provided in the exhaust pipe 16 of an engine 11 and a second selective reduction type catalyst 22 composed of a copper based catalyst or the like is provided in an exhaust pipe more on an exhaust gas downstream side from the first selective reduction type catalyst. A NOx adsorption catalyst 18 adsorbing the NOx in the exhaust gas in a state of NO or NOis provided in an exhaust pipe more on the exhaust gas upstream side from the first selective reduction type catalyst. A liquid injection nozzle 26 that can inject a hydrocarbon-based liquid 24 toward the NOx adsorption catalyst is provided in the exhaust pipe more on the exhaust gas upstream side from the NOx adsorption catalyst, and the liquid is supplied via a liquid injection amount regulating valve 31 to the liquid injection nozzle by a hydrocarbon-based liquid supply means 27. A controller 38 controls the liquid injection amount regulating valve based on the detection output of a first temperature sensor for detecting the temperature of the exhaust gas related to the NOx adsorption catalyst.

Description

本発明は、ディーゼルエンジンの排ガスに含まれる窒素酸化物(以下、NOxという)を低減して排ガスを浄化する装置に関するものである。   The present invention relates to an apparatus for purifying exhaust gas by reducing nitrogen oxide (hereinafter referred to as NOx) contained in exhaust gas of a diesel engine.

従来、この種の排ガス浄化装置として、ディーゼルエンジンの排気管系中に炭化水素吸蔵材及びNOx低減触媒が直列に配置され、その炭化水素吸蔵材が複数の直列配置耐火セラミック製ハニカム担体をそれぞれ細孔寸法の異なるゼオライトで被覆して構成されるディーゼルエンジン排ガス浄化装置が開示されている(例えば、特許文献1参照。)。この排ガス浄化装置では、各上流側のハニカム担体の被覆に用いられるゼオライトの細孔寸法が下流側の隣接ハニカム担体の被覆に用いられるゼオライトの細孔寸法よりも大きく形成される。具体的には、炭化水素吸蔵材は、3個のコージェライト製の第1〜第3ハニカム担体を直列に接続して構成され、上流側から第1ハニカム担体がY型ゼオライト(細孔径約10Å)で被覆され、第2ハニカム担体がモルデナイト(細孔径約8Å)で被覆され、第3ハニカム担体がZSM−5(細孔径約5Å)で被覆される。またNOx低減触媒としては、白金−アルミナ系、銅−ゼオライト系等の触媒が使用される。   Conventionally, as this type of exhaust gas purification device, a hydrocarbon storage material and a NOx reduction catalyst are arranged in series in an exhaust pipe system of a diesel engine, and the hydrocarbon storage material is provided with a plurality of series-arranged refractory ceramic honeycomb carriers. A diesel engine exhaust gas purification device configured by coating with zeolite having different pore sizes is disclosed (for example, see Patent Document 1). In this exhaust gas purifying apparatus, the pore size of the zeolite used for coating each upstream honeycomb carrier is formed larger than the pore size of the zeolite used for coating the adjacent honeycomb carrier on the downstream side. Specifically, the hydrocarbon occlusion material is configured by connecting three cordierite first to third honeycomb carriers in series, and the first honeycomb carrier from the upstream side is a Y-type zeolite (pore diameter of about 10 mm). ), The second honeycomb carrier is coated with mordenite (pore diameter of about 8 mm), and the third honeycomb carrier is coated with ZSM-5 (pore diameter of about 5 mm). As the NOx reduction catalyst, a catalyst such as platinum-alumina or copper-zeolite is used.

このように構成されたディーゼルエンジン排ガス浄化装置では、細孔径の異なるゼオライトを別々のハニカム担体に被覆して、排ガスの流れの上流側から細孔径が次第に縮小するように配置して炭化水素吸蔵材とし、排ガス中のHCを低温時に吸蔵し、保留しておき、高温時に脱離させてNOxと反応させることにより、排ガス中のHCとNOxの両者を効率的に低減できる。また排ガス流の上流側ほど大きな細孔寸法を有するゼオライトを配置し、下流へ向うに従って細孔寸法が小さいゼオライトを配置して、細孔寸法の段差を設けたので、炭素原子数が1から約30程度にまで及ぶような種々のHCの貯蔵及び脱離が目詰まり等の障害を生じることなく、円滑に行われるようになっている。   In the diesel engine exhaust gas purification apparatus configured as described above, zeolites having different pore diameters are coated on separate honeycomb carriers, and arranged so that the pore diameter gradually decreases from the upstream side of the exhaust gas flow, and the hydrocarbon storage material Then, HC in the exhaust gas is occluded at a low temperature, retained, and desorbed at a high temperature to react with NOx, whereby both HC and NOx in the exhaust gas can be efficiently reduced. Further, zeolite having a larger pore size is arranged on the upstream side of the exhaust gas flow, and zeolite having a smaller pore size is arranged toward the downstream side to provide a step difference in pore size. Storage and desorption of various HCs up to about 30 can be performed smoothly without causing problems such as clogging.

また、アンモニア由来の還元剤の存在下で窒素酸化物を選択還元する選択還元型NOx触媒が内燃機関の排気通路に設けられ、酸素過剰の雰囲気で排ガス中の窒素酸化物を吸蔵し酸素濃度が低下すると吸蔵した窒素酸化物を放出・還元する吸蔵還元型NOx触媒が内燃機関の排気通路に設けられ、選択還元型NOx触媒還元剤供給手段が選択還元型NOx触媒に還元剤を供給し、更に吸蔵還元型NOx触媒還元剤供給手段が吸蔵還元型NOx触媒に還元剤を供給するように構成された内燃機関の排気浄化装置が開示されている(例えば、特許文献2参照。)。この内燃機関の排気浄化装置では、吸蔵還元型NOx触媒に供給される還元剤の量が閾値を超えたときに吸蔵還元型NOx触媒還元剤供給手段が還元剤の供給を停止しかつ選択還元型NOx触媒還元剤供給手段が選択還元型NOx触媒にアンモニア由来の還元剤を供給するように構成される。具体的には、吸蔵還元型NOx触媒がパティキュレートフィルタに担持され、その下流に尿素を還元剤とする選択還元型NOx触媒が配置される。上記吸蔵還元型NOx触媒付のパティキュレートフィルタは、アルミナを担体とし、その担体上に、K、Na、Li若しくはCs等のアルカリ金属と、Ba若しくはCa等のアルカリ土類と、La若しくはY等の希土類とから選択された少なくとも1つと、Pt等の貴金属とを担持して構成される。また選択還元型NOx触媒としては、ゼオライトを担体としてCu等の遷移金属をイオン交換して担持したものやチタニヤ及びバナジウムを担持した触媒、ゼオライト又はアルミナを担体として貴金属を担持した触媒等が挙げられる。   In addition, a selective reduction type NOx catalyst that selectively reduces nitrogen oxides in the presence of an ammonia-derived reducing agent is provided in the exhaust passage of the internal combustion engine, storing nitrogen oxides in the exhaust gas in an oxygen-excess atmosphere and having an oxygen concentration of A NOx storage reduction catalyst that releases / reduces the stored nitrogen oxides when reduced is provided in the exhaust passage of the internal combustion engine, the selective reduction NOx catalyst reducing agent supply means supplies the reducing agent to the selective reduction NOx catalyst, and An exhaust purification device for an internal combustion engine is disclosed in which the storage reduction type NOx catalyst reducing agent supply means supplies a reducing agent to the storage reduction type NOx catalyst (see, for example, Patent Document 2). In this exhaust gas purification apparatus for an internal combustion engine, when the amount of reducing agent supplied to the NOx storage reduction catalyst exceeds a threshold value, the NOx storage reducing agent supply means stops the supply of the reducing agent and the selective reduction type The NOx catalyst reducing agent supply means is configured to supply an ammonia-derived reducing agent to the selective reduction type NOx catalyst. Specifically, the NOx storage reduction catalyst is supported on the particulate filter, and the selective reduction NOx catalyst using urea as a reducing agent is disposed downstream thereof. The particulate filter with the NOx storage reduction catalyst uses alumina as a carrier, and an alkali metal such as K, Na, Li or Cs, an alkaline earth such as Ba or Ca, La or Y, etc. on the carrier. And at least one selected from rare earths of the above and a precious metal such as Pt. Examples of the selective reduction type NOx catalyst include a catalyst in which a transition metal such as Cu is ion-exchanged and supported on zeolite as a support, a catalyst in which titania and vanadium are supported, a catalyst in which noble metal is supported on zeolite or alumina as a support, and the like. .

このように構成された内燃機関の排気浄化装置では、排ガス中のNOxが吸蔵還元型NOx触媒に吸収され、吸蔵還元型NOx触媒へ還元剤を供給する必要が生じたときに、吸蔵還元型NOx触媒還元剤供給手段が、吸蔵還元型NOx触媒より上流の排気通路へ還元剤を供給する。排気通路に供給された還元剤は、排気通路の上流から流れてくる排ガスとともに吸蔵還元型NOx触媒へ流入する。そして吸蔵還元型NOx触媒は、還元剤を利用して排ガス中の有害ガス成分を還元及び浄化する。また選択還元型NOx触媒へ還元剤を供給する必要が生じたときに、選択還元型NOx触媒還元剤供給手段は、排ガス中へ還元剤たるアンモニア由来の化合物を供給する。排気通路に供給された還元剤は、排気通路の上流から流れてくる排ガスとともに選択還元型NOx触媒へ流入する。そして選択還元型NOx触媒は、還元剤を利用して排ガス中の有害ガス成分を還元及び浄化する。どちらのリーンNOx触媒へ還元剤を供給し、NOxを浄化させるかは、吸蔵還元型NOx触媒還元剤供給手段が吸蔵還元型NOx触媒へ供給する還元剤の量が閾値を超えるか否かで決定される。即ち、吸蔵還元型NOx触媒還元剤供給手段が吸蔵還元型NOx触媒へ供給する還元剤の量が閾値を超える場合には、燃費悪化の原因となるので選択還元型NOx触媒に還元剤を供給し、吸蔵還元型NOx触媒還元剤供給手段が吸蔵還元型NOx触媒へ供給する還元剤の量が閾値以下の場合には、還元剤の必要量が少なく燃費悪化の原因とはならないため吸蔵還元型NOx触媒に還元剤を供給する。このような条件で還元剤を供給するリーンNOx触媒を選択することにより、還元剤の消費量を低減できるようになっている。   In the exhaust gas purification apparatus for an internal combustion engine configured as described above, when NOx in the exhaust gas is absorbed by the NOx storage reduction catalyst and it becomes necessary to supply a reducing agent to the NOx storage reduction catalyst, the NOx storage reduction type The catalyst reducing agent supply means supplies the reducing agent to the exhaust passage upstream of the NOx storage reduction catalyst. The reducing agent supplied to the exhaust passage flows into the NOx storage reduction catalyst together with the exhaust gas flowing from the upstream of the exhaust passage. The NOx storage reduction catalyst uses a reducing agent to reduce and purify harmful gas components in the exhaust gas. Further, when it becomes necessary to supply a reducing agent to the selective reduction type NOx catalyst, the selective reduction type NOx catalyst reducing agent supply means supplies an ammonia-derived compound as a reducing agent into the exhaust gas. The reducing agent supplied to the exhaust passage flows into the selective reduction type NOx catalyst together with the exhaust gas flowing from the upstream of the exhaust passage. The selective reduction type NOx catalyst uses a reducing agent to reduce and purify harmful gas components in the exhaust gas. Which lean NOx catalyst is supplied with the reducing agent to purify NOx is determined by whether or not the amount of reducing agent supplied to the NOx storage reduction catalyst by the storage reduction NOx catalyst reducing agent supply means exceeds a threshold value. Is done. That is, if the amount of the reducing agent supplied to the NOx storage reduction catalyst by the storage reduction NOx catalyst reducing means exceeds the threshold value, the fuel consumption deteriorates, so the reducing agent is supplied to the selective reduction NOx catalyst. When the amount of reducing agent supplied to the NOx storage reduction catalyst by the storage reduction NOx catalyst reducing agent supply means is equal to or less than the threshold value, the required amount of reducing agent is small and does not cause deterioration in fuel consumption. A reducing agent is supplied to the catalyst. By selecting a lean NOx catalyst that supplies a reducing agent under such conditions, the consumption of the reducing agent can be reduced.

特開2000−192810号公報(請求項1、段落[0008]、[0014]、[0022])JP 2000-192810 A (Claim 1, paragraphs [0008], [0014], [0022]) 特開2002−188429号公報(請求項1、段落[0019]〜[0027]、[0047]、[0061]、[0068])JP 2002-188429 A (Claim 1, paragraphs [0019] to [0027], [0047], [0061], [0068])

しかし、上記従来の特許文献1に示されたディーゼルエンジン排ガス浄化装置では、NOx低減触媒として例えば白金−アルミナ系触媒を用いると、その活性温度域が200℃前後であり、温度活性域が狭いという問題点があった。また、上記従来の特許文献2に示された内燃機関の排気浄化装置では、還元剤として尿素を用いているため、排気浄化装置を車両に搭載する場合、車両に尿素水を貯留する尿素水タンクを燃料タンクとは別に設けなければならず、また尿素水タンクに尿素水を補給する作業が比較的煩わしい問題点があった。   However, in the diesel engine exhaust gas purification device disclosed in the above-mentioned conventional Patent Document 1, when a platinum-alumina catalyst is used as the NOx reduction catalyst, for example, the activation temperature range is around 200 ° C., and the temperature activation range is narrow. There was a problem. In addition, in the exhaust gas purification apparatus for an internal combustion engine shown in the above-described conventional patent document 2, urea is used as a reducing agent. Therefore, when the exhaust gas purification apparatus is mounted on a vehicle, a urea water tank that stores urea water in the vehicle. There is a problem that the operation of replenishing the urea water tank with the urea water is relatively troublesome.

本発明の第1の目的は、排ガスの低温域から高温域までの幅広い温度域にわたってNOxを低減できる、排ガス浄化装置を提供することにある。本発明の第2の目的は、還元剤として、尿素水ではなく、比較的取扱いの容易な燃料等の炭化水素系液体を用いることができる、排ガス浄化装置を提供することにある。   A first object of the present invention is to provide an exhaust gas purification device that can reduce NOx over a wide temperature range from a low temperature range to a high temperature range of exhaust gas. A second object of the present invention is to provide an exhaust gas purifying apparatus in which a hydrocarbon-based liquid such as a fuel that is relatively easy to handle can be used as a reducing agent instead of urea water.

種々のガス成分を計測できる分析計を用いてエンジンの排ガス成分を分析したところ、銀系触媒を通過したエンジンの排ガス中にアンモニアが含まれていることが分かった。このため、上記アンモニアを種々の触媒と組合せてNOx低減性能などを向上できないか調べたところ、銀系触媒の排ガス下流側に銅系触媒、鉄系触媒又はバナジウム系触媒を設置すると、銅系触媒、鉄系触媒又はバナジウム系触媒上でアンモニアとNOxが反応してNOxを低減できることを見出し、本発明をなすに至った。   When the exhaust gas component of the engine was analyzed using an analyzer capable of measuring various gas components, it was found that ammonia was contained in the exhaust gas of the engine that passed through the silver catalyst. For this reason, when it was investigated whether the above-mentioned ammonia could be combined with various catalysts to improve NOx reduction performance, etc., when a copper-based catalyst, iron-based catalyst or vanadium-based catalyst was installed on the exhaust gas downstream side of the silver-based catalyst, the copper-based catalyst The present inventors have found that NOx can be reduced by the reaction of ammonia and NOx on an iron-based catalyst or vanadium-based catalyst, and the present invention has been made.

本発明の第1の観点は、図1に示すように、エンジン11の排気管16に設けられ銀系触媒からなる第1選択還元型触媒21と、第1選択還元型触媒21より排ガス下流側の排気管16に設けられ銅系触媒、鉄系触媒又はバナジウム系触媒からなる第2選択還元型触媒22と、第1選択還元型触媒21より排ガス上流側の排気管16に設けられ排ガス中のNOxをNO又はNO2の状態で吸着するNOx吸着触媒18と、NOx吸着触媒18より排ガス上流側の排気管16に設けられNOx吸着触媒18に向けて炭化水素系液体24を噴射可能な液体噴射ノズル26と、液体噴射ノズル26に液体噴射量調整弁31を介して上記液体24を供給する炭化水素系液体供給手段27と、NOx吸着触媒18に関係する排ガスの温度を検出する第1温度センサ41と、第1温度センサ41の検出出力に基づいて液体噴射量調整弁31を制御するコントローラ38とを備えた排ガス浄化装置である。 As shown in FIG. 1, the first aspect of the present invention is a first selective reduction catalyst 21 made of a silver catalyst provided in the exhaust pipe 16 of the engine 11, and a downstream side of the exhaust gas from the first selective reduction catalyst 21. A second selective reduction catalyst 22 made of a copper-based catalyst, an iron-based catalyst or a vanadium-based catalyst and an exhaust pipe 16 provided upstream of the first selective reduction-type catalyst 21 in the exhaust gas. NOx adsorption catalyst 18 that adsorbs NOx in the state of NO or NO 2 , and liquid injection that is provided in the exhaust pipe 16 upstream of the exhaust gas from the NOx adsorption catalyst 18 and can inject the hydrocarbon-based liquid 24 toward the NOx adsorption catalyst 18. A nozzle 26, a hydrocarbon-based liquid supply means 27 that supplies the liquid 24 to the liquid injection nozzle 26 via the liquid injection amount adjustment valve 31, and a first temperature that detects the temperature of exhaust gas related to the NOx adsorption catalyst 18. The degree sensor 41, an exhaust gas purifying apparatus that includes a controller 38 for controlling the liquid injection amount adjusting valve 31 based on the detection output of the first temperature sensor 41.

本発明の第2の観点は、第1の観点に基づく発明であって、更に図2に示すように、第1選択還元型触媒21より排ガス上流側であってNOx吸着触媒18より排ガス下流側の排気管16に設けられ排ガス中のNOxをNO又はNO2の状態で吸着するとともに排ガス中のパティキュレートを捕集するNOx吸着触媒付フィルタ51を更に備えたことを特徴とする。 The second aspect of the present invention is an invention based on the first aspect, and further, as shown in FIG. 2, the exhaust gas upstream side of the first selective reduction catalyst 21 and the exhaust gas downstream side of the NOx adsorption catalyst 18. The exhaust pipe 16 is further provided with a NOx adsorption catalyst-equipped filter 51 that adsorbs NOx in the exhaust gas in the state of NO or NO 2 and collects particulates in the exhaust gas.

本発明の第3の観点は、第1又は第2の観点に基づく発明であって、更に図1に示すように、第1選択還元型触媒21がハニカム担体に銀ゼオライト又は銀アルミナをコーティングして構成され、第2選択還元型触媒22がハニカム担体に銅ゼオライト、鉄ゼオライト又はバナジウム系酸化物をコーティングして構成され、NOx吸着触媒18がハニカム担体に希土類元素又はチタン属元素のいずれか一方又は双方の酸化物をコーティングして構成されたことを特徴とする。   A third aspect of the present invention is an invention based on the first or second aspect, and further, as shown in FIG. 1, the first selective reduction catalyst 21 coats the honeycomb carrier with silver zeolite or silver alumina. The second selective reduction catalyst 22 is formed by coating the honeycomb carrier with copper zeolite, iron zeolite or vanadium-based oxide, and the NOx adsorption catalyst 18 is either a rare earth element or a titanium group element on the honeycomb carrier. Alternatively, both oxides are coated.

本発明の第1の観点の排ガス浄化装置では、排ガスの低温域で、エンジンの排ガスがNOx吸着触媒に流入すると、排ガス中のNOxの一部がNO又はNO2の状態でNOx吸着触媒に吸着される。これにより大気に排出されるNOxが低減される。排ガスが高温になると、液体噴射ノズルから噴射された炭化水素系液体がNOx吸着触媒に吸着されたNO又はNO2と還元反応を起こしてNOxが無害化される。また液体噴射ノズルから噴射された炭化水素系液体のうちNOx吸着触媒を通過した余剰の炭化水素系液体が銀系の第1選択還元型触媒に流入すると、この第1選択還元型触媒上でアンモニアが生成され、NOx吸着触媒における炭化水素系液体の酸化反応で発生した熱により高温になりしかもアンモニアを含む排ガスが銅系、鉄系又はバナジウム系の第2選択還元型触媒に流入すると、この第2選択還元型触媒上でアンモニアとNOxが反応して、NOxの還元反応とアンモニアの酸化反応とが促進される。これによりNOxが無害化される。この結果、排ガスの低温域から高温域までの幅広い温度域にわたって、排ガス中のNOxを低減できる。また車両に搭載した場合、還元剤として尿素水を貯留する尿素水タンクを燃料タンクとは別に設ける必要があり、またこの尿素水タンクに尿素水を補給する作業が比較的煩わしい従来の内燃機関の排気浄化装置と比較して、本発明では、還元剤として軽油等の炭化水素系液体を用いるため、車両に搭載した場合、燃料タンクに貯蔵する軽油を用いることができ、これにより燃料タンクとは別に新たなタンクを設ける必要がなく、また還元剤の取扱いが比較的容易になる。 In the exhaust gas purification apparatus of the first aspect of the present invention, when engine exhaust gas flows into the NOx adsorption catalyst in a low temperature range of the exhaust gas, a part of NOx in the exhaust gas is adsorbed on the NOx adsorption catalyst in the state of NO or NO 2. Is done. Thereby, NOx discharged to the atmosphere is reduced. When the exhaust gas reaches a high temperature, the hydrocarbon liquid injected from the liquid injection nozzle causes a reduction reaction with NO or NO 2 adsorbed on the NOx adsorption catalyst, thereby detoxifying NOx. Further, when excess hydrocarbon liquid that has passed through the NOx adsorption catalyst out of the hydrocarbon liquid injected from the liquid injection nozzle flows into the silver-based first selective reduction catalyst, ammonia is produced on the first selective reduction catalyst. When the exhaust gas containing ammonia becomes hot due to the heat generated by the oxidation reaction of the hydrocarbon liquid in the NOx adsorption catalyst and flows into the second selective reduction catalyst of copper type, iron type or vanadium type, this second Ammonia and NOx react on the two-selective reduction catalyst to promote NOx reduction reaction and ammonia oxidation reaction. This detoxifies NOx. As a result, NOx in the exhaust gas can be reduced over a wide temperature range from a low temperature range to a high temperature range of the exhaust gas. In addition, when installed in a vehicle, it is necessary to provide a urea water tank for storing urea water as a reducing agent separately from the fuel tank, and the operation of replenishing urea water to the urea water tank is relatively troublesome. Compared to an exhaust purification device, in the present invention, a hydrocarbon-based liquid such as light oil is used as a reducing agent. Therefore, when installed in a vehicle, light oil stored in a fuel tank can be used. There is no need to provide a new tank, and handling of the reducing agent becomes relatively easy.

本発明の第2の観点の排ガス浄化装置では、排ガスの低温域で、エンジンの排ガスがNOx吸着触媒に流入すると、排ガス中のNOxの一部がこのNOx吸着触媒に吸着され、NOx吸着触媒を通過したNOxの残部を含む排ガスがNOx吸着触媒付フィルタに流入すると、排ガス中のNOxの残部の一部がこのNOx吸着触媒付フィルタに吸着されるとともに、排ガス中のパティキュレートがNOx吸着触媒に捕集される。これにより排ガスの低温域において、大気に排出されるNOxが更に低減されるとともに、大気に排出されるパティキュレートも低減できる。排ガスが高温になって、液体噴射ノズルから噴射された炭化水素系液体がNOx吸着触媒に流入すると、この炭化水素系液体がNOx吸着触媒に吸着されたNOxと還元反応を起こしてNOxが無害化され、NOx吸着触媒を通過した炭化水素系液体がNOx吸着触媒付フィルタに流入すると、この炭化水素系液体がNOx吸着触媒付フィルタに吸着されたNOxと還元反応を起こしてNOxが無害化されるとともに、排ガス中のパティキュレートがNOx吸着触媒に捕集される。また上記炭化水素系液体のうちNOx吸着触媒及びNOx吸着触媒付フィルタを通過した余剰の炭化水素系液体が銀系の第1選択還元型触媒に流入すると、この第1選択還元型触媒上でアンモニアが生成され、NOx吸着触媒及びNOx吸着触媒付フィルタにおける炭化水素系液体の酸化反応で発生した熱により高温になりしかもアンモニアを含む排ガスが銅系、鉄系又はバナジウム系の第2選択還元型触媒に流入すると、この第2選択還元型触媒上でアンモニアとNOxが反応して、NOxの還元反応とアンモニアの酸化反応とが促進される。これによりNOxが無害化される。この結果、排ガスの低温域から高温域までの幅広い温度域にわたって、排ガス中のNOxを更に効率良く低減できるとともに、排ガス中のパティキュレートを低減できる。   In the exhaust gas purification apparatus of the second aspect of the present invention, when the exhaust gas of the engine flows into the NOx adsorption catalyst in the low temperature range of the exhaust gas, a part of the NOx in the exhaust gas is adsorbed by the NOx adsorption catalyst, and the NOx adsorption catalyst is used. When the exhaust gas containing the remaining NOx residue flows into the filter with the NOx adsorption catalyst, a part of the remaining NOx in the exhaust gas is adsorbed by the filter with the NOx adsorption catalyst, and the particulates in the exhaust gas become the NOx adsorption catalyst. It is collected. As a result, in the low temperature region of the exhaust gas, NOx discharged to the atmosphere can be further reduced, and particulates discharged to the atmosphere can be reduced. When the exhaust gas reaches a high temperature and the hydrocarbon liquid injected from the liquid injection nozzle flows into the NOx adsorption catalyst, the hydrocarbon liquid causes a reduction reaction with NOx adsorbed on the NOx adsorption catalyst, thereby detoxifying NOx. When the hydrocarbon liquid that has passed through the NOx adsorption catalyst flows into the filter with the NOx adsorption catalyst, the hydrocarbon liquid undergoes a reduction reaction with the NOx adsorbed on the filter with the NOx adsorption catalyst, thereby detoxifying NOx. At the same time, the particulates in the exhaust gas are collected by the NOx adsorption catalyst. In addition, when excess hydrocarbon liquid that has passed through the NOx adsorption catalyst and the NOx adsorption catalyst-containing filter flows into the silver-based first selective reduction catalyst among the hydrocarbon-based liquids, ammonia is produced on the first selective reduction catalyst. The NOx adsorption catalyst and the NOx adsorption catalyst-attached filter become a high temperature by the heat generated by the oxidation reaction of the hydrocarbon-based liquid, and the exhaust gas containing ammonia is a copper-based, iron-based or vanadium-based second selective reduction catalyst Then, ammonia and NOx react on the second selective catalytic reduction catalyst to promote the NOx reduction reaction and the ammonia oxidation reaction. This detoxifies NOx. As a result, the NOx in the exhaust gas can be more efficiently reduced and the particulates in the exhaust gas can be reduced over a wide temperature range from the low temperature range to the high temperature range of the exhaust gas.

本発明の第1実施形態の排ガス浄化装置を示す構成図である。It is a block diagram which shows the exhaust gas purification apparatus of 1st Embodiment of this invention. 本発明の第2実施形態の排ガス浄化装置を示す構成図である。It is a block diagram which shows the exhaust gas purification apparatus of 2nd Embodiment of this invention. 実施例1、比較例1及び比較例2の排ガス浄化装置を同型のディーゼルエンジンの排気管にそれぞれ取付けて排ガス温度を変化させたときのNOx低減率の変化を示す図である。It is a figure which shows the change of NOx reduction rate when attaching the exhaust gas purification apparatus of Example 1, the comparative example 1, and the comparative example 2 to the exhaust pipe of the diesel engine of the same type, respectively, and changing exhaust gas temperature. 実施例1、比較例1及び比較例3の排ガス浄化装置を同型のディーゼルエンジンの排気管にそれぞれ取付けて排ガス温度を変化させたときのトータルのNOx低減率を示す図である。It is a figure which shows the total NOx reduction rate when attaching the exhaust gas purification apparatus of Example 1, Comparative Example 1, and Comparative Example 3 to the exhaust pipe of the diesel engine of the same type, respectively, and changing exhaust gas temperature.

次に本発明を実施するための形態を図面に基づいて説明する。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings.

<第1の実施の形態>
図1に示すように、ディーゼルエンジン11の吸気ポートには吸気マニホルド12を介して吸気管13が接続され、排気ポートには排気マニホルド14を介して排気管16が接続される。吸気管13には、ターボ過給機17のコンプレッサハウジング17aと、ターボ過給機17により圧縮された吸気を冷却するインタクーラ18とがそれぞれ設けられ、排気管16にはターボ過給機17のタービンハウジング17bが設けられる。コンプレッサハウジング17aにはコンプレッサ回転翼(図示せず)が回転可能に収容され、タービンハウジング17bにはタービン回転翼(図示せず)が回転可能に収容される。コンプレッサ回転翼とタービン回転翼とはシャフト(図示せず)により連結され、エンジン11から排出される排ガスのエネルギによりタービン回転翼及びシャフトを介してコンプレッサ回転翼が回転し、このコンプレッサ回転翼の回転により吸気管13内の吸入空気が圧縮されるように構成される。
<First Embodiment>
As shown in FIG. 1, an intake pipe 13 is connected to an intake port of a diesel engine 11 via an intake manifold 12, and an exhaust pipe 16 is connected to an exhaust port via an exhaust manifold 14. The intake pipe 13 is provided with a compressor housing 17a of the turbocharger 17 and an intercooler 18 for cooling the intake air compressed by the turbocharger 17, and the exhaust pipe 16 is provided with a turbine of the turbocharger 17. A housing 17b is provided. Compressor rotor blades (not shown) are rotatably accommodated in the compressor housing 17a, and turbine rotor blades (not shown) are rotatably accommodated in the turbine housing 17b. The compressor rotor blades and the turbine rotor blades are connected by a shaft (not shown), and the compressor rotor blades are rotated via the turbine rotor blades and the shaft by the energy of the exhaust gas discharged from the engine 11, and the compressor rotor blades are rotated. Thus, the intake air in the intake pipe 13 is compressed.

排気管16の途中には、銀系触媒からなる第1選択還元型触媒21が設けられ、第1選択還元型触媒21より排ガス下流側の排気管16には銅系触媒、鉄系触媒又はバナジウム系触媒からなる第2選択還元型触媒22が設けられ、第1選択還元型触媒21より排ガス上流側の排気管16にはNOx吸着触媒18が設けられる。NOx吸着触媒18、第1選択還元型触媒21及び第2選択還元型触媒22は排気管16より大径のケース23に収容される。第1選択還元型触媒21はモノリス触媒であって、コージェライト製のハニカム担体に銀ゼオライト又は銀アルミナをコーティングして構成される。具体的には、銀ゼオライトからなる第1選択還元型触媒21は、銀をイオン交換したゼオライト粉末を含むスラリーをハニカム担体にコーティングして構成される。また銀アルミナからなる第1選択還元型触媒21は、銀を担持させたγ−アルミナ粉末又はθ−アルミナ粉末を含むスラリーをハニカム担体にコーティングして構成される。   A first selective reduction catalyst 21 made of a silver catalyst is provided in the middle of the exhaust pipe 16, and a copper catalyst, an iron catalyst, or vanadium is provided in the exhaust pipe 16 on the exhaust gas downstream side of the first selective reduction catalyst 21. A second selective reduction catalyst 22 made of a system catalyst is provided, and a NOx adsorption catalyst 18 is provided in the exhaust pipe 16 on the exhaust gas upstream side of the first selective reduction catalyst 21. The NOx adsorption catalyst 18, the first selective reduction catalyst 21 and the second selective reduction catalyst 22 are accommodated in a case 23 having a larger diameter than the exhaust pipe 16. The first selective reduction catalyst 21 is a monolith catalyst and is configured by coating a cordierite honeycomb carrier with silver zeolite or silver alumina. Specifically, the first selective reduction catalyst 21 made of silver zeolite is configured by coating a honeycomb carrier with a slurry containing zeolite powder obtained by ion exchange of silver. The first selective reduction catalyst 21 made of silver alumina is configured by coating a honeycomb carrier with a slurry containing γ-alumina powder or θ-alumina powder supporting silver.

第2選択還元型触媒22はモノリス触媒であって、コージェライト製のハニカム担体に銅ゼオライト、鉄ゼオライト又はバナジウム系酸化物をコーティングして構成される。具体的には、銅ゼオライトからなる第2選択還元型触媒22は、銅をイオン交換したゼオライト粉末を含むスラリーをハニカム担体にコーティングして構成される。また鉄ゼオライトからなる第2選択還元型触媒22は、鉄をイオン交換したゼオライト粉末を含むスラリーをハニカム担体にコーティングして構成される。更にバナジウム系酸化物からなる第2選択還元型触媒22は、バナジウム酸化物のみの粉末を含むか、或いはバナジウム酸化物にチタン酸化物及びタングステン酸化物を含有する混合酸化物粉末を含むスラリーをハニカム担体にコーティングしてそれぞれ構成される。   The second selective reduction catalyst 22 is a monolith catalyst, and is configured by coating a cordierite honeycomb carrier with copper zeolite, iron zeolite, or vanadium oxide. Specifically, the second selective reduction catalyst 22 made of copper zeolite is configured by coating a honeycomb carrier with a slurry containing zeolite powder obtained by ion exchange of copper. The second selective reduction catalyst 22 made of iron zeolite is configured by coating a honeycomb carrier with a slurry containing zeolite powder obtained by ion exchange of iron. Further, the second selective reduction catalyst 22 made of vanadium oxide contains a slurry containing a vanadium oxide powder alone or a mixed oxide powder containing titanium oxide and tungsten oxide in the vanadium oxide. Each carrier is coated and configured.

NOx吸着触媒18は排ガス中のNOxをNO又はNO2の状態で吸着しかつこの吸着したNOx(NO又はNO2)を炭化水素の存在下で還元するように構成される。またNOx吸着触媒18はコージェライト製のハニカム担体にNOx吸着材をコーティングして構成される。NOx吸着材は、La,Ce,Pr,Nd,Sc及びYからなる群より選ばれた1種又は2種以上の希土類元素の酸化物、又はTi又はZrのいずれか一方又は双方からなるチタン属元素の酸化物、或いは上記希土類元素及びチタン属元素の混合酸化物を有する。 NOx trap catalyst 18 is configured to reduction in the presence of adsorbed and the adsorbed NOx (NO or NO 2) hydrocarbons NOx in the exhaust gas in the form of NO or NO 2. The NOx adsorption catalyst 18 is formed by coating a cordierite honeycomb carrier with a NOx adsorbent. The NOx adsorbent is an oxide of one or more rare earth elements selected from the group consisting of La, Ce, Pr, Nd, Sc and Y, or a titanium genus consisting of one or both of Ti and Zr. An oxide of an element or a mixed oxide of the rare earth element and the titanium group element is included.

一方、NOx吸着触媒18より排ガス上流側の排気管16には、NOx吸着触媒18に向けて炭化水素系液体24を噴射可能な液体噴射ノズル26が設けられる。この液体噴射ノズル26には炭化水素系液体供給手段27が接続される。炭化水素系液体供給手段27は、液体噴射ノズル26に一端が接続された液体供給管28と、この液体供給管28の他端に接続され液体24が貯留された燃料タンク29と、液体噴射ノズル26から噴射される液体24の噴射量を調整する液体噴射量調整弁31とを有する。上記炭化水素系液体24は、この実施の形態では、軽油等の燃料である。また液体噴射量調整弁31は、液体供給管28に設けられ液体噴射ノズル26への液体24の供給圧力を調整する圧力調整弁32と、液体噴射ノズル26の基端に設けられ液体噴射ノズル26を開閉するノズル開閉弁33とからなる。更に圧力調整弁32と燃料タンク29との間の液体供給管28には燃料タンク29内の液体24を液体噴射ノズル26に供給可能なポンプ30が設けられる。   On the other hand, a liquid injection nozzle 26 capable of injecting the hydrocarbon-based liquid 24 toward the NOx adsorption catalyst 18 is provided in the exhaust pipe 16 upstream of the NOx adsorption catalyst 18. A hydrocarbon-based liquid supply means 27 is connected to the liquid injection nozzle 26. The hydrocarbon-based liquid supply means 27 includes a liquid supply pipe 28 having one end connected to the liquid injection nozzle 26, a fuel tank 29 connected to the other end of the liquid supply pipe 28 and storing the liquid 24, and a liquid injection nozzle. And a liquid injection amount adjusting valve 31 that adjusts the injection amount of the liquid 24 injected from 26. The hydrocarbon-based liquid 24 is a fuel such as light oil in this embodiment. The liquid injection amount adjustment valve 31 is provided in the liquid supply pipe 28 and adjusts the supply pressure of the liquid 24 to the liquid injection nozzle 26. The liquid injection amount adjustment valve 31 is provided at the base end of the liquid injection nozzle 26. And a nozzle opening / closing valve 33 for opening and closing the valve. Furthermore, a pump 30 capable of supplying the liquid 24 in the fuel tank 29 to the liquid injection nozzle 26 is provided in the liquid supply pipe 28 between the pressure regulating valve 32 and the fuel tank 29.

圧力調整弁32は第1〜第3ポート32a〜32cを有する三方弁であり、第1ポート32aはポンプ30の吐出口に接続され、第2ポート32bは液体噴射ノズル26に接続され、第3ポート32cは戻り管34を介して燃料タンク29に接続される。圧力調整弁32がオンすると、ポンプ30により圧送された液体24が第1ポート32aから圧力調整弁32に流入し、この圧力調整弁32で所定の圧力に調整された後、第2ポート32bから液体噴射ノズル26に圧送される。また圧力調整弁32がオフすると、ポンプ30により圧送された液体24が第1ポート32aから圧力調整弁32に流入した後、第3ポート32cから戻り管34を通って燃料タンク29に戻される。   The pressure regulating valve 32 is a three-way valve having first to third ports 32a to 32c, the first port 32a is connected to the discharge port of the pump 30, the second port 32b is connected to the liquid jet nozzle 26, and the third The port 32 c is connected to the fuel tank 29 via the return pipe 34. When the pressure adjustment valve 32 is turned on, the liquid 24 pumped by the pump 30 flows into the pressure adjustment valve 32 from the first port 32a, and after being adjusted to a predetermined pressure by the pressure adjustment valve 32, from the second port 32b. The liquid jet nozzle 26 is pumped. When the pressure regulating valve 32 is turned off, the liquid 24 pumped by the pump 30 flows from the first port 32a into the pressure regulating valve 32 and then returns from the third port 32c to the fuel tank 29 through the return pipe 34.

NOx吸着触媒18より排ガス上流側の排気管16には、NOx吸着触媒18に関係する排ガスの温度、この実施の形態では、NOx吸着触媒18を流れる直前の排ガスの温度を検出する第1温度センサ41が設けられる。またエンジン11の回転速度は回転センサ36により検出され、エンジン11の負荷は負荷センサ37により検出される。第1温度センサ41、回転センサ36及び負荷センサ37の各検出出力はコントローラ38の制御入力に接続され、コントローラ38の制御出力は圧力調整弁32、ポンプ30及びノズル開閉弁33にそれぞれ接続される。コントローラ38にはメモリ39が設けられる。このメモリ39には、エンジン回転速度、エンジン負荷、NOx吸着触媒18入口(NOx吸着触媒を流れる直前)の排ガス温度等に応じた圧力調整弁32の圧力、ノズル開閉弁33の開閉回数、ポンプ30の作動の有無が予め記憶される。   The exhaust pipe 16 upstream of the exhaust gas from the NOx adsorption catalyst 18 has a first temperature sensor that detects the temperature of the exhaust gas related to the NOx adsorption catalyst 18, in this embodiment, the temperature of the exhaust gas immediately before flowing through the NOx adsorption catalyst 18. 41 is provided. The rotation speed of the engine 11 is detected by the rotation sensor 36, and the load of the engine 11 is detected by the load sensor 37. The detection outputs of the first temperature sensor 41, the rotation sensor 36, and the load sensor 37 are connected to the control input of the controller 38, and the control outputs of the controller 38 are connected to the pressure regulating valve 32, the pump 30, and the nozzle opening / closing valve 33, respectively. . The controller 38 is provided with a memory 39. The memory 39 stores the engine speed, the engine load, the pressure of the pressure adjustment valve 32 according to the exhaust gas temperature at the inlet of the NOx adsorption catalyst 18 (immediately before flowing through the NOx adsorption catalyst), the number of times of opening and closing the nozzle on / off valve 33, and the pump 30. The presence / absence of the operation is stored in advance.

なお、この実施の形態では、第1温度センサをNOx吸着触媒より排ガス上流側の排気管に設けたが、NOx吸着触媒より排ガス下流側であって第2選択還元型触媒より排ガス上流側のケースに第1温度センサを設けたり、或いはNOx吸着触媒より排ガス上流側の排気管と、NOx吸着触媒より排ガス下流側であって第2選択還元型触媒より排ガス上流側のケースとに第1温度センサをそれぞれ設けてもよい。NOx吸着触媒より排ガス下流側であって第1選択還元型触媒より排ガス上流側のケースに第1温度センサを設けた場合、この第1温度センサによりNOx吸着触媒出口(NOx吸着触媒を流れた直後)の排ガスの温度が検出される。またNOx吸着触媒より排ガス上流側の排気管と、NOx吸着触媒より排ガス下流側であって第1選択還元型触媒より排ガス上流側のケースとに第1温度センサをそれぞれ設けた場合、即ちNOx吸着触媒の直前及び直後に第1温度センサをそれぞれ設けた場合、NOx吸着触媒入口(NOx吸着触媒触媒を流れる直前)の排ガス温度とNOx吸着触媒出口(NOx吸着触媒触媒を流れた直後)の排ガス温度とがそれぞれ検出されるため、両温度の平均値を算出することにより、NOx吸着触媒を流れている排ガスの温度を検出できる。   In this embodiment, the first temperature sensor is provided in the exhaust pipe on the exhaust gas upstream side of the NOx adsorption catalyst. However, the case is on the exhaust gas downstream side of the NOx adsorption catalyst and on the exhaust gas upstream side of the second selective reduction catalyst. The first temperature sensor is provided in the exhaust pipe on the exhaust gas upstream side of the NOx adsorption catalyst and the case on the exhaust gas downstream side of the NOx adsorption catalyst and on the exhaust gas upstream side of the second selective reduction catalyst. May be provided. When the first temperature sensor is provided in the case downstream of the exhaust gas from the NOx adsorption catalyst and upstream of the first selective reduction catalyst, the NOx adsorption catalyst outlet (immediately after flowing through the NOx adsorption catalyst) by the first temperature sensor. ) Of the exhaust gas is detected. Further, when the first temperature sensor is provided in the exhaust pipe upstream of the NOx adsorption catalyst and in the case of the exhaust gas downstream of the NOx adsorption catalyst and upstream of the first selective reduction catalyst, that is, NOx adsorption. When the first temperature sensor is provided immediately before and after the catalyst, the exhaust gas temperature at the NOx adsorption catalyst inlet (immediately before flowing through the NOx adsorption catalyst catalyst) and the exhaust gas temperature at the NOx adsorption catalyst outlet (immediately after flowing through the NOx adsorption catalyst catalyst) Therefore, the temperature of the exhaust gas flowing through the NOx adsorption catalyst can be detected by calculating the average value of both temperatures.

このように構成された排ガス浄化装置の動作を説明する。排ガス温度が例えば180℃未満と低い場合には、コントローラ38は、第1温度センサ41、回転センサ36及び負荷センサ37の各検出出力に基づいて、炭化水素系液体供給手段27のポンプ30は不作動状態にし、圧力調整弁32及びノズル開閉弁33をオフにして、液体噴射ノズル26から炭化水素系液体24を噴射しない状態に保つ。このときエンジン11の排ガスがNOx吸着触媒18に流入すると、排ガス中のNOxの一部がこのNOx吸着触媒18にガス状のNO又はNO2の状態で吸着される。この結果、排ガスの低温域におけるNOxの大気中への排出を低減できる。 The operation of the exhaust gas purification apparatus configured as described above will be described. When the exhaust gas temperature is as low as less than 180 ° C., for example, the controller 38 turns off the pump 30 of the hydrocarbon-based liquid supply means 27 based on the detection outputs of the first temperature sensor 41, the rotation sensor 36 and the load sensor 37. The pressure control valve 32 and the nozzle opening / closing valve 33 are turned off, and the hydrocarbon-based liquid 24 is not injected from the liquid injection nozzle 26. When the exhaust gas at this time the engine 11 flows into the NOx adsorption catalyst 18, a part of NOx in the exhaust gas are adsorbed in the form of gaseous NO or NO 2 in the NOx adsorption catalyst 18. As a result, exhaust of NOx into the atmosphere in the low temperature range of exhaust gas can be reduced.

排ガス温度が例えば180℃以上と高くなると、コントローラ38は第1温度センサ41、回転センサ36及び負荷センサ37の各検出出力に基づいて炭化水素系液体供給手段27のポンプ30を作動させ、圧力調整弁32をオンし、かつノズル開閉弁33のオンオフを繰返すことにより、液体噴射ノズル26から炭化水素系液体24を間欠的に噴射する。このときの1回の噴射量は比較的少なく設定され、排ガス中の空気過剰率λが低下して1になる手前(例えば、λ=1.3程度)になるように炭化水素系液体24が噴射される。即ち、液体噴射ノズル26から噴射された炭化水素系液体24がガス化して炭化水素(HC)が生成され、この炭化水素(HC)と排ガス中の酸素(O2)とが反応して二酸化炭素(CO2)と水(H2O)が生成されることにより、排ガス中の空気過剰率λが例えば1.3まで低下する。ここで、空気過剰率λを1以下に低下させなくてよいのは、NOx吸着触媒18へのNOx(NO又はNO2)の吸着力が比較的弱く、排ガス温度の上昇と炭化水素の到来で、NOx(NO又はNO2)が還元されながら容易にNOx吸着触媒18から離脱するためである。 When the exhaust gas temperature rises to, for example, 180 ° C. or higher, the controller 38 operates the pump 30 of the hydrocarbon-based liquid supply means 27 based on the detection outputs of the first temperature sensor 41, the rotation sensor 36, and the load sensor 37 to adjust the pressure. By turning on the valve 32 and repeatedly turning on and off the nozzle opening / closing valve 33, the hydrocarbon-based liquid 24 is intermittently injected from the liquid injection nozzle 26. At this time, the injection amount of one injection is set to be relatively small, and the hydrocarbon-based liquid 24 is placed in a state before the excess air ratio λ in the exhaust gas decreases to 1 (for example, about λ = 1.3). Be injected. That is, the hydrocarbon liquid 24 injected from the liquid injection nozzle 26 is gasified to generate hydrocarbon (HC), and the hydrocarbon (HC) reacts with oxygen (O 2 ) in the exhaust gas to react with carbon dioxide. By generating (CO 2 ) and water (H 2 O), the excess air ratio λ in the exhaust gas decreases to, for example, 1.3. Here, it is not necessary to reduce the excess air ratio λ to 1 or less because the adsorption power of NOx (NO or NO 2 ) to the NOx adsorption catalyst 18 is relatively weak, and the exhaust gas temperature rises and the arrival of hydrocarbons. This is because NOx (NO or NO 2 ) is easily separated from the NOx adsorption catalyst 18 while being reduced.

そして炭化水素の残部がNOx吸着触媒18に流入すると、NOx吸着触媒18にガス状のNO又はNO2の状態で吸着されているNOxと炭化水素(HC)が反応して二酸化炭素(CO2)、水(H2O)及び窒素(N2)が生成される。即ち、炭化水素がNOx吸着触媒18に吸着されたNOxと還元反応を起こしてNOxが無害化される。 When the remainder of the hydrocarbons flows into the NOx adsorption catalyst 18, NOx adsorbed to the NOx adsorption catalyst 18 in the state of gaseous NO or NO 2 reacts with hydrocarbon (HC) to produce carbon dioxide (CO 2 ). , Water (H 2 O) and nitrogen (N 2 ) are produced. That is, hydrocarbons cause a reduction reaction with NOx adsorbed on the NOx adsorption catalyst 18 to detoxify NOx.

一方、余剰の炭化水素が排ガスとともに銀系の第1選択還元型触媒21に流入すると、この触媒21上でアンモニアが生成される。これは、軽油等の炭化水素系液体24を構成するHC成分(アルカン)が、第1選択還元型触媒21に吸着し、NOxと酸素が第1選択還元型触媒21上で反応して、イソシアネート種(N=C=O、C=N)などの反応中間体ができ、この反応中間体に水が付加することにより、アンモニアが生成されたものと推定される。   On the other hand, when excess hydrocarbon flows into the silver-based first selective reduction catalyst 21 together with the exhaust gas, ammonia is generated on the catalyst 21. This is because the HC component (alkane) constituting the hydrocarbon-based liquid 24 such as light oil is adsorbed on the first selective reduction catalyst 21, and NOx and oxygen react on the first selective reduction catalyst 21 to generate isocyanate. A reaction intermediate such as a seed (N = C = O, C = N) is formed, and it is presumed that ammonia was generated by adding water to the reaction intermediate.

第1選択還元型触媒21で生成されたアンモニアを含む排ガスが銅系、鉄系又はバナジウム系の第2選択還元型触媒22に流入すると、次の式(1)〜式(3)に示すように、第2選択還元型触媒22上で排ガス中のNOx(NO及びNO2)がアンモニアと反応してN2に還元され、NOxが無害化される。 When the exhaust gas containing ammonia produced by the first selective reduction catalyst 21 flows into the second selective reduction catalyst 22 of copper, iron or vanadium, as shown in the following formulas (1) to (3): Furthermore, NOx (NO and NO 2 ) in the exhaust gas reacts with ammonia on the second selective reduction catalyst 22 and is reduced to N 2 , thereby detoxifying NOx.

NO + NO2 + 2NH3 → 2N2 + 3H2O …(1)
4NO + 4NH3 + O2 → 4N2 + 6H2O …(2)
6NO2 + 8NH3 → 7N2 + 12H2O …(3)
ここで、第2選択還元型触媒22に流入する排ガスの温度は、NOx吸着触媒18における炭化水素の酸化反応で発生した熱により高温になっているので、第2選択還元型触媒22における排ガス中のNOxの還元反応が速やかに進む。この結果、排ガスの高温域における排ガス中のNOxの低減効率を向上できる。従って、排ガスの低温域から高温域までの幅広い温度域にわたってNOxを効率良く低減できる。
NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O (1)
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (2)
6NO 2 + 8NH 3 → 7N 2 + 12H 2 O (3)
Here, since the temperature of the exhaust gas flowing into the second selective reduction catalyst 22 is high due to the heat generated by the oxidation reaction of hydrocarbons in the NOx adsorption catalyst 18, the exhaust gas in the second selective reduction catalyst 22 is in the exhaust gas. The NOx reduction reaction proceeds promptly. As a result, the NOx reduction efficiency in the exhaust gas in the high temperature range of the exhaust gas can be improved. Therefore, NOx can be efficiently reduced over a wide temperature range from the low temperature range to the high temperature range of the exhaust gas.

<第2の実施の形態>
図2は本発明の第2の実施の形態を示す。図2において図1と同一符号は同一部品を示す。この実施の形態では、第1選択還元型触媒21より排ガス上流側であってNOx吸着触媒18より排ガス下流側の排気管16にNOx吸着触媒付フィルタ51が設けられる。このNOx吸着触媒付フィルタ51は排ガス中のNOxをNO又はNO2の状態で吸着しかつこの吸着したNOxを炭化水素の存在下で還元するとともに、排ガス中のパティキュレートを捕集するように構成される。またNOx吸着触媒付フィルタ51はコージェライト製のハニカム担体にNOx吸着材をコーティングして構成される。ハニカム担体は、多孔質の隔壁で仕切られた多角形断面を有し、これらの隔壁により多数の互いに平行に形成された貫通孔の相隣接する入口部と出口部を封止部材により交互に封止することにより構成される。そして、ハニカム担体の入口部から導入されたエンジンの排ガスが多孔質の隔壁を通過する際に、この排ガスに含まれるパティキュレートが捕集されて、出口部から排出されるようになっている。またNOx吸着材は、La,Ce,Pr,Nd,Sc及びYからなる群より選ばれた1種又は2種以上の希土類元素の酸化物、又はTi又はZrのいずれか一方又は双方からなるチタン属元素の酸化物、或いは上記希土類元素及びチタン属元素の混合酸化物を有する。更に上記NOx吸着触媒付フィルタ51は、NOx吸着触媒18、第1選択還元型触媒21及び第2選択還元型触媒22とともに、排気管16より大径のケース52に収容される。上記以外は第1の実施の形態と同一に構成される。
<Second Embodiment>
FIG. 2 shows a second embodiment of the present invention. 2, the same reference numerals as those in FIG. 1 denote the same components. In this embodiment, the NOx adsorption catalyst-equipped filter 51 is provided in the exhaust pipe 16 upstream of the first selective reduction catalyst 21 and downstream of the NOx adsorption catalyst 18. The NOx adsorption catalyst-equipped filter 51 is configured to adsorb NOx in the exhaust gas in the state of NO or NO 2 , reduce the adsorbed NOx in the presence of hydrocarbons, and collect particulates in the exhaust gas. Is done. The NOx adsorption catalyst-equipped filter 51 is formed by coating a cordierite honeycomb carrier with a NOx adsorbent. The honeycomb carrier has a polygonal cross section partitioned by porous partition walls, and adjacent inlet and outlet portions of a large number of through holes formed in parallel to each other by these partition walls are alternately sealed by a sealing member. Configured by stopping. When the engine exhaust gas introduced from the inlet portion of the honeycomb carrier passes through the porous partition walls, the particulates contained in the exhaust gas are collected and discharged from the outlet portion. In addition, the NOx adsorbent is an oxide of one or more rare earth elements selected from the group consisting of La, Ce, Pr, Nd, Sc and Y, or titanium consisting of one or both of Ti and Zr. A metal element oxide or a mixed oxide of the rare earth element and titanium element. Further, the filter 51 with NOx adsorption catalyst is housed in a case 52 having a diameter larger than that of the exhaust pipe 16 together with the NOx adsorption catalyst 18, the first selective reduction catalyst 21 and the second selective reduction catalyst 22. The configuration other than the above is the same as that of the first embodiment.

このように構成された排ガス浄化装置の動作を説明する。排ガス温度が例えば180℃未満と低い場合には、コントローラ38は、第1温度センサ41、回転センサ36及び負荷センサ37の各検出出力に基づいて、炭化水素系液体供給手段27のポンプ30は不作動状態にし、圧力調整弁32及びノズル開閉弁33をオフにして、液体噴射ノズル26から炭化水素系液体24を噴射しない状態に保つ。このときエンジン11の排ガスがNOx吸着触媒18に流入すると、排ガス中のNOxの一部がこのNOx吸着触媒18にガス状のNO又はNO2の状態で吸着され、NOx吸着触媒18を通過したNOxの残部を含む排ガスがNOx吸着触媒付フィルタ51に流入すると、排ガス中のNOxの残部の一部がこのNOx吸着触媒付フィルタ51にガス状のNO又はNO2の状態で吸着されるとともに、排ガス中のパティキュレートがNOx吸着触媒付フィルタ51に捕集される。この結果、排ガスの低温域において、NOxの大気中への排出を第1の実施の形態の排ガス浄化装置より低減できるとともに、パティキュレートの大気中への排出を低減できる。 The operation of the exhaust gas purification apparatus configured as described above will be described. When the exhaust gas temperature is as low as less than 180 ° C., for example, the controller 38 turns off the pump 30 of the hydrocarbon-based liquid supply means 27 based on the detection outputs of the first temperature sensor 41, the rotation sensor 36 and the load sensor 37. The pressure control valve 32 and the nozzle opening / closing valve 33 are turned off, and the hydrocarbon-based liquid 24 is not injected from the liquid injection nozzle 26. At this time, when the exhaust gas of the engine 11 flows into the NOx adsorption catalyst 18, a part of the NOx in the exhaust gas is adsorbed to the NOx adsorption catalyst 18 in the state of gaseous NO or NO 2 and passes through the NOx adsorption catalyst 18. of the exhaust gas containing the remainder flows into the NOx trap catalyst with filter 51, with a portion of the NOx in the exhaust gas balance is adsorbed in the form of gaseous NO or NO 2 in the NOx trap catalyst with filter 51, the exhaust gas Particulates therein are collected by the NOx adsorption catalyst-equipped filter 51. As a result, in the low temperature range of the exhaust gas, NOx emission into the atmosphere can be reduced as compared with the exhaust gas purification apparatus of the first embodiment, and particulate emission into the atmosphere can be reduced.

排ガス温度が例えば180℃以上と高くなると、コントローラ38は第1温度センサ41、回転センサ36及び負荷センサ37の各検出出力に基づいて炭化水素系液体供給手段27のポンプ30を作動させ、圧力調整弁32をオンし、かつノズル開閉弁33のオンオフを繰返すことにより、液体噴射ノズル26から炭化水素系液体24を間欠的に噴射する。このときの1回の噴射量は比較的少なく設定され、排ガス中の空気過剰率λが低下して1になる手前(例えば、λ=1.3程度)になるように炭化水素系液体24が噴射される。即ち、液体噴射ノズル26から噴射された炭化水素系液体24がガス化して炭化水素(HC)が生成され、この炭化水素(HC)と排ガス中の酸素(O2)とが反応して二酸化炭素(CO2)と水(H2O)が生成されることにより、排ガス中の空気過剰率λが例えば1.3まで低下する。ここで、空気過剰率λを1以下に低下させなくてよいのは、NOx吸着触媒18及びNOx吸着触媒付フィルタ51へのNOx(NO又はNO2)の吸着力が比較的弱く、排ガス温度の上昇と炭化水素の到来で、NOx(NO又はNO2)が還元されながら容易にNOx吸着触媒18及びNOx吸着触媒付フィルタ51から離脱するためである。 When the exhaust gas temperature rises to, for example, 180 ° C. or higher, the controller 38 operates the pump 30 of the hydrocarbon-based liquid supply means 27 based on the detection outputs of the first temperature sensor 41, the rotation sensor 36, and the load sensor 37 to adjust the pressure. By turning on the valve 32 and repeatedly turning on and off the nozzle opening / closing valve 33, the hydrocarbon-based liquid 24 is intermittently injected from the liquid injection nozzle 26. At this time, the injection amount of one injection is set to be relatively small, and the hydrocarbon-based liquid 24 is placed in a state before the excess air ratio λ in the exhaust gas decreases to 1 (for example, about λ = 1.3). Be injected. That is, the hydrocarbon liquid 24 injected from the liquid injection nozzle 26 is gasified to generate hydrocarbon (HC), and the hydrocarbon (HC) reacts with oxygen (O 2 ) in the exhaust gas to react with carbon dioxide. By generating (CO 2 ) and water (H 2 O), the excess air ratio λ in the exhaust gas decreases to, for example, 1.3. Here, it is not necessary to reduce the excess air ratio λ to 1 or less because the adsorption power of NOx (NO or NO 2 ) to the NOx adsorption catalyst 18 and the NOx adsorption catalyst-equipped filter 51 is relatively weak, and the exhaust gas temperature This is because as NOx (NO or NO 2 ) is reduced, the NOx adsorbing catalyst 18 and the NOx adsorbing catalyst-equipped filter 51 are easily separated while rising and the arrival of hydrocarbons.

そして炭化水素の残部がNOx吸着触媒18に流入すると、NOx吸着触媒18に吸着されているNO又はNO2と炭化水素(HC)が反応して二酸化炭素(CO2)、水(H2O)及び窒素(N2)が生成される。即ち、炭化水素がNOx吸着触媒18に吸着されたNOxと還元反応を起こしてNOxが無害化される。 When the remaining hydrocarbon flows into the NOx adsorption catalyst 18, NO or NO 2 adsorbed on the NOx adsorption catalyst 18 reacts with hydrocarbon (HC) to produce carbon dioxide (CO 2 ) and water (H 2 O). And nitrogen (N 2 ) is produced. That is, hydrocarbons cause a reduction reaction with NOx adsorbed on the NOx adsorption catalyst 18 to detoxify NOx.

NOx吸着触媒18を通過した炭化水素がNOx吸着触媒付フィルタ51に流入すると、NOx吸着触媒付フィルタ51にNO又はNO2の状態で吸着されているNOxと炭化水素(HC)が反応して二酸化炭素(CO2)、水(H2O)及び窒素(N2)が生成される。即ち、炭化水素がNOx吸着触媒付フィルタ51に吸着されたNOxと還元反応を起こしてNOxが無害化される。また排ガス中のパティキュレートがNOx吸着触媒付フィルタ51に捕集される。 When hydrocarbons that have passed through the NOx adsorption catalyst 18 flow into the NOx adsorption catalyst-equipped filter 51, NOx adsorbed in the NOx or NO 2 state on the NOx adsorption catalyst-equipped filter 51 reacts with hydrocarbons (HC) to produce CO2. Carbon (CO 2 ), water (H 2 O) and nitrogen (N 2 ) are produced. That is, hydrocarbons cause a reduction reaction with NOx adsorbed by the NOx adsorption catalyst-equipped filter 51, thereby detoxifying NOx. Particulates in the exhaust gas are collected by the filter 51 with NOx adsorption catalyst.

一方、余剰の炭化水素が排ガスとともに銀系の第1選択還元型触媒21に流入すると、この触媒21上で第1の実施の形態と同様にアンモニアが生成される。第1選択還元型触媒21で生成されたアンモニアを含む排ガスが銅系、鉄系又はバナジウム系の第2選択還元型触媒22に流入すると、第1の実施の形態と同様に、第2選択還元型触媒22上で排ガス中のNOx(NO及びNO2)がアンモニアと反応して窒素(N2)に還元され、NOxが無害化される。ここで、第2選択還元型触媒22に流入する排ガスの温度は、NOx吸着触媒18及びNOx吸着触媒付フィルタ51における炭化水素の酸化反応で発生した熱により高温になっているので、第2選択還元型触媒22における排ガス中のNOxの還元反応が速やかに進む。この結果、排ガスの高温域における排ガス中のNOxの低減効率を向上できる。従って、排ガスの低温域から高温域までの幅広い温度域にわたって、排ガス中のNOxを第1の実施の形態より効率良く低減できるとともに、排ガス中のパティキュレートを低減できる。 On the other hand, when excess hydrocarbon flows into the silver-based first selective reduction catalyst 21 together with the exhaust gas, ammonia is generated on the catalyst 21 as in the first embodiment. When the exhaust gas containing ammonia generated by the first selective reduction catalyst 21 flows into the copper-based, iron-based or vanadium-based second selective reduction catalyst 22, the second selective reduction is performed as in the first embodiment. NOx (NO and NO 2 ) in the exhaust gas reacts with ammonia on the type catalyst 22 and is reduced to nitrogen (N 2 ), thereby detoxifying NOx. Here, the temperature of the exhaust gas flowing into the second selective reduction catalyst 22 is high because of the heat generated by the oxidation reaction of hydrocarbons in the NOx adsorption catalyst 18 and the NOx adsorption catalyst-equipped filter 51. The reduction reaction of NOx in the exhaust gas in the reduction catalyst 22 proceeds promptly. As a result, the NOx reduction efficiency in the exhaust gas in the high temperature range of the exhaust gas can be improved. Therefore, NOx in the exhaust gas can be reduced more efficiently than in the first embodiment over a wide temperature range from a low temperature range to a high temperature range of the exhaust gas, and particulates in the exhaust gas can be reduced.

なお、上記第1及び第2の実施の形態では、本発明の排ガス浄化装置をディーゼルエンジンに適用したが、本発明の排ガス浄化装置をガソリンエンジンに適用してもよい。また、上記第1及び第2の実施の形態では、本発明の排ガス浄化装置をターボ過給機付ディーゼルエンジンに適用したが、本発明の排ガス浄化装置を自然吸気型ディーゼルエンジン又は自然吸気型ガソリンエンジンに適用してもよい。   In the first and second embodiments, the exhaust gas purifying apparatus of the present invention is applied to a diesel engine. However, the exhaust gas purifying apparatus of the present invention may be applied to a gasoline engine. In the first and second embodiments, the exhaust gas purification apparatus of the present invention is applied to a turbocharged diesel engine. However, the exhaust gas purification apparatus of the present invention is applied to a naturally aspirated diesel engine or a naturally aspirated gasoline. It may be applied to the engine.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
図1に示すように、排気量8000ccのターボ過給機付ディーゼルエンジン11の排気管16に、排ガス上流側から順にNOx吸着触媒18、第1選択還元型触媒21及び第2選択還元型触媒22を設けた。またNOx吸着触媒18より排ガス上流側の排気管16に、炭化水素系液体24を噴射する液体噴射ノズル26を設けた。なお、NOx吸着触媒18は、希土類の酸化物としてCeO2を含むスラリーをハニカム担体にコーティングして作製した触媒であった。また、第1選択還元型触媒21は、銀をイオン交換したゼオライト粉末を含むスラリーをハニカム担体にコーティングして作製した銀系の触媒であった。また第2選択還元型触媒22は、銅をイオン交換したゼオライト粉末を含むスラリーをハニカム担体にコーティングして作製した銅系の触媒であった。この排ガス浄化装置を実施例1とした。
<Example 1>
As shown in FIG. 1, a NOx adsorption catalyst 18, a first selective reduction catalyst 21, and a second selective reduction catalyst 22 are sequentially disposed in an exhaust pipe 16 of a turbocharged diesel engine 11 having a displacement of 8000 cc from the exhaust gas upstream side. Was provided. A liquid injection nozzle 26 for injecting the hydrocarbon-based liquid 24 is provided in the exhaust pipe 16 upstream of the exhaust gas from the NOx adsorption catalyst 18. The NOx adsorption catalyst 18 was a catalyst prepared by coating a honeycomb carrier with a slurry containing CeO 2 as a rare earth oxide. The first selective reduction catalyst 21 was a silver catalyst prepared by coating a honeycomb carrier with a slurry containing zeolite powder obtained by ion exchange of silver. The second selective reduction catalyst 22 was a copper catalyst prepared by coating a honeycomb carrier with a slurry containing zeolite powder obtained by ion exchange of copper. This exhaust gas purification apparatus was designated as Example 1.

<比較例1>
NOx吸着触媒を用いなかったこと以外は、実施例1と同一に構成した。この排ガス浄化装置を比較例1とした。
<Comparative Example 1>
The configuration was the same as Example 1 except that the NOx adsorption catalyst was not used. This exhaust gas purification apparatus was designated as Comparative Example 1.

<比較例2>
NOx吸着触媒及び第2選択還元型触媒を用いなかったこと以外は、実施例1と同一に構成した。この排ガス浄化装置を比較例2とした。
<Comparative example 2>
The configuration was the same as in Example 1 except that the NOx adsorption catalyst and the second selective reduction catalyst were not used. This exhaust gas purification apparatus was designated as Comparative Example 2.

<比較試験1及び評価>
エンジンの回転速度及び負荷を変化させて、排ガス温度を室温から600℃まで徐々に上昇させたときの、実施例1、比較例1及び比較例2の排ガス浄化装置によるNOx低減率を測定した。その結果を図3に示す。
<Comparative test 1 and evaluation>
The NOx reduction rate by the exhaust gas purification apparatuses of Example 1, Comparative Example 1, and Comparative Example 2 was measured when the exhaust gas temperature was gradually increased from room temperature to 600 ° C. by changing the engine speed and load. The result is shown in FIG.

図3から明らかなように、比較例1及び2の排ガス浄化装置では、比較的高温の約200℃からNOx低減率が徐々に高くなっているのに対し、実施例1の排ガス浄化装置では、比較的低温の約150℃からNOx低減率が徐々に高くなっていることが分かった。また比較例1の排ガス浄化装置では、NOx低減率が最大で約40%であり、比較例2の排ガス浄化装置では、NOx低減率が最大で約30%であったのに対し、実施例1の排ガス浄化装置では、NOx低減率が最大で約50%と高くなったことが分かった。   As is clear from FIG. 3, in the exhaust gas purification apparatuses of Comparative Examples 1 and 2, the NOx reduction rate gradually increases from a relatively high temperature of about 200 ° C., whereas in the exhaust gas purification apparatus of Example 1, It was found that the NOx reduction rate gradually increased from a relatively low temperature of about 150 ° C. The exhaust gas purification apparatus of Comparative Example 1 has a maximum NOx reduction rate of about 40%, and the exhaust gas purification apparatus of Comparative Example 2 has a maximum NOx reduction rate of about 30%, whereas Example 1 In the exhaust gas purification apparatus, the NOx reduction rate was found to be as high as about 50% at the maximum.

<比較例3>
NOx吸着触媒及び第2選択還元型触媒を用いず、また第1選択還元型触媒として白金をイオン交換したゼオライト粉末を含むスラリーをハニカム担体にコーティングして作製した白金系の触媒であったこと以外は、実施例1と同一に構成した。この排ガス浄化装置を比較例3とした。
<Comparative Example 3>
Other than the NOx adsorption catalyst and the second selective reduction catalyst, and the platinum selective catalyst prepared by coating the honeycomb carrier with a slurry containing zeolite powder ion-exchanged platinum as the first selective reduction catalyst. The same configuration as in Example 1 was used. This exhaust gas purification apparatus was designated as Comparative Example 3.

<比較試験2及び評価>
エンジンの回転速度及び負荷を変化させて、排ガス温度を室温から600℃まで徐々に上昇させたときの、実施例1、比較例1及び比較例3の排ガス浄化装置によるトータルのNOx低減率を測定した。その結果を図4に示す。
<Comparative test 2 and evaluation>
Measures the total NOx reduction rate by the exhaust gas purification apparatuses of Example 1, Comparative Example 1 and Comparative Example 3 when the exhaust gas temperature is gradually increased from room temperature to 600 ° C. by changing the engine speed and load. did. The result is shown in FIG.

図4から明らかなように、比較例1の排ガス浄化装置ではトータルのNOx低減率が約40%であり、比較例3の排ガス浄化装置ではトータルのNOx低減率が約30%であったのに対し、実施例1の排ガス浄化装置ではトータルのNOx低減率が約50%と高くなり、実施例1の排ガス浄化装置の方が比較例1及び3の排ガス浄化装置よりトータルのNOx低減率が向上したことが分かった。   As apparent from FIG. 4, the exhaust gas purification device of Comparative Example 1 had a total NOx reduction rate of about 40%, and the exhaust gas purification device of Comparative Example 3 had a total NOx reduction rate of about 30%. In contrast, the exhaust gas purification apparatus of Example 1 has a higher total NOx reduction rate of about 50%, and the exhaust gas purification apparatus of Example 1 has a higher total NOx reduction ratio than the exhaust gas purification apparatuses of Comparative Examples 1 and 3. I found out.

11 ディーゼルエンジン(エンジン)
16 排気管
18 NOx吸着触媒
21 第1選択還元型触媒
22 第2選択還元型触媒
24 炭化水素系液体
26 液体噴射ノズル
27 炭化水素系液体供給手段
31 液体噴射量調整弁
38 コントローラ
41 第1温度センサ
51 NOx吸着触媒付フィルタ
11 Diesel engine (engine)
16 Exhaust pipe 18 NOx adsorption catalyst 21 First selective reduction catalyst 22 Second selective reduction catalyst 24 Hydrocarbon liquid 26 Liquid injection nozzle 27 Hydrocarbon liquid supply means 31 Liquid injection amount adjustment valve 38 Controller 41 First temperature sensor 51 Filter with NOx adsorption catalyst

Claims (3)

エンジン(11)の排気管(16)に設けられ銀系触媒からなる第1選択還元型触媒(21)と、
前記第1選択還元型触媒(21)より排ガス下流側の前記排気管(16)に設けられ銅系触媒、鉄系触媒又はバナジウム系触媒からなる第2選択還元型触媒(22)と、
前記第1選択還元型触媒(21)より排ガス上流側の前記排気管(16)に設けられ前記排ガス中のNOxをNO又はNO2の状態で吸着するNOx吸着触媒(18)と、
前記NOx吸着触媒(18)より排ガス上流側の前記排気管(16)に設けられ前記NOx吸着触媒(18)に向けて炭化水素系液体(24)を噴射可能な液体噴射ノズル(26)と、
前記液体噴射ノズル(26)に液体噴射量調整弁(31)を介して前記液体(24)を供給する炭化水素系液体供給手段(27)と、
前記NOx吸着触媒(18)に関係する排ガスの温度を検出する第1温度センサ(41)と、
前記第1温度センサ(41)の検出出力に基づいて前記液体噴射量調整弁(31)を制御するコントローラ(38)と
を備えた排ガス浄化装置。
A first selective reduction catalyst (21) made of a silver catalyst provided in an exhaust pipe (16) of the engine (11);
A second selective reduction catalyst (22) comprising a copper-based catalyst, an iron-based catalyst or a vanadium-based catalyst provided in the exhaust pipe (16) on the exhaust gas downstream side of the first selective reduction-type catalyst (21);
A NOx adsorption catalyst (18) provided in the exhaust pipe (16) upstream of the exhaust gas from the first selective reduction catalyst (21) and adsorbing NOx in the exhaust gas in a state of NO or NO 2 ;
A liquid injection nozzle (26) provided in the exhaust pipe (16) upstream of the exhaust gas from the NOx adsorption catalyst (18) and capable of injecting a hydrocarbon-based liquid (24) toward the NOx adsorption catalyst (18);
Hydrocarbon liquid supply means (27) for supplying the liquid (24) to the liquid injection nozzle (26) via a liquid injection amount adjustment valve (31);
A first temperature sensor (41) for detecting the temperature of exhaust gas related to the NOx adsorption catalyst (18);
An exhaust gas purifying apparatus comprising: a controller (38) for controlling the liquid injection amount adjusting valve (31) based on a detection output of the first temperature sensor (41).
前記第1選択還元型触媒(21)より排ガス上流側であって前記NOx吸着触媒(18)より排ガス下流側の前記排気管(16)に設けられ前記排ガス中のNOxをNO又はNO2の状態で吸着するとともに前記排ガス中のパティキュレートを捕集するNOx吸着触媒付フィルタ(51)を更に備えた請求項1記載の排ガス浄化装置。 The NOx in the exhaust gas is in the state of NO or NO 2 provided in the exhaust pipe (16) upstream of the first selective reduction catalyst (21) and downstream of the NOx adsorption catalyst (18). The exhaust gas purifying apparatus according to claim 1, further comprising a filter (51) with a NOx adsorption catalyst that adsorbs at the exhaust gas and collects particulates in the exhaust gas. 前記第1選択還元型触媒(21)がハニカム担体に銀ゼオライト又は銀アルミナをコーティングして構成され、前記第2選択還元型触媒(22)がハニカム担体に銅ゼオライト、鉄ゼオライト又はバナジウム系酸化物をコーティングして構成され、前記NOx吸着触媒(18)がハニカム担体に希土類元素又はチタン属元素のいずれか一方又は双方の酸化物をコーティングして構成された請求項1又は2記載の排ガス浄化装置。   The first selective reduction catalyst (21) is configured by coating a honeycomb carrier with silver zeolite or silver alumina, and the second selective reduction catalyst (22) is formed on the honeycomb carrier with copper zeolite, iron zeolite or vanadium oxide. The exhaust gas purification apparatus according to claim 1 or 2, wherein the NOx adsorption catalyst (18) is formed by coating a honeycomb carrier with an oxide of either a rare earth element or a titanium group element or both. .
JP2011155282A 2011-07-14 2011-07-14 Exhaust gas purification device Active JP5913849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011155282A JP5913849B2 (en) 2011-07-14 2011-07-14 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011155282A JP5913849B2 (en) 2011-07-14 2011-07-14 Exhaust gas purification device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015092489A Division JP2015165138A (en) 2015-04-30 2015-04-30 Exhaust gas emission control device

Publications (2)

Publication Number Publication Date
JP2013019390A true JP2013019390A (en) 2013-01-31
JP5913849B2 JP5913849B2 (en) 2016-04-27

Family

ID=47691045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011155282A Active JP5913849B2 (en) 2011-07-14 2011-07-14 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP5913849B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021423A (en) * 2013-07-18 2015-02-02 ボッシュ株式会社 Exhaust pipe fuel injection device and exhaust pipe fuel injection method
WO2015087817A1 (en) * 2013-12-09 2015-06-18 株式会社キャタラー Exhaust gas purification apparatus
JP2016109097A (en) * 2014-12-10 2016-06-20 日野自動車株式会社 Exhaust purification device
JP2016125463A (en) * 2015-01-08 2016-07-11 日野自動車株式会社 Exhaust purification device
CN112845309A (en) * 2021-01-05 2021-05-28 陈冬娥 Waste residue recycle equipment based on oil refining is desulfurized
CN113384979A (en) * 2020-03-13 2021-09-14 商先创国际股份有限公司 Method and system for selective exhaust gas treatment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243322A (en) * 1994-03-03 1995-09-19 Hino Motors Ltd Nox reducing device for engine
JPH08206456A (en) * 1995-01-31 1996-08-13 Riken Corp Exhaust gas purifying material and method
JP2001193443A (en) * 1999-11-26 2001-07-17 Hyundai Motor Co Ltd System and control method of purifying nitroxide for diesel engine vehicle
JP2007527314A (en) * 2003-11-04 2007-09-27 エンゲルハード・コーポレーシヨン Emission gas treatment system with NSR and SCR catalyst
JP2010013975A (en) * 2008-07-02 2010-01-21 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2010507480A (en) * 2006-10-20 2010-03-11 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Thermally recyclable nitrogen oxide adsorbent
JP2011121055A (en) * 2009-12-11 2011-06-23 Umicore Ag & Co Kg Selective catalytic reduction of nitrogen oxides in exhaust gas from diesel engines

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243322A (en) * 1994-03-03 1995-09-19 Hino Motors Ltd Nox reducing device for engine
JPH08206456A (en) * 1995-01-31 1996-08-13 Riken Corp Exhaust gas purifying material and method
JP2001193443A (en) * 1999-11-26 2001-07-17 Hyundai Motor Co Ltd System and control method of purifying nitroxide for diesel engine vehicle
JP2007527314A (en) * 2003-11-04 2007-09-27 エンゲルハード・コーポレーシヨン Emission gas treatment system with NSR and SCR catalyst
JP2010507480A (en) * 2006-10-20 2010-03-11 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Thermally recyclable nitrogen oxide adsorbent
JP2010013975A (en) * 2008-07-02 2010-01-21 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2011121055A (en) * 2009-12-11 2011-06-23 Umicore Ag & Co Kg Selective catalytic reduction of nitrogen oxides in exhaust gas from diesel engines

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021423A (en) * 2013-07-18 2015-02-02 ボッシュ株式会社 Exhaust pipe fuel injection device and exhaust pipe fuel injection method
WO2015087817A1 (en) * 2013-12-09 2015-06-18 株式会社キャタラー Exhaust gas purification apparatus
JPWO2015087817A1 (en) * 2013-12-09 2017-03-16 株式会社キャタラー Exhaust gas purification device
US9981223B2 (en) 2013-12-09 2018-05-29 Cataler Corporation Exhaust gas purification apparatus
JP2016109097A (en) * 2014-12-10 2016-06-20 日野自動車株式会社 Exhaust purification device
JP2016125463A (en) * 2015-01-08 2016-07-11 日野自動車株式会社 Exhaust purification device
CN113384979A (en) * 2020-03-13 2021-09-14 商先创国际股份有限公司 Method and system for selective exhaust gas treatment
CN112845309A (en) * 2021-01-05 2021-05-28 陈冬娥 Waste residue recycle equipment based on oil refining is desulfurized

Also Published As

Publication number Publication date
JP5913849B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP2015165138A (en) Exhaust gas emission control device
KR101797919B1 (en) Method of depleting nitrous oxide in exhaust gas after-treatment for lean-burn engines, and exhaust gas system
US8679412B2 (en) Exhaust gas-purifying system
JP6058878B2 (en) Exhaust gas purification device
JP5770409B2 (en) Exhaust gas purification device
US9145805B2 (en) Exhaust gas purifier
JP5913849B2 (en) Exhaust gas purification device
JP5144220B2 (en) Exhaust gas purification device for internal combustion engine
WO2006027904A1 (en) Guide structure and exhaust emission control device
RU2010152011A (en) DEVICE FOR REDUCING THE TOXICITY OF EXHAUST GASES OF THE DIESEL ENGINE
KR20160065190A (en) Exhaust aftertreatment system
JPH11200844A (en) Exhaust emission control device for internal combustion engine
US8225597B2 (en) System for reducing NOx in exhaust
JP2014020310A (en) Exhaust gas purifying apparatus
JPH04365920A (en) Exhaust purifying method
JP4390000B2 (en) NOx adsorption device
JP2011038405A (en) Exhaust emission control device of internal combustion engine
JP4626854B2 (en) Exhaust gas purification device for internal combustion engine
US10823025B2 (en) Apparatus for purifying exhaust gas
KR101000935B1 (en) Exhaust gas purifier for internal combustion engine
JP5778951B2 (en) Exhaust gas purification device
JP2007218177A (en) Exhaust emission control system
JP5094199B2 (en) Exhaust gas purification device
JP4877574B2 (en) Exhaust gas purification device for internal combustion engine
JP5839663B2 (en) Exhaust gas purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5913849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150