JP2009096150A - Resin molding machine - Google Patents

Resin molding machine Download PDF

Info

Publication number
JP2009096150A
JP2009096150A JP2007272570A JP2007272570A JP2009096150A JP 2009096150 A JP2009096150 A JP 2009096150A JP 2007272570 A JP2007272570 A JP 2007272570A JP 2007272570 A JP2007272570 A JP 2007272570A JP 2009096150 A JP2009096150 A JP 2009096150A
Authority
JP
Japan
Prior art keywords
resin composition
fiber reinforced
reinforced resin
cylinder
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2007272570A
Other languages
Japanese (ja)
Inventor
Kazunari Hatta
一成 八田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2007272570A priority Critical patent/JP2009096150A/en
Priority to PCT/JP2008/068133 priority patent/WO2009051027A1/en
Priority to CN200880118828.XA priority patent/CN101918185B/en
Priority to MX2010004266A priority patent/MX2010004266A/en
Publication of JP2009096150A publication Critical patent/JP2009096150A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/832Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/362Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using static mixing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/793Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling upstream of the plasticising zone, e.g. heating in the hopper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • B29C48/865Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/69Filters or screens for the moulding material
    • B29C48/693Substantially flat filters mounted at the end of an extruder screw perpendicular to the feed axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/251Particles, powder or granules

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin molding machine capable of maintaining the strength improvement of a fiber reinforced resin composition by preventing breakage of a fibrous filler. <P>SOLUTION: The resin molding machine 1 comprises a screw 2 having a shaft part 21 and flights 22; a cylinder 3 holding the screw 2 inside; a hopper opening 4; and a discharge opening 5. The screw 2 comprises a supply part 24 in which the outer diameter of the shaft part 21 is uniformly formed in the longitudinal direction; a compression part 25 continuous with the supply part 24, with outer diameter of the shaft part 21 being formed gradually larger as it goes away from the supply part 24; and a measuring part 26 continuous with the compression part 25, with the outer diameter of the shaft part 21 being uniformly formed in the longitudinal direction. The ratio D1/D3 of a distance D1 between the outer peripheral surface 21a of the shaft part 21 in the supply part 24 and the tip 22a of the flight 22 to a distance D3 between the outer peripheral surface 21a of the shaft part 21 in the measuring part 26 and the tip 22a of the flight 22 is ≥1.2 and ≤1.95. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、スクリュと、スクリュを内部に収容したシリンダと、シリンダの基端部に設けられた第一の開口と、シリンダの先端部に設けられた第二の開口とを備えた樹脂成形機に関する。   The present invention relates to a resin molding machine including a screw, a cylinder in which the screw is housed, a first opening provided at a base end portion of the cylinder, and a second opening provided at a tip end portion of the cylinder. About.

熱可塑性樹脂をベースとした樹脂組成物(以下、単に「樹脂組成物」と呼ぶ)は、例えば、ペレット形状の成形材料(バージンペレット)が射出成形によって所望の形状の成形品に成形されるが、このとき、成形品とともにスプールやランナー等の端材が発生する。このような端材は、成形品から切り離されて粉砕された後に押出成形によって造粒されてリペレットとなり、該リペレットをバージンペレットと所定の割合で混合して射出成形することによってリサイクルされている。   A resin composition based on a thermoplastic resin (hereinafter simply referred to as a “resin composition”) is formed, for example, by molding a pellet-shaped molding material (virgin pellet) into a molded product having a desired shape by injection molding. At this time, end materials such as a spool and a runner are generated together with the molded product. Such an end material is separated from a molded product, pulverized, granulated by extrusion molding to form a repellet, and recycled by mixing the repellet with a virgin pellet at a predetermined ratio and performing injection molding.

前述した押出成形に用いられる樹脂成形機は、例えば、軸部と該軸部の外周面から立設されたフライトとを有したスクリュと、スクリュを内部に収容したシリンダと、シリンダの基端部に設けられかつ該シリンダ内に樹脂組成物が供給されるホッパー口と、シリンダの先端部に設けられかつ該シリンダ内で溶融混練された樹脂組成物が吐出される吐出口と、シリンダ内に熱を供給するヒータとを少なくとも備えている。   The resin molding machine used for the above-described extrusion molding includes, for example, a screw having a shaft portion and a flight erected from the outer peripheral surface of the shaft portion, a cylinder housing the screw therein, and a base end portion of the cylinder A hopper port for supplying the resin composition into the cylinder, a discharge port for discharging the resin composition melted and kneaded in the cylinder provided at the tip of the cylinder, and heat in the cylinder. And at least a heater for supplying.

スクリュは、シリンダ内のホッパー口側に配されかつ軸部の外径が一定に形成された供給部と、供給部に連なりかつ軸部の外径が供給部から離れるにしたがって徐々に大きく形成された圧縮部と、圧縮部に連なりシリンダ内の吐出口側に配されかつ軸部の外径が一定に形成された計量部とを備えている。供給部の軸部の外周面とフライトの先端との間の距離は、計量部の軸部の外周面とフライトの先端との距離より大きく形成されている。供給部の前記距離に対する計量部の前記距離の比率は、例えば2.4〜3.2とされている(例えば、特許文献1参照)。   The screw is arranged on the hopper port side in the cylinder and has a supply portion in which the outer diameter of the shaft portion is formed constant. And a measuring portion that is connected to the compression portion and is disposed on the discharge port side in the cylinder and has a constant outer diameter of the shaft portion. The distance between the outer peripheral surface of the shaft portion of the supply unit and the tip of the flight is formed to be larger than the distance between the outer peripheral surface of the shaft portion of the measuring unit and the tip of the flight. The ratio of the distance of the measuring unit to the distance of the supply unit is, for example, 2.4 to 3.2 (see, for example, Patent Document 1).

前述した射出成形時の端材は、ホッパー口からシリンダ内に供給される。そして、該端材は、シリンダ内をホッパー口(スクリュの供給部側)から吐出口(スクリュの計量部側)に向かって搬送される間に、前述した構成のスクリュによって大きな剪断力を受けるとともにヒータから熱を供給されて十分に溶融混練され、吐出口から吐出されて線状に成形された後に短く切断されて再ペレット化され、リペレットとなる。   The above-described end material at the time of injection molding is supplied into the cylinder from the hopper port. And while this end material is conveyed in a cylinder toward a discharge port (screw measurement part side) from a hopper opening (screw supply part side), while receiving a big shearing force by the screw of the structure mentioned above. Heat is supplied from the heater and melted and kneaded sufficiently. After being discharged from the discharge port and formed into a linear shape, it is cut into short pieces and re-pelletized to form repellets.

ところで、前述した樹脂組成物は、熱可塑性樹脂からなるベース樹脂と、ガラス繊維やカーボン繊維等の繊維状充填材とから構成されることがある(以下、繊維強化樹脂組成物と呼ぶ)。繊維状充填材によって、繊維強化樹脂組成物の機械的強度が向上する。
特開2002−234063号公報
By the way, the resin composition mentioned above may be comprised from the base resin which consists of thermoplastic resins, and fibrous fillers, such as glass fiber and a carbon fiber (henceforth a fiber reinforced resin composition). The mechanical strength of the fiber reinforced resin composition is improved by the fibrous filler.
JP 2002-234063 A

しかしながら、前述した特許文献1に記載された樹脂成形機を用いて繊維強化樹脂組成物の端材を再ペレット化すると、該端材に作用する剪断力が大きいので、繊維状充填材が折損してしまうといった問題があった。そして、このように繊維状充填材が折損したリペレットをバージンペレットと混合して射出成形すると、バージンペレットのみの場合と比較して成形品の機械的強度が低下してしまうので、リサイクルが不可能であるといった問題があった。   However, when the end material of the fiber reinforced resin composition is re-pelletized using the resin molding machine described in Patent Document 1 described above, the shearing force acting on the end material is large, so that the fibrous filler is broken. There was a problem such as. And if the repellet with broken fibrous filler is mixed with virgin pellets and injection molded in this way, the mechanical strength of the molded product will be reduced compared to the case of only virgin pellets, so recycling is impossible. There was a problem such as.

本発明は、このような問題を解決することを目的としている。即ち、本発明は、繊維状充填材の折損を防止して、繊維強化樹脂組成物の強度向上性を維持することができる樹脂成形機を提供することを目的としている。   The present invention aims to solve such problems. That is, an object of the present invention is to provide a resin molding machine that can prevent breakage of the fibrous filler and maintain the strength improvement of the fiber-reinforced resin composition.

前記課題を解決し目的を達成するために、請求項1に記載された発明は、軸部と該軸部の外周面から立設されたフライトとを有したスクリュと、前記スクリュを内部に収容したシリンダと、前記シリンダの基端部に設けられかつ該シリンダ内にベース樹脂と繊維状充填材とからなる繊維強化樹脂組成物が供給される第一の開口と、前記シリンダの先端部に設けられかつ該シリンダ内で溶融混練された前記繊維強化樹脂組成物が吐出される第二の開口と、を備えた樹脂成形機において、前記スクリュが、前記第一の開口側に配されかつ前記軸部の外径がその長手方向に一定に形成された供給部と、前記供給部に連なりかつ前記軸部の外径が該供給部から離れるにしたがって徐々に大きく形成された圧縮部と、前記圧縮部に連なりかつ前記軸部の外径がその長手方向に一定に形成された計量部と、を備えるとともに、前記計量部の前記軸部の外周面と前記フライトの先端との間の距離に対する前記供給部の前記軸部の外周面と前記フライトの先端との間の距離の比率が、1.2以上でかつ1.95以下であることを特徴とした樹脂成形機である。   In order to solve the above problems and achieve the object, the invention described in claim 1 includes a screw having a shaft portion and a flight erected from an outer peripheral surface of the shaft portion, and housing the screw therein. A cylinder, a first opening provided at a base end portion of the cylinder and supplied with a fiber reinforced resin composition comprising a base resin and a fibrous filler, and provided at a tip end portion of the cylinder. And a second opening through which the fiber-reinforced resin composition melt-kneaded in the cylinder is discharged, wherein the screw is disposed on the first opening side and the shaft A supply part in which the outer diameter of the part is formed constant in the longitudinal direction, a compression part that is connected to the supply part and that is gradually increased as the outer diameter of the shaft part moves away from the supply part, and the compression Of the shaft and A measuring portion having a constant diameter in the longitudinal direction thereof, and an outer peripheral surface of the shaft portion of the supply portion with respect to a distance between an outer peripheral surface of the shaft portion of the measuring portion and a tip of the flight. Is a resin molding machine characterized in that the distance ratio between the flight and the tip of the flight is 1.2 or more and 1.95 or less.

請求項2に記載された発明は、請求項1に記載された樹脂成形機において、前記供給部と前記圧縮部とが、それぞれ、前記計量部よりも長く設けられたことを特徴とした樹脂成形機である。   A second aspect of the present invention is the resin molding machine according to the first aspect, wherein the supply unit and the compression unit are provided longer than the measuring unit, respectively. Machine.

請求項3に記載された発明は、請求項1または請求項2に記載された樹脂成形機において、前記計量部の長さに対する前記圧縮部の長さの比率が、2以上でかつ4以下であることを特徴とした樹脂成形機である。   According to a third aspect of the present invention, in the resin molding machine according to the first or second aspect, the ratio of the length of the compression section to the length of the measuring section is 2 or more and 4 or less. It is a resin molding machine characterized by being.

請求項4に記載された発明は、請求項1ないし請求項3のうちいずれか一項に記載された樹脂成形機において、前記計量部の長さに対する前記供給部の長さの比率が、1.33以上でかつ5以下であることを特徴とした樹脂成形機である。   According to a fourth aspect of the present invention, in the resin molding machine according to any one of the first to third aspects, the ratio of the length of the supply unit to the length of the measuring unit is 1 A resin molding machine characterized in that it is 33 or more and 5 or less.

請求項5に記載された発明は、請求項1ないし請求項4のうちいずれか一項に記載された樹脂成形機において、前記シリンダ内に熱を供給するヒータを更に備えるとともに、前記シリンダ内の前記供給部が配される部分に熱を供給する前記ヒータの温度が、前記ベース樹脂の融点に対して−25℃以上でかつ前記ベース樹脂の融点以下であることを特徴とした樹脂成形機である。   According to a fifth aspect of the present invention, the resin molding machine according to any one of the first to fourth aspects further includes a heater for supplying heat into the cylinder, A resin molding machine characterized in that a temperature of the heater for supplying heat to a portion where the supply unit is disposed is not lower than -25 ° C and not higher than the melting point of the base resin with respect to the melting point of the base resin. is there.

請求項1に記載された発明によれば、スクリュが、第一の開口側に配されかつ軸部の外径がその長手方向に一定に形成された供給部と、供給部に連なりかつ軸部の外径が該供給部から離れるにしたがって徐々に大きく形成された圧縮部と、圧縮部に連なりかつ軸部の外径がその長手方向に一定に形成された計量部とを備えるとともに、計量部の軸部の外周面とフライトの先端との間の距離に対する供給部の軸部の外周面とフライトの先端との間の距離の比率が1.2以上でかつ1.95以下であるので、繊維強化樹脂組成物が受ける剪断力が小さくなり、繊維状充填材が折損しにくくなって繊維強化樹脂組成物の強度向上性を維持することができる。   According to the invention described in claim 1, the screw is arranged on the first opening side and the outer diameter of the shaft portion is formed to be constant in the longitudinal direction, and the shaft portion is connected to the supply portion and the shaft portion. And a measuring part that is formed so that the outer diameter of the shaft gradually increases as the distance from the supply part increases, and a measuring part that is connected to the compressing part and has a constant outer diameter of the shaft part in its longitudinal direction. The ratio of the distance between the outer peripheral surface of the shaft portion of the supply unit and the front end of the flight to the distance between the outer peripheral surface of the shaft portion and the front end of the flight is 1.2 or more and 1.95 or less, The shearing force received by the fiber reinforced resin composition is reduced, the fibrous filler is hardly broken, and the strength improvement property of the fiber reinforced resin composition can be maintained.

請求項2に記載された発明によれば、供給部と圧縮部とがそれぞれ計量部よりも長く設けられているので、供給部で繊維強化樹脂組成物を十分に予熱して圧縮部で繊維強化樹脂組成物に十分な熱を供給して繊維強化樹脂組成物を溶融することができるとともに、計量部が短くなって溶融した繊維強化樹脂組成物が計量部で受けるストレスを小さくすることができる。   According to the second aspect of the present invention, since the supply unit and the compression unit are provided longer than the measuring unit, the fiber reinforced resin composition is sufficiently preheated in the supply unit and the fiber is reinforced in the compression unit. The fiber reinforced resin composition can be melted by supplying sufficient heat to the resin composition, and the stress that the melted fiber reinforced resin composition is subjected to by the metering section can be reduced by shortening the metering section.

請求項3に記載された発明によれば、計量部の長さに対する圧縮部の長さの比率が2以上でかつ4以下であるので、圧縮部が長くなって圧縮部で繊維強化樹脂組成物に十分な熱を供給してこの熱によって繊維強化樹脂組成物を溶融することができるとともに、計量部が短くなって溶融した繊維強化樹脂組成物が計量部で受けるストレスを小さくすることができる。   According to the invention described in claim 3, since the ratio of the length of the compression portion to the length of the measuring portion is 2 or more and 4 or less, the compression portion becomes long and the fiber reinforced resin composition is formed in the compression portion. Sufficient heat can be supplied to melt the fiber reinforced resin composition by this heat, and the measuring section can be shortened to reduce the stress that the melted fiber reinforced resin composition receives in the measuring section.

請求項4に記載された発明によれば、計量部の長さに対する供給部の長さの比率が1.33以上でかつ5以下であるので、供給部が長くなって供給部で繊維強化樹脂組成物を十分に予熱することができるとともに、計量部が短くなって溶融した繊維強化樹脂組成物が計量部で受けるストレスを小さくすることができる。   According to the invention described in claim 4, since the ratio of the length of the supply section to the length of the measuring section is 1.33 or more and 5 or less, the supply section becomes long and the fiber reinforced resin in the supply section. The composition can be preheated sufficiently, and the stress applied to the melted fiber reinforced resin composition by the shortening of the metering portion can be reduced.

請求項5に記載された発明によれば、シリンダ内に熱を供給するヒータを更に備えるとともに、シリンダ内の供給部が配される部分に熱を供給するヒータの温度が、ベース樹脂の融点に対して−25℃以上でかつベース樹脂の融点以下であるので、繊維強化樹脂組成物が供給部で十分に予熱されるとともに、繊維強化樹脂組成物が供給部で供給される熱によって溶融することがなく繊維強化樹脂組成物にかかるストレスを小さくすることができる。   According to the fifth aspect of the present invention, the heater is further provided for supplying heat into the cylinder, and the temperature of the heater for supplying heat to the portion where the supply portion in the cylinder is disposed is equal to the melting point of the base resin. On the other hand, since it is −25 ° C. or higher and below the melting point of the base resin, the fiber reinforced resin composition is sufficiently preheated in the supply section, and the fiber reinforced resin composition is melted by the heat supplied in the supply section. The stress applied to the fiber reinforced resin composition can be reduced.

以下、本発明の一実施形態にかかる樹脂成形機を図1ないし図6を参照して説明する。本発明の一実施形態にかかる樹脂成形機1は、例えば、繊維強化樹脂組成物の射出成形時に成形品とともに発生するスプールやランナー等の端材を再ペレット化してリペレットを造粒する押出成形機である。樹脂成形機1は、図1に示すように、スクリュ2と、シリンダ3と、第一の開口としてのホッパー口4と、第二の開口としての吐出口5と、スクリュ駆動部(図示せず)と、ヒータ7とを備えている。繊維強化樹脂組成物は、ベース樹脂と、繊維状充填材とからなる。   A resin molding machine according to an embodiment of the present invention will be described below with reference to FIGS. A resin molding machine 1 according to an embodiment of the present invention is, for example, an extrusion molding machine that granulates repellets by re-pelletizing end materials such as spools and runners generated together with a molded product at the time of injection molding of a fiber reinforced resin composition. It is. As shown in FIG. 1, the resin molding machine 1 includes a screw 2, a cylinder 3, a hopper port 4 as a first opening, a discharge port 5 as a second opening, and a screw driving unit (not shown). ) And a heater 7. The fiber reinforced resin composition includes a base resin and a fibrous filler.

スクリュ2は、全体として長尺な略円柱状に形成されている。スクリュ2は、繊維状充填材による摩耗を低減させるため、耐摩耗性の高い金属部材から形成されている。図2に示すように、スクリュ2の外径(即ち、スクリュ2の軸心と後述するフライト22の先端22aとの間の距離の二倍値)は、略一定に形成されている。スクリュ2の外径に対するスクリュ2の長さの比率(スクリュ2の長さ/スクリュ2の外径、即ち、スクリュ2のL/D)は、25以上でかつ30以下であると、繊維強化樹脂組成物が受けるストレスが小さくなり好ましい。スクリュ2は、軸部21と、フライト22と、溝23とを有している。   The screw 2 is formed in a long and substantially cylindrical shape as a whole. The screw 2 is formed of a metal member having high wear resistance in order to reduce wear caused by the fibrous filler. As shown in FIG. 2, the outer diameter of the screw 2 (that is, the double value of the distance between the axis of the screw 2 and the tip 22a of the flight 22 described later) is formed to be substantially constant. When the ratio of the length of the screw 2 to the outer diameter of the screw 2 (the length of the screw 2 / the outer diameter of the screw 2, ie, L / D of the screw 2) is 25 or more and 30 or less, the fiber reinforced resin The stress that the composition receives is preferable. The screw 2 has a shaft portion 21, a flight 22, and a groove 23.

軸部21は、長尺な円柱状に形成されている。フライト22は、軸部21の外周面21aから立設されている。フライト22は、軸部21の長手方向の略全長に亘って設けられ、螺旋状に形成されている。溝23は、軸部21の外周面21aと、軸部21の外周面21aと略直交しかつ互いに間隔をあけて相対するフライト22の外表面とから構成され、断面形状が略コ字状に形成されている。溝23は、螺旋状に形成されたフライト22の間に形成され、フライト22と同様にスクリュ2の外周面に螺旋状に形成されている。繊維強化樹脂組成物は、溝23内を通ってホッパー口4から吐出口5に向かって搬送される。   The shaft portion 21 is formed in a long cylindrical shape. The flight 22 is erected from the outer peripheral surface 21 a of the shaft portion 21. The flight 22 is provided over substantially the entire length of the shaft portion 21 in the longitudinal direction, and is formed in a spiral shape. The groove 23 includes an outer peripheral surface 21a of the shaft portion 21 and an outer surface of the flight 22 that is substantially orthogonal to the outer peripheral surface 21a of the shaft portion 21 and is opposed to each other with a space therebetween, and has a substantially U-shaped cross section. Is formed. The grooves 23 are formed between the flights 22 formed in a spiral shape, and are formed in a spiral shape on the outer peripheral surface of the screw 2 in the same manner as the flights 22. The fiber reinforced resin composition is conveyed from the hopper port 4 toward the discharge port 5 through the groove 23.

また、スクリュ2は、ホッパー口4側に配される供給部24と、供給部24に連なる圧縮部25と、圧縮部25に連なり吐出口5側に配される計量部26とを備えている。供給部24と圧縮部25と計量部26とは、それぞれ、スクリュ2の長手方向に沿った一部分の呼称である。供給部24と圧縮部25と計量部26とは、スクリュ2の長手方向に沿って並んで設けられている。   The screw 2 includes a supply unit 24 arranged on the hopper port 4 side, a compression unit 25 connected to the supply unit 24, and a measuring unit 26 connected to the compression unit 25 and arranged on the discharge port 5 side. . The supply unit 24, the compression unit 25, and the measuring unit 26 are names of parts along the longitudinal direction of the screw 2, respectively. The supply unit 24, the compression unit 25, and the measuring unit 26 are provided side by side along the longitudinal direction of the screw 2.

供給部24は、ホッパー口4からシリンダ3内に供給された繊維強化樹脂組成物を圧縮部25に向かって搬送し、搬送する間に、ヒータ7によって繊維強化樹脂組成物を予熱して圧縮部25に供給する。供給部24の軸部21の外径はその長手方向に一定に形成されている。供給部24は、計量部26よりも長く設けられ、計量部26の長さL3に対する供給部24の長さL1の比率L1/L3は1.33以上でかつ5以下である。前記比率が1.33より小さいと繊維強化樹脂組成物を十分に予熱することができず、前記比率が5より大きいと十分な長さの計量部26を確保することができない。   The supply unit 24 conveys the fiber reinforced resin composition supplied from the hopper port 4 into the cylinder 3 toward the compression unit 25, and preheats the fiber reinforced resin composition by the heater 7 while being conveyed, thereby compressing the compression unit. 25. The outer diameter of the shaft portion 21 of the supply portion 24 is formed constant in the longitudinal direction. The supply unit 24 is provided longer than the weighing unit 26, and the ratio L1 / L3 of the length L1 of the supply unit 24 to the length L3 of the measurement unit 26 is 1.33 or more and 5 or less. If the ratio is less than 1.33, the fiber reinforced resin composition cannot be sufficiently preheated, and if the ratio is greater than 5, it is not possible to secure the metering portion 26 having a sufficient length.

圧縮部25は、供給部24から搬送された繊維強化樹脂組成物を計量部26に向かって搬送する間に、後述するヒータ7から供給される熱及びシリンダ3の内面との間に生じる剪断力によって繊維強化樹脂組成物を溶融する。圧縮部25の軸部21の外径は、供給部24から離れて計量部26に向かうにしたがって徐々に大きく形成されている。圧縮部25は、計量部26よりも長く設けられ、計量部26の長さL3に対する圧縮部25の長さL2の比率L2/L3は2以上でかつ4以下である。前記比率が2より小さいと繊維強化樹脂組成物を十分に溶融することができず、前記比率が4より大きくなると十分な長さの計量部26を確保することができない。   The compressing unit 25 shears between the heat supplied from the heater 7 described later and the inner surface of the cylinder 3 while the fiber reinforced resin composition conveyed from the supply unit 24 is conveyed toward the measuring unit 26. To melt the fiber reinforced resin composition. The outer diameter of the shaft portion 21 of the compression portion 25 is formed to gradually increase as it moves away from the supply portion 24 toward the measuring portion 26. The compressing unit 25 is provided longer than the measuring unit 26, and the ratio L2 / L3 of the length L2 of the compressing unit 25 to the length L3 of the measuring unit 26 is 2 or more and 4 or less. If the ratio is smaller than 2, the fiber-reinforced resin composition cannot be sufficiently melted, and if the ratio is larger than 4, the measuring part 26 having a sufficient length cannot be secured.

計量部26は、圧縮部25で溶融された繊維強化樹脂組成物を一定時間に一定量、吐出口5に向かって搬送する。計量部26の軸部21の外径はその長手方向に一定に形成されるとともに、供給部24の軸部21の外径より大きく形成されている。計量部26の軸部21の外周面21aとフライト22の先端22aとの間の距離D3に対する供給部24の軸部21の外周面21aとフライト22の先端22aとの間の距離D1の比率D1/D3は1.2以上でかつ1.95以下である。したがって、スクリュ2の圧縮比(JIS B8650より、スクリュ2における供給部24の1リード溝23の構成する空間体積と計量部26の1リード溝23の構成する空間体積との比)は、従来よりも小さく形成されている。前記比率が1.2より小さくなると剪断力が小さくなりすぎて繊維強化樹脂組成物を十分に溶融することができず、前記比率が1.95より大きくなると剪断力によって多くの繊維状充填材が折損してしまう。   The measuring unit 26 conveys the fiber-reinforced resin composition melted by the compression unit 25 toward the discharge port 5 by a certain amount at a certain time. The outer diameter of the shaft portion 21 of the measuring unit 26 is formed to be constant in the longitudinal direction, and is larger than the outer diameter of the shaft portion 21 of the supply unit 24. Ratio D1 of the distance D1 between the outer peripheral surface 21a of the shaft part 21 of the supply unit 24 and the front end 22a of the flight 22 with respect to the distance D3 between the outer peripheral surface 21a of the shaft part 21 of the measuring unit 26 and the front end 22a of the flight 22 / D3 is 1.2 or more and 1.95 or less. Therefore, the compression ratio of the screw 2 (according to JIS B8650, the ratio of the spatial volume formed by the one lead groove 23 of the supply unit 24 and the spatial volume formed by the one lead groove 23 of the measuring unit 26 by the screw 2) is conventionally compared. Is also formed small. When the ratio is less than 1.2, the shear force becomes too small to sufficiently melt the fiber reinforced resin composition. When the ratio is greater than 1.95, many fibrous fillers are formed by the shear force. It breaks.

なお、前述のように、計量部26が従来よりも短いので溶融された繊維強化樹脂組成物を一定時間に一定量、吐出口5に向かって搬送できずに成形品の形状に影響が出たり、圧縮比が従来よりも小さいので繊維強化樹脂組成物を確実に溶融及び混練できなかったりする虞がある。しかし、仮にそうなったとしても、樹脂成形機1がリペレットを造粒する押出成形機である場合は、成形品の形状に要求される厳密さは比較的低く、また、繊維強化樹脂組成物を確実に溶融できれば十分であるので、大きな問題になることはない。   As described above, since the measuring unit 26 is shorter than the conventional one, the melted fiber reinforced resin composition cannot be transported toward the discharge port 5 by a certain amount in a certain time, and the shape of the molded product is affected. Since the compression ratio is smaller than before, there is a possibility that the fiber reinforced resin composition cannot be reliably melted and kneaded. However, even if this is the case, when the resin molding machine 1 is an extrusion molding machine that granulates repellets, the strictness required for the shape of the molded product is relatively low. Since it is sufficient if it can be melted reliably, it does not become a big problem.

シリンダ3は、図1に示すように、円筒状に設けられ、スクリュ2を内部に収容する。シリンダ3は、繊維状充填材による摩耗を低減させるため、耐摩耗性の高い金属部材から形成されている。シリンダ3の内径は、略一定に形成されるとともに、スクリュ2の外径より僅かに大きく設けられている。   As shown in FIG. 1, the cylinder 3 is provided in a cylindrical shape and accommodates the screw 2 therein. The cylinder 3 is formed of a metal member having high wear resistance in order to reduce wear caused by the fibrous filler. The inner diameter of the cylinder 3 is formed substantially constant and is slightly larger than the outer diameter of the screw 2.

ホッパー口4は、シリンダ3内に連なった開口である。ホッパー口4は、シリンダ3の基端部3aに設けられている。ホッパー口4を介して、シリンダ3内に繊維強化樹脂組成物が供給される。ホッパー口4には、鉛直方向に配置されたホッパー41が取り付けられている。ホッパー41は、全体形状が略漏斗状に形成されている。ホッパー41内には前述した端材を粉砕した繊維強化樹脂組成物が収納され、ホッパー口4に繊維強化樹脂組成物を供給する。   The hopper port 4 is an opening continuous in the cylinder 3. The hopper port 4 is provided at the base end portion 3 a of the cylinder 3. The fiber reinforced resin composition is supplied into the cylinder 3 through the hopper port 4. A hopper 41 arranged in the vertical direction is attached to the hopper port 4. The entire shape of the hopper 41 is formed in a substantially funnel shape. In the hopper 41, the fiber reinforced resin composition obtained by pulverizing the above-mentioned mill ends is stored, and the fiber reinforced resin composition is supplied to the hopper port 4.

吐出口5は、シリンダ3内に連なった開口である。吐出口5は、シリンダ3の先端部3bに設けられている。シリンダ3内で溶融混練された繊維強化樹脂組成物は、吐出口5を通ってシリンダ3外に吐出される。吐出口5には、ブレーカプレート51と、ダイ54とが取り付けられている。   The discharge port 5 is an opening continuous in the cylinder 3. The discharge port 5 is provided at the tip 3 b of the cylinder 3. The fiber reinforced resin composition melt-kneaded in the cylinder 3 is discharged out of the cylinder 3 through the discharge port 5. A breaker plate 51 and a die 54 are attached to the discharge port 5.

ブレーカプレート51は、金属部材等から形成され、平板円状に形成されている。ブレーカプレート51には、該プレートの厚さ方向に沿って該プレートを貫通した孔が複数設けられている。ブレーカプレート51には、金網状のスクリーンパック53が取り付けられている。スクリュ2の計量部26からの溶融した繊維強化樹脂組成物は、ブレーカプレート51の孔を通りスクリーンパック53を通ってろ過されて、ダイ54へと向かって押し出される。   The breaker plate 51 is formed of a metal member or the like and is formed in a flat plate shape. The breaker plate 51 is provided with a plurality of holes penetrating the plate along the thickness direction of the plate. A wire mesh screen pack 53 is attached to the breaker plate 51. The melted fiber reinforced resin composition from the metering section 26 of the screw 2 passes through the holes of the breaker plate 51, is filtered through the screen pack 53, and is pushed out toward the die 54.

前述した構成のブレーカプレート51とスクリーンパック53とは、溶融した繊維強化樹脂組成物中の異物等を除去するフィルターとしての機能を有するとともに、シリンダ3内の背圧を上げて繊維強化樹脂組成物の流れを制御することによって繊維強化樹脂組成物を確実に溶融する機能も有する。これによって、例えば圧縮比が小さい(剪断力が小さい)スクリュ2によってもより確実に繊維強化樹脂組成物を溶融することができる。   The breaker plate 51 and the screen pack 53 configured as described above have a function as a filter for removing foreign matters and the like in the melted fiber reinforced resin composition, and increase the back pressure in the cylinder 3 to increase the fiber reinforced resin composition. It also has a function of reliably melting the fiber reinforced resin composition by controlling the flow of the resin. Thereby, for example, the fiber reinforced resin composition can be more reliably melted by the screw 2 having a small compression ratio (small shearing force).

ダイ54は、金属部材等から形成され、例えば筒状に形成されている。ブレーカプレート51及びスクリーンパック53を通った溶融した繊維強化樹脂組成物は、ダイ54内を通って所望の形状に成形される。   The die 54 is formed of a metal member or the like, and is formed in a cylindrical shape, for example. The molten fiber reinforced resin composition that has passed through the breaker plate 51 and the screen pack 53 passes through the die 54 and is formed into a desired shape.

スクリュ駆動部は、モータ等から構成されている。スクリュ駆動部は、シリンダ3内に収容されたスクリュ2を、その軸心を中心に回転自在に軸支するとともに、該軸心を中心としてスクリュ2を回転駆動する。   The screw drive unit is composed of a motor or the like. The screw driving unit pivotally supports the screw 2 accommodated in the cylinder 3 so as to be rotatable about its axis, and rotationally drives the screw 2 about the axis.

ヒータ7は、図1に示すように、シリンダ3の外壁に埋設されている。ヒータ7は、帯板状のプレートヒータである。ヒータ7は、勿論、バンド状のバンドヒータであってもよい。ヒータ7はシリンダ3内に熱を供給し、この熱によってシリンダ3内の繊維強化樹脂組成物を溶融(加熱流動化)する。ヒータ7はシリンダ3の長手方向に沿って複数設けられている。   As shown in FIG. 1, the heater 7 is embedded in the outer wall of the cylinder 3. The heater 7 is a belt-like plate heater. Of course, the heater 7 may be a band-shaped band heater. The heater 7 supplies heat into the cylinder 3, and the fiber reinforced resin composition in the cylinder 3 is melted (heated and fluidized) by this heat. A plurality of heaters 7 are provided along the longitudinal direction of the cylinder 3.

ヒータ7は、シリンダ3内のスクリュ2の供給部24が配される部分に熱を供給するヒータ71と、圧縮部25が配される部分に熱を供給するヒータ72と、計量部26が配される部分に熱を供給するヒータ73と、ブレーカプレート51及びダイ54に熱を供給するヒータ74とからなり、各部分に異なる温度の熱を供給可能である。供給部24が配される部分に熱を供給するヒータ71の温度は、後述するベース樹脂の融点に対して−25℃以上でかつベース樹脂の融点以下であり、繊維強化樹脂組成物を溶融することなくかつ十分に予熱する。また、ヒータ72、73、74の温度は、それぞれ、ベース樹脂の融点より高い温度に設定されている。例えばベース樹脂がポリブチレンテレフタレートの場合、融点が約225℃であるので、ヒータ71の温度は約200℃以上でかつ約225℃以下とし、ヒータ72、73、74の温度は、約225℃より高くするのが好ましい。   The heater 7 includes a heater 71 that supplies heat to a portion where the supply unit 24 of the screw 2 in the cylinder 3 is disposed, a heater 72 that supplies heat to a portion where the compression unit 25 is disposed, and a measuring unit 26. The heater 73 that supplies heat to the portion to be heated and the heater 74 that supplies heat to the breaker plate 51 and the die 54 can supply heat at different temperatures to each portion. The temperature of the heater 71 that supplies heat to the portion where the supply unit 24 is disposed is −25 ° C. or higher and lower than the melting point of the base resin with respect to the melting point of the base resin described later, and melts the fiber-reinforced resin composition. Preheat without any problems. The temperatures of the heaters 72, 73, and 74 are set higher than the melting point of the base resin. For example, when the base resin is polybutylene terephthalate, since the melting point is about 225 ° C., the temperature of the heater 71 is about 200 ° C. or more and about 225 ° C. or less, and the temperature of the heaters 72, 73, 74 is about 225 ° C. Higher is preferred.

繊維強化樹脂組成物は、ベース樹脂と繊維状充填材とから構成される。ベース樹脂は、不飽和ポリエステル樹脂が多く用いられる。不飽和ポリエステル樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンテレフタレート等が挙げられる。また、ベース樹脂は、エポキシ樹脂、ポリアミド樹脂、フェノール樹脂等を用いてもよい。なお、ベース樹脂は、これらのみに限定されるものではなく、本発明の目的に反しない限りこれら以外のベース樹脂であってもよい。   The fiber reinforced resin composition is composed of a base resin and a fibrous filler. As the base resin, an unsaturated polyester resin is often used. Examples of the unsaturated polyester resin include polyethylene terephthalate, polybutylene terephthalate, and polycyclohexane terephthalate. The base resin may be an epoxy resin, a polyamide resin, a phenol resin, or the like. In addition, base resin is not limited only to these, Base resins other than these may be sufficient unless it is contrary to the objective of this invention.

繊維状充填材は、例えば、ガラス繊維(グラスファイバー)、カーボン繊維、アラミド繊維等が挙げられる。繊維状充填材は、ベース樹脂に添加され、ベース樹脂の機械的強度を向上させる。繊維状充填材の硬度が比較的高い場合、シリンダ3内で繊維強化樹脂組成物が溶融される際に大きな剪断力を受けると繊維状充填材が折損して繊維状充填材による強度向上性が低下してしまう。なお、繊維状充填材は、これらのみに限定されるものではなく、本発明の目的に反しない限りこれら以外の繊維状充填材であってもよい。   Examples of the fibrous filler include glass fiber (glass fiber), carbon fiber, and aramid fiber. The fibrous filler is added to the base resin and improves the mechanical strength of the base resin. When the fibrous filler has a relatively high hardness, when the fiber reinforced resin composition is melted in the cylinder 3 and receives a large shearing force, the fibrous filler is broken and the strength improvement by the fibrous filler is improved. It will decline. In addition, a fibrous filler is not limited only to these, As long as it is not contrary to the objective of this invention, fibrous fillers other than these may be sufficient.

前述した構成の繊維強化樹脂組成物としては、例えば、ベース樹脂としてのポリブチレンテレフタレートに繊維状充填材としてのガラス繊維を30%含有させた、トレコン 1101−G30(東レ社製)が挙げられる。この繊維強化樹脂組成物は、初期形状はペレット形状となっている。なお、繊維強化樹脂組成物は、これのみに限定されるものではなく、本発明の目的に反しない限りこれ以外の繊維強化樹脂組成物であってもよい。   Examples of the fiber reinforced resin composition having the above-described configuration include Toraycon 1101-G30 (manufactured by Toray Industries, Inc.) in which 30% of glass fibers as a fibrous filler are contained in polybutylene terephthalate as a base resin. This fiber reinforced resin composition has an initial shape of a pellet shape. In addition, a fiber reinforced resin composition is not limited only to this, Unless it is contrary to the objective of this invention, fiber reinforced resin compositions other than this may be sufficient.

前述した構成の樹脂成形機1を用いて繊維強化樹脂組成物を成形する際には、まず、前述した端材をホッパー41に投入して、該端材をシリンダ3のホッパー口4からシリンダ3内に供給する。繊維強化樹脂組成物は、スクリュ2の供給部24の溝23内に供給され、スクリュ2が回転することによって供給部24の溝23内から圧縮部25の溝23内、計量部26の溝23内へと順次搬送される。   When the fiber reinforced resin composition is molded using the resin molding machine 1 having the above-described configuration, first, the above-described end material is put into the hopper 41 and the end material is inserted into the cylinder 3 from the hopper port 4 of the cylinder 3. Supply in. The fiber reinforced resin composition is supplied into the groove 23 of the supply part 24 of the screw 2, and when the screw 2 rotates, from the groove 23 of the supply part 24 to the groove 23 of the compression part 25 and the groove 23 of the measuring part 26. It is sequentially transported inward.

供給部24では、ベース樹脂の融点以下の温度に設定されたヒータ71から供給される熱によって繊維強化樹脂組成物が溶融することなくかつ十分に予熱される。圧縮部25では、ベース樹脂の融点より高い温度に設定されたヒータ72から供給される熱及び従来よりも小さな剪断力によって繊維強化樹脂組成物が溶融される。   In the supply unit 24, the fiber-reinforced resin composition is sufficiently preheated without being melted by the heat supplied from the heater 71 set to a temperature equal to or lower than the melting point of the base resin. In the compression unit 25, the fiber reinforced resin composition is melted by heat supplied from the heater 72 set to a temperature higher than the melting point of the base resin and a shearing force smaller than that of the conventional one.

そして、溶融された繊維強化樹脂組成物は、供給部24や圧縮部25よりも短く設けられた計量部26を通った後、ブレーカプレート51、スクリーンパック53及びダイ54へと搬送される。繊維強化樹脂組成物は、ダイ54内を通り抜けた後に冷却固化され、線状に成形された後に短く切断されて再ペレット化され、リペレットとなる。   Then, the melted fiber reinforced resin composition passes through the measuring unit 26 provided shorter than the supply unit 24 and the compression unit 25, and is then conveyed to the breaker plate 51, the screen pack 53, and the die 54. The fiber reinforced resin composition passes through the die 54 and is then cooled and solidified. After being formed into a linear shape, the fiber reinforced resin composition is cut into short pieces and re-pelletized to form repellets.

本実施形態によれば、スクリュ2が、ホッパー口4側に配されかつ軸部21の外径がその長手方向に一定に形成された供給部24と、供給部24に連なりかつ軸部21の外径が該供給部24から離れるにしたがって徐々に大きく形成された圧縮部25と、圧縮部25に連なりかつ軸部21の外径がその長手方向に一定に形成された計量部26とを備えるとともに、計量部26の軸部21の外周面21aとフライト22の先端22aとの間の距離D3に対する供給部24の軸部21の外周面21aとフライト22の先端22aとの間の距離D1の比率D1/D3が1.2以上でかつ1.95であるので、繊維強化樹脂組成物が受ける剪断力が小さくなり、繊維状充填材が折損しにくくなって繊維強化樹脂組成物の強度向上性を維持することができる。   According to this embodiment, the screw 2 is arranged on the hopper port 4 side and the outer diameter of the shaft portion 21 is formed constant in the longitudinal direction, and the supply portion 24 is connected to the supply portion 24 and the shaft portion 21 A compression unit 25 having an outer diameter that gradually increases as the distance from the supply unit 24 increases, and a measuring unit 26 that is connected to the compression unit 25 and that has a constant outer diameter of the shaft portion 21 in its longitudinal direction. In addition, the distance D1 between the outer peripheral surface 21a of the shaft portion 21 of the supply unit 24 and the front end 22a of the flight 22 with respect to the distance D3 between the outer peripheral surface 21a of the shaft portion 21 of the measuring unit 26 and the front end 22a of the flight 22 Since the ratio D1 / D3 is 1.2 or more and 1.95, the shearing force applied to the fiber reinforced resin composition is reduced, the fibrous filler is not easily broken, and the fiber reinforced resin composition is improved in strength. Can maintain That.

供給部24と圧縮部25とがそれぞれ計量部26よりも長く設けられているので、供給部24で繊維強化樹脂組成物を十分に予熱して圧縮部25で繊維強化樹脂組成物に十分な熱を供給して繊維強化樹脂組成物を溶融することができるとともに、計量部26が短くなって溶融した繊維強化樹脂組成物が計量部26で受けるストレスを小さくすることができる。   Since the supply unit 24 and the compression unit 25 are provided longer than the measuring unit 26, the fiber reinforced resin composition is sufficiently preheated by the supply unit 24 and sufficient heat is applied to the fiber reinforced resin composition by the compression unit 25. Can be supplied to melt the fiber reinforced resin composition, and the measuring unit 26 can be shortened to reduce the stress that the melted fiber reinforced resin composition receives in the measuring unit 26.

計量部26の長さL3に対する圧縮部25の長さL2の比率L2/L3が2以上でかつ4以下であるので、圧縮部25が長くなって圧縮部25で繊維強化樹脂組成物に十分な熱を供給してこの熱によって繊維強化樹脂組成物を溶融することができるとともに、計量部26が短くなって溶融した繊維強化樹脂組成物が計量部26で受けるストレスを小さくすることができる。   Since the ratio L2 / L3 of the length L2 of the compression portion 25 to the length L3 of the measuring portion 26 is 2 or more and 4 or less, the compression portion 25 becomes long and the compression portion 25 is sufficient for the fiber reinforced resin composition. Heat can be supplied and the fiber reinforced resin composition can be melted by this heat, and the weighing unit 26 can be shortened to reduce the stress that the melted fiber reinforced resin composition receives on the weighing unit 26.

計量部26の長さL3に対する供給部24の長さL1の比率L1/L3が1.33以上でかつ5以下であるので、供給部24が長くなって供給部24で繊維強化樹脂組成物を十分に予熱することができるとともに、計量部26が短くなって溶融した繊維強化樹脂組成物が計量部26で受けるストレスを小さくすることができる。   Since the ratio L1 / L3 of the length L1 of the supply unit 24 to the length L3 of the measuring unit 26 is 1.33 or more and 5 or less, the supply unit 24 becomes long, and the fiber reinforced resin composition is added by the supply unit 24. While being able to preheat enough, the measurement part 26 becomes short and the stress which the fiber-reinforced resin composition which fuse | melted receives in the measurement part 26 can be made small.

シリンダ3内に熱を供給するヒータ7を更に備えるとともに、シリンダ3内の供給部24が配される部分に熱を供給するヒータ71の温度が、ベース樹脂の融点に対して−25℃以上でかつベース樹脂の融点以下であるので、繊維強化樹脂組成物が供給部24で十分に予熱されるとともに、繊維強化樹脂組成物が供給部24で供給される熱によって溶融することがなく繊維強化樹脂組成物にかかるストレスを小さくすることができる。   The heater 7 for supplying heat into the cylinder 3 is further provided, and the temperature of the heater 71 for supplying heat to the portion of the cylinder 3 where the supply unit 24 is disposed is −25 ° C. or higher with respect to the melting point of the base resin. And since it is below melting | fusing point of base resin, while a fiber reinforced resin composition is fully preheated in the supply part 24, a fiber reinforced resin composition does not melt | dissolve with the heat supplied by the supply part 24, and fiber reinforced resin Stress applied to the composition can be reduced.

また、本発明の発明者は、前述した実施形態に記載された樹脂成形機1を製造して、本発明の効果を確認した。   Moreover, the inventor of this invention manufactured the resin molding machine 1 described in embodiment mentioned above, and confirmed the effect of this invention.

(実施例1)
計量部26の軸部21の外周面21aとフライト22の先端22aとの間の距離D3に対する供給部24の軸部21の外周面21aとフライト22の先端22aとの間の距離D1の比率D1/D3が異なる複数のスクリュ2を用意し、これらスクリュ2を前述した構成の樹脂成形機1に用いて繊維強化樹脂組成物の端材の再ペレット化を行った。得られたリペレットのベース樹脂を溶剤中で溶解させてガラス繊維のみを取り出し、ガラス繊維の顕微鏡写真からガラス繊維の長さを目視で測定した。
Example 1
Ratio D1 of the distance D1 between the outer peripheral surface 21a of the shaft portion 21 of the supply unit 24 and the front end 22a of the flight 22 with respect to the distance D3 between the outer peripheral surface 21a of the shaft portion 21 of the measuring unit 26 and the front end 22a of the flight 22 A plurality of screws 2 having different / D3 were prepared, and the end materials of the fiber reinforced resin composition were re-pelletized using these screws 2 in the resin molding machine 1 having the above-described configuration. Only the glass fiber was taken out by dissolving the base resin of the obtained repellet in a solvent, and the length of the glass fiber was visually measured from a micrograph of the glass fiber.

なお、スクリュ2は、前記比率D1/D3が1.5、1.8、3.0、3.8の計4本を用意し、それぞれのスクリュ2は、外径を20mm、L/Dを25、供給部24の長さL1を200mm、圧縮部25の長さL2を240mm、計量部26の長さL3を80mm、回転数を150rpmとした。   In addition, the screw 2 prepares a total of four ratios D1 / D3 of 1.5, 1.8, 3.0, and 3.8. Each screw 2 has an outer diameter of 20 mm and L / D. 25, the length L1 of the supply unit 24 was 200 mm, the length L2 of the compression unit 25 was 240 mm, the length L3 of the weighing unit 26 was 80 mm, and the rotation speed was 150 rpm.

また、樹脂成形機1は、D2025型(東洋精機社製)とした。また、ヒータ71の温度を200℃、ヒータ72の温度を250℃、ヒータ73の温度を260℃、ヒータ74の温度を270℃とした。また、繊維強化樹脂組成物としては、トレコン 1101−G30(東レ社製)を用いた。   Moreover, the resin molding machine 1 was set to D2025 type (made by Toyo Seiki Co., Ltd.). The temperature of the heater 71 was 200 ° C., the temperature of the heater 72 was 250 ° C., the temperature of the heater 73 was 260 ° C., and the temperature of the heater 74 was 270 ° C. Moreover, as a fiber reinforced resin composition, Toraycon 1101-G30 (made by Toray Industries, Inc.) was used.

実施例1の結果(それぞれ、N=5の平均値)を図3に示す。図3において、横軸は計量部26の軸部21の外周面21aとフライト22の先端22aとの間の距離D3に対する供給部24の軸部21の外周面21aとフライト22の先端22aとの間の距離D1の比率D1/D3を示し、縦軸は得られたリペレット中のガラス繊維の長さ(GF長)(μm)を示している。図3に示すように、スクリュ2の前記比率が1.5であるとガラス繊維の長さは399μmとなり、バージンペレット中のガラス繊維の長さ(約413μm)と略同等の長さとなった。スクリュ2の前記比率が1.8であるとガラス繊維の長さは330μmとなり、バージンペレット中のガラス繊維の長さの約80%の長さであった。また、前記比率が1.2より小さいと繊維強化樹脂組成物の溶融が十分にできないので押出成形を行うことができず、前記比率が1.95以上であると約25%以上のガラス繊維が折損してしまっていた。以上より、前記比率が1.2以上でかつ1.95であると、ガラス繊維の折損が防止されることが示された。   The results of Example 1 (each average value of N = 5) are shown in FIG. In FIG. 3, the horizontal axis represents the distance between the outer peripheral surface 21 a of the shaft portion 21 of the supply portion 24 and the front end 22 a of the flight 22 with respect to the distance D3 between the outer peripheral surface 21 a of the shaft portion 21 of the measuring portion 26 and the front end 22 a of the flight 22. The ratio D1 / D3 of the distance D1 between them is shown, and the vertical axis shows the length (GF length) (μm) of the glass fiber in the obtained repellet. As shown in FIG. 3, when the ratio of the screw 2 was 1.5, the length of the glass fiber was 399 μm, which was substantially the same as the length of the glass fiber in the virgin pellet (about 413 μm). When the ratio of the screw 2 was 1.8, the length of the glass fiber was 330 μm, which was about 80% of the length of the glass fiber in the virgin pellet. Further, if the ratio is less than 1.2, the fiber-reinforced resin composition cannot be sufficiently melted, so that extrusion molding cannot be performed. If the ratio is 1.95 or more, about 25% or more glass fibers are formed. It was broken. From the above, it was shown that glass fiber breakage was prevented when the ratio was 1.2 or more and 1.95.

(実施例2)
計量部26の長さL3に対する圧縮部25の長さL2の比率L2/L3が異なる複数のスクリュ2を用意し、これらスクリュ2を前述した構成の樹脂成形機1に用いて繊維強化樹脂組成物の端材の再ペレット化を行った。再ペレット化工程途中の、圧縮部25で溶融した繊維強化樹脂組成物の割合を測定した。
(Example 2)
A plurality of screws 2 having different ratios L2 / L3 of the length L2 of the compressing unit 25 to the length L3 of the measuring unit 26 are prepared, and these screws 2 are used in the resin molding machine 1 having the above-described configuration. The pellets were repelletized. The ratio of the fiber reinforced resin composition melted in the compression part 25 during the re-pelletizing process was measured.

なお、スクリュ2は、計量部26の軸部21の外周面21aとフライト22の先端22aとの間の距離D3に対する供給部24の軸部21の外周面21aとフライト22の先端22aとの間の距離D1の比率D1/D3を1.8とし、かつ、(供給部24の長さL1、圧縮部25の長さL2、計量部26の長さL3、L2/L3)が、それぞれ、(200mm、200mm、120mm、1.7)、(200mm、240mm、80mm、3)、(200mm、260mm、60mm、4.3)の計3本を用意し、他の実験条件は実施例1と同様に行った。   The screw 2 is located between the outer peripheral surface 21a of the shaft portion 21 of the supply portion 24 and the front end 22a of the flight 22 with respect to the distance D3 between the outer peripheral surface 21a of the shaft portion 21 of the measuring portion 26 and the front end 22a of the flight 22. The ratio D1 / D3 of the distance D1 is 1.8, and (the length L1 of the supply unit 24, the length L2 of the compression unit 25, the lengths L3 and L2 / L3 of the measuring unit 26) are respectively ( 200 mm, 200 mm, 120 mm, 1.7), (200 mm, 240 mm, 80 mm, 3), (200 mm, 260 mm, 60 mm, 4.3) are prepared in total, and other experimental conditions are the same as in Example 1. Went to.

実施例2の結果(それぞれ、N=5の平均値)を図4に示す。図4において、横軸は計量部26の長さL3に対する圧縮部25の長さL2の比率L2/L3を示し、縦軸は溶融した繊維強化樹脂組成物の割合(%)を示している。図4に示すように、前記比率が2より小さいと繊維強化樹脂組成物が十分に溶融しておらず、前記比率が2以上でかつ4以下であると約98%以上の繊維強化樹脂組成物が溶融しており、繊維強化樹脂組成物が十分に溶融していることが示された。   The results of Example 2 (each average value of N = 5) are shown in FIG. In FIG. 4, the horizontal axis indicates the ratio L2 / L3 of the length L2 of the compression unit 25 to the length L3 of the measuring unit 26, and the vertical axis indicates the ratio (%) of the melted fiber reinforced resin composition. As shown in FIG. 4, when the ratio is less than 2, the fiber reinforced resin composition is not sufficiently melted, and when the ratio is 2 or more and 4 or less, the fiber reinforced resin composition is about 98% or more. Was melted, indicating that the fiber-reinforced resin composition was sufficiently melted.

(実施例3)
計量部26の長さL3と供給部24の長さL1との比率L1/L3が異なる複数のスクリュ2を用意し、これらスクリュ2を前述した構成の樹脂成形機1に用いて繊維強化樹脂組成物の端材の再ペレット化を行った。再ペレット化工程途中の、供給部24で予熱された繊維強化樹脂組成物の温度を測定した。
(Example 3)
A plurality of screws 2 having different ratios L1 / L3 between the length L3 of the measuring unit 26 and the length L1 of the supply unit 24 are prepared, and the screws 2 are used in the resin molding machine 1 having the above-described configuration to produce a fiber reinforced resin composition. Re-pelletization of the end material of the product was performed. The temperature of the fiber reinforced resin composition preheated by the supply unit 24 during the re-pelletizing process was measured.

なお、スクリュ2は、計量部26の軸部21の外周面21aとフライト22の先端22aとの間の距離D3に対する供給部24の軸部21の外周面21aとフライト22の先端22aとの間の距離D1の比率D1/D3を1.8とし、かつ、(供給部24の長さL1、圧縮部25の長さL2、計量部26の長さL3、L1/L3)が、それぞれ、(240mm、200mm、80mm、3)、(180mm、200mm、140mm、1.29)、(170mm、200mm、150mm、1.13)の計3本を用意し、他の実験条件は実施例1と同様に行った。   The screw 2 is located between the outer peripheral surface 21a of the shaft portion 21 of the supply portion 24 and the front end 22a of the flight 22 with respect to the distance D3 between the outer peripheral surface 21a of the shaft portion 21 of the measuring portion 26 and the front end 22a of the flight 22. The ratio D1 / D3 of the distance D1 is 1.8, and (the length L1 of the supply unit 24, the length L2 of the compression unit 25, the length L3 of the measuring unit 26, and L1 / L3) are respectively ( 240 mm, 200 mm, 80 mm, 3), (180 mm, 200 mm, 140 mm, 1.29) and (170 mm, 200 mm, 150 mm, 1.13) were prepared in total, and the other experimental conditions were the same as in Example 1. Went to.

実施例3の結果(それぞれ、N=5の平均値)を図5に示す。図5において、横軸は計量部26の長さL3に対する供給部24の長さL1の比率L1/L3を示し、縦軸は繊維強化樹脂組成物の温度(℃)を示している。図5に示すように、前記比率が1.33より小さいと繊維強化樹脂組成物が十分に予熱されておらず、前記比率が1.33以上でかつ5以下であると繊維強化樹脂組成物の温度が約198℃〜約200℃となり、繊維強化樹脂組成物が十分に予熱されていることが示された。   The results of Example 3 (each average value of N = 5) are shown in FIG. In FIG. 5, the horizontal axis indicates the ratio L1 / L3 of the length L1 of the supply unit 24 to the length L3 of the measuring unit 26, and the vertical axis indicates the temperature (° C.) of the fiber reinforced resin composition. As shown in FIG. 5, when the ratio is smaller than 1.33, the fiber reinforced resin composition is not sufficiently preheated, and when the ratio is 1.33 or more and 5 or less, the fiber reinforced resin composition The temperature was about 198 ° C. to about 200 ° C., indicating that the fiber reinforced resin composition was sufficiently preheated.

(実施例4)
前述した構成の樹脂成形機1の、シリンダ3内の供給部24が配される部分に熱を供給するヒータ71の温度を変化させて、繊維強化樹脂組成物の端材の再ペレット化を行った。再ペレット化工程途中の、供給部24で予熱された繊維強化樹脂組成物の温度を測定した。
Example 4
In the resin molding machine 1 having the above-described configuration, the temperature of the heater 71 that supplies heat to the portion where the supply unit 24 in the cylinder 3 is arranged is changed to re-pelletize the end material of the fiber reinforced resin composition. It was. The temperature of the fiber reinforced resin composition preheated by the supply unit 24 during the re-pelletizing process was measured.

なお、ヒータ71の温度は、200℃、230℃、260℃に変化させた。また、スクリュ2は、計量部26の軸部21の外周面21aとフライト22の先端22aとの間の距離D3に対する供給部24の軸部21の外周面21aとフライト22の先端22aとの間の距離D1の比率を1.8とし、他の実験条件は実施例1と同様に行った。   The temperature of the heater 71 was changed to 200 ° C., 230 ° C., and 260 ° C. The screw 2 is located between the outer peripheral surface 21a of the shaft portion 21 of the supply portion 24 and the front end 22a of the flight 22 with respect to the distance D3 between the outer peripheral surface 21a of the shaft portion 21 of the measuring portion 26 and the front end 22a of the flight 22. The ratio of the distance D1 was 1.8, and the other experimental conditions were the same as in Example 1.

実施例4の結果(それぞれ、N=5の平均値)を図6に示す。図6において、横軸はヒータ71の温度(℃)を示し、縦軸は繊維強化樹脂組成物の温度(℃)を示している。図6に示すように、ヒータ71の温度が200℃の場合、繊維強化樹脂組成物の温度は約195℃であり、ヒータ71の温度が225℃の場合、繊維強化樹脂組成物の温度は約220℃であった。また、ヒータ71の温度が200℃より低いと繊維強化樹脂組成物が十分に予熱されておらず、ヒータ71の温度が225℃より高いと繊維強化樹脂組成物が溶融し始めていた。以上より、ヒータ71の温度が約200℃以上でかつ約225℃以下であると繊維強化樹脂組成物が十分に予熱されていることが示された。   The results of Example 4 (each average value of N = 5) are shown in FIG. In FIG. 6, the horizontal axis indicates the temperature (° C.) of the heater 71, and the vertical axis indicates the temperature (° C.) of the fiber reinforced resin composition. As shown in FIG. 6, when the temperature of the heater 71 is 200 ° C., the temperature of the fiber reinforced resin composition is about 195 ° C., and when the temperature of the heater 71 is 225 ° C., the temperature of the fiber reinforced resin composition is about It was 220 ° C. Further, when the temperature of the heater 71 is lower than 200 ° C., the fiber reinforced resin composition is not sufficiently preheated, and when the temperature of the heater 71 is higher than 225 ° C., the fiber reinforced resin composition starts to melt. From the above, it was shown that the fiber reinforced resin composition was sufficiently preheated when the temperature of the heater 71 was about 200 ° C. or higher and about 225 ° C. or lower.

前述した実施形態においては、樹脂成形機1は一つのスクリュ2を備えていた。しかしながら、本発明では、複数のスクリュ2を備えた樹脂成形機1であってもよい。また複数のスクリュ2の軸心は平行であってもよく、斜交であってもよい。   In the above-described embodiment, the resin molding machine 1 includes one screw 2. However, in this invention, the resin molding machine 1 provided with the some screw 2 may be sufficient. The axes of the plurality of screws 2 may be parallel or oblique.

なお、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   In addition, embodiment mentioned above only showed the typical form of this invention, and this invention is not limited to embodiment. That is, various modifications can be made without departing from the scope of the present invention.

本発明の一実施形態にかかる樹脂成形機の概略を示す構成図である。It is a lineblock diagram showing the outline of the resin molding machine concerning one embodiment of the present invention. 図1に示されたスクリュを拡大して示す側面図である。It is a side view which expands and shows the screw shown by FIG. 計量部の軸部の外周面とフライトの先端との間の距離に対する供給部の軸部の外周面とフライトの先端との間の距離との比率と、リペレット中のガラス繊維の長さとの関係を示すグラフである。The relationship between the ratio of the distance between the outer peripheral surface of the shaft part of the supply unit and the tip of the flight to the distance between the outer peripheral surface of the shaft part of the measuring unit and the tip of the flight, and the length of the glass fiber in the repellet It is a graph which shows. 計量部の長さに対する圧縮部の長さの比率と、溶融した繊維強化樹脂組成物の割合との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the length of the compression part with respect to the length of a measurement part, and the ratio of the molten fiber reinforced resin composition. 計量部の長さに対する供給部の長さの比率と、予熱された繊維強化樹脂組成物の温度との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the length of a supply part with respect to the length of a measurement part, and the temperature of the preheated fiber reinforced resin composition. 供給部が配される部分に熱を供給するヒータの温度と、予熱された繊維強化樹脂組成物の温度との関係を示すグラフである。It is a graph which shows the relationship between the temperature of the heater which supplies heat to the part by which a supply part is arranged, and the temperature of the preheated fiber reinforced resin composition.

符号の説明Explanation of symbols

1 樹脂成形機
2 スクリュ
3 シリンダ
3a 基端部
3b 先端部
4 ホッパー口(第一の開口)
5 吐出口(第二の開口)
7、71、72、73、74 ヒータ
21 軸部
21a 外周面
22 フライト
22a 先端
24 供給部
25 圧縮部
26 計量部
D1 供給部の軸部の外周面とフライトの先端との間の距離
D3 計量部の軸部の外周面とフライトの先端との間の距離
L1 供給部の長さ
L2 圧縮部の長さ
L3 計量部の長さ
DESCRIPTION OF SYMBOLS 1 Resin molding machine 2 Screw 3 Cylinder 3a Base end part 3b Tip part 4 Hopper port (1st opening)
5 Discharge port (second opening)
7, 71, 72, 73, 74 Heater 21 Shaft portion 21a Outer peripheral surface 22 Flight 22a Tip 24 Supply portion 25 Compression portion 26 Weighing portion D1 Distance between the outer peripheral surface of the shaft portion of the supply portion and the front end of the flight D3 Measuring portion Distance between the outer peripheral surface of the shaft part and the tip of the flight L1 Length of the supply part L2 Length of the compression part L3 Length of the measurement part

Claims (5)

軸部と該軸部の外周面から立設されたフライトとを有したスクリュと、前記スクリュを内部に収容したシリンダと、前記シリンダの基端部に設けられかつ該シリンダ内にベース樹脂と繊維状充填材とからなる繊維強化樹脂組成物が供給される第一の開口と、前記シリンダの先端部に設けられかつ該シリンダ内で溶融混練された前記繊維強化樹脂組成物が吐出される第二の開口と、を備えた樹脂成形機において、
前記スクリュが、前記第一の開口側に配されかつ前記軸部の外径がその長手方向に一定に形成された供給部と、前記供給部に連なりかつ前記軸部の外径が該供給部から離れるにしたがって徐々に大きく形成された圧縮部と、前記圧縮部に連なりかつ前記軸部の外径がその長手方向に一定に形成された計量部と、を備えるとともに、
前記計量部の前記軸部の外周面と前記フライトの先端との間の距離に対する前記供給部の前記軸部の外周面と前記フライトの先端との間の距離の比率が、1.2以上でかつ1.95以下であることを特徴とする樹脂成形機。
A screw having a shaft portion and a flight erected from the outer peripheral surface of the shaft portion; a cylinder containing the screw therein; a base resin and a fiber provided in the base end portion of the cylinder; And a second opening through which the fiber reinforced resin composition provided at the tip of the cylinder and melted and kneaded in the cylinder is discharged. In a resin molding machine provided with an opening,
A supply portion in which the screw is arranged on the first opening side and the outer diameter of the shaft portion is formed constant in the longitudinal direction; and the outer diameter of the shaft portion is connected to the supply portion and the supply portion A compression portion that is formed to be gradually larger as it is separated from, and a measuring portion that is continuous with the compression portion and has a constant outer diameter of the shaft portion in the longitudinal direction,
The ratio of the distance between the outer peripheral surface of the shaft portion of the supply unit and the front end of the flight to the distance between the outer peripheral surface of the shaft portion of the measuring unit and the front end of the flight is 1.2 or more. And the resin molding machine characterized by being 1.95 or less.
前記供給部と前記圧縮部とが、それぞれ、前記計量部よりも長く設けられたことを特徴とする請求項1に記載の樹脂成形機。   The resin molding machine according to claim 1, wherein each of the supply unit and the compression unit is provided longer than the weighing unit. 前記計量部の長さに対する前記圧縮部の長さの比率が、2以上でかつ4以下であることを特徴とする請求項1または請求項2に記載の樹脂成形機。   3. The resin molding machine according to claim 1, wherein a ratio of a length of the compression unit to a length of the measuring unit is 2 or more and 4 or less. 前記計量部の長さに対する前記供給部の長さの比率が、1.33以上でかつ5以下であることを特徴とする請求項1ないし請求項3のうちいずれか一項に記載の樹脂成形機。   The resin molding according to any one of claims 1 to 3, wherein a ratio of the length of the supply unit to the length of the measuring unit is 1.33 or more and 5 or less. Machine. 前記シリンダ内に熱を供給するヒータを更に備えるとともに、
前記シリンダ内の前記供給部が配される部分に熱を供給する前記ヒータの温度が、前記ベース樹脂の融点に対して−25℃以上でかつ前記ベース樹脂の融点以下であることを特徴とする請求項1ないし請求項4のうちいずれか一項に記載の樹脂成形機。
A heater for supplying heat into the cylinder;
The temperature of the heater that supplies heat to a portion of the cylinder where the supply unit is disposed is -25 ° C or higher and lower than the melting point of the base resin with respect to the melting point of the base resin. The resin molding machine as described in any one of Claims 1 thru | or 4.
JP2007272570A 2007-10-19 2007-10-19 Resin molding machine Abandoned JP2009096150A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007272570A JP2009096150A (en) 2007-10-19 2007-10-19 Resin molding machine
PCT/JP2008/068133 WO2009051027A1 (en) 2007-10-19 2008-09-30 Resin molding apparatus
CN200880118828.XA CN101918185B (en) 2007-10-19 2008-09-30 Resin molding apparatus
MX2010004266A MX2010004266A (en) 2007-10-19 2008-09-30 Resin molding apparatus.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007272570A JP2009096150A (en) 2007-10-19 2007-10-19 Resin molding machine

Publications (1)

Publication Number Publication Date
JP2009096150A true JP2009096150A (en) 2009-05-07

Family

ID=40567296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007272570A Abandoned JP2009096150A (en) 2007-10-19 2007-10-19 Resin molding machine

Country Status (4)

Country Link
JP (1) JP2009096150A (en)
CN (1) CN101918185B (en)
MX (1) MX2010004266A (en)
WO (1) WO2009051027A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292115A (en) * 2008-06-09 2009-12-17 Yazaki Corp Resin molding machine
CN101920551A (en) * 2010-08-10 2010-12-22 昆山科信橡塑机械有限公司 Bolt special for internally and externally shielded cable material
JP2015208916A (en) * 2014-04-25 2015-11-24 株式会社星プラスチツク Repelletizing device for synthetic resin
JP2017526561A (en) * 2014-09-10 2017-09-14 スターリンガー アンド コー ゲゼルシャフト エム.ベー.ハー. Device and method for producing filled polymer composites

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021000336T5 (en) * 2020-02-04 2022-09-22 The Japan Steel Works, Ltd. INJECTION MOLDING PROCESS AND INJECTION MOLDING DEVICE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041258A (en) * 1989-04-28 1991-08-20 Polyplastics Co., Ltd. Injection process for long fiber-containing resin
US5653534A (en) * 1994-10-12 1997-08-05 Sumitomo Chemical Company, Limited Screw apparatus and method for supplying reinforcing fiber-containing molten resin using the apparatus
JPH08318561A (en) * 1995-05-26 1996-12-03 Mitsubishi Heavy Ind Ltd Resin plasticizing screw
JP3755293B2 (en) * 1997-05-22 2006-03-15 日立金属株式会社 Screw for plasticizing apparatus of fiber reinforced thermoplastic resin and plasticizing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292115A (en) * 2008-06-09 2009-12-17 Yazaki Corp Resin molding machine
CN101920551A (en) * 2010-08-10 2010-12-22 昆山科信橡塑机械有限公司 Bolt special for internally and externally shielded cable material
JP2015208916A (en) * 2014-04-25 2015-11-24 株式会社星プラスチツク Repelletizing device for synthetic resin
JP2017526561A (en) * 2014-09-10 2017-09-14 スターリンガー アンド コー ゲゼルシャフト エム.ベー.ハー. Device and method for producing filled polymer composites

Also Published As

Publication number Publication date
WO2009051027A1 (en) 2009-04-23
CN101918185A (en) 2010-12-15
CN101918185B (en) 2014-04-02
MX2010004266A (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP4786648B2 (en) Manufacturing method of resin composition with high concentration of fibrous filler and resin composition pellet
JP2009096150A (en) Resin molding machine
JP3755293B2 (en) Screw for plasticizing apparatus of fiber reinforced thermoplastic resin and plasticizing apparatus
US20160303766A1 (en) Method of manufacturing transparent resin composition
WO2016084271A1 (en) Injection molding method and injection molding machine
US20190184619A1 (en) Long fiber reinforced thermoplastic filament
KR102693417B1 (en) Carbon fiber composite material containing regenerated carbon fibers, molded body and method for producing carbon fiber composite material
JP2010000654A (en) Method and equipment for manufacturing fiber-reinforced resin pellet
US20170050359A1 (en) Injection molding apparatus
EP2633972B1 (en) Plasticizing screw for injection molding and injection molding method using same
JP2012056173A (en) Method for manufacturing fiber-reinforced resin material
JP2017105184A (en) Injection molding machine for injecting molten resin mixedly melted with thermoplastic resin and reinforcing fiber, and screw for injection molding machine
JP6507108B2 (en) Vent type injection molding apparatus and injection molding method
EP3922427A1 (en) Thermoplastic resin composition molding machine and producing method, method for manufacturing molded article of composite resin composition, and injection molded article
JP5432477B2 (en) Resin molding machine
JP6173996B2 (en) Twin screw extruder used for the production of fiber reinforced resin composition
WO2017094740A1 (en) Injection molding machine and injection molding machine screw for injecting molten resin in which thermoplastic resin and reinforcing fibers have been mixed and melted
JP7125604B2 (en) Reinforced resin molding manufacturing apparatus and manufacturing method
JP6167707B2 (en) Injection molding apparatus and method for producing glass fiber reinforced resin
JP6091044B2 (en) Method for producing resin composition
JPH08103926A (en) Screw structure for molding machine of liquid crystal resin composite material
CN114222655A (en) Method and extrusion device for extruding a fibre-reinforced plastic material for an additive-manufactured component
US20220227033A1 (en) Molding screw, free blend injection molding machine, and free blend-type resin molded body manufacturing method
JP2015074674A (en) Glass fiber-reinforced member and thermoplastic resin molded article
JP5092394B2 (en) Method for producing thermoplastic resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100826

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20111026