JP2009093205A - 分子模型 - Google Patents

分子模型 Download PDF

Info

Publication number
JP2009093205A
JP2009093205A JP2009021916A JP2009021916A JP2009093205A JP 2009093205 A JP2009093205 A JP 2009093205A JP 2009021916 A JP2009021916 A JP 2009021916A JP 2009021916 A JP2009021916 A JP 2009021916A JP 2009093205 A JP2009093205 A JP 2009093205A
Authority
JP
Japan
Prior art keywords
sphere
spheres
model
transparent container
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009021916A
Other languages
English (en)
Inventor
Kazuhisa Sato
和久 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HINOMOTO GOSEI JUSHI SEISAKUSH
HINOMOTO GOSEI JUSHI SEISAKUSHO KK
Original Assignee
HINOMOTO GOSEI JUSHI SEISAKUSH
HINOMOTO GOSEI JUSHI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HINOMOTO GOSEI JUSHI SEISAKUSH, HINOMOTO GOSEI JUSHI SEISAKUSHO KK filed Critical HINOMOTO GOSEI JUSHI SEISAKUSH
Priority to JP2009021916A priority Critical patent/JP2009093205A/ja
Publication of JP2009093205A publication Critical patent/JP2009093205A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Freezers Or Refrigerated Showcases (AREA)

Abstract

【課題】簡単に種々の結晶模型を形成可能にするとともに、外部から透視して原子模型を看取ることを可能にし、また単位格子や4配位、6配位、8配位、12配位などを初学者でも極めて容易に把握可能にする。
【解決手段】球113、114、1/2球115、1/4球116および1/8球112と、上記各球の1つまたは複数を収納することにより、各球を種の結晶の原子配列通りに配置可能な立方体または直方体の透明容器111とを備え、この透明容器111を単位格子としてこの単位格子内の原子配列状態を表現する。
【選択図】図1

Description

本発明は、化学教材等として利用するための分子模型に関するものである。
従来から、知られているように、分子模型には数種の種類があり、その1つは球−棒状の分子模型である。これは、適当な大きさの複数の球に、原子価角に合わせて連結孔をあけ、球の中心間の距離が原子間距離に対応するように棒の両端を上記の連結孔に挿し込んで、各球を連結したものである。
また、他の1つは空間充填模型またはスチュアート型模型と称されている模型である。これは、分子を構成する原子のフアン・デル・ワールス半径に相当する部品を、結合半径および原子価角に合うように結合したものである。
例えば、エチレン(CH =CH )は平面状分子であり、球−棒状模型では図9に示すように表わされ、空間充填模型では図10に示すように表わされる。
従来の球−棒状模型では、水素原子を表す球状部品11A、15Aおよび炭素原子を表す球状部品17Aを接続杆19A、21Aで接続していた。また、従来の空間充填模型では、水素原子を表わす半球状部品11Bおよび二重結合を有する炭素原子を表わす三角柱状または丸味を帯びた三角柱状部品13Bを、それぞれ色の異なる不透明なプラスチック材または木材で作り、これらを適当な結合手段(例えば接続杆、磁力結合手段またはスナップ結合手段等)で着脱自在に結合していた。
従って、化学の学習者は、図9の球−棒状模型で原子間距離、原子価角、原子の空間内配置状態等を学習でき、図10の空間充填模型によって分子の形状、原子の空間充填状態(パッキング)、立体障害等を学習できる(例えば、非特許文献1参照)。
英国ナフィールド財団編「ナフィールド化学」、日本語版、第IV巻、講談社(昭和49年3月20日第2刷発行)、第199頁〜第228頁
しかしながら、上記従来の分子模型にあっては、分子の構造に忠実であろうとして原子価角や原子間距離の種類を増やし、複雑で使いづらいものとしていた。また、分子構造の学習のためには少なくとも上記2種の球−棒状模型および空間充填型模型が必要であり、かつ生体構成分子のように比較的複雑な分子では、上記2種の模型の対応関係が初学者には多少わかりにくい。また、各模型の組み立ても多少不便であった。
本発明は上記のような従来の課題を解決するものであり、球を種の結晶の原子配列通りに透明容器内に配置することで、この透明容器を単位格子として、この単位格子内の原子配列状態を表現可能にし、以って種々の結晶模型を簡単に形成できるとともに、外部から透視して原子模型を看取ることができ、単位格子や4配位、6配位、8配位、12配位などの把握を容易化することができる分子模型を提供することを目的とする。
前述した目的を達成するために、本発明に係る分子模型は、球、1/2球、1/4球および1/8球と、上記各球の1つまたは複数を収納することにより、これらの各球を種の結晶の原子配列通りに配置可能な立方体または直方体の透明容器とを備え、該透明容器を単位格子として該単位格子内の原子配列状態を表現することを特徴とする。
この構成により、予め用意された単位格子図に従って単位格子としての透明容器内に球、1/2球、1/4球および1/8球を必要数だけ所定の位置に配置することで、簡単に種々の結晶模型を形成できるとともに、外部から透視して原子模型を看取ることができる。また、単位格子や4配位、6配位、8配位、12配位などを初学者でも極めて容易に把握することができる。
本発明によれば、種々の結晶模型を簡単に形成できるとともに、外部から透視して原子模型を看取ることができ、また、結晶構造を立体的に表示できるとともに、初学者でも単位格子や4配位、6配位、8配位、12配位などの配位の概念を十分理解することができるようになる。
本発明における透明容器を一部破断して示す正面図。 本発明における原子模型を示す斜視図。 本発明における原子模型の他の例を示す斜視図。 本発明における原子模型の他の例を示す斜視図。 本発明における原子模型の他の例を示す斜視図。 本発明における原子模型の他の例を示す斜視図。 本発明における塩化セシウムの結晶模型の単位格子を示す平面図。 図7に示す結晶模型の単位格子の断面図。 従来の球−棒状の分子模型を示す平面図。 従来の空間充填型分子模型を示す平面図。
以下、本発明の一実施の形態にかかる分子模型を図面を参照しながら説明する。
本実施形態の分子模型は、球、1/2球、1/4球および1/8球と、これらの各球の1つまたは複数を収納することにより、これらの各球を種の結晶の原子配列通りに配置可能な立方体または直方体の透明容器とを備える。この分子模型は、前記透明容器を単位格子として該単位格子内の原子配列状態を表現する。図1は、前記透明容器111を示す。この透明容器111は、例えばアクリル樹脂などの合成樹脂によって、立方体状や直方体状に成形されている。また、この透明容器111は上部に開口部111aを有する。
図2乃至図6は原子模型を示すもので、図2は8分の1球112を示し、図3は小球113を示し、図4は大球114を示し、図5は2分の1球115を示し、図6は4分の1球116を示したものである。透明容器111は合計8個の単位格子により共有されている。このため、1個の単位格子は原子を8分の1だけ有していることになる。従って、1個の単位格子の模型を作るときには、八隅の原子を示すために、8分の1球112が使用される。また共有関係を考慮して、1個の単位の稜に存在する原子を表わすために4分の1球116が使用され、さらに該格子の表面に存在する原子を示すために2分の1球115が使用される。
単位格子の原子配列状態を示す模型を作る場合には、結晶学、物理学、化学、金属学、鉱物学等の教科書、参考書に記載の種々の結晶の単位格子説明図に従って、透明容器111を単位格子と考えて、その中に所定の大きさの上記の球113、114、8分の1球、4分の1球112および116または2分の1球115を必要数入れて、所定の位置に配置する。原子の種類および大きさに応じてこれらの球の色および寸法を変えると便利である。単位格子の1例として、図7、図8に透明容器111と原子模型を使用して塩化セシウムの単位格子を示す。
塩化セシウムは分子式CsClと書かれ、Cs・・・1に対してCl・・・1の割合で結合している。しかし実際の結晶構造は体心立方構造によく似ており、Cs原子のまわりを八方向からCl原子が取り巻いている構造である。図7、図8は8分の1球112と小球113とを用いて分子式CsClの立体構造が示されている。ここで八隅の8分の1球112はClを、中心の小球113はCsを示す。また、8分の1球112のCl原子模型を組み合わせると1個の球を形成し、中心にある小球113Csの原子模型と1:1の関係となっている。食塩(NaCl)、ダイヤモンド(C)等の結晶構造も、この結晶模型を用いて立体的に表わすことができる。
さらに、実際の結晶では、原子Aが、N個の原子Bにより囲まれた構造がよく認められる。これをN配位と称する。代表的なものは、4配位、6配位、8配位、12配位であって、この配位状態は原子Aと原子Bとの半径比と密接に関係し、これをこの結晶模型により十分理解できる。すなわち、この透明容器111の中に表1に記載の半径比率条件をみたす2種の球を入れて配列すれば、これらの配位の概念が確実に把握できる。
Figure 2009093205
金属結晶構造は、6方最密充填構造、立方最密構造、体心立方構造の3種のいずれかである場合が多い。これらの構造はこの結晶模型を用いて立体的に表現できる。
(i)6方最密充填構造・・・透明容器111に赤および青の球を赤、青、赤青と順に6方格子の層ができるように並べる。そして、上からみて赤の層は常に同じ位置に、青の層は、赤とは違った位置で同様の配置で並べられる。
(ii)立方最密充填構造・・・6方最密充填構造と同じ要領であるが、この場合には赤、青、白の3種の球を使用する。異なった色の球は上からみて異なった位置に、同じ色の球の球は同じ位置に並ぶように配列する。
(iii)体心立方構造・・・透明容器111の中に赤(または白)の球の正方格子を作り、その4つの球に接する位置に白(または赤)の球を重ね合わせる。その際、同数の球の構造であれば、この体心立方構造の方が上記の各最密充填構造よりも体積が大きいことが、この結晶模型により直ちに理解できる。
このように、一方開口の透明容器111内に原子模型を配置するだけで結晶模型を形成でき、取り扱いが極めて簡単であるばかりでなく、その配置の仕方を自在に変えることができる。このため、種々の結晶模型を表現することができ、透明容器111を透視して内部の原子模型を立体的に透視できる。従って、単位格子の説明、4配位、6配位、8配位、12配位等の説明、原子直径(半径)比率と結晶構造または配位数との関係の説明、立方最密充填構造、6方最密充填構造、体心立方構造等の説明に極めて便利な結晶模型を提供することができる。
以上述べたように、本実施形態では、球113、114、1/2球115、1/4球116および1/8球112と、上記各球の1つまたは複数を収納することにより、各球を種の結晶の原子配列通りに配置可能な立方体または直方体の透明容器111とを備え、この透明容器111を単位格子としてこの単位格子内の原子配列状態を表現する分子模型とした。
これにより、種々の結晶模型を簡単に形成できるとともに、外部から透視して原子模型を看取ることができる。また、結晶構造を立体的に表示でき、単位格子や4配位、6配位、8配位、12配位などの配位の概念を初学者でも十分理解できることとなる。
本発明の分子構造は、種々の結晶模型を簡単に形成できるとともに、外部から透視して原子模型を看取ることができ、単位格子や4配位、6配位、8配位、12配位などの把握を容易化でき、化学教材等として利用するための分子模型等に有用である。
111 透明容器
111a 開口部
112 1/8球
113、114 球
115 1/2球
116 1/4

Claims (1)

  1. 球、1/2球、1/4球および1/8球と、
    上記各球の1つまたは複数を収納することにより、これらの各球を種の結晶の原子配列通りに配置可能な立方体または直方体の透明容器と、を備え、
    該透明容器を単位格子として該単位格子内の原子配列状態を表現することを特徴とする分子模型。
JP2009021916A 2009-02-02 2009-02-02 分子模型 Pending JP2009093205A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009021916A JP2009093205A (ja) 2009-02-02 2009-02-02 分子模型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009021916A JP2009093205A (ja) 2009-02-02 2009-02-02 分子模型

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003025231A Division JP2004233900A (ja) 2003-01-31 2003-01-31 分子模型

Publications (1)

Publication Number Publication Date
JP2009093205A true JP2009093205A (ja) 2009-04-30

Family

ID=40665187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009021916A Pending JP2009093205A (ja) 2009-02-02 2009-02-02 分子模型

Country Status (1)

Country Link
JP (1) JP2009093205A (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945650A (ja) * 1972-06-30 1974-05-01
JPS5658671A (en) * 1979-10-19 1981-05-21 Nec Corp Tester for logical circuit
JPS62129577A (ja) * 1985-12-02 1987-06-11 Hitachi Ltd ガイドベ−ン制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945650A (ja) * 1972-06-30 1974-05-01
JPS5658671A (en) * 1979-10-19 1981-05-21 Nec Corp Tester for logical circuit
JPS62129577A (ja) * 1985-12-02 1987-06-11 Hitachi Ltd ガイドベ−ン制御装置

Similar Documents

Publication Publication Date Title
Borchardt-Ott Crystallography: an introduction
US10918964B2 (en) Three-dimensional geometric art toy
US5660387A (en) Polyhedron puzzle
Whittaker Crystallography: an introduction for earth science (and other solid state) students
Pehlivanides et al. The virtualdiver project. Making Greece’s underwater cultural heritage accessible to the public
JP2009093205A (ja) 分子模型
JP2004233900A (ja) 分子模型
Casas Teaching periodicity and aperiodicity using 3D-printed tiles and polyhedra
Lalena From quartz to quasicrystals: probing nature's geometric patterns in crystalline substances
KR200485339Y1 (ko) 도형이동 교육용 학습교구
Férey Crystal chemistry: from basics to tools for materials creation
US20230005388A1 (en) Hyper-cubic periodic table of chemical elements and compounds
CN1901000A (zh) 一种组合教具及其组合演示方法
KR20100006075U (ko) 자석 종이블록
Loeb A modular algebra for the description of crystal structures
CN2793852Y (zh) 应用于教学的人体器官仿真模板
JP2002099197A (ja) 3次元学習器
JP4892681B2 (ja) 分子模型制作方法及び化学反応学習教材
Hoffmann et al. Crystal shapes and Bravais lattices
CN215970777U (zh) 一种书本式植物栽培装置
Garcia-Ruiz et al. CRISTALES: a world to discover. An exhibition for schools and universities
CN215521528U (zh) 一种物块边边相连互转可合可分的连接结构
JP2001009173A (ja) 空間格子点連結玩具
JP6667757B1 (ja) 地球の比重層構造モデル
Ossi Platonic Solids: Geometry and Symmetry

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090202

A621 Written request for application examination

Effective date: 20090204

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20110524

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20111025

Free format text: JAPANESE INTERMEDIATE CODE: A02