JP2009097053A - Metal strip, connector, and mehod of manufacturing metal strip - Google Patents

Metal strip, connector, and mehod of manufacturing metal strip Download PDF

Info

Publication number
JP2009097053A
JP2009097053A JP2007271947A JP2007271947A JP2009097053A JP 2009097053 A JP2009097053 A JP 2009097053A JP 2007271947 A JP2007271947 A JP 2007271947A JP 2007271947 A JP2007271947 A JP 2007271947A JP 2009097053 A JP2009097053 A JP 2009097053A
Authority
JP
Japan
Prior art keywords
layer
metal strip
compound
alloy
compound layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007271947A
Other languages
Japanese (ja)
Inventor
Masahide Okamoto
岡本正英
Yasushi Ikeda
池田靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007271947A priority Critical patent/JP2009097053A/en
Priority to US12/602,385 priority patent/US8389854B2/en
Priority to PCT/JP2008/002900 priority patent/WO2009050878A1/en
Publication of JP2009097053A publication Critical patent/JP2009097053A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12639Adjacent, identical composition, components
    • Y10T428/12646Group VIII or IB metal-base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • Y10T428/12722Next to Group VIII metal-base component

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal strip necessary to a lead-free connector, good in solderability to a substrate, generating no whisker at terminal part when storing it and fitting it to FPC (flexible printed circuit board) or FFC (flexible flat cable). <P>SOLUTION: An Ni plating is applied to the base metal of the metal strip, then a Sn-(1-4 mass%)Cu plating containing no brightener is applied onto it. By heat-treating this metal strip at a temperature of melting point (solid phase line) of a Cu alloy or higher, a Cu-Sn compound layer or a Cu-Ni-Sn compound layer is formed on the Ni-plated layer, and also an Sn layer or an Sn-Cu alloy layer is formed on the Cu-Sn compound layer or the Cu-Ni-Sn compound layer. Furthermore, this metal strip is worked to form connectors. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は電気コネクタを構成する端子、特にFPC(フレキシブル・プリント基板)、FFC(フレキシブル・フラット・ケ-ブル)等の別部材との電気的接続のために、かん合されるコネクタ端子、並びにこれを構成する金属条及びその製造方法に関する。特に無鉛めっきが施された狭ピッチの無鉛めっきコネクタ端子、及びこれを構成する金属条に関する。   The present invention relates to a terminal constituting an electrical connector, in particular a connector terminal mated for electrical connection with another member such as FPC (flexible printed circuit board), FFC (flexible flat cable), etc., and The present invention relates to a metal strip constituting this and a manufacturing method thereof. In particular, the present invention relates to a lead-free plated connector terminal having a narrow pitch that has been subjected to lead-free plating, and a metal strip constituting the terminal.

コネクタを構成する端子は、基板への取り付けの際にはんだ付けされるため、一般にこれを構成する金属条の全面めっき処理が施されている。低環境負荷の鉛フリ-のめっき処理としては、はんだ付け性、接触信頼性、耐食性の観点から、Ni下地層の上にSn系はんだ層を形成するものや、CuまたはCu合金にSnめっきを施した安価なSnめっき材などが知られている。さらに0.5mmピッチ以下の狭ピッチ・コネクタの場合には、隣のコネクタ端子と接触し、短絡をおこすおそれのあるウィスカの成長も同時に抑制する必要がある。   Since the terminals constituting the connector are soldered when attached to the substrate, the entire surface of the metal strip constituting the terminals is generally plated. For low environmental impact lead-free plating, from the viewpoint of solderability, contact reliability, and corrosion resistance, a Sn-based solder layer is formed on the Ni underlayer, or Sn plating is applied to Cu or Cu alloys. Inexpensive Sn plating materials that have been applied are known. Further, in the case of a narrow pitch connector having a pitch of 0.5 mm or less, it is necessary to simultaneously suppress the growth of whiskers that may come into contact with the adjacent connector terminal and cause a short circuit.

母材金属上にNiめっきを施し、その上にSn-Cuめっきを施すことによって、はんだ付け性、耐食性を確保する方法が提案されている(特許文献1)。また、母材金属上にNiもしくはCuの下地めっきを施し、その上にSn-Biめっきを施すことによって、接続時に接触部からウィスカが発生するのを防止する方法が提案されている(特許文献2)。さらに、母材金属上にNi層、Ni-Sn金属間化合物層、Ni-Sn金属間化合物およびSnからなる混在層、酸化Sn層を順次、有するめっき層を形成することにより、ウィスカ発生防止とはんだ濡れ性を両立する方法も提案されている(特許文献3)。また、CuまたはCu合金の表面に、NiまたはNi合金めっき、Cuめっき、SnまたはSn合金めっきを施し、400〜900℃で熱処理することにより、CuまたはCu合金側から順に、NiまたはNi合金層、CuとSnもしくはCuとSnとNiを主成分とする層、SnまたはSn合金層の順に形成して、良好なはんだ付け性、耐ウィスカ性、耐熱信頼性、成形加工性を提供する方法が提案されている(特許文献4)。   There has been proposed a method for securing solderability and corrosion resistance by applying Ni plating on a base metal and applying Sn-Cu plating thereon (Patent Document 1). In addition, a method has been proposed in which whisker is prevented from being generated from a contact portion at the time of connection by performing Ni or Cu base plating on a base metal and then Sn-Bi plating thereon (Patent Document). 2). Furthermore, by forming a plating layer having a Ni layer, a Ni-Sn intermetallic compound layer, a Ni-Sn intermetallic compound and Sn mixed layer, and an oxidized Sn layer in order on the base metal, whisker generation can be prevented. A method for achieving both solder wettability has also been proposed (Patent Document 3). Moreover, Ni or Ni alloy layer is sequentially applied from the Cu or Cu alloy side by applying Ni or Ni alloy plating, Cu plating, Sn or Sn alloy plating on the surface of Cu or Cu alloy, and performing heat treatment at 400 to 900 ° C. A method that provides good solderability, whisker resistance, heat resistance reliability, and molding processability by forming a layer composed mainly of Cu and Sn or Cu and Sn and Ni, and an Sn or Sn alloy layer in this order. It has been proposed (Patent Document 4).

特開2002-164106号公報JP 2002-164106 A 特開2005-56605号公報JP 2005-56605 A 特開2006-49083号公報JP 2006-49083 A 特開2003-293187号公報JP 2003-293187 A

しかしながら、特許文献1のように、Ni下地めっきの上に単にSn-Cuめっきを施して提供される金属条では、はんだ濡れ性、耐食性は確保されるが、ウィスカ成長を抑制することは困難である。2層めっきをするだけでは、Ni下地めっきとSn-Cuめっきの界面にCu-Sn化合物が形成されず、長期間保存すると、NiがSn-Cuめっき中のSn粒界を選択的に拡散することにより、Ni-Sn化合物がSn粒界に沿って成長し、これに伴う局所的な体積変化により、内部圧縮圧力が生じ、これが最表面のSn酸化膜を破壊し、ウィスカが発生・成長してしまう。   However, as in Patent Document 1, the metal strip provided by simply Sn-Cu plating on the Ni base plating ensures solder wettability and corrosion resistance, but it is difficult to suppress whisker growth. is there. Cu-Sn compounds are not formed at the interface between the Ni base plating and Sn-Cu plating by simply performing two-layer plating, and Ni will selectively diffuse Sn grain boundaries during Sn-Cu plating when stored for a long period of time. As a result, the Ni-Sn compound grows along the Sn grain boundary, and an internal compression pressure is generated due to the local volume change accompanying this, which destroys the outermost Sn oxide film and generates and grows whiskers. End up.

また、特許文献2のように、金属条のNiもしくはCuの下地めっきの上にSn-Biめっきを施すだけでは、ウィスカ発生の完全抑止は難しい。NiもしくはCuとSn-BiめっきのSnがリフロ-時に反応し、界面にNi-Sn化合物もしくはCu-Sn化合物が形成され、反応のバリア層が無いために、これらの反応層の形成量は多い。これにより、めっき内部に大きな内部圧縮応力が発生し、ひいては、Ni下地めっき/Sn-Cuめっきより発生頻度は低いが、ウィスカが発生してしまう。   Further, as in Patent Document 2, it is difficult to completely suppress whisker generation by simply performing Sn—Bi plating on the Ni or Cu base plating of the metal strip. Ni or Cu reacts with Sn-Bi plating Sn during reflow, Ni-Sn compound or Cu-Sn compound is formed at the interface, and there is no reaction barrier layer. . As a result, a large internal compressive stress is generated inside the plating, and as a result, whisker is generated although the frequency of occurrence is lower than that of the Ni base plating / Sn—Cu plating.

さらに、特許文献3のように、Ni層、Ni-Sn金属間化合物層、Ni-Sn金属間化合物およびSnからなる混在層、酸化Sn層を順次、有するめっき層を形成する方法では、Ni-Sn化合物が表面のSn酸化物層まで到達するほど成長してしまっており、多量のNi-Sn化合物生成により、めっき内部に大きな内部圧縮応力が発生し、Ni-Sn化合物の支持柱効果をもってしても、ウィスカが発生してしまう。また、Ni-Sn化合物の一部が表面のSn酸化物層まで到達していることにより、そうでない場合と比べて、はんだ濡れ性も劣る。   Furthermore, as in Patent Document 3, in the method of forming a plating layer having a Ni layer, a Ni—Sn intermetallic compound layer, a mixed layer composed of a Ni—Sn intermetallic compound and Sn, and an oxidized Sn layer in this order, Ni— The Sn compound grows as much as it reaches the Sn oxide layer on the surface, and a large amount of Ni-Sn compound is generated, so that a large internal compressive stress is generated inside the plating, which has the support column effect of the Ni-Sn compound. However, whiskers will occur. In addition, since a part of the Ni—Sn compound reaches the Sn oxide layer on the surface, the solder wettability is also inferior compared to the case where it is not.

また、特許文献4については、熱処理することにより、Ni層の上にCu-Sn化合物層が形成されるので、NiとSn-Cuめっき層が接しないため、Ni-Sn化合物の成長を抑制でき、ひいては内部圧縮応力起因のウィスカの成長を抑制しうる。しかし、ウィスカ対策として、めっき膜内部圧縮応力起因のウィスカしか考慮しておらず、400〜900℃と高温で熱処理することにより、めっき膜が非常に硬くなってしまい、コネクタかん合の際に発生する外部圧縮応力起因のウィスカを抑制することができない。   Further, in Patent Document 4, since the Cu—Sn compound layer is formed on the Ni layer by heat treatment, Ni and Sn—Cu plating layer are not in contact with each other, so that the growth of the Ni—Sn compound can be suppressed. As a result, whisker growth caused by internal compressive stress can be suppressed. However, as whisker countermeasures, only whiskers due to the internal compressive stress of the plating film are considered, and the plating film becomes very hard by heat treatment at a high temperature of 400 to 900 ° C., which occurs during connector mating. Whisker caused by external compressive stress cannot be suppressed.

本発明は、上記課題を解決するものであり、めっき膜の内部圧縮応力起因ウィスカ成長の抑制(めっき膜内部金属間化合物層の成長抑止)のほか、コネクタかん合の際に発生する外部圧縮応力起因ウィスカ成長をも抑制し、はんだ濡れ性を確保するコネクタ端子、及びこれを構成する金属条を提供するものである。   The present invention solves the above-mentioned problems, and suppresses whisker growth caused by internal compressive stress in the plating film (inhibition of growth of the intermetallic compound layer inside the plating film), and external compressive stress generated during connector mating. The present invention provides a connector terminal that suppresses the resulting whisker growth and ensures solder wettability, and a metal strip constituting the connector terminal.

ここで、上記した金属条の利用形態としては主としてコネクタがある。基板の端子間をフレキシブル接続する場合にFPCまたはFFCが一般に使用される。この場合、両方の基板の端子にコネクタをはんだ付けし、両方のコネクタをFPCまたはFFCを介して接続する必要がるが、このコネクタのうち、特に、端子ピッチが0.5mm以下の狭ピッチで、鉛フリ-であるコネクタに対して本発明の金属条を用いることができる。   Here, a connector is mainly used as a usage form of the metal strip. FPC or FFC is generally used for flexible connection between the terminals of the board. In this case, it is necessary to solder the connectors to the terminals of both boards and connect both connectors via FPC or FFC. Of these connectors, in particular, the terminal pitch is a narrow pitch of 0.5 mm or less, The metal strip of the present invention can be used for a lead-free connector.

本願において開示される発明のうち代表的なものの概要を簡単に説明すれば次のとおりである。
(1)母材金属と、前記母材金属上に形成されたNi層と、前記Ni層上にされたCu-Sn化合物層もしくはCu-Ni-Sn化合物層と、前記Cu-Sn化合物層もしくはCu-Ni-Sn化合物層上に形成されたSn層もしくはSn-Cu合金層と、を有し、ビッカ-ス硬度が100以下であることを特徴とする金属条である。
(2)(1)1記載の金属条であって、前記Sn層もしくはSn-Cu合金層と前記Cu-Sn化合物層もしくはCu-Ni-Sn化合物層中のSn+Cuの全合計量に対するCu全合計量の割合が1〜4mass%であることを特徴とする金属条である。
(3)金属条の製造方法であって、母材金属上にNi層、Sn-(1〜4mass%)Cu合金層を順次積層させる工程と、前記積層された母材金属を前記Sn-(1〜4mass%)Cu合金の固相線温度以上の温度で熱処理し、前記Ni層上にCu-Sn化合物層もしくはCu-Ni-Sn化合物層、前記Cu-Sn化合物層もしくはCu-Ni-Sn化合物層上にSn層もしくはSn-Cu合金層、を形成する工程と、を有することを特徴とする金属条の製造方法である。
(4)(3)記載の金属条の製造方法であって、前記Sn-(1〜4mass%)Cu合金層は無光沢めっきにより積層させることを特徴とする金属条の製造方法である。
The following is a brief description of an outline of typical inventions disclosed in the present application.
(1) Base metal, Ni layer formed on the base metal, Cu-Sn compound layer or Cu-Ni-Sn compound layer formed on the Ni layer, Cu-Sn compound layer or And a Sn layer or an Sn—Cu alloy layer formed on the Cu—Ni—Sn compound layer, and having a Vickers hardness of 100 or less.
(2) The metal strip according to (1) 1, wherein the total Cu with respect to the total amount of Sn + Cu in the Sn layer or Sn-Cu alloy layer and the Cu-Sn compound layer or Cu-Ni-Sn compound layer The metal strip is characterized in that the proportion of the amount is 1 to 4 mass%.
(3) A method for producing a metal strip, comprising a step of sequentially laminating a Ni layer and a Sn- (1 to 4 mass%) Cu alloy layer on a base metal, and forming the stacked base metal into the Sn- ( 1 to 4 mass%) Heat treatment at a temperature equal to or higher than the solidus temperature of the Cu alloy, and a Cu-Sn compound layer or Cu-Ni-Sn compound layer, the Cu-Sn compound layer or Cu-Ni-Sn on the Ni layer Forming a Sn layer or a Sn—Cu alloy layer on the compound layer.
(4) The method for producing a metal strip according to (3), wherein the Sn- (1 to 4 mass%) Cu alloy layer is laminated by matte plating.

本発明によれば、めっき膜の内部圧縮応力起因ウィスカ成長の抑制(めっき膜内部金属間化合物層の成長抑止)のほか、コネクタかん合の際に発生する外部圧縮応力起因ウィスカ成長をも抑制し、はんだ濡れ性を確保する、金属条、及びこれにより形成されるコネクタを提供することができる。   According to the present invention, whisker growth caused by internal compressive stress in the plating film is suppressed (inhibition of growth of the intermetallic compound layer inside the plating film), and whisker growth caused by external compressive stress generated during connector mating is also suppressed. It is possible to provide a metal strip that secures solder wettability, and a connector formed thereby.

まず、本発明に係る金属条の第1の実施形態について、図1を用いて説明する。
図1は、本発明に係る金属条1の層構造の断面を示すものであり、母材金属2上には、Ni層3と、Ni層3上に形成されたCu-Sn化合物層もしくはCu-Ni-Sn化合物層4と、Cu-Sn化合物層もしくはCu-Ni-Sn化合物層4上に形成され、光沢剤を含まないSn層もしくはSn-Cu合金層5とによる積層構造が設けられている。また前記金属条1のビッカース硬度は100以下である。
本構造では、母材金属2と光沢剤を含まないSn層もしくはSn-Cu合金層5との間に2重の反応防止バリア層が形成されることが重要となる。すなわち、これによれば、Cu-Sn化合物層もしくはCu-Ni-Sn化合物層4により、Ni層3と光沢剤を含まないSn層もしくはSn-Cu合金層5の間の反応を抑止でき、また、Ni層3により、母材金属2とCu-Sn化合物層もしくはCu-Ni-Sn化合物層4、光沢剤を含まないSn層もしくはSn-Cu合金層5との間の反応を抑止できるため、めっき膜内のNi-Sn化合物、Cu-Sn化合物、Cu-Ni-Sn化合物成長を防止でき、金属条表面から発生する内部圧縮応力起因のSnウィスカの抑制を図ることができる。一般には母材金属2としてはリン青銅のようなCu合金が多く使用され、このCu合金からのCu供給による化合物化の促進がウィスカの原因となりうるが、上記の通り、Ni層3によりリン青銅からのCu供給は遮断され、母材金属とCu-Sn化合物層もしくはCu-Ni-Sn化合物層4との反応は抑止されるため、本発明の層構造を有する金属条によれば、母材金属を特殊な材料にすることなく、通常のリン青銅を用いることができる。
First, 1st Embodiment of the metal strip which concerns on this invention is described using FIG.
FIG. 1 shows a cross section of a layer structure of a metal strip 1 according to the present invention. On a base metal 2, a Ni layer 3 and a Cu—Sn compound layer or Cu formed on the Ni layer 3 are shown. A layered structure is provided which is formed on the Ni-Sn compound layer 4 and the Cu-Sn compound layer or the Cu-Ni-Sn compound layer 4 and includes a brightener-free Sn layer or Sn-Cu alloy layer 5. Yes. The metal strip 1 has a Vickers hardness of 100 or less.
In this structure, it is important that a double reaction barrier layer is formed between the base metal 2 and the Sn layer or Sn—Cu alloy layer 5 not containing the brightener. That is, according to this, the reaction between the Ni layer 3 and the Sn layer or Sn—Cu alloy layer 5 not containing the brightener can be suppressed by the Cu—Sn compound layer or the Cu—Ni—Sn compound layer 4, and The reaction between the base metal 2 and the Cu—Sn compound layer or Cu—Ni—Sn compound layer 4 and the Sn layer or Sn—Cu alloy layer 5 not containing the brightener can be suppressed by the Ni layer 3. Ni—Sn compound, Cu—Sn compound and Cu—Ni—Sn compound growth in the plating film can be prevented, and Sn whisker caused by internal compressive stress generated from the surface of the metal strip can be suppressed. In general, as the base metal 2, a Cu alloy such as phosphor bronze is often used, and the promotion of compounding by the Cu supply from this Cu alloy may cause whiskers. Since the Cu supply from the metal is interrupted and the reaction between the base metal and the Cu—Sn compound layer or the Cu—Ni—Sn compound layer 4 is suppressed, the metal strip having the layer structure of the present invention is used. Ordinary phosphor bronze can be used without using metal as a special material.

また、本構造では、ビッカ-ス硬度を100以下に設定しているため、FPCまたはFFCとかん合して外部から圧力が印加された場合でも、かん合部には圧縮応力があまり発生せず、外部圧縮応力起因のウィスカ成長も抑制することができる。   Also, in this structure, Vickers hardness is set to 100 or less, so even when external pressure is applied by engaging with FPC or FFC, compressive stress is not generated in the engaged part. Also, whisker growth caused by external compressive stress can be suppressed.

なお、本構造の Ni層3の厚さは0.05〜1.0μmの範囲とすることが好ましい。Ni層3の厚さが0.05μm未満であると、母材金属2とCu-Sn化合物層もしくはCu-Ni-Sn化合物層4、光沢剤を含まないSn層もしくはSn-Cu合金層5との間の反応抑止機能が十分に機能しなくなり、1.0μmより厚いと、金属条の成形加工性が悪くなるからである。
また、形成されるCu-Sn化合物はCu6Sn5が主で、形成されるCu-Ni-Sn化合物は(Cu, Ni)6Sn5が主であるが、他にCu3Snや(Cu, Ni)3Snが一部形成される場合もある。また、Sn-Cu合金層5中のCu割合は通常、Sn-Cu共晶組成である0.7〜0.9mass%となる。
さらに、表面層(Ni層3、Cu-Sn化合物層もしくはCu-Ni-Sn化合物層4、光沢剤を含まないSn層もしくはSn-Cu合金層5)の合計厚さは、1〜10μmの範囲とすることが好ましい。1μm未満であると、はんだ濡れ性が低下し、10μmを超えると、金属条の成形加工性が悪くなるからである。
The thickness of the Ni layer 3 of this structure is preferably in the range of 0.05 to 1.0 μm. When the thickness of the Ni layer 3 is less than 0.05 μm, the base metal 2 and the Cu—Sn compound layer or Cu—Ni—Sn compound layer 4 and the Sn layer or Sn—Cu alloy layer 5 not containing the brightener are included. This is because the function of inhibiting the reaction between the two does not sufficiently function, and if it is thicker than 1.0 μm, the moldability of the metal strip is deteriorated.
The Cu-Sn compound formed is mainly Cu 6 Sn 5 and the Cu-Ni-Sn compound formed is mainly (Cu, Ni) 6 Sn 5, but Cu 3 Sn and (Cu , Ni) 3 Sn may be partially formed. Moreover, the Cu ratio in the Sn—Cu alloy layer 5 is usually 0.7 to 0.9 mass%, which is a Sn—Cu eutectic composition.
Furthermore, the total thickness of the surface layers (Ni layer 3, Cu-Sn compound layer or Cu-Ni-Sn compound layer 4, Sn layer or Sn-Cu alloy layer 5 not containing brightener) is in the range of 1 to 10 μm. It is preferable that This is because if the thickness is less than 1 μm, the solder wettability is lowered, and if it exceeds 10 μm, the moldability of the metal strip is deteriorated.

ここで、本構造では、第1層としてNi層、第2層としてCu-Sn化合物層もしくはCu-Ni-Sn化合物層、第3層として光沢剤を含まないSn層もしくはSn-Cu合金層が形成され、ビッカース硬度が100以下となる金属条を例にとって記載したが、これに限られるものではなく、2重の反応防止バリア層を形成して化合物化の進行を防ぐ構成を取りうる材料の組み合わせであって、ビッカ-ス硬度を100以下に設定したものであれば、その要旨を逸脱しない範囲で種々変更可能である。例えば、第2層としてZn-Sn化合物層、第3層としてビッカ-ス硬度100以下のSnとZnとの共晶組成の層を用いても構わない。また、第1層はCo層、Fe層等であってもよい。   Here, in this structure, the Ni layer is the first layer, the Cu-Sn compound layer or Cu-Ni-Sn compound layer is the second layer, and the Sn layer or Sn-Cu alloy layer not containing the brightener is the third layer. Although a metal strip having a Vickers hardness of 100 or less has been described as an example, the present invention is not limited to this, and it is not limited to this, and a material that can be configured to prevent the progress of compounding by forming a double reaction barrier layer. As long as it is a combination and the Vickers hardness is set to 100 or less, various modifications can be made without departing from the scope of the invention. For example, a Zn—Sn compound layer may be used as the second layer, and a layer having a eutectic composition of Sn and Zn having a Vickers hardness of 100 or less may be used as the third layer. Further, the first layer may be a Co layer, an Fe layer, or the like.

次に、本発明に係る金属条の製造方法について説明する。
図2は、本発明に係る金属条を製造するために用いる熱処理前の金属条6の第一の積層構造の断面図であり、母材金属2上にNi層3、Ni層3上に無光沢Sn-Cu合金層7を順次めっき等により設けて形成する。ここで、Ni層3上に形成された無光沢Sn-Cu合金層7は、後述の熱処理によりNi層3の直上にCu-Sn化合物層もしくはCu-Ni-Sn化合物層4を形成するために必要となる。
なお、無光沢Sn-Cu合金層7の厚さは1〜5μmの範囲とすることが好ましい。1μm未満であると、はんだ濡れ性が低下し、5μmを超えると、金属条の成形加工性が悪くなるからである。また、Sn-Cu合金層7は、Zn、Al、Si、Mg、Tiのうちの1種以上の金属を1mass%以下含んでいてもよい。これらの酸化しやすい金属を微量含むことにより、後の熱処理時やリフロ-時に、これらの金属が選択的に酸化されるため、最表面のSn-Cu合金層の酸化を最小限に抑えることが可能となり、最表面の酸化Sn層のフタ効果によるめっき膜内部圧縮応力の発生およびこれに伴うウィスカの発生を抑制することができる。
Next, the manufacturing method of the metal strip which concerns on this invention is demonstrated.
FIG. 2 is a cross-sectional view of the first laminated structure of the metal strip 6 before heat treatment used for manufacturing the metal strip according to the present invention. The Ni layer 3 is formed on the base metal 2 and the Ni layer 3 is not coated. The bright Sn—Cu alloy layer 7 is formed by sequentially providing plating or the like. Here, the matte Sn—Cu alloy layer 7 formed on the Ni layer 3 is used to form a Cu—Sn compound layer or a Cu—Ni—Sn compound layer 4 directly on the Ni layer 3 by a heat treatment described later. Necessary.
Note that the thickness of the matte Sn—Cu alloy layer 7 is preferably in the range of 1 to 5 μm. This is because if the thickness is less than 1 μm, the solder wettability decreases, and if it exceeds 5 μm, the moldability of the metal strip deteriorates. Further, the Sn—Cu alloy layer 7 may contain 1 mass% or less of one or more metals selected from Zn, Al, Si, Mg, and Ti. By containing a small amount of these oxidizable metals, these metals are selectively oxidized during the subsequent heat treatment and reflow, so that the oxidation of the outermost Sn-Cu alloy layer can be minimized. It is possible to suppress the generation of internal compressive stress in the plating film due to the lid effect of the outermost oxidized Sn layer and the generation of whiskers associated therewith.

以上の層形成処理の後、金属条6を無光沢Sn-Cu合金層7の固相線以上の温度で熱処理することで、無光沢Sn-Cu合金層7が部分的に融ける。これにより無光沢のSn-Cu合金層7中に浮島状に存在していたCu-Sn化合物の一部が融け、これがNi層3の直上に差異析出し、Cu-Sn化合物層が形成される。また、さらに液相線以上の温度まで上げた場合には、無光沢Sn-Cu合金層7が完全に融ける。その後、冷却するとCu-Sn化合物が再析出するが、この時、Niが再析出の核となり、Cu-Sn化合物はNi層3上に析出する。ここで、熱処理温度が液相線温度よりも低い場合には、Cu-Sn化合物が再析出するのみで終わることもあるが、熱処理温度が液相線温度以上の場合には、Cu-Sn化合物が析出すると同時に、Ni層3と反応してNi層3直上にCu-Sn化合物層もしくはCu-Ni-Sn化合物4が形成される。   After the above layer forming treatment, the matte Sn—Cu alloy layer 7 is partially melted by heat-treating the metal strip 6 at a temperature equal to or higher than the solidus of the matte Sn—Cu alloy layer 7. As a result, a part of the Cu—Sn compound existing in a floating island shape in the matte Sn—Cu alloy layer 7 melts, and this is differentially deposited immediately above the Ni layer 3 to form a Cu—Sn compound layer. . Further, when the temperature is raised to a temperature higher than the liquidus, the matte Sn—Cu alloy layer 7 is completely melted. Thereafter, when cooled, the Cu—Sn compound is reprecipitated. At this time, Ni becomes the nucleus of reprecipitation, and the Cu—Sn compound is precipitated on the Ni layer 3. Here, when the heat treatment temperature is lower than the liquidus temperature, the Cu-Sn compound may end only by reprecipitation, but when the heat treatment temperature is higher than the liquidus temperature, the Cu-Sn compound may end. At the same time as it precipitates, it reacts with the Ni layer 3 to form a Cu—Sn compound layer or a Cu—Ni—Sn compound 4 immediately above the Ni layer 3.

熱処理後、表面層は光沢剤を含まないSn層もしくはSn-Cu合金層5となる。光沢剤を含まないSn-Cu合金層中のCu割合は通常Sn-Cu共晶組成である0.7〜0.9mass%となる。この場合、表面層には酸化Snが比較的少ないため、その後の接続時のはんだ濡れ性も良好な金属条を提供することができる。
ここで、製造された金属条1のSn層もしくはSn-Cu合金層5とCu-Sn化合物層もしくはCu-Ni-Sn化合物層4の元となる無光沢Sn-Cu合金層7には光沢剤が含まれていないため、金属条1を得るための熱処理を行った後も、金属条1のビッカ-ス硬度は100以下と低いため、FPCやFCC等とのかん合の際に発生する外部圧縮応力起因のウィスカを抑制することができる。
なお、表面層は通常、最も安定した状態であるSn-Cu合金層(Sn-Cu共晶組成)となるが、表面層が極めて薄くなる場合、例えば2μm以下程度となる場合には、表面層はSnとなる場合もある。これは層厚が2μm以下の場合には、Sn-Cu共晶組成の層として存在するよりも、すべてのCu成分が表面層の下層にあるCu-Sn化合物層もしくはCu-Ni-Sn化合物側に用いられ、表面層がSn層となったほうが安定状態となるためである。
After the heat treatment, the surface layer becomes the Sn layer or Sn—Cu alloy layer 5 containing no brightener. The Cu ratio in the Sn—Cu alloy layer not containing the brightener is usually 0.7 to 0.9 mass%, which is a Sn—Cu eutectic composition. In this case, since the surface layer has a relatively small amount of Sn oxide, it is possible to provide a metal strip having good solder wettability at the time of subsequent connection.
Here, a brightening agent is used for the matte Sn—Cu alloy layer 7 which is the basis of the Sn layer or Sn—Cu alloy layer 5 of the manufactured metal strip 1 and the Cu—Sn compound layer or Cu—Ni—Sn compound layer 4. Since the Vickers hardness of the metal strip 1 is as low as 100 or less even after the heat treatment for obtaining the metal strip 1 is not included, the external generated when mating with FPC, FCC, etc. Whisker caused by compressive stress can be suppressed.
The surface layer is usually the most stable Sn—Cu alloy layer (Sn—Cu eutectic composition), but when the surface layer becomes extremely thin, for example, about 2 μm or less, the surface layer May be Sn. When the layer thickness is 2 μm or less, the Cu-Sn compound layer or Cu-Ni-Sn compound side where all the Cu components are under the surface layer rather than existing as a layer of Sn-Cu eutectic composition This is because it becomes more stable when the surface layer is an Sn layer.

ここで、上記の熱処理は350℃以下で行うことが望ましい。350℃以上の温度で熱処理を行うと、ビッカ-ス硬度が100より高くなってしまい、FPCまたはFFCとかん合して、外部から応力が印加された場合に、かん合部に圧縮応力が発生し、ウィスカが発生・成長してしまうほか、表面の酸化度合いが高くなり、はんだ濡れ性が著しく劣化するからである。   Here, the heat treatment is desirably performed at 350 ° C. or lower. When heat treatment is performed at a temperature of 350 ° C or higher, the Vickers hardness becomes higher than 100, and compressive stress is generated in the mating part when it is mated with FPC or FFC and external stress is applied. In addition to the occurrence and growth of whiskers, the degree of surface oxidation increases, and the solder wettability deteriorates significantly.

熱処理温度を350℃以下とするためには、無光沢Sn-Cu合金層7のCuの割合は4mass%以下とする必要がある。また、無光沢Sn-Cu合金層7のCuの割合を1mass%未満とすると、Sn-Cu合金共晶のCu割合0.7〜0.9mass%との差が小さすぎて、Ni層3の上に再析出するCu-Sn化合物もしくはCu-Ni-Sn化合物の量が少なすぎ、Cu-Sn化合物層もしくはCu-Ni-Sn化合物層4の一部にCu-Sn化合物もしくはCu-Ni-Sn化合物が形成されない部分ができて、Ni層3と光沢剤を含まないSn層もしくはSn-Cu合金層5の間の反応を完全に抑止できない。よって、無光沢Sn-Cu合金層7のCuの割合は1〜4mass%とする必要がある。なお、Sn-(1〜4mass%)Cu組成の場合、固相線温度は227℃、液相線温度は約235〜350℃である。   In order to set the heat treatment temperature to 350 ° C. or less, the ratio of Cu in the matte Sn—Cu alloy layer 7 needs to be 4 mass% or less. Moreover, if the ratio of Cu in the matte Sn—Cu alloy layer 7 is less than 1 mass%, the difference from the Cu ratio of 0.7 to 0.9 mass% in the Sn—Cu alloy eutectic is too small, so The amount of the deposited Cu-Sn compound or Cu-Ni-Sn compound is too small, and a Cu-Sn compound or Cu-Ni-Sn compound is formed on a part of the Cu-Sn compound layer or Cu-Ni-Sn compound layer 4 A portion not formed is formed, and the reaction between the Ni layer 3 and the Sn layer or Sn—Cu alloy layer 5 not containing the brightener cannot be completely prevented. Therefore, the ratio of Cu in the matte Sn—Cu alloy layer 7 needs to be 1 to 4 mass%. In addition, in the case of Sn- (1-4 mass%) Cu composition, solidus temperature is 227 degreeC and liquidus temperature is about 235-350 degreeC.

すなわち、Ni層3上の無光沢Sn-Cu合金層7のCu割合を1〜4mass%とし、350℃以下の温度で熱処理することにより、金属条1のビッカ-ス硬度は100以下となり、内部応力起因のウィスカ抑制と外部応力起因のウィスカ抑制を両立することができる。   That is, by setting the Cu ratio of the matte Sn—Cu alloy layer 7 on the Ni layer 3 to 1 to 4 mass% and performing heat treatment at a temperature of 350 ° C. or less, the Vickers hardness of the metal strip 1 becomes 100 or less, and the internal It is possible to achieve both whisker suppression due to stress and whisker suppression due to external stress.

なお、一般に上記のように使用する無光沢めっきは光沢めっきと比べてはんだ濡れ性が大きく劣ることが知られているが、350℃以下の低温で熱処理することによって、実用レベルまで改善することができる。   In general, matte plating used as described above is known to have significantly poorer solder wettability compared to bright plating, but it can be improved to a practical level by heat treatment at a low temperature of 350 ° C or lower. it can.

また、上記では本発明の金属条を製造するために用いる熱処理前の金属条6として、Ni層3と無光沢Sn-Cu合金層7との積層構造を例に挙げて説明したが、これに限られず、図3に示すように第二の積層構造として、母材金属2上に光沢剤を用いないNi層3とCu層8とSn層9とを順次積層したものを用いても構わない。なお、Sn層9には、Zn、Al、Si、Mg、Tiのうちの1種以上の金属を1mass%以下含んでいてもよい。これらの酸化しやすい金属を微量含むことにより、後の熱処理時やリフロ-時に、これらの金属が選択的に酸化されるため、最表面のSn層7の酸化を最小限に抑えることが可能となり、最表面の酸化Sn層のフタ効果によるめっき膜内部圧縮応力の発生およびこれに伴うウィスカの発生を抑制することができる。
この場合、層形成処理後、金属条をSnの融点以上、少なくともSn-Cu合金の固相線以上350℃以下の温度で熱処理し、Cu層8とSn層9とを完全に反応させることで、Ni層3の直上にCu-Sn化合物層もしくはCu-Ni-Sn化合物層が形成され、表面層にSn層もしくはSn-Cu合金層が形成され、ビッカース硬度が100以下となるので、同様の効果を有する金属条1を製造することができる。
In the above description, the laminated structure of the Ni layer 3 and the matte Sn-Cu alloy layer 7 is described as an example of the pre-heat treatment metal strip 6 used for manufacturing the metal strip of the present invention. As shown in FIG. 3, the second laminated structure may be formed by sequentially laminating a Ni layer 3, a Cu layer 8, and a Sn layer 9 not using a brightener on the base metal 2. . The Sn layer 9 may contain 1 mass% or less of one or more metals selected from Zn, Al, Si, Mg, and Ti. By containing a small amount of these oxidizable metals, these metals are selectively oxidized at the time of subsequent heat treatment or reflow, so that the oxidation of the outermost Sn layer 7 can be minimized. In addition, it is possible to suppress the generation of internal compressive stress in the plating film due to the lid effect of the outermost Sn oxide layer and the generation of whiskers associated therewith.
In this case, after the layer formation treatment, the metal strip is heat-treated at a temperature not lower than the melting point of Sn and at least not lower than the solidus of the Sn—Cu alloy and not higher than 350 ° C. Since the Cu-Sn compound layer or Cu-Ni-Sn compound layer is formed immediately above the Ni layer 3 and the Sn layer or Sn-Cu alloy layer is formed on the surface layer, the Vickers hardness is 100 or less. The metal strip 1 having an effect can be manufactured.

以下、具体的な実験の結果を示す。   The results of specific experiments are shown below.

本発明の金属条のサンプル(実施例1〜9)、従来の金属条のサンプル(比較例1〜4)について、ビッカ-ス硬度、ウィスカ(内部応力起因、外部応力起因)発生状況を調べた結果を図4に示す。サンプルには、リン青銅製の母材金属(32mm×15mm×厚さ0.25mm)を使用し、めっき前処理として、電解脱脂処理および酸活性処理を行った後、表面にめっき層を通常の電気めっき法により逐次、形成した。めっき膜厚の測定は蛍光X線膜厚計を用いた。その後、N2中、所定の温度で10秒間保持して、熱処理した。
金属条サンプル表面のビッカ-ス硬度の測定は、マイクロビッカ-ス硬度計を用いて、クリ-プ速度5gf/2s、クリ-プ時間5sで測定した。
Regarding the metal strip samples of the present invention (Examples 1 to 9) and the conventional metal strip samples (Comparative Examples 1 to 4), the occurrence of Vickers hardness and whisker (caused by internal stress and external stress) was examined. The results are shown in FIG. For the sample, a phosphor bronze base metal (32 mm x 15 mm x 0.25 mm thickness) was used. After the electrolytic degreasing treatment and acid activation treatment were performed as pre-plating treatment, a plating layer was applied to the surface. It formed one by one by the plating method. A fluorescent X-ray film thickness meter was used to measure the plating film thickness. Thereafter, heat treatment was carried out by holding at a predetermined temperature for 10 seconds in N2.
The Vickers hardness of the metal strip sample surface was measured using a micro Vickers hardness meter at a creep rate of 5 gf / 2 s and a creep time of 5 s.

ウィスカ発生状況の確認は以下のように行った。金属条サンプルを加工して形成したコネクタにFPCをかん合し、室温、相対湿度50%で、1000時間放置後、金属顕微鏡および走査型電子顕微鏡で観察することにより行った。ウィスカ長は最大長さとした。
実施例1〜9では、ビッカ-ス硬度は100以下と比較的軟らかく、内部応力起因のウィスカ発生は見られず、外部応力起因のウィスカも最大長さ20μm以下であった。
The confirmation of whisker generation was performed as follows. FPC was fitted into a connector formed by processing a metal strip sample, and after standing for 1000 hours at room temperature and 50% relative humidity, observation was performed with a metal microscope and a scanning electron microscope. The whisker length is the maximum length.
In Examples 1 to 9, the Vickers hardness was relatively soft at 100 or less, whisker generation due to internal stress was not observed, and the whisker due to external stress was 20 μm or less in maximum length.

本発明の金属条のサンプル(実施例1〜9)、従来の金属条のサンプル(比較例1〜4)について、はんだ濡れ性を調べた結果を図5に示す。
はんだ濡れ性の評価はメニスコグラフを用いてゼロクロス時間と最大濡れ力を測定することにより行った。試験サンプルは15mm×3mm×厚さ0.25mmの金属条を用いた。浴はんだにはSn-3Ag-0.5Cuを用い、浴温は240℃とした。下降速度は2.0mm/s、浸漬深さは2.0mm、保持時間は20sとした。試料ははんだ浴に浸漬する前に、25mass% WW Rosin/IPAフラックスに先端を約3mm、5秒間浸漬して、フラックスを塗布した。
FIG. 5 shows the results of examining the solder wettability of the metal strip samples of the present invention (Examples 1 to 9) and the conventional metal strip samples (Comparative Examples 1 to 4).
The evaluation of solder wettability was performed by measuring the zero crossing time and the maximum wettability using a meniscograph. As a test sample, a metal strip of 15 mm × 3 mm × thickness 0.25 mm was used. Sn-3Ag-0.5Cu was used for the bath solder, and the bath temperature was 240 ° C. The descending speed was 2.0 mm / s, the immersion depth was 2.0 mm, and the holding time was 20 s. Before the sample was immersed in the solder bath, the tip was immersed in 25 mass% WW Rosin / IPA flux for about 3 mm for 5 seconds to apply the flux.

実施例1〜9では、ゼロクロス時間が比較的短く、最大濡れ力が比較的大きく、良好なはんだ濡れ性が得られた。
従来の金属条サンプルを用いた比較例1〜4では、ウィスカ発生(内部応力起因、外部応力起因)、はんだ濡れ性の何れかに問題が見られた。
実施例、比較例のうち、Sn-Cu合金層の液相線温度以上の温度で熱処理したサンプルのNi層直上にはCu-Ni-Sn化合物層が、液相線温度より低い温度で熱処理したサンプルのNi層直上にはCu-Sn化合物層が形成された。また、Sn-Cuめっき厚さが1.5μmと薄い実施例9のサンプルでは、熱処理後、最表面層がSn-0.75Cu層にはならず、Sn層となった。
In Examples 1 to 9, the zero crossing time was relatively short, the maximum wetting force was relatively large, and good solder wettability was obtained.
In Comparative Examples 1 to 4 using conventional metal strip samples, there was a problem with either whisker generation (caused by internal stress or external stress) or solder wettability.
Among the examples and comparative examples, the Cu—Ni—Sn compound layer was heat-treated at a temperature lower than the liquidus temperature immediately above the Ni layer of the sample heat-treated at a temperature higher than the liquidus temperature of the Sn—Cu alloy layer. A Cu—Sn compound layer was formed immediately above the Ni layer of the sample. Further, in the sample of Example 9 having a thin Sn—Cu plating thickness of 1.5 μm, after the heat treatment, the outermost surface layer did not become the Sn—0.75Cu layer but became the Sn layer.

以上の実験結果から、本発明に係る金属条であれば、耐ウィスカ性(内部応力起因ウィスカ抑制、外部応力起因ウィスカ抑制)、はんだ濡れ性においていずれも良好であることがわかった。   From the above experimental results, it was found that the metal strip according to the present invention is good in both whisker resistance (inhibition of internal stress-induced whisker and external stress-induced whisker) and solder wettability.

本発明に係る金属条の層構造の模式的断面図である。It is typical sectional drawing of the layer structure of the metal strip which concerns on this invention. 本発明に係る金属条を製造するために用いる熱処理前の金属条の第一の層構造の模式的断面図である。It is typical sectional drawing of the 1st layer structure of the metal strip before heat processing used in order to manufacture the metal strip which concerns on this invention. 本発明に係る金属条を製造するために用いる熱処理前の金属条の第二の層構造の模式的断面図である。It is typical sectional drawing of the 2nd layer structure of the metal strip before heat processing used in order to manufacture the metal strip which concerns on this invention. 本発明の金属条と従来の金属条のウィスカ発生状況を示す図である。It is a figure which shows the whisker generation | occurrence | production situation of the metal strip of this invention and the conventional metal strip. 本発明の金属条と従来の金属条のはんだ濡れ性を示す図である。It is a figure which shows the solder wettability of the metal strip of this invention, and the conventional metal strip.

符号の説明Explanation of symbols

1 金属条
2 母材金属
3 Ni層
4 Cu-Sn化合物層もしくはCu-Ni-Sn化合物層
5 光沢剤を含まないSn層もしくはSn-Cu合金層
6 熱処理前の金属条
7 無光沢Sn-Cu合金層
8 Cu層
9 Sn層
1 Metal strip 2 Base metal 3 Ni layer 4 Cu-Sn compound layer or Cu-Ni-Sn compound layer 5 Sn layer or Sn-Cu alloy layer containing no brightener 6 Metal strip before heat treatment 7 Matte Sn-Cu Alloy layer 8 Cu layer 9 Sn layer

Claims (12)

母材金属と、
前記母材金属上に形成されたNi層と、
前記Ni層上に形成されたCu-Sn化合物層もしくはCu-Ni-Sn化合物層と、前記Cu-Sn化合物層もしくはCu-Ni-Sn化合物層上に形成されたSn層もしくはSn-Cu合金層と、を有し、ビッカ-ス硬度が100以下であることを特徴とする金属条。
With base metal,
Ni layer formed on the base metal,
Cu-Sn compound layer or Cu-Ni-Sn compound layer formed on the Ni layer, and Sn layer or Sn-Cu alloy layer formed on the Cu-Sn compound layer or Cu-Ni-Sn compound layer And a metal strip characterized by having a Vickers hardness of 100 or less.
請求項1記載の金属条であって、
前記Sn層もしくはSn-Cu合金層と前記Cu-Sn化合物層もしくはCu-Ni-Sn化合物層中のSn+Cuの全合計量に対するCu全合計量の割合が1〜4mass%であることを特徴とする金属条。
The metal strip according to claim 1,
The ratio of the total Cu amount to the total total amount of Sn + Cu in the Sn layer or Sn-Cu alloy layer and the Cu-Sn compound layer or Cu-Ni-Sn compound layer is 1 to 4 mass%, Metal strip.
請求項1又は2記載の金属条であって、
前記Sn層もしくは前記Sn-Cu合金層は最表面層であり無光沢層であることを特徴とする金属条。
The metal strip according to claim 1 or 2,
The metal layer, wherein the Sn layer or the Sn—Cu alloy layer is an outermost surface layer and is a matte layer.
請求項1乃至3のいずれかに記載の金属条であって、
前記Ni層と前記Sn層もしくは前記Sn-Cu合金層とは、これらの間に形成された前記Cu-Sn化合物層もしくはCu-Ni-Sn化合物層により互いに接していないことを特徴とする金属条。
The metal strip according to any one of claims 1 to 3,
The Ni layer and the Sn layer or the Sn—Cu alloy layer are not in contact with each other by the Cu—Sn compound layer or the Cu—Ni—Sn compound layer formed therebetween. .
請求項1乃至4のいずれかに記載の金属条であって、
前記Cu-Sn化合物層もしくは前記Cu-Ni-Sn化合物層は、前記Ni層に接して形成されており、前記Sn層もしくは前記Sn-Cu合金層は、前記Ni層には接することはなく、前記Cu-Sn化合物層もしくは前記Cu-Ni-Sn化合物層に接して形成されていることを特徴とする金属条。
The metal strip according to any one of claims 1 to 4,
The Cu-Sn compound layer or the Cu-Ni-Sn compound layer is formed in contact with the Ni layer, and the Sn layer or the Sn-Cu alloy layer does not contact the Ni layer, A metal strip characterized by being formed in contact with the Cu-Sn compound layer or the Cu-Ni-Sn compound layer.
請求項1乃至5のいずれかに記載の金属条であって、
前記Sn層もしくは前記Sn-Cu合金層および前記Cu-Sn化合物層もしくは前記Cu-Ni-Sn化合物層は、前記Ni層上に積層された光沢剤を含まないSn-Cu合金めっき層を熱処理することにより形成されたものであることを特徴とする金属条。
A metal strip according to any one of claims 1 to 5,
The Sn layer or the Sn-Cu alloy layer and the Cu-Sn compound layer or the Cu-Ni-Sn compound layer heat-treat the Sn-Cu alloy plating layer that does not contain a brightener laminated on the Ni layer. Metal strip characterized by being formed.
請求項1乃至6のいずれかに記載の金属条であって、
前記母材金属は、Cu合金であることを特徴とする金属条。
The metal strip according to any one of claims 1 to 6,
The metal strip is characterized in that the base metal is a Cu alloy.
請求項7記載の金属条であって、
前記母材金属は、リン青銅であることを特徴とする金属条。
The metal strip according to claim 7,
The metal strip is characterized in that the base metal is phosphor bronze.
請求項1乃至8のいずれかに記載の金属条を加工して形成したことを特徴とするコネクタ。 A connector formed by processing the metal strip according to any one of claims 1 to 8. 金属条の製造方法であって、
母材金属上にNi層、Sn-(1〜4mass%)Cu合金層を順次積層させる工程と、
前記積層された母材金属を前記Sn-(1〜4mass%)Cu合金の固相線温度以上の温度で熱処理し、前記Ni層上にCu-Sn化合物層もしくはCu-Ni-Sn化合物層、前記Cu-Sn化合物層もしくはCu-Ni-Sn化合物層上にSn層もしくはSn-Cu合金層、を形成する工程と、を有することを特徴とする金属条の製造方法。
A method of manufacturing a metal strip,
A step of sequentially laminating a Ni layer and a Sn- (1-4 mass%) Cu alloy layer on the base metal;
The laminated base metal is heat-treated at a temperature equal to or higher than the solidus temperature of the Sn- (1 to 4 mass%) Cu alloy, and a Cu-Sn compound layer or a Cu-Ni-Sn compound layer on the Ni layer, Forming a Sn layer or a Sn-Cu alloy layer on the Cu-Sn compound layer or Cu-Ni-Sn compound layer.
請求項10記載の金属条の製造方法であって、
前記Sn-(1〜4mass%)Cu合金層は無光沢めっきにより積層させることを特徴とする金属条の製造方法。
It is a manufacturing method of the metal strip according to claim 10,
The Sn- (1-4 mass%) Cu alloy layer is laminated by matte plating, and the method for producing a metal strip.
請求項10又は11記載の金属条の製造方法であって、
前記Sn-(1〜4mass%)Cu合金層は、Zn、Al、Si、Mg、Tiのうち1種以上の金属を1mass%以下含むことを特徴とする金属条の製造方法。
It is a manufacturing method of the metal strip according to claim 10 or 11,
The Sn- (1-4 mass%) Cu alloy layer contains 1 mass% or less of at least one metal selected from Zn, Al, Si, Mg, and Ti.
JP2007271947A 2007-10-19 2007-10-19 Metal strip, connector, and mehod of manufacturing metal strip Pending JP2009097053A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007271947A JP2009097053A (en) 2007-10-19 2007-10-19 Metal strip, connector, and mehod of manufacturing metal strip
US12/602,385 US8389854B2 (en) 2007-10-19 2008-10-14 Metal strip, connector, and method of manufacturing metal strip
PCT/JP2008/002900 WO2009050878A1 (en) 2007-10-19 2008-10-14 Metal strip, connector, and method of manufacturing metal strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007271947A JP2009097053A (en) 2007-10-19 2007-10-19 Metal strip, connector, and mehod of manufacturing metal strip

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014012923A Division JP5719946B2 (en) 2014-01-28 2014-01-28 Metal strip, connector, and method of manufacturing metal strip

Publications (1)

Publication Number Publication Date
JP2009097053A true JP2009097053A (en) 2009-05-07

Family

ID=40567165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007271947A Pending JP2009097053A (en) 2007-10-19 2007-10-19 Metal strip, connector, and mehod of manufacturing metal strip

Country Status (3)

Country Link
US (1) US8389854B2 (en)
JP (1) JP2009097053A (en)
WO (1) WO2009050878A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069659A (en) * 2014-09-26 2016-05-09 株式会社オートネットワーク技術研究所 Electrical contact material for connector and manufacturing method therefor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5384382B2 (en) * 2009-03-26 2014-01-08 株式会社神戸製鋼所 Copper or copper alloy with Sn plating excellent in heat resistance and method for producing the same
JP5396139B2 (en) * 2009-05-08 2014-01-22 株式会社神戸製鋼所 Press-fit terminal
US8574722B2 (en) * 2011-05-09 2013-11-05 Tyco Electronics Corporation Corrosion resistant electrical conductor
US9224550B2 (en) 2012-12-26 2015-12-29 Tyco Electronics Corporation Corrosion resistant barrier formed by vapor phase tin reflow
JP2019029128A (en) * 2017-07-27 2019-02-21 矢崎総業株式会社 Terminal-equipped wire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176775A (en) * 1994-12-28 1996-07-09 Furukawa Electric Co Ltd:The Sn alloy plating material
JPH11350188A (en) * 1998-06-03 1999-12-21 Furukawa Electric Co Ltd:The Material for electric and electronic parts, its production, and electric and electronic parts lising the same
JP2004068026A (en) * 2001-07-31 2004-03-04 Kobe Steel Ltd Conducting material for connecting parts and manufacturing method therefor
JP2004179055A (en) * 2002-11-28 2004-06-24 Mitsubishi Shindoh Co Ltd Connector terminal, connector and manufacturing method of the same
JP2006196323A (en) * 2005-01-14 2006-07-27 Takamatsu Mekki:Kk Connection terminal and its manufacturing method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780172A (en) * 1995-12-18 1998-07-14 Olin Corporation Tin coated electrical connector
US5916695A (en) * 1995-12-18 1999-06-29 Olin Corporation Tin coated electrical connector
JPH10134869A (en) * 1996-10-30 1998-05-22 Yazaki Corp Terminal material and terminal
US6083633A (en) * 1997-06-16 2000-07-04 Olin Corporation Multi-layer diffusion barrier for a tin coated electrical connector
AUPQ653700A0 (en) * 2000-03-28 2000-04-20 Ceramic Fuel Cells Limited Surface treated electrically conductive metal element and method of forming same
JP3621365B2 (en) 2000-09-18 2005-02-16 第一電子工業株式会社 Electrical connector
US20020185716A1 (en) * 2001-05-11 2002-12-12 Abys Joseph Anthony Metal article coated with multilayer finish inhibiting whisker growth
DE60211808T2 (en) * 2001-07-31 2006-10-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe Clad copper alloy and process for its production
JP3880877B2 (en) * 2002-03-29 2007-02-14 Dowaホールディングス株式会社 Plated copper or copper alloy and method for producing the same
JP2005056605A (en) 2003-08-06 2005-03-03 Molex Japan Co Ltd Connector, cable or wiring board joined to connector
JP4320623B2 (en) 2004-08-04 2009-08-26 オムロン株式会社 Connector terminal
JP2008150690A (en) 2006-12-20 2008-07-03 Hitachi Ltd Metal strip, connector, and method of manufacturing metal strip
JP4506818B2 (en) * 2007-11-15 2010-07-21 住友電気工業株式会社 Manufacturing method of shielded flat cable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176775A (en) * 1994-12-28 1996-07-09 Furukawa Electric Co Ltd:The Sn alloy plating material
JPH11350188A (en) * 1998-06-03 1999-12-21 Furukawa Electric Co Ltd:The Material for electric and electronic parts, its production, and electric and electronic parts lising the same
JP2004068026A (en) * 2001-07-31 2004-03-04 Kobe Steel Ltd Conducting material for connecting parts and manufacturing method therefor
JP2004179055A (en) * 2002-11-28 2004-06-24 Mitsubishi Shindoh Co Ltd Connector terminal, connector and manufacturing method of the same
JP2006196323A (en) * 2005-01-14 2006-07-27 Takamatsu Mekki:Kk Connection terminal and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069659A (en) * 2014-09-26 2016-05-09 株式会社オートネットワーク技術研究所 Electrical contact material for connector and manufacturing method therefor

Also Published As

Publication number Publication date
US8389854B2 (en) 2013-03-05
US20100175908A1 (en) 2010-07-15
WO2009050878A1 (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP4402132B2 (en) Reflow Sn plating material and electronic component using the same
JP5376553B2 (en) Wiring conductor and terminal connection
JP4940081B2 (en) Reflow Sn plating material and electronic component using the same
JP2003293187A (en) Copper or copper alloy subjected to plating and method for manufacturing the same
JP2009057630A (en) Sn-PLATED CONDUCTIVE MATERIAL, METHOD FOR PRODUCING THE SAME, AND ELECTRICITY CARRYING COMPONENT
KR102002675B1 (en) Lead-free solder alloy
KR20070028292A (en) Fretting and whisker resistant coating system and method
JPH11350188A (en) Material for electric and electronic parts, its production, and electric and electronic parts lising the same
JP2007299722A (en) Wiring conductor, its manufacturing method, terminal connection part, and pb-free solder alloy
TWI374950B (en)
JP2008021501A (en) Electrical part for wiring, manufacturing method thereof, and terminal connecting part
JPWO2013132954A1 (en) Bonding method, bonded structure and manufacturing method thereof
JP2009097053A (en) Metal strip, connector, and mehod of manufacturing metal strip
JPH11350189A (en) Material for electrical and electronic parts, its production and electrical and electronic parts using the material
JP2017501879A (en) Zinc-based lead-free solder composition
JP4522970B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
WO2008072418A1 (en) Male terminal, and its manufacturing method
JP2008150690A (en) Metal strip, connector, and method of manufacturing metal strip
JP2005353542A (en) Conductive covering material, manufacturing method thereof, and connector terminal or contact using the covering material
JP4740814B2 (en) Copper alloy reflow Sn plating material with excellent whisker resistance
KR100678803B1 (en) Pb-FREE SOLDER ALLOY, AND SOLDER MATERIAL AND SOLDER JOINT USING SAME
JP2000054189A (en) MATERIAL FOR ELECTRIC AND ELECTRONIC PARTS USED BY BONDING WITH Sn-Bi-BASED SOLDER, ELECTRIC AND ELECTRONIC PARTS USING IT, ELECTRIC AND ELECTRONIC PARTS-MOUNTED SUBSTRATE, AND SOLDER BONDING, OR MOUNTING METHOD USING IT
JP5719946B2 (en) Metal strip, connector, and method of manufacturing metal strip
JP2019136776A (en) Solder joint method
JP5019596B2 (en) Printed wiring board and printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029