JP2009093841A - 燃料電池スタック - Google Patents

燃料電池スタック Download PDF

Info

Publication number
JP2009093841A
JP2009093841A JP2007261108A JP2007261108A JP2009093841A JP 2009093841 A JP2009093841 A JP 2009093841A JP 2007261108 A JP2007261108 A JP 2007261108A JP 2007261108 A JP2007261108 A JP 2007261108A JP 2009093841 A JP2009093841 A JP 2009093841A
Authority
JP
Japan
Prior art keywords
fuel cell
electrolyte
gas supply
fuel
cell stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007261108A
Other languages
English (en)
Inventor
Tetsuya Ogawa
哲矢 小川
Yukihiko Kiyohiro
幸彦 清弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007261108A priority Critical patent/JP2009093841A/ja
Publication of JP2009093841A publication Critical patent/JP2009093841A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】コンパクトな構成で、燃料電池の電力を良好且つ確実に検出するとともに、発電電力の自由度を向上させることを可能にする。
【解決手段】燃料電池10は、電解質・電極接合体26を挟持するセパレータ28を備える。セパレータ28は、中央部に燃料ガス供給連通孔30を形成する燃料ガス供給部32と、前記燃料ガス供給部32から外方に放射状に延在する4本の第1橋架部34と、前記第1橋架部34に連結され、燃料ガス通路40及び酸化剤ガス通路54が設けられる挟持部36とを備える。燃料電池10は、互いに積層方向に隣接する突出部56が、燃料ガス供給部32を中心にして、90゜ずつ螺旋状に離間するように積層される。
【選択図】図3

Description

本発明は、電解質をアノード電極とカソード電極とで挟んで構成される電解質・電極接合体とセパレータとが積層される燃料電池を設け、複数の前記燃料電池が積層される燃料電池スタックに関する。
通常、固体電解質型燃料電池(SOFC)は、電解質に酸化物イオン導電体、例えば、安定化ジルコニアを用いており、この電解質の両側にアノード電極及びカソード電極を配設した電解質・電極接合体(MEA)を、セパレータ(バイポーラ板)によって挟持している。この燃料電池は、通常、電解質・電極接合体とセパレータとが所定数だけ積層された燃料電池スタックとして使用されている。
上記の燃料電池スタックでは、各燃料電池が正常に発電しているか否かを検出するため、前記燃料電池毎の電圧(セル電圧)を測定することが行われている。この測定では、負荷をかけていない状態(電流を流していない状態)で、各燃料電池の発電電圧であるOCV(開回路電圧)を測定することにより、負荷をかけている状態(電流を流している状態)で、各燃料電池の発電電圧を測定すること等により、発電異常な燃料電池を検出している。
例えば、特許文献1に開示されているセル電圧測定端子付き燃料電池スタックは、固体高分子形燃料電池であり、図35に示すように、セパレータ1aを備えている。このセパレータ1aには、空気吸気通路2a、冷却水通路3a、水素吸気通路4a、空気排気通路5a及び水素排気通路6aが形成されている。
セパレータ1aの1つの端面には、ピン状の電圧測定端子7aが溶接されている。電圧測定端子7aは、陽極側のセパレータ1aと陰極側のセパレータ1aとで異なる端面に配置され、または同一端面で位置をずらして配置されている。
また、特許文献2に開示されている固体電解質型燃料電池では、反応ガス供給管同士の接触と短絡を防止して組立てを容易に行うことを目的としており、図36に示すように、単セルとセパレータ1bとが交互に積層されている。各セパレータ1bの燃料ガス供給口2bと酸化剤ガス供給口3bとは、周方向に90゜ずつ交互にずらして千鳥状に配列されている。
さらにまた、特許文献3に開示されている平板積層型燃料電池は、図37に示すように、発電セルに積層されるセパレータ1cを備えている。セパレータ1は、左右のマニホールド部分2c、2cと、中央の発電セルを配置する部分3cとが、連結部分4c、4cにより連結されており、この連結部分4cが可撓性を有している。
マニホールド部分2c、2cには、ガス孔5c、6cが設けられており、一方のガス孔5cは、燃料ガス通路7cに連通するとともに、他方のガス孔6cは、酸化剤ガス通路8cに連通している。燃料ガス通路7c及び酸化剤ガス通路8cは、部分3c内にらせん状に延在しており、この部分3cの中央部近傍で、図示しない燃料極集電体及び空気極集電体に開放されている。
特開平11−339828号公報 特開2002−184448号公報 特開2006−120589号公報
ところで、上記の特許文献1では、セパレータ1aの中央部にMEAを挟持する挟持部が設けられており、この挟持部を中心に、空気吸気通路2aと空気排気通路5a及び水素吸気通路4aと水素排気通路6aが対角線上に配置されている。
このため、燃料電池(燃料電池スタック)に供給される反応ガスを、発電による発生熱で良好に加熱することができず、熱効率の向上及び熱自立の促進を図ることができないという問題がある。
しかも、反応ガスのシール性が要求されるセパレータ1aの端面に、突起状の電圧測定端子7aが設けられている。このセパレータ1aの端面は、セパレータ積層方向のシール荷重が最も必要な箇所であり、比較的大きな締め付け荷重が付与されるため、電圧測定端子7a同士が干渉して短絡したり、空気や水素等の漏れが惹起するおそれがある。
また、特許文献2では、MEAを挟持する挟持部がセパレータ1bの中央部に設けられており、この挟持部を中心にそれぞれ2つの燃料ガス供給口2bと酸化剤ガス供給口3bとが対角線上に配置されていている。
従って、燃料電池(燃料電池スタック)に供給される反応ガスを、発電による発生熱で良好に加熱することができず、熱効率の向上及び熱自立の促進を図ることができないという問題がある。
さらにまた、特許文献3では、セパレータ1cの中央に発電セルを配置する部分3cが設けられており、燃料電池の発電による発生熱で燃料ガスや酸化剤ガスを良好に加熱することができない。このため、熱効率の向上及び熱自立の促進を図ることができないという問題がある。
本発明はこの種の問題を解決するものであり、コンパクトな構成で、セル電圧を良好且つ確実に検出するとともに、熱効率の向上及び熱自立の促進を図り、且つ発電電力の自由度を向上させることが可能な燃料電池スタックを提供することを目的とする。
本発明は、電解質をアノード電極とカソード電極とで挟んで構成される電解質・電極接合体とセパレータとが積層される燃料電池を設け、複数の前記燃料電池が積層される燃料電池スタックに関するものである。
セパレータは、電解質・電極接合体を挟持するとともに、アノード電極の電極面に沿って燃料ガスを供給する燃料ガス通路及びカソード電極の電極面に沿って酸化剤ガスを供給する酸化剤ガス通路が個別に設けられる挟持部と、前記挟持部に連結され、前記燃料ガスを前記燃料ガス通路に又は前記酸化剤ガスを前記酸化剤ガス通路に供給するための反応ガス供給通路が形成される橋架部と、前記橋架部に連結され、前記燃料ガス又は前記酸化剤ガスを前記反応ガス供給通路に供給するための反応ガス供給連通孔が積層方向に形成される反応ガス供給部と、前記挟持部の少なくとも1つに設けられ、前記電解質・電極接合体の発電による電力を取り出すための突出部とを備えている。
そして、燃料電池は、互いに積層方向に隣接する突出部が、反応ガス供給部を中心にして、2π(180゜)/n(nは、電解質・電極接合体、挟持部又は橋架部の数)の関係を有して等角度間隔ずつ螺旋状に離間するように積層されている。
また、反応ガス供給部は、燃料電池の中央部に設けられるとともに、前記反応ガス供給部を中心に複数の電解質・電極接合体が同心円上に配列されることが好ましい。このため、燃料電池や燃料電池スタックに供給される反応ガスは、発電による発生熱を介して良好に加熱される。従って、燃料電池や燃料電池スタックは、熱効率の向上と熱自立の促進とを図ることができる。ここで、熱自立とは、外部から熱を加えることなく自ら発生する熱のみで燃料電池や燃料電池スタックの動作温度を維持することをいう。
しかも、反応ガス供給部から各電解質・電極接合体に対して反応ガスを均等に分配することができ、各電解質・電極接合体の発電性能の向上及び安定化を図ることが可能になる。
さらに、挟持部及び電解質・電極接合体は、円板形状を有するとともに、前記各挟持部は、互いに分離して構成されることが好ましい。挟持部は、電解質・電極接合体に対応して円板形状を有するため、前記電解質・電極接合体で発電された電力を効率的に集電することができる。
しかも、各挟持部は、互いに分離しており、電解質・電極接合体やセパレータの寸法誤差によって各電解質・電極接合体に発生する異なる荷重を吸収することが可能になる。従って、セパレータ全体に歪みが惹起されることを阻止し、各電解質・電極接合体に対して均等な荷重を付与することができる。その上、各電解質・電極接合体の熱歪み等が隣接する他の電解質・電極接合体に伝達されることがなく、前記電解質・電極接合体間には、個別の寸法吸収機構を設ける必要がない。これにより、各電解質・電極接合体同士を近接して配置することが可能になり、燃料電池全体の小型化が容易に図られる。
さらにまた、橋架部は、反応ガス供給部から外方に等角度間隔ずつ離間して放射状に構成されることが好ましい。このため、反応ガス供給部から橋架部を介して各電解質・電極接合体に対して反応ガスを均等に供給することができ、各電解質・電極接合体の発電性能の向上及び安定化を図ることが可能になる。
また、挟持部及び橋架部は、電解質・電極接合体の数に対応する数に設定されることが好ましい。反応ガス供給部から各橋架部及び各挟持部を介して各電解質・電極接合体に反応ガスを均等に供給することができ、各電解質・電極接合体の発電性能の向上及び安定化を図ることが可能になる。
さらに、反応ガス供給部を中心に4つの電解質・電極接合体が同心円上に配列されるとともに、燃料電池は、互いに積層方向に隣接する突出部が、前記反応ガス供給部を中心にしてπ(180゜)/2の関係を有して等角度間隔ずつ螺旋状に離間するように積層されることが好ましい。
反応ガス供給部を中心に4つの電解質・電極接合体が同心円上に配列されているため、燃料電池や燃料電池スタックに供給される反応ガスは、発電による発生熱を介して良好に加熱される。従って、燃料電池や燃料電池スタックは、熱効率の向上と熱自立の促進とを図ることができる。
しかも、セパレータの面内には、4つの電解質・電極接合体が同心円上に配列されている。このため、セパレータの面内に2以上の同一形状且つ同一面積の電解質・電極接合体が同心円上に配列される燃料電池構造の中、最良の空間効率を得ることができる。
具体的には、4つの電解質・電極接合体の外接円面積に占める前記電解質・電極接合体の専有面積は、例えば、3つ以下の電解質・電極接合体の外接円面積に占める前記電解質・電極接合体の専有面積よりも大きくなる。これにより、電解質・電極接合体の非専有率を最小化することができ、セパレータの面内での空間効率の向上が図られる。
一方、発電出力当たりのスタック体積は、例えば、5つ以上の電解質・電極接合体が配列される燃料電池スタックのスタック体積よりも小さくなる。従って、同一の発電出力を得るために必要な燃料電池が積層された燃料電池スタックでは、スタック体積が小さくなり、前記燃料電池スタックのコンパクト化が容易に図られる。
しかも、発電出力当たりのスタック表面積は、例えば、5つ以上の電解質・電極接合体が配列される燃料電池スタックのスタック表面積よりも小さくなる。このため、燃料電池スタックからの放熱を最小化することができ、熱効率の向上及び熱自立の促進を図ることが可能になる。
さらにまた、燃料電池スタックは、複数の燃料電池に積層方向に荷重を付与する荷重付与機構を備え、前記荷重付与機構は、反応ガス供給部の近傍に付与される積層方向の荷重が、電解質・電極接合体に付与される積層方向の荷重よりも大きく設定可能に構成されることが好ましい。これにより、反応ガス供給部には、比較的大きな締め付け荷重が付与されることによって、前記反応ガス供給部のシール性を良好に維持することができる。一方、電解質・電極接合体には、比較的小さな締め付け荷重が付与されることによって、前記電解質・電極接合体の破損等を阻止するとともに、集電性を高めることが可能になる。
また、燃料電池は、固体酸化物形燃料電池であることが好ましい。高温型燃料電池に適用することにより、特に懸念される熱応力による影響を良好に回避することができ、燃料電池の小型化が容易に図られる。
本発明によれば、挟持部の少なくとも1つに、電解質・電極接合体の発電による電力を取り出すための突出部が設けられるため、各段の燃料電池の電力取り出し及び計測が容易に可能になる。従って、燃料電池毎の発電異常を確実に検知することができるとともに、燃料電池スタック全体のコンパクト化に対応した薄板状金属セパレータに良好に適用することが可能になる。
しかも、燃料電池は、互いに積層方向に隣接する突出部が、反応ガス供給部を中心にして、2π(180゜)/nの関係を有して等角度間隔ずつ螺旋状に離間するように積層されている。このため、各突出部は、積層方向に近接することがなく、例えば、前記突出部が変形した際に、隣接する他の突出部に接触して短絡することを有効に阻止することができる。
さらに、突出部を利用して、燃料電池の積層時にセパレータ枚数の確認及び位置決めを正確且つ容易に行うことが可能になる。その上、燃料電池の積層時に厚さが大きくなり易い突出部は、位相を異にして積層されるため、積層方向に対して燃料電池スタック全体のコンパクト化が容易に図られる。
図1は、燃料電池10が矢印A方向に複数積層された本発明の第1の実施形態に係る燃料電池スタック12の概略斜視説明図であり、図2は、前記燃料電池スタック12の、図1中、II−II線断面図である。
燃料電池10は、固体電解質型燃料電池であり、定置用の他、車載用等の種々の用途に用いられている。燃料電池10は、図3及び図4に示すように、例えば、安定化ジルコニア等の酸化物イオン導電体で構成される電解質(電解質板)20の両面に、カソード電極22及びアノード電極24が設けられた電解質・電極接合体(MEA)26を備える。電解質・電極接合体26は、円板状に形成されるとともに、少なくとも外周端面部には、酸化剤ガス及び燃料ガスの進入や排出を阻止するためにバリアー層(図示せず)が設けられている。
燃料電池10は、各セパレータ28間に4つの電解質・電極接合体26が、このセパレータ28の中心部である燃料ガス供給連通孔(反応ガス供給連通孔)30を中心に同心円上に配列される。
セパレータ28は、図3に示すように、例えば、ステンレス合金等の板金で構成される1枚の金属プレートやカーボンプレート等で構成される。セパレータ28は、中央部に燃料ガス供給連通孔30を形成する燃料ガス供給部(反応ガス供給部)32を有する。この燃料ガス供給部32から外方に等角度間隔(90゜間隔)ずつ離間して放射状に延在する4本の第1橋架部34を介して比較的大径な挟持部36が一体的に設けられる。燃料ガス供給部32と各挟持部36との中心間距離は、同一距離に設定される。
各挟持部36は、電解質・電極接合体26と略同一寸法の円板形状に設定されており、互いに分離して構成される。挟持部36には、燃料ガスを供給するための燃料ガス供給孔38が、例えば、前記挟持部36の中心又は中心に対して酸化剤ガスの流れ方向上流側に偏心した位置に設定される。
各挟持部36のアノード電極24に接触する面36aには、前記アノード電極24の電極面に沿って燃料ガスを供給するための燃料ガス通路40が形成される。面36aには、燃料ガス通路40を通って使用された燃料ガスを排出する燃料ガス排出通路42と、アノード電極24に接触するとともに、前記燃料ガスが燃料ガス供給孔38から前記燃料ガス排出通路42に直線状に流れることを阻止する迂回路形成用の円弧状壁部44とが設けられる。
円弧状壁部44は、略馬蹄形状を有し、その先端側内部に燃料ガス供給孔38が配置される一方、その基端部側(第1橋架部34側)に燃料ガス排出通路42が設けられる。面36aには、燃料ガス通路40側に突出してアノード電極24の外周縁部に接触する外縁周回用凸部46と、前記アノード電極24に接触する複数の突起部48とが設けられる。
凸部46は、燃料ガス排出通路42に対応して一部が切り欠かれた略リング状を有するとともに、突起部48は、面36aに、例えば、エッチングにより形成される中実部、又はプレスにより形成される中空部で構成される。
図5及び図6に示すように、各挟持部36のカソード電極22に接触する面36bは、略平坦面に形成されており、この面36bには、円板状のプレート50が、例えば、ろう付け、拡散接合やレーザ溶接等により固着される。このプレート50には、プレス等により複数の突起部52が設けられる。挟持部36の面36b側には、突起部52によりカソード電極22の電極面に沿って酸化剤ガスを供給するための酸化剤ガス通路54が形成されるとともに、前記突起部52は、集電部を構成する。
セパレータ28は、4つの挟持部36の少なくとも1つに、第1の実施形態では、1つの前記挟持部36の外側外周部に、4つの電解質・電極接合体26(すなわち、燃料電池10)の発電による電力を取り出すための突出部56が設けられる。
図3に示すように、セパレータ28のカソード電極22に対向する面には、通路部材60が、例えば、ろう付け、拡散接合やレーザ溶接等により固着される。通路部材60は、平板状に構成されるとともに、中央部に燃料ガス供給連通孔30を形成する燃料ガス供給部62を備える。燃料ガス供給部62には、補強用のボス部63が所定数だけ設けられる。
燃料ガス供給部62から放射状に4本の第2橋架部64が延在するとともに、各第2橋架部64は、セパレータ28の第1橋架部34から挟持部36の面36bに燃料ガス供給孔38を覆って固着される(図6参照)。
燃料ガス供給部62から第2橋架部64には、燃料ガス供給連通孔30から燃料ガス供給孔38に連通する燃料ガス供給通路(反応ガス供給通路)66が形成される。燃料ガス供給通路66は、例えば、エッチング又は、プレスにより形成される。
図6に示すように、酸化剤ガス通路54は、電解質・電極接合体26の内側周端部と挟持部36の内側周端部との間から矢印B方向に酸化剤ガスを供給する酸化剤ガス供給連通孔(反応ガス供給連通孔)68に連通する。この酸化剤ガス供給連通孔68は、各挟持部36の内方と第1橋架部34との間に位置して積層方向(矢印A方向)に延在している。
各セパレータ28間には、燃料ガス供給連通孔30をシールするための絶縁シール70が設けられる。絶縁シール70は、例えば、マイカ材やセラミック材等、地殻成分系素材、硝子系素材、粘土とプラスチックの複合素材で形成されている。絶縁シール70は、燃料ガス供給連通孔30を電解質・電極接合体26に対してシールする機能を有する。燃料電池10には、挟持部36の外方に位置して排ガス通路72が形成される。
図1及び図2に示すように、燃料電池スタック12は、複数の燃料電池10の積層方向一端に、略円板状の第1エンドプレート74aが配置されるとともに、積層方向他端に、隔壁75を介装して小径且つ略円板状の複数の第2エンドプレート74bと、大径且つ略リング状の固定リング74cとが配置される。隔壁75は、排ガスが燃料電池10の外部に拡散することを阻止する機能を有する一方、第2エンドプレート74bは、各電解質・電極接合体26の積層位置に対応して4つ配設される。
第1エンドプレート74a及び固定リング74cは、複数の孔部76を有する。孔部76及びボルト挿入用カラー部材77に挿入されるボルト78及び前記ボルト78に螺合するナット80を介し、第1エンドプレート74aと固定リング74cとが締め付け固定される。
第1エンドプレート74aには、燃料ガス供給連通孔30に連通する単一の燃料ガス供給パイプ82と、各酸化剤ガス供給連通孔68に連通するキャビティ83aを設けるケーシング83と、前記ケーシング83に接続されて前記キャビティ83aに連通する単一の酸化剤ガス供給パイプ84とが設けられる。
第1エンドプレート74aには、複数のボルト78、ナット88a、88b及び板状カラー部材90を介して支持プレート92が固定される。支持プレート92と第1エンドプレート74aとの間には、燃料ガス供給部32、62に締め付け荷重を付与する第1荷重付与部94と、各電解質・電極接合体26に締め付け荷重を付与する第2荷重付与部98とが設けられ、これらにより荷重付与機構が構成される。
第1荷重付与部94は、燃料ガス供給連通孔30から燃料ガスが漏れることを阻止するために燃料電池10の中央部(燃料ガス供給部32、62の中央部)に配置される押圧部材100を備え、この押圧部材100は、4つの第2エンドプレート74bの配列中心近傍に位置して前記燃料電池10に隔壁75を介して押圧する。押圧部材100には、第1受け部材102a及び第2受け部材102bを介して第1スプリング104が配置される。第2受け部材102bには、第1押圧ボルト106の先端が当接する。第1押圧ボルト106は、支持プレート92に形成された第1ねじ孔108に螺合するとともに、第1ナット110を介して位置調整可能に固定される。
第2荷重付与部98は、第2エンドプレート74bに各電解質・電極接合体26に対応して配置される第3受け部材112aを備える。第3受け部材112aは、ピン114を介して第2エンドプレート74bに位置決め支持される。第3受け部材112aに第2スプリング116の一端が当接する一方、前記第2スプリング116の他端が第4受け部材112bに当接する。第4受け部材112bには、第2押圧ボルト118の先端が当接する。第2押圧ボルト118は、支持プレート92に形成された第2ねじ孔120に螺合するとともに、第2ナット122を介して位置調整可能に固定される。
図3に示すように、各セパレータ28は、互いに積層方向に隣接する突出部56が、燃料ガス供給部32を中心にして、2π(180゜)/n(nは、電解質・電極接合体26、挟持部36又は第1橋架部34の数)の関係、より具体的には、π(180゜)/2(=90゜)の関係を有して等角度間隔ずつ螺旋状に離間するように積層されることにより、燃料電池スタック12が構成される。
このように構成される燃料電池スタック12の動作について、以下に説明する。
図1及び図2に示すように、燃料ガス供給連通孔30には、第1エンドプレート74aに接続されている燃料ガス供給パイプ82から燃料ガスが供給されるとともに、各酸化剤ガス供給連通孔68には、酸化剤ガス供給パイプ84からキャビティ83aを介して酸素含有ガスである空気が供給される。
図6に示すように、燃料ガスは、燃料電池スタック12の燃料ガス供給連通孔30に沿って積層方向(矢印A方向)に移動しながら、各燃料電池10に設けられる燃料ガス供給通路66に沿ってセパレータ28の面方向に移動する。
燃料ガスは、燃料ガス供給通路66から挟持部36に形成された燃料ガス供給孔38を通って燃料ガス通路40に導入される。燃料ガス供給孔38は、各電解質・電極接合体26のアノード電極24の略中心位置に設定されている。このため、燃料ガスは、燃料ガス供給孔38からアノード電極24の略中心に供給された後、燃料ガス通路40に沿って前記アノード電極24の外周部に向かって移動する。
一方、酸化剤ガス供給連通孔68に供給された空気は、電解質・電極接合体26の内側周端部と挟持部36の内側周端部との間から矢印B方向に流入し、酸化剤ガス通路54に送られる。酸化剤ガス通路54では、電解質・電極接合体26のカソード電極22の内側周端部(セパレータ28の中央部)側から外側周端部(セパレータ28の外側周端部側)に向かって空気が流動する。
従って、電解質・電極接合体26では、アノード電極24の電極面の中心側から周端部側に向かって燃料ガスが供給されるとともに、カソード電極22の電極面の一方向(矢印B方向)に向かって空気が供給される。その際、酸化物イオンが電解質20を通ってアノード電極24に移動し、化学反応により発電が行われる。
なお、各電解質・電極接合体26の外周部に排出される主に発電反応後の空気を含む排ガスは、オフガスとして排ガス通路72を介して燃料電池スタック12から排出される(図1参照)。
この場合、第1の実施形態では、セパレータ28を構成する4つの挟持部36の中、1つの挟持部36に突出部56が設けられており、この突出部56を介して各段毎のそれぞれ4つの電解質・電極接合体26の電力取り出し及び計測は容易に行われている。このため、燃料電池10毎の発電異常を確実に検知することができるとともに、燃料電池スタック12全体のコンパクト化に対応した薄板状金属であるセパレータ28に良好に適応することが可能になる。
ここで、燃料電池スタック12は、実質的に、図7に示すように、互いに並列された4つの単セルである電解質・電極接合体26を有する燃料電池10が、所定の段数であるm段積層されることにより、n1ボルトのOCV(開回路電圧)が得られる。
しかも、燃料電池10は、互いに積層方向に隣接する突出部56が、燃料ガス供給部32を中心にして90°ずつ螺旋状に離間するように積層されることにより、燃料電池スタック12が構成されている。従って、各突出部56は、積層方向に隣接することがなく、例えば、前記突出部56が変形した際に隣接する他の突出部56に接触して短絡することを有効に阻止することができる。
さらに、燃料電池10の積層時には、突出部56を利用してセパレータ28の枚数の確認及び位置決めを正確且つ容易に行うことが可能になる。その上、燃料電池10の積層時に厚さが大きくなり易い突出部56は、互いに位相を異にして積層されるため、積層方向に対して燃料電池スタック12全体のコンパクト化が容易に図られる。
さらにまた、第1の実施形態では、燃料ガス供給部32を中心にして、4つの電解質・電極接合体26が同心円上に配列されている。このため、燃料電池10(燃料電池スタック12)に供給される燃料ガス及び酸化剤ガスは、発電による発生熱及び燃料ガス排出通路42から酸化剤ガス供給連通孔68に排出される残存燃料ガスと、前記酸化剤ガス供給連通孔68を流れる酸化剤ガスとの反応による発生熱により、良好に加熱されている。従って、燃料電池10(燃料電池スタック12)は、熱効率の向上と熱自立の促進とを図ることができる。
しかも、セパレータ28の面内には、4つの電解質・電極接合体26が同心円状に配列されている。ここで、図8に示すように、4つの電解質・電極接合体26を互いに接するようにして配置した際、前記電解質・電極接合体26の外接円130の直径をDとし、所望の発電出力を得るために所定の段数だけ積層したスタック132の積層方向の寸法をLとする。
同様に、図9に示すように、同一面内に2つの電解質・電極接合体26を互いに接して配置し、所定の発電出力に対応する段数だけ積層されたスタック132aと、図10に示すように、同一面内に6つの電解質・電極接合体26を互いに接して配置し、所定の発電出力に対応する段数だけ積層されたスタック132bと、図11に示すように、同一面内に8つの電解質・電極接合体26を互いに接して配置し、所定の発電出力に対応する段数だけ積層されたスタック132cとが用意される。
そこで、スタック132、132a〜132cにおいて、それぞれの外接円130内で電解質・電極接合体26の外接円面積に占める占有面積(占有率)は、図12に示されている。これにより、4つの電解質・電極接合体26を用いた場合に、3つ以下の電解質・電極接合体26を配列した構成に比べ、前記電解質・電極接合体26の占有面積を大きくすることができる。このため、本願の燃料電池10は、電解質・電極接合体26の非占有率を最小化することができ、セパレータ28の面内での空間効率の向上が図られる。
次に、同一の発電出力を実現するために必要な燃料電池を積層したスタック132、132a〜132cにおいて、それぞれのスタック体積(πD2×L/4)が、図13に示されている。これにより、4つの電解質・電極接合体26が配列されたスタック132では、他のスタック132a〜132cよりもスタック体積が小さく設定される。従って、本願の燃料電池スタック12は、スタック体積を最小に設定することができ、コンパクト化が容易に図られるという効果がある。
さらに、スタック132、132a〜132cのスタック表面積(πD2/2+πD×L)が、図14に示されている。このため、スタック132は、スタック132a〜132cに比べてスタック表面積が小さくなる。これにより、本願の燃料電池スタック12からの放熱を最小化することができ、熱効率の向上及び熱自立の促進を図ることが可能になる。
このように、セパレータ28の面内に、4つの電解質・電極接合体26を同心円状に配列することにより、同一面内に前記電解質・電極接合体26を3つ以下、あるいは、5つ以上配列する構造に比べて最適な空間効率を得ることができるという効果が得られる。
また、第1の実施形態では、図3に示すように、セパレータ28を構成する挟持部36の面36aには、燃料ガス供給孔38と燃料ガス排出通路42とを結ぶ経路上に、円弧状壁部44が設けられており、この円弧状壁部44は、電解質・電極接合体26のアノード電極24に接触している。
従って、燃料ガス供給孔38から燃料ガス通路40に供給される燃料ガスは、円弧状壁部44に阻止されて前記燃料ガス供給孔38から燃料ガス排出通路42に直線状に流れることがない。このため、燃料ガスは、燃料ガス通路40内を迂回しながら流れるため、前記燃料ガスがアノード電極24に沿って流れる流路長が長尺化し、すなわち、流れる時間が長くなり、前記燃料ガスを発電反応に有効に利用することが可能となる。これにより、燃料利用率が有効に良好する。
ここで、挟持部36の面36aには、アノード電極24の外周縁部に接触する凸部46が設けられている。このため、電解質・電極接合体26の外方からアノード電極24に排ガスや酸化剤ガスが進入することによる酸化を阻止することが可能になる。これにより、アノード電極24は、酸化による発電効率の低下を防止するとともに、セパレータ28や電解質・電極接合体26の耐久性を向上させることができるという利点がある。
さらに、挟持部36には、燃料ガス通路40側に突出してアノード電極24に接触する複数の突起部48が設けられている。従って、複数の突起部48により良好な集電効果を得ることができる。
さらにまた、燃料ガス通路40に供給された使用済みの燃料ガスは、燃料ガス排出通路42から酸化剤ガス供給連通孔68に(矢印C方向に)排出される。このため、酸化剤ガス供給連通孔68では、使用済みの排ガスに含まれる燃料ガスと使用前の酸化剤ガスの一部とが反応することによって、使用前の他の酸化剤ガスが加熱される。これにより、予め加熱された酸化剤ガスを酸化剤ガス通路54に供給することができ、熱効率が向上するという効果がある。
また、挟持部36は、電解質・電極接合体26に対応して円板形状を有するため、前記電解質・電極接合体26で発電された電力を効率的に集電することが可能になる。
しかも、各挟持部36は、互いに分離しており、電解質・電極接合体26やセパレータ28の寸法誤差によって各電解質・電極接合体26に発生する異なる荷重を吸収することが可能になる。従って、セパレータ28全体に歪みが惹起されることを阻止し、各電解質・電極接合体26に対して均等な荷重を付与することができる。その上、各電解質・電極接合体26の熱歪み等が隣接する他の電解質・電極接合体26に伝達されることがなく、前記電解質・電極接合体26間には、個別の寸法吸収機構を設ける必要がない。これにより、各電解質・電極接合体26同士を近接して配置することが可能になり、燃料電池10全体の小型化が容易に図られる。
さらに、第1橋架部34は、燃料ガス供給部32から外方に等角度間隔ずつ離間して放射状に構成されている。このため、燃料ガス供給部32から第1橋架部34を介して各電解質・電極接合体26に対して燃料ガスを均等に供給することができ、各電解質・電極接合体26の発電性能の向上及び安定化を図ることが可能になる。
さらにまた、燃料電池スタック12では、第1荷重付与部94を介して、燃料ガス供給部32、62に付与される締め付け荷重が第2荷重付与部98を介して、電解質・電極接合体26に付与される締め付け荷重よりも大きく設定可能である。
これにより、燃料ガス供給部32、62は、比較的大きな締め付け荷重が付与されてシール性が良好に維持される一方、電解質・電極接合体26には、比較的小さな締め付け荷重が付与されて損傷等を阻止するとともに、集電性を高めることが可能になる。
本発明では、互いに積層方向に隣接する突出部56が、2π(180゜)/nの関係を有して積層方向に螺旋状に配置されている。その具体例が、図15に示されている。ここで、タイプ(葉数)とは、積層方向に対するスタック平面視(積層方向端面視)で電解質・電極接合体26が同心円上に配列される数をいう。
第1の実施形態〜第3の実施形態は、スタック平面視で4つの電解質・電極接合体26が同心円上に配列されるため、4葉タイプであり、第4の実施形態〜第7の実施形態は、スタック平面視で8つの電解質・電極接合体26が同心円上に配列されるため、8葉タイプであり、第8の実施形態及び第9の実施形態は、スタック平面視で2つの電解質・電極接合体26が同心円上に配列されるため、2葉タイプである。なお、第2の実施形態〜第9の実施形態については、以下に説明する。
図16は、本発明の第2の実施形態に係る燃料電池スタック141を構成する燃料電池140の分解斜視図である。なお、第1の実施形態に係る燃料電池スタック12と同一の構成要素には同一の参照符号を付して、その詳細な説明は省略する。また、以下に説明する第3〜第9の実施形態においても同様に、その詳細な説明は省略する。
燃料電池140は、それぞれ2枚のセパレータ142a、142bを備える。セパレータ142a、142bは、同様に構成されており、以下に前記セパレータ142aのみについて詳細に説明する。
図17に示すように、セパレータ142aは、中央に燃料ガス供給連通孔30を形成する燃料ガス供給部144を有する。この燃料ガス供給部144から互いに180゜の角度を有して外方に延在する2本の第1橋架部146には、それぞれ挟持部148が一体的に設けられる。セパレータ142aのカソード電極22に対向する面には通路部材150が固着される。
通路部材150は、中央部に燃料ガス供給連通孔30を形成する燃料ガス供給部152を備える。燃料ガス供給部152から互いに180°の角度を有して2本の第2橋架部154が延在するとともに、前記第2橋架部154と第1橋架部146との間には、燃料ガス供給通路66が形成される。
セパレータ142aは、2つの挟持部148の少なくとも1つに、第2の実施形態では、1つの前記挟持部148の外側外周部に、2つの電解質・電極接合体26の発電による電力を取り出すための突出部56が設けられる。
燃料電池140では、図16に示すように、積層方向に互いに隣接するセパレータ142a、142bが各突出部56を燃料ガス供給部144を中心にして90°ずつ螺旋状に離間するように積層される。セパレータ142aとセパレータ142aとは、各挟持部148間に電解質・電極接合体26を挟持する一方、セパレータ142bとセパレータ142bとは、各挟持部148間に前記電解質・電極接合体26を挟持する。
燃料電池140では、セパレータ142a、142bにより全体として4つの電解質・電極接合体26が挟持されるとともに、4つの電解質・電極接合体26は、燃料ガス供給部144を中心にして等角度間隔ずつ(90°ずつ)離間して同心円上に配列される。なお、セパレータ142a、142b間には、それぞれ図示しないが絶縁部材が介装される。
燃料電池140は、所望の発電電力を得るために、所定の段数(m段)だけ積層されることにより燃料電池スタック141が構成される。図18に示すように、燃料電池スタック141では、各燃料電池140のセパレータ142a、142a間に2つの電解質・電極接合体26が挟持されることにより構成される第1発電部162aと、セパレータ142b、142b間に2つの電解質・電極接合体26が挟持されることにより構成される第2発電部162bとが設けられる。第1発電部162aと第2発電部162bとは、接続ライン164を介して直列に接続されることにより、n2ボルト(=2×n1ボルト)のOCVが得られる。
このように構成される第2の実施形態では、燃料電池140を構成するセパレータ142a、142bに突出部56が設けられるため、各段の燃料電池140の電力取り出し及び計測が容易に可能になる。しかも、燃料電池140では、セパレータ142a、142bの各突出部56が燃料ガス供給部152を中心にして90°ずつ螺旋状に離間するように積層されている。
これにより、隣接する突出部56同士の接触を阻止するとともに、燃料電池スタック141全体のコンパクト化が容易に図られる等、第1の実施形態と同様の効果が得られる。
しかも、第2の実施形態では、それぞれ2つの電解質・電極接合体26が並列されてm段積層される第1発電部162aと第2発電部162bとを有している。第1発電部162aと第2発電部162bとは、接続ライン164を介して直列に接続されることにより、電圧レベルが第1の実施形態の2倍に設定され、出力電圧の自由度が向上するという効果がある。
図19は、本発明の第3の実施形態に係る燃料電池スタック170を構成する燃料電池172の分解斜視図である。
燃料電池172は、それぞれ2枚のセパレータ174a〜174dを備える。セパレータ174a〜174dは、同一に構成されており、以下に前記セパレータ174aのみについて詳細に説明する。
図20に示すように、セパレータ174aは、一端部に燃料ガス供給連通孔30を形成する燃料ガス供給部176を有する。この燃料ガス供給部176から外方に1本の第1橋架部178が延在し、前記第1橋架部178に挟持部180が一体的に設けられる。セパレータ174aのカソード電極22に対向する面には、通路部材182が固着される。
通路部材182は、一端部に燃料ガス供給連通孔30を形成する燃料ガス供給部184を備え、この燃料ガス供給部184から延在する1本の第2橋架部186と第1橋架部178との間に、燃料ガス供給通路66が形成される。セパレータ174aを構成する挟持部180には、突出部56が形成される。
図19に示すように、積層方向に互いに隣接するセパレータ174a〜174dが、燃料ガス供給連通孔30が設けられる燃料ガス供給部176を中心にして各挟持部180(各突出部56)を90°ずつ螺旋状に離間するように積層したものを一組用意し、前記セパレータ174a、174a間、174b、174b間、174c、174c間、及び174d、174d間に電解質・電極接合体26を挟持することにより、燃料電池172が構成される。
図21に示すように、燃料電池172が所定の段数(m段)だけ積層されることにより、燃料電池スタック170が構成される。燃料電池スタック170では、セパレータ174a間に電解質・電極接合体26が挟持されて構成される第1発電部188aと、セパレータ174b間に前記電解質・電極接合体26が挟持されて構成される第2発電部188bと、セパレータ174c間に前記電解質・電極接合体26が挟持されて構成される第3発電部188cと、セパレータ174d間に前記電解質・電極接合体26が挟持されて構成される第4発電部188dとを備え、これらが接続ライン190a、190b、及び190cを介して直列に接続されることにより、n3ボルト(=2×n2ボルト)のOCVが得られる。
このように構成される第3の実施形態では、上記の第1及び第2の実施形態と同様の効果が得られる他、燃料電池172を燃料電池10と同数(m段)だけ積層した状態で、OCVを燃料電池スタック12の4倍、又は燃料電池スタック141の2倍の電圧に設定することができる(n3ボルト=2×n2ボルト=4×n1ボルト)。
図22は、本発明の第4の実施形態に係る燃料電池スタック200を構成する燃料電池202の分解斜視説明図である。
燃料電池202は、各セパレータ204間に、8つの電解質・電極接合体26がこのセパレータ204の中心部である燃料ガス供給連通孔30と同心円上に配列される。セパレータ204は、中央部に燃料ガス供給部3を形成する燃料ガス供給部206を有する。この燃料ガス供給部206から外方に等角度間隔(45°間隔)ずつ離間して放射状に延在する8本の第1橋架部208を介し、挟持部210が一体的に設けられる。燃料ガス供給部206と各挟持部210との中心間距離は、同一距離に設定される。
8つの挟持部210の中、例えば、1つの挟持部210に突出部56が形成される。セパレータ204のカソード電極22に対向する面には、通路部材212が固着される。通路部材212は、中央部に燃料ガス供給連通孔30を形成する燃料ガス供給部214を備え、前記燃料ガス供給部214から放射状に8本の第2橋架部216が等角度間隔(45°間隔)ずつ離間して延在する。各第1橋架部208と各第2橋架部216との間には、燃料ガス供給通路66が形成される。
電解質・電極接合体26を挟んで積層方向に配列される各セパレータ204は、互いに積層方向に隣接する突出部56が燃料ガス供給部206を中心にして2π(180°)/8=45°ずつ螺旋状に離間して積層される。図23に示すように、燃料電池スタック200は、燃料電池202がm段積層されることにより構成されており、n1ボルト(n)のOCVが得られる。従って、第4の実施形態では、上記の第1の実施形態と同様の効果が得られる。
図24は、本発明は第5の実施形態に係る燃料電池スタック220を構成する燃料電池222の分解斜視説明図である。
燃料電池222は、それぞれ一対のセパレータ224a、224bを備える。なお、セパレータ224a、224bは、同一に構成されており、以下に前記セパレータ224aについてのみ詳細に説明する。
図25に示すように、セパレータ224aは、中央部に燃料ガス供給連通孔30を形成する燃料ガス供給部226を有する。この燃料ガス供給部226から外方に等角度間隔(90°間隔)ずつ離間して放射状に延在する4本の第1橋架部228を介して挟持部230が一体的に設けられる。燃料ガス供給部226と各挟持部230との中心間距離は、同一距離に設定される。
セパレータ224aのカソード電極22に対向する面には、通路部材232が固着される。通路部材232には、中央部に燃料ガス供給連通孔30を形成する燃料ガス供給部234を備える。燃料ガス供給部234から放射状に4本の第2橋架部236が延在するとともに、前記第2橋架部236と第1橋架部228との間には、燃料ガス供給通路66が形成される。4つの挟持部230のうち1つの前記挟持部230の外周に、突出部56が形成される。
図24に示すように、積層方向に対してセパレータ224aとセパレータ224bとが交互に配置されるとともに、これらが燃料ガス供給部226を中心にして各挟持部230(各突出部56)を45°ずつ螺旋状に離間するように積層される。セパレータ224a、224a間には、4つの電解質・電極接合体26が挟持される一方、セパレータ224b、224b間には、4つの電解質・電極接合体26が挟持されて燃料電池222が構成される。燃料電池222は、所定の段数(m段)積層されることにより燃料電池スタック220が構成される。
燃料電池スタック220は、図26に示すように、セパレータ224a間に4つの電解質・電極接合体26が挟持されて構成される第1発電部240aと、セパレータ224b間に4つの電解質・電極接合体26が挟持されて構成される第2発電部240bとを有する。第1発電部240aと第2発電部240bとは、接続ライン242を介して直列に接続されることにより、n2ボルトのOCVが得られる。このように構成される第5の実施形態では、上記の第2の実施形態と同様の効果が得られる。
図27は、本発明の第6の実施形態に係る燃料電池スタック250を構成する燃料電池252の分解斜視説明図である。
燃料電池252は、それぞれ2枚のセパレータ142a、142b、142c及び142dを備える。セパレータ142a〜142dは、燃料ガス供給部144を中心にして45°ずつ螺旋状に離間するように積層される。セパレータ142a、142a間に2つの電解質・電極接合体26が挟持され、セパレータ142b、142b間に2つの電解質・電極接合体26が挟持され、セパレータ142c、142c間に2つの電解質・電極接合体26が挟持され、セパレータ142d、142d間に2つの電解質・電極接合体26が挟持されて、燃料電池252が構成される。燃料電池252は、所定の段数(m段)積層されることにより、燃料電池スタック250が構成される。
図28に示すように、燃料電池スタック250は、セパレータ142a間に2つの電解質・電極接合体26が挟持されて構成される第1発電部254aと、セパレータ142b間に2つの電解質・電極接合体26が挟持されて構成される第2発電部254bと、セパレータ142c間に2つの電解質・電極接合体26が挟持されて構成される第3発電部254cと、セパレータ142d間に2つの電解質・電極接合体26が挟持されて構成される第4発電部254dとを有する。第1発電部254a〜第4発電部254dは、接続ライン256a〜256cを介して直列に接続されることにより、n3ボルトのOCVが得られる。
図29は、本発明の第7の実施形態に係る燃料電池スタック260を構成する燃料電池262の分解斜視説明図である。
燃料電池262は、それぞれ2枚のセパレータ174a、174b、174c、174d、174e、174f、174g及び174hを有する。セパレータ174a〜174hは、燃料ガス供給部176を中心にして45°ずつ螺旋状に離間するようにして積層される。セパレータ174a、174a間、セパレータ174b、174b間、セパレータ174c、174c間、セパレータ174d、174d間、セパレータ174e、174e間、セパレータ174f、174f間、セパレータ174g、174g間及びセパレータ174h、174h間に、それぞれ1つの電解質・電極接合体26が挟持されることにより、燃料電池262が構成される。
図30に示すように、燃料電池262が所定の段数(m段)積層されることにより構成される燃料電池スタック260では、セパレータ174a間に1つの電解質・電極接合体26が挟持されて構成される第1発電部264aと、セパレータ174b間に1つの電解質・電極接合体26が挟持されて構成される第2発電部264bと、セパレータ174c間に1つの電解質・電極接合体26が挟持されて構成される第3発電部264cと、セパレータ174d間に1つの電解質・電極接合体26が挟持されて構成される第4発電部264dと、セパレータ174e間に1つの電解質・電極接合体26が挟持されて構成される第5発電部264eと、セパレータ174f間に1つの電解質・電極接合体26が挟持されて構成される第6発電部264fと、セパレータ174g間に1つの電解質・電極接合体26が挟持されて構成される第7発電部264gと、セパレータ174h間に1つの電解質・電極接合体26が挟持されて構成される第8発電部264hとを有する。第1発電部264a〜第8発電部264hは、接続ライン266a〜266gを介して直列に接続されることにより、n4ボルト(=2×n3ボルト)のOCVが得られる。
図31は、本発明の第8の実施形態に係る燃料電池スタック270を構成する燃料電池272の分解斜視説明図である。
燃料電池272は、各セパレータ142間に2つの電解質・電極接合体26がこのセパレータ142の中心部である燃料ガス供給連通孔30と同心円上に配列される。セパレータ142は、第2の実施形態に係る燃料電池140を構成するセパレータ142aと同様に構成される。各セパレータ142は、互いに積層方向に隣接する突出部56が燃料ガス供給部144を中心にして180°ずつ螺旋状に離間するように積層され、燃料電池スタック270が構成される。
図32に示すように、燃料電池272が所定の段数(m段)積層された燃料電池スタック270では、n1ボルトのOCVが得られる。
図33は、本発明の第9の実施形態に係る燃料電池スタック280を構成する燃料電池282の分解斜視説明図である。
燃料電池282は、それぞれ2枚のセパレータ174a、174bを備える。セパレータ174a、セパレータ174bは、燃料ガス供給部176を中心にして180°ずつ螺旋状に配置される。セパレータ174a、174a間に1つの電解質・電極接合体26が挟持される一方、セパレータ174b、174b間に1つの電解質・電極接合体26が挟持されて、燃料電池282が構成される。
燃料電池282は、所定の段数(m段)積層されることにより燃料電池スタック280が構成される。図34に示すように、燃料電池スタック280は、セパレータ174a間に1つの電解質・電極接合体26が挟持されて構成される第1発電部284aと、セパレータ174b間に1つの電解質・電極接合体26が挟持されて構成される第2発電部284bを有する。第1発電部284aと第2発電部284bとは、接続ライン286により直列に接続されることによって、n2ボルトのOCVが得られる。
燃料電池が複数積層された本発明の第1の実施形態に係る燃料電池スタックの概略斜視である。 前記燃料電池スタックの、図1中、II−II線断面図である。 前記燃料電池の分解斜視説明図である。 前記燃料電池のガス流れ状態を示す一部分解斜視説明図である。 前記燃料電池を構成するセパレータの平面説明図である。 前記燃料電池の動作を説明する概略断面説明図である。 前記燃料電池スタックの電気回路図である。 4つの電解質・電極接合体が互いに摺接して所定段数積層されたスタックの斜視説明図である。 2つの電解質・電極接合体が互いに摺接して所定段数積層されたスタックの斜視説明図である。 6つの電解質・電極接合体が互いに摺接して所定段数積層されたスタックの斜視説明図である。 8つの電解質・電極接合体が互いに摺接して所定段数積層されたスタックの斜視説明図である。 電解質・電極接合体の外周円面積に対する占有率の説明図である。 各スタックのスタック体積の説明図である。 各スタックのスタック表面積の説明図である。 葉数の異なるタイプによる設定条件の説明図である。 本発明の第2の実施形態に係る燃料電池スタックを構成する燃料電池の分解斜視図である。 前記燃料電池を構成するセパレータの分解斜視説明図である。 前記燃料電池スタックの電気回路図である。 本発明の第3の実施形態に係る燃料電池スタックを構成する燃料電池の分解斜視図である。 前記燃料電池を構成するセパレータの分解斜視説明図である。 前記燃料電池スタックの電気回路図である。 本発明の第4の実施形態に係る燃料電池スタックを構成する燃料電池の分解斜視図である。 前記燃料電池スタックの電気回路図である。 本発明の第5の実施形態に係る燃料電池スタックを構成する燃料電池の分解斜視図である。 前記燃料電池を構成するセパレータの分解斜視説明図である。 前記燃料電池スタックの電気回路図である。 本発明の第6の実施形態に係る燃料電池スタックを構成する燃料電池の分解斜視図である。 前記燃料電池スタックの電気回路図である。 本発明の第7の実施形態に係る燃料電池スタックを構成する燃料電池の分解斜視図である。 前記燃料電池スタックの電気回路図である。 本発明の第8の実施形態に係る燃料電池スタックを構成する燃料電池の分解斜視図である。 前記燃料電池スタックの電気回路図である。 本発明の第9の実施形態に係る燃料電池スタックを構成する燃料電池の分解斜視図である。 前記燃料電池スタックの電気回路図である。 特許文献1の燃料電池スタックを構成するセパレータの説明図である。 特許文献2の燃料電池の正面説明図である。 特許文献3の燃料電池スタックを構成するセパレータの説明図である。
符号の説明
10、140、172、202、222、252、262、272、282…燃料電池
12、141、170、200、220、250、260、270、280…燃料電池スタック
20…電解質 22…カソード電極
24…アノード電極 26…電解質・電極接合体
28、142a〜142d、174a〜174h、204、224a、224b…セパレータ
30…燃料ガス供給連通孔
32、62、144、152、176、184、206、214、226、234…燃料ガス供給部
34、64、146、154、178、186、208、216、228、236…橋架部
36、148、180、210、212、230…挟持部
38…燃料ガス供給孔 40…燃料ガス通路
42…燃料ガス排出通路 44…円弧状壁部
46…凸部 48、52…突起部
50…プレート 54…酸化剤ガス通路
56…突出部
60、150、182、232…通路部材
66…燃料ガス供給通路 68…酸化剤ガス供給連通孔
94、98…荷重付与部

Claims (8)

  1. 電解質をアノード電極とカソード電極とで挟んで構成される電解質・電極接合体とセパレータとが積層される燃料電池を設け、複数の前記燃料電池が積層される燃料電池スタックであって、
    前記セパレータは、前記電解質・電極接合体を挟持するとともに、前記アノード電極の電極面に沿って燃料ガスを供給する燃料ガス通路及び前記カソード電極の電極面に沿って酸化剤ガスを供給する酸化剤ガス通路が個別に設けられる挟持部と、
    前記挟持部に連結され、前記燃料ガスを前記燃料ガス通路に又は前記酸化剤ガスを前記酸化剤ガス通路に供給するための反応ガス供給通路が形成される橋架部と、
    前記橋架部に連結され、前記燃料ガス又は前記酸化剤ガスを前記反応ガス供給通路に供給するための反応ガス供給連通孔が積層方向に形成される反応ガス供給部と、
    前記挟持部の少なくとも1つに設けられ、前記電解質・電極接合体の発電による電力を取り出すための突出部と、
    を備え、
    前記燃料電池は、互いに積層方向に隣接する前記突出部が、前記反応ガス供給部を中心にして、
    2π(180゜)/n(nは、電解質・電極接合体、挟持部又は橋架部の数)
    の関係を有して等角度間隔ずつ螺旋状に離間するように積層されることを特徴とする燃料電池スタック。
  2. 請求項1記載の燃料電池スタックにおいて、前記反応ガス供給部は、前記燃料電池の中央部に設けられるとともに、
    前記反応ガス供給部を中心に複数の前記電解質・電極接合体が同心円上に配列されることを特徴とする燃料電池スタック。
  3. 請求項1記載の燃料電池スタックにおいて、前記挟持部及び前記電解質・電極接合体は、円板形状を有するとともに、
    前記各挟持部は、互いに分離して構成されることを特徴とする燃料電池スタック。
  4. 請求項1〜3のいずれか1項に記載の燃料電池スタックにおいて、前記橋架部は、前記反応ガス供給部から外方に等角度間隔ずつ離間して放射状に構成されることを特徴とする燃料電池スタック。
  5. 請求項1〜4のいずれか1項に記載の燃料電池スタックにおいて、前記挟持部及び前記橋架部は、前記電解質・電極接合体の数に対応する数に設定されることを特徴とする燃料電池スタック。
  6. 請求項1〜5のいずれか1項に記載の燃料電池スタックにおいて、前記反応ガス供給部を中心に4つの前記電解質・電極接合体が同心円上に配列されるとともに、
    前記燃料電池は、互いに積層方向に隣接する前記突出部が、前記反応ガス供給部を中心にしてπ(180゜)/2の関係を有して等角度間隔ずつ螺旋状に離間するように積層されることを特徴とする燃料電池スタック。
  7. 請求項1〜6のいずれか1項に記載の燃料電池スタックにおいて、複数の前記燃料電池に積層方向に荷重を付与する荷重付与機構を備え、
    前記荷重付与機構は、前記反応ガス供給部の近傍に付与される積層方向の荷重が、前記電解質・電極接合体に付与される積層方向の荷重よりも大きく設定可能に構成されることを特徴とする燃料電池スタック。
  8. 請求項1〜7のいずれか1項に記載の燃料電池スタックにおいて、前記燃料電池は、固体酸化物形燃料電池であることを特徴とする燃料電池スタック。
JP2007261108A 2007-10-04 2007-10-04 燃料電池スタック Withdrawn JP2009093841A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007261108A JP2009093841A (ja) 2007-10-04 2007-10-04 燃料電池スタック

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007261108A JP2009093841A (ja) 2007-10-04 2007-10-04 燃料電池スタック

Publications (1)

Publication Number Publication Date
JP2009093841A true JP2009093841A (ja) 2009-04-30

Family

ID=40665640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007261108A Withdrawn JP2009093841A (ja) 2007-10-04 2007-10-04 燃料電池スタック

Country Status (1)

Country Link
JP (1) JP2009093841A (ja)

Similar Documents

Publication Publication Date Title
JP5383051B2 (ja) 燃料電池及び燃料電池スタック
JP5127389B2 (ja) 燃料電池及び燃料電池スタック
JP5269470B2 (ja) 燃料電池
JP5341600B2 (ja) 燃料電池
JP5238340B2 (ja) 燃料電池
JP5186124B2 (ja) 燃料電池用セパレータ
EP2426772A1 (en) Fuel cell module
JP2011060512A (ja) 燃料電池スタック
JP5220379B2 (ja) 燃料電池及び燃料電池スタック
JP5341599B2 (ja) 燃料電池
JP2009093841A (ja) 燃料電池スタック
WO2009091021A1 (ja) 燃料電池
US8652700B2 (en) Fuel cell
JP2011198704A (ja) 燃料電池
JP5675437B2 (ja) 燃料電池スタック
JP2011060511A (ja) 燃料電池
JP2012129035A (ja) 燃料電池
JP2012182029A (ja) 燃料電池スタック
JP2021140887A (ja) 燃料電池スタック
EP2652828A1 (en) Fuel cell
JP2004362995A (ja) 燃料電池及び燃料電池スタック
JP2012204124A (ja) 燃料電池モジュール及びその組立方法
JP2010225414A (ja) 燃料電池スタックに用いられるセパレータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120207