WO2017094740A1 - Injection molding machine and injection molding machine screw for injecting molten resin in which thermoplastic resin and reinforcing fibers have been mixed and melted - Google Patents

Injection molding machine and injection molding machine screw for injecting molten resin in which thermoplastic resin and reinforcing fibers have been mixed and melted Download PDF

Info

Publication number
WO2017094740A1
WO2017094740A1 PCT/JP2016/085456 JP2016085456W WO2017094740A1 WO 2017094740 A1 WO2017094740 A1 WO 2017094740A1 JP 2016085456 W JP2016085456 W JP 2016085456W WO 2017094740 A1 WO2017094740 A1 WO 2017094740A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight
screw
injection molding
molding machine
spiral
Prior art date
Application number
PCT/JP2016/085456
Other languages
French (fr)
Japanese (ja)
Inventor
井上 玲
壮 下楠薗
Original Assignee
東洋機械金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016229814A external-priority patent/JP6789084B2/en
Application filed by 東洋機械金属株式会社 filed Critical 東洋機械金属株式会社
Priority to US15/780,013 priority Critical patent/US20190118441A1/en
Priority to EP16870677.8A priority patent/EP3385053A4/en
Priority to CN201680080509.9A priority patent/CN108602224A/en
Publication of WO2017094740A1 publication Critical patent/WO2017094740A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/58Details
    • B29C45/60Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • B29C45/52Non-return devices
    • B29C2045/528Mixing means forming part of or in close proximity to the non-return valve

Definitions

  • the present invention relates to an injection molding machine that injects a molten resin in which a thermoplastic resin and a reinforcing fiber are mixed and melted in a mold cavity, and a screw used in the injection molding machine.
  • the present invention relates to an injection molding machine that can use fibers for reinforcing fibers, and a screw used in the injection molding machine.
  • the inventors of the present application have made an injection that suppresses breakage of reinforcing fibers contained in a fiber-reinforced thermoplastic resin injected and filled into a cavity of a mold and increases dispersibility so that a molded body having a predetermined strength can be obtained.
  • An object of the present invention is to provide a molding machine, an injection molding machine for injecting a fiber reinforced thermoplastic resin composed of a thermoplastic resin and reinforcing fibers into a mold cavity closed from an injection nozzle, a heating cylinder, A screw provided rotatably in the heating cylinder is provided, and the screw is conveyed from a compression unit and a compression unit that melt and knead the fiber-reinforced thermoplastic resin supplied from the supply port while being transferred to the injection nozzle side.
  • An injection molding unit that has a metering unit that measures the melted and kneaded fiber reinforced thermoplastic resin, and forms a dull image part that disperses reinforcing fibers between the metering unit and the compression unit.
  • Patent Document 1 proposes a machine (Patent Document 1).
  • the screw dull image part is not a compression part away from the injection nozzle, but is formed between the metering part and the compression part close to the injection nozzle, so that the reinforcing fiber is formed in the compression part as the screw rotates.
  • the reinforcing fibers entangled in the dalmage part can be unwound and dispersed, and the fiber reinforced thermoplastic resin containing the dispersed reinforcing fibers can be injected and filled into the mold cavity via the injection nozzle. Therefore, a molded body having a predetermined strength can be obtained more reliably.
  • GFRTP glass fiber reinforced thermoplastic resin
  • CFRTP carbon fiber reinforced thermoplastic resin
  • the strength of these reinforced thermoplastic resins greatly depends on the length of the fiber in the molded product, and it is preferable to mold the fiber while leaving the fiber as long as possible.
  • An object of the present invention is to improve an injection molding machine for injecting a molten resin obtained by mixing and melting a thermoplastic resin and reinforcing fibers, and a screw used in the injection molding machine.
  • the injection molding can uniformly mix the reinforcing fiber without being cut by the shearing force in the molten resin. It aims at providing the machine and the screw used for it. More specifically, even when the length of the reinforcing fiber mixed with the resin is increased, the injection molding machine can disperse the long fiber into the resin evenly because the long fiber is not easily divided into short fibers. And it aims at providing the screw used for the injection molding machine. That is, an object of the present invention is to uniformly disperse the long fibers in the molten resin and influence the injection molding machine, and the operational effect is enjoyed as an effect of the injection molding machine.
  • an injection molding machine includes a screw rotatably provided in a heating cylinder, and the mold is closed from an injection nozzle attached to the tip of the heating cylinder.
  • An injection molding machine for injecting a molten resin in which a thermoplastic resin and a reinforcing fiber are mixed and melted The screw includes a compression unit that melts, kneads, and compresses while transferring the material forward, and a kneading unit that stirs, kneads, and disperses the molten material composed of thermoplastic resin and reinforcing fibers transferred from the compression unit,
  • the kneading part on the downstream side of the compression part and the compression part respectively comprises a compression part and a kneading part by a spiral flight,
  • the helical flight of the compression part is formed by a single continuous helical screw flight in which the pitch gradually decreases along the material transfer direction, A plurality of grooves are formed on
  • the plurality of grooves formed on the flight surface of the kneading part are arranged in a spiral shape in a direction intersecting with the spiral direction of the flight with an intersection angle ⁇ , It has a function of stirring and kneading and dispersing the material of the kneading part.
  • intersection angle
  • the screw for an injection molding machine of the present invention is a screw provided rotatably in a heating cylinder of an injection molding machine,
  • the screw includes a compression unit that melts, kneads and compresses the molten material composed of the thermoplastic resin and reinforcing fibers from the rear end side, and stirs and melts the molten material composed of the thermoplastic resin and reinforcing fibers.
  • a kneading part for kneading and dispersing The compression unit and the kneading unit on the downstream side of the compression unit, respectively, are composed of a compression unit and a kneading unit by a spiral flight,
  • the helical flight of the compression part is formed by a single continuous helical screw flight in which the pitch gradually decreases along the material transfer direction,
  • the spiral flight of the kneading part is characterized in that a plurality of grooves are formed on the surface of the flight so as not to form a continuous spiral flight.
  • the spiral arrangement of the plurality of grooves formed in the flight of the kneading part is 30 ° to 150 ° with respect to the spiral direction of the flight of the kneading part. It is preferable that they are formed so as to intersect at an angle. By setting the angle of the groove in the above range, even a fiber material having a long fiber length can be easily defibrated.
  • the ratio of the helical pitch Pa in which the plurality of grooves are arranged to the flight pitch Pb of the kneading part is the helical pitch Pb of the flight.
  • the spiral pitch Pa in which the plurality of grooves are arranged is It is formed so that 1Pb ⁇ Pa ⁇ 3Pb.
  • the ratio of the helical pitch Pb in which the plurality of grooves are arranged and the screw diameter D is 1D ⁇ Pb ⁇ 2D, where the screw diameter D is 1. It is characterized by being.
  • the present invention provides an injection molding machine capable of evenly dispersing long fibers in the resin, even when the length of reinforcing fibers mixed with the resin is long, the long fibers are not easily cut into short fibers And a screw for use in the injection molding machine.
  • a plurality of grooves are formed in a spiral direction intersecting the spiral direction of the flight so that the flight of the kneading part does not become a continuous spiral flight. Is introduced, the melted resin flows along the flight of the kneading part (arrow A in FIG. 6) and the reverse flow that intersects the transfer direction along the groove (arrow B in FIG. 6). Occurs.
  • the resin flow in a kneading part is disperse
  • the resin pellet in which the fiber material is mixed with the resin of the material is used, even when the fiber material is entangled in the compression part, the entanglement is released in the dispersion / stir kneading part. For this reason, in the injection molding machine of the present invention, even if the material is a mixture of long fiber materials, the fiber material can be uniformly dispersed and stirred in the resin.
  • the schematic block diagram which shows the injection molding machine of one Embodiment of this invention.
  • Explanatory drawing which shows the screw used for the injection molding machine of one Embodiment of this invention.
  • Explanatory drawing which shows the kneading part of the screw of FIG.
  • Explanatory drawing which shows the kneading part of the screw of embodiment different from 3rd.
  • An injection molding machine 1 shown in FIG. 1 is an injection molding machine in a state of injecting molten resin into a cavity of a mold that is closed.
  • the injection molding machine 1 includes a machine base 2, an injection unit 3 disposed thereon, and a mold clamping unit 4.
  • the terms “front” and “rear” are used as terms that mean “front” in the left direction and “rear” in the right direction shown in FIG.
  • the injection unit 3 includes a cylindrical heating cylinder 5, an injection nozzle 6 provided at the tip of the heating cylinder 5, a screw 7 provided inside the heating cylinder 5, and rotation driving means 8 that rotationally drives the screw 7.
  • the material charged from the hopper 9 is called a long fiber reinforced thermoplastic resin pellet.
  • a heater 11 for heating the heating cylinder 5 is provided around the heating cylinder 5, a heater 11 for heating the heating cylinder 5 is provided.
  • a supply port 10 a for supplying the material in the hopper 9 toward the heating cylinder 5 and the screw 7 is provided inside the hopper block 10.
  • the mold clamping unit 4 includes a fixed die plate 12, a movable die plate 13, and a toggle link mechanism 14, a fixed die 15 is attached to the fixed die plate 12, and a movable die plate 13 is attached to the movable die plate 13. A mold 16 is attached.
  • the toggle link mechanism 14 is driven by a motor (not shown), and the movable die plate 13 is moved leftward in FIG. 1 to open the mold, and is moved rightward to close the mold.
  • the screw 7 As for the screw 7, the left side of FIG. 3, the screw includes a compression unit 18 that melts, kneads, and compresses materials in order from the material supply side to the front, a kneading unit 17 that stirs, kneads and disperses the material, and a check ring unit 20 in front thereof. Is provided.
  • the compression section 18 provided behind the screw 7 has a continuous spiral screw flight 18a formed on the surface of the screw 7, and the flight 18a has a wide pitch at the rear portion on the supply side. The pitch gradually decreases toward the front.
  • the kneading function and the compressing function of the melted material can be achieved by the continuous spiral screw flight 18a having a gradually narrow pitch toward the front.
  • the term “one spiral” means one continuous spiral shape.
  • the kneading unit 17 following the compression unit 18 is formed with three spirals (x, y, z in FIG. 6) in this embodiment. That is, the flight 17a of the kneading part 17 is formed in a three-row spiral shape and has a spiral winding structure in the same direction as the screw flight 18a of the compression part 18.
  • the kneading part 17 in this embodiment is composed of three spiral flights 17a (x, y, z). Each is arranged in three continuous spirals, but each is separated by a groove portion 17b so as not to be a continuous spiral flight, and a plurality of independent spirals arranged in one spiral each. It is configured as a flight element 17c. A plurality of groove portions 17b are formed for each of the three spiral flights 17a (x, y, z), and the arrangement thereof is also in a three spiral shape (m, n, o). The direction is formed in the opposite direction so as to intersect the direction of the spiral of the compression portion 18 at an angle ⁇ (FIG. 6).
  • FIG. 6 shows one spiral flight 18a provided in the compression section 18, followed by three spiral flights 17a (x, y, z) provided in the kneading section 17, and each three spiral flights.
  • the relationship with the three spiral arrangements (m, n, o) of the groove portions formed in 17a is shown by a development view in the circumferential direction of the screw 7.
  • FIG. The shape of the spiral flight formed in this way is generally referred to as a dalmage type for general stations.
  • This groove part 17b is a groove part 17b arranged in three spirals (m, n, o) recessed inward from the surface of the flight 17a, and the spiral (x, y, z) of the flight 17a. Is formed such that the crossing angle ⁇ is in the range of 30 ° to 150 °. In this embodiment, as a particularly preferable example, the crossing is performed at 51.04 °.
  • the term “concave” does not mean that the processing method is limited, and the connected spiral flight 17a is divided by the groove 17b to constitute a plurality of independent flight elements 17c. I just need it.
  • the crossing angle ⁇ between the spiral flight 17a and the plurality of flight elements 17c arranged in a spiral allows a range of 30 ° ⁇ ⁇ ⁇ 150 °.
  • 30 ° ⁇ ⁇ ⁇ the spiral arrangement of the plurality of flight elements 17c is perpendicular to the screw axis
  • the spiral arrangement of the plurality of flight elements 17c is perpendicular to the screw axis ⁇ ⁇ 150 °
  • the intersection in the state of (1) is a case where the spiral directions of the plurality of flight elements 17c arranged spirally with respect to the spiral flight 17a are formed in the same direction.
  • the intersection in the state is when the spiral directions of the plurality of flight elements 17c arranged in a spiral manner with respect to the spiral flight 17a are formed in opposite directions.
  • the spiral arrangement of the grooves of the kneading part is in an intersecting state opposite to the spiral direction of the flight of the kneading part (above (2)). . Further, the spiral arrangement of the grooves of the kneading part can be made to intersect the same direction (the above (1)) as the spiral direction of the flight of the kneading part.
  • the flow of the molten material is divided into the transfer direction A and the reverse direction B along the flow, whereby the long fibers are separated. It can be dispersed to increase the stirring effect.
  • the pitch Pb of the spiral arrangement of the groove portions 17b of the kneading part can be formed at the same or different pitch as the helical pitch Pa of the single flight 17a of the kneading part.
  • the depth Hb of the groove portion 17b is substantially the same as the height Ha of the flight 17a.
  • the function of each flight element is described as the operation of the flight element 17c.
  • the function is described, it will be described as an operation of the flight 17a.
  • the heating cylinder 5 is heated by the heater 11.
  • the movable die plate 13 is moved to the right side in FIG. 1 by the toggle link mechanism 14, and the movable mold 16 and the fixed mold 15 are closed.
  • a cavity (not shown) is formed inside the movable mold 16 and the fixed mold 15.
  • the material (long fiber reinforced thermoplastic resin pellets) is put into the injection molding machine 1 having such a configuration.
  • the input material is a thermoplastic resin pellet in which reinforcing fibers are included in advance.
  • thermoplastic resin a polyamide resin, a polypropylene resin, a polystyrene resin, a polycarbonate resin, an acrylonitrile butadiene styrene copolymer resin, a polyethylene terephthalate resin, a polybutylene terephthalate resin, or the like is appropriately selected according to the intended use of the molded product.
  • fibers such as glass fibers, carbon fibers, metal fibers, or carbon nanofibers are appropriately selected in addition to natural fibers such as bamboo and pulp.
  • the fiber length is also appropriately selected according to the purpose of use of the molded product.
  • the fiber length is 3 mm or more, preferably 5 to 10 mm.
  • thermoplastic resin pellets containing reinforcing fibers in advance are used.
  • the material pellets charged into the hopper 9 are introduced into the heating cylinder 5 through the supply port 10a.
  • the screw 7 is rotated by the rotation driving means 8, and the raw material supplied from the hopper 9 by the rotation of the screw 7 is transferred to the front of the heating cylinder 5 from the vicinity of the supply port 10 a.
  • the material is transferred forward by a screw flight 18 a provided in the compression portion 18 of the screw 7, and the thermoplastic resin is gradually melted by the heat from the heater 11, together with the reinforcing fibers. Kneaded.
  • the material sufficiently melted and kneaded by the compression unit 18 of the screw 7 is gradually melted, kneaded and compressed by the compression unit 18 whose pitch of the screw flight 18a is narrowed (S20) and transferred forward, and the kneading unit 17 is reached.
  • FIG. 6 is a development view in the circumferential direction of the screw for showing the positional relationship between the helical flight of the compression section of the screw and the flight of the kneading section in FIG. 3, and the configuration of the flight 17a in the kneading section 17 is more detailed. Is shown in When the development view of FIG. 6 is rolled 360 ° around the OO axis, the arrangement position of each flight on the circumference of the screw 7 is obtained.
  • each flight 17a of the kneading part 17 is not a continuous spiral shape, but a spiral arrangement (m, n, o), each flight 17a is constituted by an array of a plurality of independent flight elements 17c, each having a continuous spiral shape cut off. Thereby, the function of stirring and kneading and dispersing by the kneading part 17 is exhibited (S30).
  • the spiral arrangement (m, n, o) of the three groove portions 17b is used, but the invention is not limited to the three-row spiral arrangement.
  • a single spiral arrangement may be used, or a plurality of other helical arrangements may be used.
  • the flight elements 17c of the spiral arrangement z are sent in the direction of compression / transfer of the material.
  • the molten resin is transferred to the previous spiral arrangement x by the groove 17b, the molten resin is divided into the direction of the arrow A and the direction of the arrow B. In this way, there is a flow of melted material in a direction opposite to the direction of the material transported by each flight element 17c. Due to the backflow B of this part of the molten material, a stirring effect is produced, and the reinforcing fibers in the molten resin are more evenly dispersed in the molten resin.
  • the resin is melted and kneaded with the reinforcing fiber by the compression portion 18 of the screw 7 in the heating cylinder 5, but the flight 18 a formed in the screw 7. Since the pitch of the fiber is gradually narrowed, it is compressed while being kneaded, so that a shearing force acts on the reinforcing fiber, and depending on the length of the reinforcing fiber, it is entangled in the compression part, and the long fiber is cut short. There is also.
  • the entangled reinforcing fibers are sheared by a part of the molten material in the kneading part 17 that flows backward. The force is released and defibrated, and long reinforcing fibers are uniformly dispersed in the molten resin.
  • defibration is used as a term meaning an action in which long entangled fibers are unraveled by stirring.
  • the molten material in which the reinforcing fibers are dispersed in the kneading unit 17 is transferred from the kneading unit 17 to the check ring unit 20 and weighed (S40), and the material is closed through the injection nozzle 6. It is injected into the molds 15 and 16 (S50). In the molds 15 and 16, the reinforcing fibers are uniformly dispersed in the injected molten material, so that a molded product having a uniform strength is formed.
  • the injection molding machine 1 ′ has the same configuration as the injection molding machine 1 of the first embodiment except that the configuration of the screw provided inside the heating cylinder 5 is different.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the molding procedure of the injection molding machine 1 ′ is the same as that in FIG. 2 and will not be described again.
  • the screw 7 ′ is provided with a compression portion 18 along the material transfer direction, a kneading portion 17 ′ is provided in front of the compression portion 18, and a check ring near the front end portion thereof.
  • a portion 20 is provided and is configured to prevent backflow upon injection of the weighed material.
  • the screw 7 ′ has a helical flight 18 a formed in the compression unit 18, and the flight 17 a ′ of the kneading unit 17 has three strips as in the first embodiment. It has a screw structure.
  • the spiral direction of the spiral flight 18a of the compression part 18 and the flight 17a 'of the kneading part 17 has a spiral structure in the same direction.
  • the kneading part 17 of the present embodiment is illustrated in which a spiral flight 17a 'having three grooves is provided with a groove part 17b' formed in the same direction as the spiral direction.
  • This groove portion 17b ′ is a groove portion 17b ′ as three spiral cuts recessed inward from the surface of the flight 17a ′, avoiding the structure of a continuous flight, and a plurality of independent flight elements 17c ′.
  • the spiral angle of the spiral arrangement in which the plurality of flight elements 17c ′ are arranged and the intersection angle ⁇ ′ of the spiral shape of the flight 17a ′ are 30 ° (the value of the angle ⁇ ). In other words, it is formed to be 150 °.
  • the pitch Pb ′ of the groove portion 17b ′ is 1 when the pitch Pa ′ of the flight 17a ′ is 1.
  • Pb ′ 3 ⁇ Pa ′ It is formed to become.
  • the depth of the groove 17b ′ is substantially the same as the height of the flight 17a ′.
  • the pitch Pa ′ of the flight 17a ′ is Pa′1.5 ⁇ D where the screw diameter D is 1. It is formed to become.
  • a molded product obtained by the injection molding machine 1 having the screw 7 of the first embodiment and the injection molding machine 1 'having the screw 7' of the second embodiment will be described.
  • a molded product manufactured by the injection molding machine 1 of the first embodiment is a first molded product
  • a molded product manufactured by the injection molding machine 1 'of the second embodiment is a second molded product.
  • glass fiber reinforced thermoplastic resin (GFRTP) pellets (Funkster LR22W, manufactured by Nippon Polypro Co., Ltd.) were used as raw materials.
  • the glass fiber content is 20% by mass, the fiber length in the pellet is 10 mm, and the fiber diameter is 16 ⁇ m.
  • an injection molding machine (PLASTER ET-40V) manufactured by Toyo Machine Metal Co., Ltd. was used. With this molding machine, a dumbbell-shaped test piece based on “JIS K 7161” was injection molded. Table 1 shows the molding conditions.
  • the residual fiber length (mm), fiber dispersibility, tensile strength (MPa), and tensile strength variation were measured for these first molded product and second molded product.
  • the remaining fiber length of the first molded product is 6.37 mm.
  • the average remaining fiber length of the second molded product is 5.34 mm.
  • These fiber lengths were measured by the following method. First, the test piece was baked in an electric furnace at 550 ° C., only the resin was vaporized, and the glass fiber was taken out. The extracted fiber was dispersed in water in a petri dish, and the fiber was photographed with a stereomicroscope. The photographed image was taken into a computer and the fiber length was measured using image processing software. The number of measurement was 1000 with each screw. The weight average fiber length LW of Formula 1 was used for the fiber length evaluation method. Here, L is the length of each fiber.
  • the residual fiber length of this type of glass fiber is said to be about 3 mm at the longest, and good results were obtained for both the first molded product and the second molded product. Further, when the first molded product and the second molded product were compared, the first molded product showed an improvement of about 19.2% compared to the second molded product.
  • the fiber length distribution of the first molded product and the second molded product is shown in the histogram of FIG.
  • the ratio of the first molded product having a long fiber length is large.
  • the peak is shifted to a longer fiber length as compared with a molded product using an existing screw.
  • the first molded product and the second molded product have a longer remaining fiber length than those molded by an existing injection molding machine.
  • shear stress is a major factor among them. This shear stress is greatly influenced by the difference in speed between the screw surface and the resin, or between the heating cylinder inner surface and the resin.
  • the kneading part is provided with the groove parts 17 b and 17 b ′. Since it became difficult, it is estimated that the fiber breakage could be suppressed.
  • the fiber dispersibility of the first molded product was 0.785
  • the second molded product was 0.711.
  • “Fractal dimension” was used for evaluation of fiber dispersibility.
  • the test piece was cut at the center, filled with an epoxy resin, and the cross-sectional surface was polished. The polished surface was photographed with a microscope, and only the fibers in the image were painted and binarized. The vertical and horizontal sides of the target distributed image are divided into n to obtain n2 elements. While calculating the area ratio of the fiber in each element, the average value a and standard deviation (sigma) a were calculated, and the variation coefficient Cv (n) was calculated
  • Cv (n) is obtained by changing n variously, and logarithmically plotted with 1 / n on the x-axis and Cv (n) on the y-axis (not shown).
  • the fractal dimension D is obtained by multiplying the slope of the straight line by -1.
  • n 27 to 34 was set in increments of 1, and fractal values were calculated from 8 photographs.
  • the fiber dispersibility of a molded product containing this type of glass fiber is said to be about 0.6, and good results were obtained for both the first molded product and the second molded product. Further, when the first molded product was compared with the second molded product, the first molded product was improved by about 10.4% compared to the second molded product.
  • the tensile strength of the first molded product was 90.73 MPa
  • the second molded product was 87.90 MPa.
  • the tensile strength was measured based on “JIS K 7164”.
  • the tensile strength of a molded product containing this type of glass fiber is said to be about 85, and good results were obtained for both the first molded product and the second molded product.
  • the first molded product was improved by about 3.2% compared to the second molded product.
  • the maximum of the first molded product was 94.11 MPa, the minimum was 85.00 MPa, and the standard deviation was 3.12.
  • the second molded product had a maximum of 92.30 MPa, a minimum of 78.91 MPa, and a standard deviation of 3.98.
  • the variation in tensile strength of a molded product containing this type of glass fiber exceeds 4, and good results were obtained for both the first molded product and the second molded product.
  • the first molded product was improved by about 25.5% compared to the second molded product.
  • the groove portion 17b provided in the kneading portion 17 is formed in three spirals, but this is not limiting, and the number of spiral stripes for installing the groove portion is appropriately determined depending on the material and length of the reinforcing fiber. It may be changed. Further, the angle ⁇ between the groove portion 17b and the flight 17a can be set to 30 ° to 150 °, and preferably 50 ° to 85 °.
  • the pitch Pb of the groove portion 17b is not limited to the state shown in the figure, but can be a ratio of 1: 1 to 3: 1 with respect to the pitch Pa of the flight 17a.
  • the shape of the groove part 17b is good also as the arrangement
  • the present invention is an injection molding machine that injects a molten resin composed of a thermoplastic resin and reinforcing fibers into a mold cavity closed from an injection nozzle attached to the tip of a heating cylinder, the heating cylinder; A screw provided rotatably in the heating cylinder, the screw melting and kneading while transferring the material forward, a weighing unit for measuring the material transferred from the compression unit, A dull image type kneading part having a spiral flight between the compression part and the measuring part, the kneading part is formed with a groove recessed inwardly on the surface of the flight, and the groove Is provided in a direction crossing the spiral direction of the flight, and can constitute an injection molding machine.
  • the present invention is a screw rotatably provided in a heating cylinder of an injection molding machine, wherein the screw is transferred from the compression unit for melting and kneading while transferring the material forward.
  • a groove for entering is formed, and the groove is provided in a direction crossing the spiral direction of the flight, and can constitute a screw for an injection molding machine.
  • the present invention does not necessarily include a kneading part having a spiral flight between the compression part and the metering part in both the injection molding machine and the screw used therein. It is an essential technical feature of the invention to provide a kneading part on the downstream side. That is, it is not essential to provide a measuring unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

[Problem] The present invention provides an injection molding machine and screw therefor with which, when mixing reinforcing fibers in a molten resin and injection molding same, the reinforcing fibers can be uniformly dispersed in the molten resin. [Solution] For a screw 7 provided in an injection molding machine 1, a kneading section 17 is provided on the downstream side of a compressing section 18. Three helical scrapers 17a (x, y, z) are provided in the kneading section 17 and three grooves 17b, 17b', which are helically disposed in the opposite or the same direction as the orientation of said scrapers 17a, 17a', are formed. As a result of said grooves 17b, 17b', it is possible to keep the fiber lengths of the reinforcing fibers long and even if the reinforcing fibers become tangled in the compressing section 18, the fibers are defibrated in the kneading section 17, the shearing of long fibers in the molten resin is mitigated, the reinforcing fibers are dispersed uniformly and a good product is obtained.

Description

熱可塑性樹脂と強化用繊維とが混合溶融された溶融樹脂を射出する射出成形機及び射出成形機用スクリューInjection molding machine for injecting molten resin in which thermoplastic resin and reinforcing fiber are mixed and melted, and screw for injection molding machine
 本発明は、型閉された金型のキャビティ内に熱可塑性樹脂と強化用繊維とが混合溶融された溶融樹脂を射出する射出成形機、及びその射出成形機に用いるスクリューに関し、特に、より長繊維の強化用繊維を使用することのできる射出成形機、及びその射出成形機に用いるスクリューに関する。 The present invention relates to an injection molding machine that injects a molten resin in which a thermoplastic resin and a reinforcing fiber are mixed and melted in a mold cavity, and a screw used in the injection molding machine. The present invention relates to an injection molding machine that can use fibers for reinforcing fibers, and a screw used in the injection molding machine.
 近年では、樹脂成形品の強度を高めるために、フィラーと呼ばれる竹やパルプ等の天然繊維や、ガラス繊維・炭素繊維等の繊維を樹脂と混合して射出成形することが行われている。具体的には、射出成形機内に繊維材料を投入し、溶融した樹脂と繊維とを混練して射出成形する場合もあるが、より長い強化繊維の場合は、予め長繊維が含まれた長繊維強化熱可塑性樹脂ペレットと称される樹脂ペレットを材料として溶融して射出成形する場合もある。 In recent years, in order to increase the strength of resin molded products, natural fibers such as bamboo and pulp called fillers and fibers such as glass fibers and carbon fibers are mixed with resin and injection molded. Specifically, there is a case where a fiber material is put into an injection molding machine, and a molten resin and fiber are kneaded and injection molded. However, in the case of a longer reinforcing fiber, a long fiber containing long fibers in advance. In some cases, resin pellets called reinforced thermoplastic resin pellets are melted as materials and injection molded.
 本願発明者等は、金型のキャビティへ射出充填される繊維強化熱可塑性樹脂に含まれた強化用繊維の破断を抑制すると共に分散性を高め、所定強度の成形体を得られるようにする射出成形機を提供することを課題として、射出ノズルから型閉された金型のキャビティに熱可塑性樹脂と強化用繊維とからなる繊維強化熱可塑性樹脂を射出する射出成形機であって、加熱シリンダ、加熱シリンダ内に回転可能に設けられたスクリューを備え、スクリューには、供給口から供給されてきた繊維強化熱可塑性樹脂を射出ノズル側へ移送させながら溶融・混練する圧縮部、圧縮部から搬送されてきた溶融・混練された繊維強化熱可塑性樹脂の計量が行われる計量部を備え、計量部と圧縮部の間に強化用繊維を分散させるダルメージ部を形成する射出成形機を既に開示している(特許文献1)。 The inventors of the present application have made an injection that suppresses breakage of reinforcing fibers contained in a fiber-reinforced thermoplastic resin injected and filled into a cavity of a mold and increases dispersibility so that a molded body having a predetermined strength can be obtained. An object of the present invention is to provide a molding machine, an injection molding machine for injecting a fiber reinforced thermoplastic resin composed of a thermoplastic resin and reinforcing fibers into a mold cavity closed from an injection nozzle, a heating cylinder, A screw provided rotatably in the heating cylinder is provided, and the screw is conveyed from a compression unit and a compression unit that melt and knead the fiber-reinforced thermoplastic resin supplied from the supply port while being transferred to the injection nozzle side. An injection molding unit that has a metering unit that measures the melted and kneaded fiber reinforced thermoplastic resin, and forms a dull image part that disperses reinforcing fibers between the metering unit and the compression unit. Already discloses a machine (Patent Document 1).
 特許文献1における射出成形機では、以下の効果が述べられている。
 (1)スクリューの計量部と圧縮部の間にダルメージ部を形成したことで、射出ノズルを介して金型のキャビティに射出充填される直前に、加熱シリンダ内で溶融・混練された繊維強化熱可塑性樹脂のうち、強化用繊維の解繊作用を大きくできるため繊維分散性が良好となる。よって、強化用繊維の分散性を向上することで所定強度の成形体を得ることができる。
 (2)さらに、スクリューには、計量部と圧縮部の間にダルメージ部を形成したことにより、強化用天然繊維の分散を効果的に行うことができる一方で、比較的折れたり破断し易い強度の弱い強化用天然繊維(竹、ジュート、麻等の天然繊維)であったとしても、所定寸法よりも短くならぬよう抑制することができる。従って、強化用天然繊維の残存繊維長が短くならぬように抑制すること、及び熱可塑性樹脂に対する強化用天然繊維の混練分散性の両立を図ることができ、所定強度の成形体を得ることができる。
 (3)さらに、スクリューのダルメージ部は、射出ノズルから離れた圧縮部ではなく、射出ノズルに近い計量部と圧縮部の間に形成したことにより、スクリューの回転に伴い圧縮部で強化用繊維が絡みあったとしても、ダルメージ部で絡み合った強化用繊維をほどいて分散させ、分散された強化用繊維を含む繊維強化熱可塑性樹脂を、射出ノズルを介して金型のキャビティに射出充填することができるから、より確実に所定強度の成形体を得ることができる。
In the injection molding machine in Patent Document 1, the following effects are described.
(1) The fiber reinforced heat melted and kneaded in the heating cylinder immediately before being injected and filled into the cavity of the mold through the injection nozzle by forming the dull image part between the metering part and the compression part of the screw. Of the plastic resins, the fiber dispersibility is good because the defibrating action of the reinforcing fibers can be increased. Therefore, a molded article having a predetermined strength can be obtained by improving the dispersibility of the reinforcing fibers.
(2) Furthermore, the screw has a strength that is relatively easy to break or break while being able to effectively disperse the reinforcing natural fiber by forming a dull image part between the metering part and the compression part. Even if it is a weak natural fiber for reinforcement (natural fibers such as bamboo, jute, hemp, etc.), it can be suppressed so as not to be shorter than a predetermined dimension. Accordingly, it is possible to achieve both the suppression of the remaining fiber length of the reinforcing natural fiber so as not to be shortened and the kneading dispersibility of the reinforcing natural fiber with respect to the thermoplastic resin, thereby obtaining a molded body having a predetermined strength. it can.
(3) Further, the screw dull image part is not a compression part away from the injection nozzle, but is formed between the metering part and the compression part close to the injection nozzle, so that the reinforcing fiber is formed in the compression part as the screw rotates. Even if entangled, the reinforcing fibers entangled in the dalmage part can be unwound and dispersed, and the fiber reinforced thermoplastic resin containing the dispersed reinforcing fibers can be injected and filled into the mold cavity via the injection nozzle. Therefore, a molded body having a predetermined strength can be obtained more reliably.
 現在では、自動車部品や航空機部品などに、ガラス繊維強化熱可塑性樹脂(GFRTP)や炭素繊維強化熱可塑性樹脂(CFRTP)等が多く用いられている。これらの強化熱可塑性樹脂の強度は、成形品中の繊維の長さに大きく依存しており、繊維をできるだけ長く残した状態で成形することが好ましい。 Currently, glass fiber reinforced thermoplastic resin (GFRTP), carbon fiber reinforced thermoplastic resin (CFRTP), and the like are often used for automobile parts and aircraft parts. The strength of these reinforced thermoplastic resins greatly depends on the length of the fiber in the molded product, and it is preferable to mold the fiber while leaving the fiber as long as possible.
 そこで、長繊維の強化熱可塑性樹脂を使用することも試みられている。しかしながら、ガラス繊維や炭素繊維は、熱可塑性樹脂に混合して射出成形を行うと、スクリューによる混練可塑化工程でのせん断作用により、繊維が折れて繊維長が数%の長さにまで短くなりやすい。さらには、樹脂に混入される繊維の長さが長くなると、射出成形機の圧縮部内で溶融樹脂に混練された繊維が絡み合い、繊維が分散されにくくなるおそれがある。 Therefore, it is also attempted to use a long-fiber reinforced thermoplastic resin. However, when glass fiber or carbon fiber is mixed with thermoplastic resin and injection molding is performed, the fiber breaks due to the shearing action in the kneading plasticization process using a screw, and the fiber length is reduced to a few percent. Cheap. Furthermore, when the length of the fibers mixed into the resin is increased, the fibers kneaded with the molten resin are entangled in the compression section of the injection molding machine, and the fibers may not be easily dispersed.
特開2012-131042号公報JP 2012-131042 A
 本発明は、熱可塑性樹脂と強化用繊維とを混合溶融された溶融樹脂を射出する射出成形機、及びその射出成形機に用いるスクリューの改良を目的とする。詳しくは、溶融樹脂にフィラーとしての強化用繊維を混合して溶融・射出する際に、強化用繊維を溶融樹脂内でのせん断力により切断されずに均一に撹拌し混合することができる射出成形機及びそれに用いるスクリューを提供することを目的とする。さらに詳しくは、樹脂と混合する強化用繊維の長さが長くなった場合であっても、長繊維が短繊維に分断され難く、長繊維を樹脂内に均一に分散することができる射出成形機及びその射出成形機に用いるスクリューを提供することを目的とする。つまり、本発明の課題は、溶融樹脂中の長繊維を均一に分散して射出成形機を影響することであり、その作用効果は射出成形機の効果として享受されるものである。 An object of the present invention is to improve an injection molding machine for injecting a molten resin obtained by mixing and melting a thermoplastic resin and reinforcing fibers, and a screw used in the injection molding machine. Specifically, when the reinforcing fiber as a filler is mixed with the molten resin and melted and injected, the injection molding can uniformly mix the reinforcing fiber without being cut by the shearing force in the molten resin. It aims at providing the machine and the screw used for it. More specifically, even when the length of the reinforcing fiber mixed with the resin is increased, the injection molding machine can disperse the long fiber into the resin evenly because the long fiber is not easily divided into short fibers. And it aims at providing the screw used for the injection molding machine. That is, an object of the present invention is to uniformly disperse the long fibers in the molten resin and influence the injection molding machine, and the operational effect is enjoyed as an effect of the injection molding machine.
 前記目的を達成するために、本発明の射出成形機は、加熱シリンダ内に回転可能に設けられたスクリューを備え、該加熱シリンダの先端に装着した射出ノズルから型閉された金型のキャビティ内に熱可塑性樹脂と強化用繊維とが混合溶融された溶融樹脂を射出する射出成形機であって、
 前記スクリューには、材料を前方へ移送させながら溶融・混練し圧縮する圧縮部と、該圧縮部から移送される熱可塑性樹脂と強化用繊維からなる溶融材料を撹拌・混練し分散する混練部とを備えており、前記圧縮部、及び当該圧縮部の下流側の混練部は、夫々、螺旋状のフライトにより圧縮部及び混練部を構成されており、
 前記圧縮部の螺旋状のフライトは、材料の移送方向に沿って漸次ピッチが狭くなる一条の連続した螺旋状のスクリューフライトにより形成され、
 前記混練部の螺旋状のフライトは、連続した螺旋状のフライトとならないように、前記フライトの表面に複数の溝部が形成されていることを特徴とする。
In order to achieve the above object, an injection molding machine according to the present invention includes a screw rotatably provided in a heating cylinder, and the mold is closed from an injection nozzle attached to the tip of the heating cylinder. An injection molding machine for injecting a molten resin in which a thermoplastic resin and a reinforcing fiber are mixed and melted,
The screw includes a compression unit that melts, kneads, and compresses while transferring the material forward, and a kneading unit that stirs, kneads, and disperses the molten material composed of thermoplastic resin and reinforcing fibers transferred from the compression unit, The kneading part on the downstream side of the compression part and the compression part respectively comprises a compression part and a kneading part by a spiral flight,
The helical flight of the compression part is formed by a single continuous helical screw flight in which the pitch gradually decreases along the material transfer direction,
A plurality of grooves are formed on the surface of the flight so that the spiral flight of the kneading part does not become a continuous spiral flight.
 さらに、本発明の射出成形機によれば、前記混練部のフライトの表面に形成された複数の溝部は、当該フライトの螺旋方向と交差角度αをもって交差する方向の螺旋状に配置されて、前記混練部の材料を撹拌・混練し分散する機能を奏していることを特徴とする。
ただし、30°≦α≦150°とする。
Furthermore, according to the injection molding machine of the present invention, the plurality of grooves formed on the flight surface of the kneading part are arranged in a spiral shape in a direction intersecting with the spiral direction of the flight with an intersection angle α, It has a function of stirring and kneading and dispersing the material of the kneading part.
However, 30 ° ≦ α ≦ 150 °.
 本発明の射出成形機用スクリューは、射出成形機の加熱シリンダ内に回転可能に設けられるスクリューであって、
 該スクリューは、後端側から、熱可塑性樹脂と強化用繊維からなる溶融材料を前方へ移送させながら溶融・混練し圧縮する圧縮部と、熱可塑性樹脂と強化用繊維からなる溶融材料を撹拌・混練し分散する混練部とを備えており、
 前記圧縮部、及び当該圧縮部の下流側の混練部は、夫々、螺旋状のフライトにより圧縮部及び混練部を構成されており、
 前記圧縮部の螺旋状のフライトは、材料の移送方向に沿って漸次ピッチが狭くなる一条の連続した螺旋状のスクリューフライトにより形成され、
 前記混練部の螺旋状のフライトは、連続した螺旋状のフライトとならないように前記フライトの表面に複数の溝部が形成されていることを特徴とする。
The screw for an injection molding machine of the present invention is a screw provided rotatably in a heating cylinder of an injection molding machine,
The screw includes a compression unit that melts, kneads and compresses the molten material composed of the thermoplastic resin and reinforcing fibers from the rear end side, and stirs and melts the molten material composed of the thermoplastic resin and reinforcing fibers. A kneading part for kneading and dispersing,
The compression unit and the kneading unit on the downstream side of the compression unit, respectively, are composed of a compression unit and a kneading unit by a spiral flight,
The helical flight of the compression part is formed by a single continuous helical screw flight in which the pitch gradually decreases along the material transfer direction,
The spiral flight of the kneading part is characterized in that a plurality of grooves are formed on the surface of the flight so as not to form a continuous spiral flight.
 さらに、本発明の射出成形機用スクリューにおいては、前記混練部のフライトに形成された複数の溝部の螺旋状の配置は、前記混練部のフライトの螺旋方向に対して、30°~150°の角度で交差するように形成されていることが好ましい。前記溝の角度を前記範囲とすることにより、繊維長の長い繊維材料であっても、容易に解繊することができる。 Furthermore, in the screw for an injection molding machine of the present invention, the spiral arrangement of the plurality of grooves formed in the flight of the kneading part is 30 ° to 150 ° with respect to the spiral direction of the flight of the kneading part. It is preferable that they are formed so as to intersect at an angle. By setting the angle of the groove in the above range, even a fiber material having a long fiber length can be easily defibrated.
 さらに、本発明の射出成形機用スクリューにおいては、前記複数の溝部が配置される螺旋状のピッチPaと、前記混練部のフライトのピッチPbとの比は、前記フライトの螺旋状のピッチPbを1とすると、前記複数の溝部が配置される螺旋状のピッチPaは、
1Pb≦Pa≦3Pbに形成されていることを特徴とする。
Furthermore, in the screw for an injection molding machine according to the present invention, the ratio of the helical pitch Pa in which the plurality of grooves are arranged to the flight pitch Pb of the kneading part is the helical pitch Pb of the flight. Assuming 1, the spiral pitch Pa in which the plurality of grooves are arranged is
It is formed so that 1Pb ≦ Pa ≦ 3Pb.
 さらに、本発明の射出成形機用スクリューにおいては、前記複数の溝部が配置される螺旋状のピッチPbとスクリュー径Dの比は、前記スクリュー径Dを1とすると、1D≦Pb≦2Dに形成されていることを特徴とする。 Furthermore, in the screw for an injection molding machine of the present invention, the ratio of the helical pitch Pb in which the plurality of grooves are arranged and the screw diameter D is 1D ≦ Pb ≦ 2D, where the screw diameter D is 1. It is characterized by being.
 本発明は、樹脂と混合する強化用繊維の長さが長くなった場合であっても、長繊維が短繊維に切断され難く、長繊維を樹脂内に均一に分散することができる射出成形機及びその射出成形機に用いるスクリューを提供する。
 本発明では、混練部のフライトに、そのフライトが連続した螺旋状のフライトとならないように、そのフライトの螺旋方向と交差する螺旋方向に複数の溝部を形成しているので、射出成形機内に樹脂が投入された場合、溶融された樹脂は混練部のフライトに沿って移送される流れ(図6の矢印A)と、溝部に沿って移送方向と交差する逆の流れ(図6の矢印B)が生じる。これにより、混練部内での樹脂流れが分散され十分に撹拌混合される。
 また、材料の樹脂に繊維材料が混合されている樹脂ペレットを用いた場合は、圧縮部において繊維材料が絡み合った場合でも、分散・撹拌混練部で絡みが解かれる。このため、本発明の射出成形機においては、長繊維材料が混合された材料であっても、繊維材料を樹脂中に均一に分散させ撹拌することができる。
INDUSTRIAL APPLICABILITY The present invention provides an injection molding machine capable of evenly dispersing long fibers in the resin, even when the length of reinforcing fibers mixed with the resin is long, the long fibers are not easily cut into short fibers And a screw for use in the injection molding machine.
In the present invention, a plurality of grooves are formed in a spiral direction intersecting the spiral direction of the flight so that the flight of the kneading part does not become a continuous spiral flight. Is introduced, the melted resin flows along the flight of the kneading part (arrow A in FIG. 6) and the reverse flow that intersects the transfer direction along the groove (arrow B in FIG. 6). Occurs. Thereby, the resin flow in a kneading part is disperse | distributed and fully stirred and mixed.
Moreover, when the resin pellet in which the fiber material is mixed with the resin of the material is used, even when the fiber material is entangled in the compression part, the entanglement is released in the dispersion / stir kneading part. For this reason, in the injection molding machine of the present invention, even if the material is a mixture of long fiber materials, the fiber material can be uniformly dispersed and stirred in the resin.
本発明の一実施形態の射出成形機を示す概略構成図。The schematic block diagram which shows the injection molding machine of one Embodiment of this invention. 本発明の一実施形態の射出成形機での成形工程を示す図。The figure which shows the molding process in the injection molding machine of one Embodiment of this invention. 本発明の一実施形態の射出成形機に用いるスクリューを示す説明図。Explanatory drawing which shows the screw used for the injection molding machine of one Embodiment of this invention. 図3のスクリューの混練部を示す説明図。Explanatory drawing which shows the kneading part of the screw of FIG. 第3とは別の実施形態のスクリューの混練部を示す説明図。Explanatory drawing which shows the kneading part of the screw of embodiment different from 3rd. 図3のスクリューの圧縮部の螺旋状フライトと混練部のフライトとの配置関係を示すためのスクリューの円周方向の展開図。The expansion | deployment figure of the circumferential direction of the screw for showing the arrangement | positioning relationship between the helical flight of the compression part of the screw of FIG. 3, and the flight of a kneading part. 図6の混練部におけるフライトの螺旋状と溝部の螺旋状配置との交差の関係を示す説明図。Explanatory drawing which shows the relationship of the intersection of the spiral of the flight in the kneading part of FIG. 6, and the helical arrangement | positioning of a groove part. 第1成形品及び第2成形品の繊維長の分布を示すヒストグラム。The histogram which shows distribution of the fiber length of a 1st molded product and a 2nd molded product.
 以下、本発明の一実施形態である射出成形機、及びそれに用いられるスクリューについて、図1~7を参照して説明する。図1に示す射出成形機1は、型閉された金型のキャビティ内に溶融された樹脂を射出する状態の射出成形機である。射出成形機1は、機台2と、その上に配設された射出ユニット3と、型締ユニット4とを備えている。
 本明細書における「前方」「後方」との用語は、図1に示された左側方向を「前方」、右側方向を「後方」を意味する用語として用いている。
Hereinafter, an injection molding machine according to an embodiment of the present invention and a screw used therefor will be described with reference to FIGS. An injection molding machine 1 shown in FIG. 1 is an injection molding machine in a state of injecting molten resin into a cavity of a mold that is closed. The injection molding machine 1 includes a machine base 2, an injection unit 3 disposed thereon, and a mold clamping unit 4.
In this specification, the terms “front” and “rear” are used as terms that mean “front” in the left direction and “rear” in the right direction shown in FIG.
 本発明においては、先の出願における発明と比較して、その構成においては何ら相違するものではなく、当該構成に基づく機能及び作用を詳細に検討することにより明瞭に説明しているものである。 In the present invention, compared to the invention in the previous application, there is no difference in the configuration, and the functions and operations based on the configuration are clearly described by examining them in detail.
 射出ユニット3は、筒型の加熱シリンダ5と、加熱シリンダ5の先端に設けられた射出ノズル6と、加熱シリンダ5の内部に設けられたスクリュー7と、スクリュー7を回転駆動する回転駆動手段8と、材料が投入されるホッパ9と、ホッパ9から投入された材料をスクリュー7に供給するホッパブロック10とを備えている。一般的には、ホッパ9から投入される材料は、長繊維強化熱可塑性樹脂ペレットと称されるものである。 The injection unit 3 includes a cylindrical heating cylinder 5, an injection nozzle 6 provided at the tip of the heating cylinder 5, a screw 7 provided inside the heating cylinder 5, and rotation driving means 8 that rotationally drives the screw 7. A hopper 9 into which material is charged, and a hopper block 10 for supplying the material charged from the hopper 9 to the screw 7. In general, the material charged from the hopper 9 is called a long fiber reinforced thermoplastic resin pellet.
 加熱シリンダ5の周囲には、加熱シリンダ5を加熱するための加熱ヒータ11が設けられている。また、ホッパブロック10の内部には、ホッパ9内の材料を加熱シリンダ5及びスクリュー7に向けて供給するための供給口10aが設けられている。 Around the heating cylinder 5, a heater 11 for heating the heating cylinder 5 is provided. A supply port 10 a for supplying the material in the hopper 9 toward the heating cylinder 5 and the screw 7 is provided inside the hopper block 10.
 型締ユニット4は、固定ダイプレート12と、可動ダイプレート13と、トグルリンク機構14とを備えており、固定ダイプレート12には固定金型15が取り付けられ、可動ダイプレート13には可動金型16が取り付けられている。トグルリンク機構14は、図示しないモータによって駆動され、可動ダイプレート13を図1において左方向に移動させて型開し、右方向に移動させて型閉する。 The mold clamping unit 4 includes a fixed die plate 12, a movable die plate 13, and a toggle link mechanism 14, a fixed die 15 is attached to the fixed die plate 12, and a movable die plate 13 is attached to the movable die plate 13. A mold 16 is attached. The toggle link mechanism 14 is driven by a motor (not shown), and the movable die plate 13 is moved leftward in FIG. 1 to open the mold, and is moved rightward to close the mold.
 次に、図3乃至図7を参照して、本実施形態の射出成形機に用いられるスクリュー7の構成について説明する。スクリュー7は、図3の左側を前方、右側を後方と称する。スクリューは、図3において、材料の供給側から前方に向けて順に、材料を溶融・混練し圧縮する圧縮部18、その前方に材料を撹拌・混練し分散する混練部17、チェックリング部20が設けられている。 Next, the configuration of the screw 7 used in the injection molding machine of the present embodiment will be described with reference to FIGS. As for the screw 7, the left side of FIG. In FIG. 3, the screw includes a compression unit 18 that melts, kneads, and compresses materials in order from the material supply side to the front, a kneading unit 17 that stirs, kneads and disperses the material, and a check ring unit 20 in front thereof. Is provided.
 スクリュー7の後方に設けられた圧縮部18は、スクリュー7の表面に1条の連続した螺旋状のスクリューフライト18aが形成されており、このフライト18aは供給側の後方部分のピッチが広くなっており、前方に向かうに従って漸次ピッチが狭くなっている。このように前方に向けて漸次狭いピッチの連続した1条の螺旋形状のスクリューフライト18aにより、溶融された材料の混練機能と圧縮機能が奏せられる。ここで「1条の螺旋」との用語は、一つの連続した螺旋形状を意味するものである。 The compression section 18 provided behind the screw 7 has a continuous spiral screw flight 18a formed on the surface of the screw 7, and the flight 18a has a wide pitch at the rear portion on the supply side. The pitch gradually decreases toward the front. Thus, the kneading function and the compressing function of the melted material can be achieved by the continuous spiral screw flight 18a having a gradually narrow pitch toward the front. Here, the term “one spiral” means one continuous spiral shape.
 圧縮部18に続く混練部17は、図4及び図6に示すように、本実施形態では3条の螺旋状(図6のx,y,z)が形成されている。つまり、混練部17のフライト17aは、3条の螺旋状により形成されており、圧縮部18のスクリューフライト18aと同方向の螺旋巻き構造となっている。 As shown in FIGS. 4 and 6, the kneading unit 17 following the compression unit 18 is formed with three spirals (x, y, z in FIG. 6) in this embodiment. That is, the flight 17a of the kneading part 17 is formed in a three-row spiral shape and has a spiral winding structure in the same direction as the screw flight 18a of the compression part 18.
 本実施形態での混練部17は、3条の螺旋状のフライト17a(x,y,z)から構成されている。夫々、連続した3条の螺旋状に配置されているが、夫々が連続の螺旋状フライトとはならないように溝部17bによって分断されており、各1条の螺旋状に配置された複数の独立したフライト要素17cとして構成されている。溝部17bは、夫々、3条の螺旋状のフライト17a(x,y,z)に対して複数形成されており、その配置も3状の螺旋状(m,n,o)となるようにされており、その方向は、圧縮部18の螺旋状の螺旋の方向とαの角度で交差するように逆方向に形成されている(図6)。 The kneading part 17 in this embodiment is composed of three spiral flights 17a (x, y, z). Each is arranged in three continuous spirals, but each is separated by a groove portion 17b so as not to be a continuous spiral flight, and a plurality of independent spirals arranged in one spiral each. It is configured as a flight element 17c. A plurality of groove portions 17b are formed for each of the three spiral flights 17a (x, y, z), and the arrangement thereof is also in a three spiral shape (m, n, o). The direction is formed in the opposite direction so as to intersect the direction of the spiral of the compression portion 18 at an angle α (FIG. 6).
 図6は、圧縮部18に設けた1条の螺旋状フライト18aと、それに続く混練部17に設けた3条の螺旋状フライト17a(x,y,z)と、各3条の螺旋状フライト17aに形成された溝部の3状の螺旋状配置(m,n,o)との関係を、スクリュー7の円周方向の展開図により示したものである。このように形成された螺旋状フライトの形状は、一般駅に総称してダルメージ型と言われている。 FIG. 6 shows one spiral flight 18a provided in the compression section 18, followed by three spiral flights 17a (x, y, z) provided in the kneading section 17, and each three spiral flights. The relationship with the three spiral arrangements (m, n, o) of the groove portions formed in 17a is shown by a development view in the circumferential direction of the screw 7. FIG. The shape of the spiral flight formed in this way is generally referred to as a dalmage type for general stations.
 この溝部17bは、フライト17aの表面から内部に向けて凹入する3条の螺旋状(m,n,o)に配置された溝部17bであり、フライト17aの螺旋状(x,y,z)との交差角度αが30°~150°の範囲となるように形成される。本実施態様においては、特に好ましい例として、51.04°で交差されている。ここで、「凹入」との用語は、その加工方法までも限定する意味ではなく、繋がった螺旋状のフライト17aが溝部17bによって分断して、独立した複数のフライト要素17cを構成するものであれば良い。 This groove part 17b is a groove part 17b arranged in three spirals (m, n, o) recessed inward from the surface of the flight 17a, and the spiral (x, y, z) of the flight 17a. Is formed such that the crossing angle α is in the range of 30 ° to 150 °. In this embodiment, as a particularly preferable example, the crossing is performed at 51.04 °. Here, the term “concave” does not mean that the processing method is limited, and the connected spiral flight 17a is divided by the groove 17b to constitute a plurality of independent flight elements 17c. I just need it.
 図7に示すように、螺旋状のフライト17aと螺旋状に配置された複数のフライト要素17cとの交差角度αが30°≦α≦150°の範囲を許容するということは、
(1)30°≦α<複数のフライト要素17cの螺旋状配置がスクリュー軸に垂直状態
(2)複数のフライト要素17cの螺旋状配置がスクリュー軸に垂直状態<α≦150°
の二つの状態がある。
 上記(1)の状態での交差は、螺旋状のフライト17aに対して螺旋状に配置された複数のフライト要素17cの螺旋方向が同一の方向で形成される場合であり、上記(2)の状態での交差は、螺旋状のフライト17aに対して螺旋状に配置された複数のフライト要素17cの螺旋方向が反対方向で形成される場合である。
As shown in FIG. 7, the fact that the crossing angle α between the spiral flight 17a and the plurality of flight elements 17c arranged in a spiral allows a range of 30 ° ≦ α ≦ 150 °.
(1) 30 ° ≦ α <the spiral arrangement of the plurality of flight elements 17c is perpendicular to the screw axis (2) the spiral arrangement of the plurality of flight elements 17c is perpendicular to the screw axis <α ≦ 150 °
There are two states.
The intersection in the state of (1) is a case where the spiral directions of the plurality of flight elements 17c arranged spirally with respect to the spiral flight 17a are formed in the same direction. The intersection in the state is when the spiral directions of the plurality of flight elements 17c arranged in a spiral manner with respect to the spiral flight 17a are formed in opposite directions.
 このように、本発明の射出成形機用スクリューにおいては、混練部の溝部の螺旋状配列は、混練部のフライトの螺旋方向とは逆方向(上記(2))の交差状態とすることは好ましい。また、混練部の溝部の螺旋状配列を、混練部のフライトの螺旋方向と同じ方向(上記(1))の交差とすることも可能である。本発明においては、このような構成により、溶融樹脂を前記溝部17bを通して移送する際に、溶融材料の流れが、流れに沿った移送方向Aと逆方向Bに分流されることにより、長繊維を分散させ撹拌効果を上げることができる。 Thus, in the screw for an injection molding machine according to the present invention, it is preferable that the spiral arrangement of the grooves of the kneading part is in an intersecting state opposite to the spiral direction of the flight of the kneading part (above (2)). . Further, the spiral arrangement of the grooves of the kneading part can be made to intersect the same direction (the above (1)) as the spiral direction of the flight of the kneading part. In the present invention, with such a configuration, when the molten resin is transferred through the groove portion 17b, the flow of the molten material is divided into the transfer direction A and the reverse direction B along the flow, whereby the long fibers are separated. It can be dispersed to increase the stirring effect.
 また、混練部の溝部17bの螺旋状配置のピッチPbは、混練部の1条のフライト17aの螺旋状ピッチPaと同一又は異なるピッチに形成することが可能である。つまり、混練部の溝部17bの螺旋状配置のピッチPbと混練部のフライト17aとのピッチPaの比は、フライトのピッチPaを1とすると、Pbを1~3に形成することが好ましい。
1Pa≦Pb≦3Pa
 なお、図6の展開図で示した実施態様においては、Pa=Pb=36mmである。
Further, the pitch Pb of the spiral arrangement of the groove portions 17b of the kneading part can be formed at the same or different pitch as the helical pitch Pa of the single flight 17a of the kneading part. In other words, the ratio of the pitch Pb of the spiral arrangement of the grooves 17b of the kneading part to the pitch Pa of the flights 17a of the kneading part is preferably such that Pb is 1 to 3, where the flight pitch Pa is 1.
1Pa ≦ Pb ≦ 3Pa
In the embodiment shown in the development view of FIG. 6, Pa = Pb = 36 mm.
 また、好ましい一実施例として、溝部17bの螺旋状配置のピッチPbは、フライト17aの螺旋状ピッチPaを、Pa=1とするとPb=2となるように形成しても良い。溝部17bの深さHbは、図4に示すように、フライト17aの高さHaとほぼ同一寸法となっている。また、フライト17aの螺旋状ピッチPaは、スクリュー径Dを1とすると、
1D≦Pa≦2D が好ましい。
なお、図6の展開図で示した実施態様においては、Pa=1.5D=36mmである。
As a preferred embodiment, the pitch Pb of the spiral arrangement of the grooves 17b may be formed such that Pb = 2 when the spiral pitch Pa of the flight 17a is Pa = 1. As shown in FIG. 4, the depth Hb of the groove portion 17b is substantially the same as the height Ha of the flight 17a. Further, the helical pitch Pa of the flight 17a is defined as 1 when the screw diameter D is 1.
1D ≦ Pa ≦ 2D is preferable.
In the embodiment shown in the developed view of FIG. 6, Pa = 1.5D = 36 mm.
 なお、本発明においては、混練部17のフライトの機能又は作用を説明する際に、各フライト要素の機能を説明する場合は、フライト要素17cの作用として説明するが、混練部17のフライト全体の機能を説明する場合は、フライト17aの作用として説明する。 In the present invention, when the function or operation of the flight of the kneading unit 17 is described, the function of each flight element is described as the operation of the flight element 17c. When the function is described, it will be described as an operation of the flight 17a.
 次に、本実施形態の射出成形機1の作動について、図1を参照して説明する。
 まず、射出ユニット3においては、加熱ヒータ11によって加熱シリンダ5が加熱されている。型締ユニット4においては、トグルリンク機構14によって可動ダイプレート13が図1において右側に移動され、可動金型16と固定金型15とが型閉されている。この可動金型16と固定金型15の内部には、図示しないキャビティが形成されている。
Next, the operation of the injection molding machine 1 of the present embodiment will be described with reference to FIG.
First, in the injection unit 3, the heating cylinder 5 is heated by the heater 11. In the mold clamping unit 4, the movable die plate 13 is moved to the right side in FIG. 1 by the toggle link mechanism 14, and the movable mold 16 and the fixed mold 15 are closed. A cavity (not shown) is formed inside the movable mold 16 and the fixed mold 15.
 このような構成の射出成形機1に材料(長繊維強化熱可塑性樹脂ペレット)が投入される。投入される材料は、予め強化用繊維が含まれている熱可塑性樹脂ペレットである。 The material (long fiber reinforced thermoplastic resin pellets) is put into the injection molding machine 1 having such a configuration. The input material is a thermoplastic resin pellet in which reinforcing fibers are included in advance.
 熱可塑性樹脂としては、ポリアミド樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、アクリロニトリルブタジエンスチレン共重合樹脂、ポリエチレンテレフタレート樹脂、或いはポリブチレンテレフタレート樹脂等、成形品の使用目的等に応じて適宜選択される。 As the thermoplastic resin, a polyamide resin, a polypropylene resin, a polystyrene resin, a polycarbonate resin, an acrylonitrile butadiene styrene copolymer resin, a polyethylene terephthalate resin, a polybutylene terephthalate resin, or the like is appropriately selected according to the intended use of the molded product.
 また、強化用繊維としては、竹やパルプ等の天然繊維の他、ガラス繊維、炭素繊維、金属繊維、或いはカーボンナノファイバー等の繊維が適宜選択される。また、繊維長も、成形品の使用目的等に応じて適宜選択される。繊維長は3mm以上の長さであり、好ましくは5mm以上10mm程度の長繊維が好ましい。 Further, as reinforcing fibers, fibers such as glass fibers, carbon fibers, metal fibers, or carbon nanofibers are appropriately selected in addition to natural fibers such as bamboo and pulp. The fiber length is also appropriately selected according to the purpose of use of the molded product. The fiber length is 3 mm or more, preferably 5 to 10 mm.
 図2において、本発明の実施態様の射出成形機による射出工程を説明する。熱可塑性樹脂及び強化用繊維は、強化用繊維の長さが長くなればなる程、均一な混練が困難となるので、ホッパ9から別々に、或いは適宜混合された状態で投入することも考えられるが、一般には、予め強化用繊維が含まれている熱可塑性樹脂ペレットが使用される。 In FIG. 2, the injection process by the injection molding machine of the embodiment of the present invention will be described. As the length of the reinforcing fiber becomes longer, the thermoplastic resin and the reinforcing fiber become more difficult to be uniformly kneaded. However, in general, thermoplastic resin pellets containing reinforcing fibers in advance are used.
 S10において、ホッパ9内に投入された材料ペレットは、供給口10aを介して加熱シリンダ5内に導入される。加熱シリンダ5内では、スクリュー7が回転駆動手段8によって回転されており、スクリュー7の回転によってホッパ9から供給された原料が供給口10aの近傍から加熱シリンダ5の前方に移送される。 In S10, the material pellets charged into the hopper 9 are introduced into the heating cylinder 5 through the supply port 10a. In the heating cylinder 5, the screw 7 is rotated by the rotation driving means 8, and the raw material supplied from the hopper 9 by the rotation of the screw 7 is transferred to the front of the heating cylinder 5 from the vicinity of the supply port 10 a.
 加熱シリンダ5内では、スクリュー7の圧縮部18に設けられたスクリューフライト18aによって材料が前方に移送されると共に、加熱ヒータ11からの熱によって徐々に熱可塑性樹脂が溶融され、強化用繊維と一緒に混練される。スクリュー7の圧縮部18によって十分に溶融及び混練された材料は、漸次、スクリューフライト18aのピッチが狭くなっている圧縮部18により溶融・混練され圧縮されて(S20)前方に移送され、混練部17に到達する。 In the heating cylinder 5, the material is transferred forward by a screw flight 18 a provided in the compression portion 18 of the screw 7, and the thermoplastic resin is gradually melted by the heat from the heater 11, together with the reinforcing fibers. Kneaded. The material sufficiently melted and kneaded by the compression unit 18 of the screw 7 is gradually melted, kneaded and compressed by the compression unit 18 whose pitch of the screw flight 18a is narrowed (S20) and transferred forward, and the kneading unit 17 is reached.
 図6により、混練部17の詳細構成を説明する。図6は、図3のスクリューの圧縮部の螺旋状フライトと混練部のフライトとの配置関係を示すためのスクリューの円周方向の展開図であり、混練部17におけるフライト17aの構成がより詳細に示されている。図6の展開図をO-O軸の回りに360°丸めればスクリュー7の円周上での各フライトの配置位置となる。 The detailed configuration of the kneading unit 17 will be described with reference to FIG. FIG. 6 is a development view in the circumferential direction of the screw for showing the positional relationship between the helical flight of the compression section of the screw and the flight of the kneading section in FIG. 3, and the configuration of the flight 17a in the kneading section 17 is more detailed. Is shown in When the development view of FIG. 6 is rolled 360 ° around the OO axis, the arrangement position of each flight on the circumference of the screw 7 is obtained.
 混練部17においては、溶融された材料が、3条の螺旋状のフライト17a(x,y,z)によって、圧縮部18での混練に続いて撹拌・混練されながら繊維が分散される。また、混練部17の各フライト17aは、夫々、連続した螺旋形状ではなく、夫々が各フライト17aの螺旋方向と逆方向の螺旋状に設けられた3条の溝部17bの螺旋状配列(m,n,o)によって、各フライト17aは、連続した螺旋形状が断たれて、各々独立した複数のフライト要素17cの並びによって構成される。それにより混練部17の撹拌・混練し分散する機能が奏される(S30)。本明細書においては、最適な実施例として、3条の溝部17bの螺旋状配列(m,n,o)としているが、3条の螺旋配列に限られるものではない。1条の螺旋状配列でも良いし、他の複数の螺旋状配列でも良い。 In the kneading section 17, the melted material is dispersed by the three spiral flights 17a (x, y, z) while being stirred and kneaded following the kneading in the compression section 18. Each flight 17a of the kneading part 17 is not a continuous spiral shape, but a spiral arrangement (m, n, o), each flight 17a is constituted by an array of a plurality of independent flight elements 17c, each having a continuous spiral shape cut off. Thereby, the function of stirring and kneading and dispersing by the kneading part 17 is exhibited (S30). In the present specification, as an optimal example, the spiral arrangement (m, n, o) of the three groove portions 17b is used, but the invention is not limited to the three-row spiral arrangement. A single spiral arrangement may be used, or a plurality of other helical arrangements may be used.
 以上のような混練部17のフライト17aの配置構成により、図6中の矢印A及びBで示すように、例えば、螺旋配列zのフライト要素17cにより、材料の圧縮・移送の方向に送り出された溶融樹脂は、溝部17bにより一つ前の螺旋配列xに移送されると、矢印Aの方向と矢印Bの方向とに分流する。このようにして、各フライト要素17cにより移送される材料の方向とは逆の方向に溶融された材料の流れが生じる。この一部の溶融材料の逆流Bにより、撹拌効果が生じて、溶融樹脂内の強化用繊維が溶融樹脂内にさらに均一に分散される。また、一部の溶融材料が矢印Bの方向に逆流することにより、連続的に圧縮を継続するのではないので、樹脂に作用するせん断力が緩和されて、長繊維に作用する破断力も緩和される。これにより、撹拌・混練・分散動作(S30)が達成される。 With the arrangement of the flight 17a of the kneading part 17 as described above, as shown by arrows A and B in FIG. 6, for example, the flight elements 17c of the spiral arrangement z are sent in the direction of compression / transfer of the material. When the molten resin is transferred to the previous spiral arrangement x by the groove 17b, the molten resin is divided into the direction of the arrow A and the direction of the arrow B. In this way, there is a flow of melted material in a direction opposite to the direction of the material transported by each flight element 17c. Due to the backflow B of this part of the molten material, a stirring effect is produced, and the reinforcing fibers in the molten resin are more evenly dispersed in the molten resin. In addition, since a part of the molten material flows backward in the direction of arrow B, the compression is not continuously continued, so that the shearing force acting on the resin is alleviated and the breaking force acting on the long fibers is also alleviated. The Thereby, stirring / kneading / dispersing operation (S30) is achieved.
 材料として熱可塑性樹脂内に強化繊維が混入されている場合、加熱シリンダ5内では、スクリュー7の圧縮部18によって樹脂が溶融されて強化繊維と混練されるが、スクリュー7に形成されたフライト18aのピッチが漸次狭くなっていることから、混練されながら圧縮されるために、強化繊維にせん断力が作用し、強化繊維の長さによっては、圧縮部内で絡み合い、長繊維が短く切断されることもある。本実施形態では、スクリュー7の圧縮部18の前方側に上記構成の混練部17が設けられているため、絡み合った強化繊維が、混練部17内の溶融材料の一部の逆流する流れによってせん断力が解放されて解繊され、長い強化繊維が溶融樹脂内に均一に分散される。
 本明細書において、「解繊」との用語は、絡まり合った長い繊維が撹拌により、ほどかれる作用を意味する用語として用いる。
When the reinforcing fiber is mixed in the thermoplastic resin as a material, the resin is melted and kneaded with the reinforcing fiber by the compression portion 18 of the screw 7 in the heating cylinder 5, but the flight 18 a formed in the screw 7. Since the pitch of the fiber is gradually narrowed, it is compressed while being kneaded, so that a shearing force acts on the reinforcing fiber, and depending on the length of the reinforcing fiber, it is entangled in the compression part, and the long fiber is cut short. There is also. In the present embodiment, since the kneading part 17 having the above-described configuration is provided on the front side of the compression part 18 of the screw 7, the entangled reinforcing fibers are sheared by a part of the molten material in the kneading part 17 that flows backward. The force is released and defibrated, and long reinforcing fibers are uniformly dispersed in the molten resin.
In the present specification, the term “defibration” is used as a term meaning an action in which long entangled fibers are unraveled by stirring.
 このように、混練部17内で強化繊維が分散された溶融材料は、混練部17からチェックリング部20に移送されて計量された(S40)材料が、射出ノズル6を介して型閉された金型15,16内に射出される(S50)。金型15,16内では、射出された溶融材料に強化繊維が均一に分散されているため、強度が均一な成形品が形成される。 Thus, the molten material in which the reinforcing fibers are dispersed in the kneading unit 17 is transferred from the kneading unit 17 to the check ring unit 20 and weighed (S40), and the material is closed through the injection nozzle 6. It is injected into the molds 15 and 16 (S50). In the molds 15 and 16, the reinforcing fibers are uniformly dispersed in the injected molten material, so that a molded product having a uniform strength is formed.
 次に、第2の実施形態の射出成形機1’及びそれに用いるスクリュー7’について、図1及び図5を参照して説明する。射出成形機1’は、加熱シリンダ5の内部に設けられたスクリューの構成が異なる以外は、上記第1の実施形態の射出成形機1と同様の構成を備えている。この第2の実施形態において、第1の実施形態と同様の構成については、同様の符号を付して詳細な説明は省略する。射出成形機1’の成形手順は、図2と同様であるので、再度の説明はしない。 Next, an injection molding machine 1 ′ and a screw 7 ′ used for the second embodiment will be described with reference to FIGS. 1 and 5. The injection molding machine 1 ′ has the same configuration as the injection molding machine 1 of the first embodiment except that the configuration of the screw provided inside the heating cylinder 5 is different. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. The molding procedure of the injection molding machine 1 ′ is the same as that in FIG. 2 and will not be described again.
 スクリュー7’は、図5に示すように、材料の移送方向に沿って、圧縮部18が設けられ、その前方には混練部17’が設けられ、さらにその前方の端部近傍にはチェックリング部20が設けられており、計量された材料の射出時の逆流を防ぐように構成されている。 As shown in FIG. 5, the screw 7 ′ is provided with a compression portion 18 along the material transfer direction, a kneading portion 17 ′ is provided in front of the compression portion 18, and a check ring near the front end portion thereof. A portion 20 is provided and is configured to prevent backflow upon injection of the weighed material.
 スクリュー7’は、図5に示すように、圧縮部18に1状の螺旋状のフライト18aが形成されており、混練部17のフライト17a’は、第1の実施形態と同様に、3条ねじ構造となっている。圧縮部18の1状の螺旋状のフライト18aと混練部17のフライト17a’の螺旋方向は同じ方向の螺旋状の構造となっている。 As shown in FIG. 5, the screw 7 ′ has a helical flight 18 a formed in the compression unit 18, and the flight 17 a ′ of the kneading unit 17 has three strips as in the first embodiment. It has a screw structure. The spiral direction of the spiral flight 18a of the compression part 18 and the flight 17a 'of the kneading part 17 has a spiral structure in the same direction.
 本実施形態の混練部17は、3条の螺旋状のフライト17a’に、その螺旋の方向とは同方向に形成された溝部17b’を備えたものが図示されている。この溝部17b’は、フライト17a’の表面から内部に向けて凹入する3条の螺旋状の切込みとしての溝部17b’であり、連続したフライトの構造を避け、複数の独立したフライト要素17c’が、螺旋状配置により形成された混練部17を構成するものである。 The kneading part 17 of the present embodiment is illustrated in which a spiral flight 17a 'having three grooves is provided with a groove part 17b' formed in the same direction as the spiral direction. This groove portion 17b ′ is a groove portion 17b ′ as three spiral cuts recessed inward from the surface of the flight 17a ′, avoiding the structure of a continuous flight, and a plurality of independent flight elements 17c ′. However, it constitutes the kneading part 17 formed by a spiral arrangement.
 具体的な第2の実施形態においては、複数のフライト要素17c’が並んだ螺旋状配置の螺旋の角度と、フライト17a’の螺旋形状の交差角度α’は、30°(角度αの値で表現すれば、150°)となるように形成されている。また、溝部17b’のピッチPb’は、フライト17a’のピッチPa’を1とすると、
Pb’=3×Pa’
となるように形成されている。
 また、溝部17b’の深さは、フライト17a’の高さとほぼ同一となっている。また、フライト17a’のピッチPa’は、スクリュー径Dを1とすると
Pa’1.5×D
となるように形成されている。
In the specific second embodiment, the spiral angle of the spiral arrangement in which the plurality of flight elements 17c ′ are arranged and the intersection angle α ′ of the spiral shape of the flight 17a ′ are 30 ° (the value of the angle α). In other words, it is formed to be 150 °. Further, the pitch Pb ′ of the groove portion 17b ′ is 1 when the pitch Pa ′ of the flight 17a ′ is 1.
Pb ′ = 3 × Pa ′
It is formed to become.
Further, the depth of the groove 17b ′ is substantially the same as the height of the flight 17a ′. Further, the pitch Pa ′ of the flight 17a ′ is Pa′1.5 × D where the screw diameter D is 1.
It is formed to become.
 次に、上記第1の実施形態のスクリュー7を備えた射出成形機1と、第2の実施形態のスクリュー7’を備えた射出成形機1’により得られた成形品について説明する。ここで、第1の実施形態の射出成形機1により製造された成形品を第1成形品、第2の実施形態の射出成形機1’により製造された成形品を第2成形品とする。 Next, a molded product obtained by the injection molding machine 1 having the screw 7 of the first embodiment and the injection molding machine 1 'having the screw 7' of the second embodiment will be described. Here, a molded product manufactured by the injection molding machine 1 of the first embodiment is a first molded product, and a molded product manufactured by the injection molding machine 1 'of the second embodiment is a second molded product.
 第1成形品及び第2成形品共に、原料としてガラス繊維強化熱可塑性樹脂(GFRTP)ペレット(ファンクスターLR22W、日本ポリプロ社製)を用いた。ガラス繊維含有量は20質量%で、ペレット内の繊維長は10mm、繊維径は16μmである。また、成形機には、東洋機械金属社製射出成形機(PLASTER ET-40V)を用いた。この成形機にて「JIS K 7161」に基づいたダンベル形試験片を射出成形した。成形条件を表1に示す。 In both the first molded product and the second molded product, glass fiber reinforced thermoplastic resin (GFRTP) pellets (Funkster LR22W, manufactured by Nippon Polypro Co., Ltd.) were used as raw materials. The glass fiber content is 20% by mass, the fiber length in the pellet is 10 mm, and the fiber diameter is 16 μm. As a molding machine, an injection molding machine (PLASTER ET-40V) manufactured by Toyo Machine Metal Co., Ltd. was used. With this molding machine, a dumbbell-shaped test piece based on “JIS K 7161” was injection molded. Table 1 shows the molding conditions.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 これら第1成形品及び第2成形品について、残存繊維長(mm)、繊維分散性、引張強度(MPa)、引張強度ばらつきについて測定した。 The residual fiber length (mm), fiber dispersibility, tensile strength (MPa), and tensile strength variation were measured for these first molded product and second molded product.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表2に示すように、第1成形品の残存繊維長は6.37mmである。第2成形品の平均残存繊維長は5.34mmとなっている。これらの繊維長は、以下の手法で測定した。まず、試験片を550℃の電気炉内で焼き、樹脂のみを気化させ、ガラス繊維を取り出した。取り出した繊維をシャーレ内で水中分散させ、実体顕微鏡にて繊維を撮影した。撮影した画像をコンピュータに取り込み、画像処理ソフトを用いて繊維長を測定した。測定本数は各スクリューで1000本測定した。繊維長の評価方法には数1の重量平均繊維長Lを用いた。ここでLは各繊維長である。 As shown in Table 2, the remaining fiber length of the first molded product is 6.37 mm. The average remaining fiber length of the second molded product is 5.34 mm. These fiber lengths were measured by the following method. First, the test piece was baked in an electric furnace at 550 ° C., only the resin was vaporized, and the glass fiber was taken out. The extracted fiber was dispersed in water in a petri dish, and the fiber was photographed with a stereomicroscope. The photographed image was taken into a computer and the fiber length was measured using image processing software. The number of measurement was 1000 with each screw. The weight average fiber length LW of Formula 1 was used for the fiber length evaluation method. Here, L is the length of each fiber.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 通常、この種のガラス繊維の残存繊維長は、長くても3mm程度と言われており、第1成形品及び第2成形品共に良好な結果が得られた。また、第1成形品と第2成形品とを比較すると、第1成形品は第2成形品に比べて約19.2%の向上が見られた。 Usually, the residual fiber length of this type of glass fiber is said to be about 3 mm at the longest, and good results were obtained for both the first molded product and the second molded product. Further, when the first molded product and the second molded product were compared, the first molded product showed an improvement of about 19.2% compared to the second molded product.
 ここで、第1成形品及び第2成形品の繊維長の分布を図5のヒストグラムに示す。このヒストグラムでは、第1成形品は繊維長が長いものの割合が多くなっている。第2成形品は、3~5mmの部分にピークが見られるものの、既存のスクリューを用いた成形品に比べてそのピークが繊維長の長い方にシフトしている。 Here, the fiber length distribution of the first molded product and the second molded product is shown in the histogram of FIG. In this histogram, the ratio of the first molded product having a long fiber length is large. In the second molded product, although a peak is observed at a portion of 3 to 5 mm, the peak is shifted to a longer fiber length as compared with a molded product using an existing screw.
 この結果からわかるように、第1成形品及び第2成形品は、既存の射出成形機で成形されたものに比べて残存繊維長が長くなっている。射出成形における繊維の折損の要因はいくつかあるが、その中でもせん断応力が大きく起因すると言われている。このせん断応力は、スクリュー表面と樹脂との間や、加熱シリンダ内面と樹脂の間の速度差などが大きく影響する。第1及び第2実施形態のスクリュー7,7’では、混練部に溝部17b、17b’が設けられているため、結果として溶融樹脂の流路が広がって流速が低下し、せん断の影響を受けにくくなったため、繊維の折損を抑制できたと推測される。 As can be seen from the results, the first molded product and the second molded product have a longer remaining fiber length than those molded by an existing injection molding machine. Although there are several causes of fiber breakage in injection molding, it is said that shear stress is a major factor among them. This shear stress is greatly influenced by the difference in speed between the screw surface and the resin, or between the heating cylinder inner surface and the resin. In the screws 7 and 7 ′ of the first and second embodiments, the kneading part is provided with the groove parts 17 b and 17 b ′. Since it became difficult, it is estimated that the fiber breakage could be suppressed.
 また、表2に示すように、第1成形品の繊維分散性は0.785であり、第2成形品は0.711であった。繊維分散性の評価には「フラクタル次元」を用いた。まず、試験片を中央部分で切断し、エポキシ樹脂を用いて樹脂埋めし、断面表面を研磨した。研磨面を顕微鏡にて撮影し、画像内の繊維にのみ色を塗り、二値化した。対象となる分散画像の縦および横をn分割し、n2個のエレメントを得る。各エレメント内における繊維の面積率を算出するとともに、その平均値aおよび標準偏差σaを算出し、次式より変動係数Cv(n)を求めた。 Moreover, as shown in Table 2, the fiber dispersibility of the first molded product was 0.785, and the second molded product was 0.711. “Fractal dimension” was used for evaluation of fiber dispersibility. First, the test piece was cut at the center, filled with an epoxy resin, and the cross-sectional surface was polished. The polished surface was photographed with a microscope, and only the fibers in the image were painted and binarized. The vertical and horizontal sides of the target distributed image are divided into n to obtain n2 elements. While calculating the area ratio of the fiber in each element, the average value a and standard deviation (sigma) a were calculated, and the variation coefficient Cv (n) was calculated | required from following Formula.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 具体的には、nを種々変化させてCv(n)を求め、x軸に1/n、y軸をCv(n)として両対数プロットする(図示省略)。両者の間に直線関係が成立した場合、その直線の傾きに-1を乗じたものがフラクタル次元Dとなる。フラクタル次元Dが大きいほど分散性が良好である。本実験ではn=27~34の1刻みで設定し、8枚の写真からフラクタル値を算出した。 Specifically, Cv (n) is obtained by changing n variously, and logarithmically plotted with 1 / n on the x-axis and Cv (n) on the y-axis (not shown). When a linear relationship is established between the two, the fractal dimension D is obtained by multiplying the slope of the straight line by -1. The greater the fractal dimension D, the better the dispersibility. In this experiment, n = 27 to 34 was set in increments of 1, and fractal values were calculated from 8 photographs.
 通常、この種のガラス繊維を含む成形品の繊維分散性は、0.6程度と言われており、第1成形品及び第2成形品共に良好な結果が得られた。また、第1成形品と第2成形品とを比較すると、第1成形品は第2成形品に比べて約10.4%の向上が見られた。 Usually, the fiber dispersibility of a molded product containing this type of glass fiber is said to be about 0.6, and good results were obtained for both the first molded product and the second molded product. Further, when the first molded product was compared with the second molded product, the first molded product was improved by about 10.4% compared to the second molded product.
 また、表2に示すように、第1成形品の引張強度は90.73MPaであり、第2成形品は87.90MPaであった。引張強度は「JIS K 7164」を基準として測定した。通常、この種のグラスファイバーを含む成形品の引張強度は、85程度と言われており、第1成形品及び第2成形品共に良好な結果が得られた。また、第1成形品と第2成形品とを比較すると、第1成形品は第2成形品に比べて約3.2%の向上が見られた。 Moreover, as shown in Table 2, the tensile strength of the first molded product was 90.73 MPa, and the second molded product was 87.90 MPa. The tensile strength was measured based on “JIS K 7164”. Usually, the tensile strength of a molded product containing this type of glass fiber is said to be about 85, and good results were obtained for both the first molded product and the second molded product. Further, when the first molded product was compared with the second molded product, the first molded product was improved by about 3.2% compared to the second molded product.
 次に、引張強度のばらつき(標準偏差)を見ると、第1成形品の最大が94.11MPaで最小が85.00MPaであり、標準偏差は3.12であった。第2成形品は、最大が92.30MPaで最小が78.91MPaであり、標準偏差は3.98であった。通常、この種のグラスファイバーを含む成形品の引張強度のばらつきは4を超えると言われており、第1成形品及び第2成形品共に良好な結果が得られた。また、第1成形品と第2成形品とを比較すると、第1成形品は第2成形品に比べて約25.5%の向上が見られた。 Next, looking at the variation (standard deviation) in tensile strength, the maximum of the first molded product was 94.11 MPa, the minimum was 85.00 MPa, and the standard deviation was 3.12. The second molded product had a maximum of 92.30 MPa, a minimum of 78.91 MPa, and a standard deviation of 3.98. Usually, it is said that the variation in tensile strength of a molded product containing this type of glass fiber exceeds 4, and good results were obtained for both the first molded product and the second molded product. Further, when the first molded product was compared with the second molded product, the first molded product was improved by about 25.5% compared to the second molded product.
 なお、上記実施形態においては、混練部17に設けられた溝部17bを3条の螺旋状に形成したが、これに限らず、溝部を設置する螺旋条数は強化繊維の材質や長さによって適宜変更してもよい。また、溝部17bとフライト17aとの角度αは、30°~150°に設定することができ、好ましくは50°~85°である。 In the above embodiment, the groove portion 17b provided in the kneading portion 17 is formed in three spirals, but this is not limiting, and the number of spiral stripes for installing the groove portion is appropriately determined depending on the material and length of the reinforcing fiber. It may be changed. Further, the angle α between the groove portion 17b and the flight 17a can be set to 30 ° to 150 °, and preferably 50 ° to 85 °.
 また、溝部17bのピッチPbは、フライト17aのピッチPaに対しての割合を図示の状態に限らず、1:1から3:1程度の割合とすることができる。また、溝部17bの形状は、螺旋状ではなくランダムに配置された溝部の配列としてもよい。 Further, the pitch Pb of the groove portion 17b is not limited to the state shown in the figure, but can be a ratio of 1: 1 to 3: 1 with respect to the pitch Pa of the flight 17a. Moreover, the shape of the groove part 17b is good also as the arrangement | sequence of the groove part arrange | positioned at random instead of spiral.
 本発明は、加熱シリンダの先端に装着した射出ノズルから型閉された金型のキャビティに熱可塑性樹脂と強化用繊維とからなる溶融樹脂を射出する射出成形機であって、前記加熱シリンダと、該加熱シリンダ内に回転可能に設けられたスクリューとを備え、前記スクリューは、材料を前方へ移送させながら溶融・混練する圧縮部と、前記圧縮部から移送された材料を計量する計量部と、前記圧縮部と前記計量部との間に螺旋状のフライトを有するダルメージ型の混練部とを備え、前記混練部は、前記フライトの表面に内部に向けて凹入する溝が形成され、前記溝は、前記フライトの螺旋方向と交差する方向に設けられていることを特徴とする射出成形機を構成することができる。 The present invention is an injection molding machine that injects a molten resin composed of a thermoplastic resin and reinforcing fibers into a mold cavity closed from an injection nozzle attached to the tip of a heating cylinder, the heating cylinder; A screw provided rotatably in the heating cylinder, the screw melting and kneading while transferring the material forward, a weighing unit for measuring the material transferred from the compression unit, A dull image type kneading part having a spiral flight between the compression part and the measuring part, the kneading part is formed with a groove recessed inwardly on the surface of the flight, and the groove Is provided in a direction crossing the spiral direction of the flight, and can constitute an injection molding machine.
 また、本発明は、射出成形機の加熱シリンダ内に回転可能に設けられたスクリューであって、前記スクリューは、材料を前方へ移送させながら溶融・混練する圧縮部と、前記圧縮部から移送された材料を計量する計量部と、前記圧縮部と前記計量部との間に螺旋状のフライトを有するダルメージ型の混練部とを備え、前記混練部は、前記フライトの表面に内部に向けて凹入する溝が形成され、前記溝は、前記フライトの螺旋方向と交差する方向に設けられていることを特徴とする射出成形機用スクリューを構成することができる。 Further, the present invention is a screw rotatably provided in a heating cylinder of an injection molding machine, wherein the screw is transferred from the compression unit for melting and kneading while transferring the material forward. A weighing section for weighing the material, and a dalmage type kneading section having a spiral flight between the compression section and the weighing section, and the kneading section is recessed toward the inside on the surface of the flight. A groove for entering is formed, and the groove is provided in a direction crossing the spiral direction of the flight, and can constitute a screw for an injection molding machine.
 つまり、本発明は、射出成形機においてもそれに使用されるスクリューにおいても、圧縮部と計量部との間に螺旋状のフライトを有する混練部とを備えることが必須なものではなく、圧縮部の下流側に混練部を設けることが発明の本質的な技術的特徴点である。つまり、計量部を設けることが必須のものではない。 That is, the present invention does not necessarily include a kneading part having a spiral flight between the compression part and the metering part in both the injection molding machine and the screw used therein. It is an essential technical feature of the invention to provide a kneading part on the downstream side. That is, it is not essential to provide a measuring unit.
 1,1’…射出成形機
 5…加熱シリンダ
 7,7’…スクリュー
 17…混練部
 17a,17a’…フライト(混練部)
 17b,17b’…溝部
 18…圧縮部
 18a…フライト(圧縮部)
 20…チェックリング部
DESCRIPTION OF SYMBOLS 1,1 '... Injection molding machine 5 ... Heating cylinder 7, 7' ... Screw 17 ... Kneading part 17a, 17a '... Flight (kneading part)
17b, 17b '... groove 18 ... compression part 18a ... flight (compression part)
20 ... Check ring

Claims (6)

  1.  加熱シリンダ内に回転可能に設けられたスクリューを備え、該加熱シリンダの先端に装着した射出ノズルから型閉された金型のキャビティ内に熱可塑性樹脂と強化用繊維とが混合溶融された溶融樹脂を射出する射出成形機であって、
     前記スクリューには、材料を前方へ移送させながら溶融・混練し圧縮する圧縮部と、該圧縮部から移送される熱可塑性樹脂と強化用繊維からなる溶融材料を撹拌・混練し分散する混練部とを備えており、前記圧縮部、及び当該圧縮部の下流側の混練部は、夫々、螺旋状のフライトにより圧縮部及び混練部を構成されており、
     前記圧縮部の螺旋状のフライトは、材料の移送方向に沿って漸次ピッチが狭くなる一条の連続した螺旋状のスクリューフライトにより形成され、
     前記混練部の螺旋状のフライトは、連続した螺旋状のフライトとならないように、前記フライトの表面に複数の溝部が形成されていることを特徴とする射出成形機。
    A molten resin comprising a screw provided rotatably in a heating cylinder, in which a thermoplastic resin and reinforcing fibers are mixed and melted in a mold cavity closed from an injection nozzle attached to the tip of the heating cylinder An injection molding machine for injecting
    The screw includes a compression unit that melts, kneads, and compresses while transferring the material forward, and a kneading unit that stirs, kneads, and disperses the molten material composed of thermoplastic resin and reinforcing fibers transferred from the compression unit, The kneading part on the downstream side of the compression part and the compression part respectively comprises a compression part and a kneading part by a spiral flight,
    The helical flight of the compression part is formed by a single continuous helical screw flight in which the pitch gradually decreases along the material transfer direction,
    An injection molding machine characterized in that a plurality of grooves are formed on the surface of the flight so that the spiral flight of the kneading part does not become a continuous spiral flight.
  2.  前記混練部のフライトの表面に形成された複数の溝部は、当該フライトの螺旋方向と交差角度αをもって交差する方向の螺旋状に配置されて、前記混練部の材料を撹拌・混練し、分散する機能を奏することを特徴とする請求項1記載の射出成形機。
    ただし、30°≦α≦150°とする。
    The plurality of groove portions formed on the flight surface of the kneading part are arranged in a spiral shape intersecting with the spiral direction of the flight with an intersecting angle α to stir and knead and disperse the material of the kneading part. The injection molding machine according to claim 1, which has a function.
    However, 30 ° ≦ α ≦ 150 °.
  3.  射出成形機の加熱シリンダ内に回転可能に設けられるスクリューであって、
     該スクリューは、後端側から、熱可塑性樹脂と強化用繊維からなる溶融材料を前方へ移送させながら溶融・混練し圧縮する圧縮部と、熱可塑性樹脂と強化用繊維からなる溶融材料を撹拌・混練し分散する混練部とを備えており、
     前記圧縮部、及び当該圧縮部の下流側の混練部は、夫々、螺旋状のフライトにより圧縮部及び混練部を構成しており、
     前記圧縮部の螺旋状のフライトは、材料の移送方向に沿って漸次ピッチが狭くなる一条の連続した螺旋状のスクリューフライトにより形成され、
     前記混練部の螺旋状のフライトは、連続した螺旋状のフライトとならないように前記フライトの表面に複数の溝部が形成されていることを特徴とする射出成形機用スクリュー。
    A screw rotatably provided in a heating cylinder of an injection molding machine,
    The screw includes a compression unit that melts, kneads and compresses the molten material composed of the thermoplastic resin and reinforcing fibers from the rear end side, and stirs and melts the molten material composed of the thermoplastic resin and reinforcing fibers. A kneading part for kneading and dispersing,
    The compression unit and the kneading unit on the downstream side of the compression unit respectively constitute a compression unit and a kneading unit by a spiral flight,
    The helical flight of the compression part is formed by a single continuous helical screw flight in which the pitch gradually decreases along the material transfer direction,
    A screw for an injection molding machine, wherein a spiral flight of the kneading part is formed with a plurality of grooves on the surface of the flight so as not to be a continuous spiral flight.
  4.  前記混練部のフライトに形成された複数の溝部の螺旋状の配置は、前記フライトの螺旋方向に対して、
    30°~150°の角度で交差するように形成されていることを特徴とする請求項3記載の射出成形機用スクリュー。
    The spiral arrangement of the plurality of grooves formed in the flight of the kneading part is relative to the spiral direction of the flight.
    4. The screw for an injection molding machine according to claim 3, wherein the screw is formed so as to intersect at an angle of 30 ° to 150 °.
  5.  前記複数の溝部が配置される螺旋状のピッチPaと、前記混練部のフライトのピッチPbとの比は、前記フライトの螺旋状のピッチPbを1とすると、前記複数の溝部が配置される螺旋状のピッチPaは、
    1Pb≦Pa≦3Pbに形成されていることを特徴とする請求項3又は4記載の射出成形機用スクリュー。
    The ratio of the helical pitch Pa in which the plurality of grooves are arranged to the flight pitch Pb in the kneading part is a spiral in which the plurality of grooves are arranged, where the helical pitch Pb of the flights is 1. The pitch P
    5. The screw for an injection molding machine according to claim 3, wherein the screw is formed to satisfy 1Pb ≦ Pa ≦ 3Pb.
  6.  前記複数の溝部が配置される螺旋状のピッチPbとスクリュー径Dの比は、前記スクリュー径Dを1とすると、1D≦Pb≦2Dに形成されていることを特徴とする請求項3又は4記載の射出成形機用スクリュー。 5. The ratio of the helical pitch Pb in which the plurality of grooves are arranged and the screw diameter D is 1D ≦ Pb ≦ 2D, where the screw diameter D is 1, 5. The screw for an injection molding machine as described.
PCT/JP2016/085456 2015-11-30 2016-11-29 Injection molding machine and injection molding machine screw for injecting molten resin in which thermoplastic resin and reinforcing fibers have been mixed and melted WO2017094740A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/780,013 US20190118441A1 (en) 2015-11-30 2016-11-29 Injection molding machine and injection molding machine screw for injecting molten resin in which thermoplastic resin and reinforcing fibers have been mixed and melted
EP16870677.8A EP3385053A4 (en) 2015-11-30 2016-11-29 Injection molding machine and injection molding machine screw for injecting molten resin in which thermoplastic resin and reinforcing fibers have been mixed and melted
CN201680080509.9A CN108602224A (en) 2015-11-30 2016-11-29 Inject the injection moulding machine and injection molding machine screw rod of the molten resin after fiber mixed melting by thermoplastic resin and reinforcing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015233346 2015-11-30
JP2015-233346 2015-11-30
JP2016-229814 2016-11-28
JP2016229814A JP6789084B2 (en) 2015-11-30 2016-11-28 Screws for injection molding machines and injection molding machines that inject molten resin in which thermoplastic resin and reinforcing fibers are mixed and melted.

Publications (1)

Publication Number Publication Date
WO2017094740A1 true WO2017094740A1 (en) 2017-06-08

Family

ID=58796909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085456 WO2017094740A1 (en) 2015-11-30 2016-11-29 Injection molding machine and injection molding machine screw for injecting molten resin in which thermoplastic resin and reinforcing fibers have been mixed and melted

Country Status (1)

Country Link
WO (1) WO2017094740A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020032633A (en) * 2018-08-30 2020-03-05 アイシン精機株式会社 Manufacturing apparatus and manufacturing method of reinforced resin molding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336886A (en) * 1995-06-15 1996-12-24 Sekisui Chem Co Ltd Kneader for molding thermoplastic resin
JPH1134131A (en) * 1997-05-22 1999-02-09 Kawasaki Steel Corp Screw for apparatus for plasticizing fiber reinforced thermoplastic resin and plasticizing apparatus
JP2009173012A (en) * 2008-01-28 2009-08-06 Ls Mtron Ltd Screw of injection device
JP2012131042A (en) * 2010-12-20 2012-07-12 Toyo Mach & Metal Co Ltd Injection molding machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336886A (en) * 1995-06-15 1996-12-24 Sekisui Chem Co Ltd Kneader for molding thermoplastic resin
JPH1134131A (en) * 1997-05-22 1999-02-09 Kawasaki Steel Corp Screw for apparatus for plasticizing fiber reinforced thermoplastic resin and plasticizing apparatus
JP2009173012A (en) * 2008-01-28 2009-08-06 Ls Mtron Ltd Screw of injection device
JP2012131042A (en) * 2010-12-20 2012-07-12 Toyo Mach & Metal Co Ltd Injection molding machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3385053A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020032633A (en) * 2018-08-30 2020-03-05 アイシン精機株式会社 Manufacturing apparatus and manufacturing method of reinforced resin molding
JP7125604B2 (en) 2018-08-30 2022-08-25 学校法人同志社 Reinforced resin molding manufacturing apparatus and manufacturing method

Similar Documents

Publication Publication Date Title
JP6789084B2 (en) Screws for injection molding machines and injection molding machines that inject molten resin in which thermoplastic resin and reinforcing fibers are mixed and melted.
JP6126719B2 (en) Injection molding method and reinforcing fiber opening method
US9688001B2 (en) Method of manufacturing transparent resin composition
US20170050359A1 (en) Injection molding apparatus
JP5894349B1 (en) Injection molding method, screw, and injection molding machine
JP6933951B2 (en) Fiber reinforced thermoplastic resin kneading method and plasticizing equipment
TWI239284B (en) Mixing apparatus
CN111132805B (en) Method for kneading fiber-reinforced thermoplastic resin, plasticizing device, and extruder
WO2017094740A1 (en) Injection molding machine and injection molding machine screw for injecting molten resin in which thermoplastic resin and reinforcing fibers have been mixed and melted
WO2009051027A1 (en) Resin molding apparatus
JP6855137B2 (en) Molding method and molding equipment for fiber-reinforced thermoplastic resin molded products
JP5752404B2 (en) Injection molding machine
JP7125604B2 (en) Reinforced resin molding manufacturing apparatus and manufacturing method
JP6167707B2 (en) Injection molding apparatus and method for producing glass fiber reinforced resin
JP6869622B2 (en) Extruder for fiber reinforced thermoplastic resin
WO2018026000A1 (en) Twin screw extruder
US20220227033A1 (en) Molding screw, free blend injection molding machine, and free blend-type resin molded body manufacturing method
JP2015145090A (en) Method for manufacturing fiber reinforced resin molded article
JP6522456B2 (en) Method and apparatus for molding composite material molding
JP7361240B2 (en) Method for producing thermoplastic resin composition
WO2021157264A1 (en) Injection molding method and injection molding device
JP2019038211A (en) Injection molding apparatus and method of manufacturing reinforced resin molded article
JP2023128465A (en) Fiber-reinforced resin production device
JP5432477B2 (en) Resin molding machine
JPS62246707A (en) Mixing mechanism for composite material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016870677

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016870677

Country of ref document: EP

Effective date: 20180702