JP2009092746A - Antireflection coating - Google Patents

Antireflection coating Download PDF

Info

Publication number
JP2009092746A
JP2009092746A JP2007260836A JP2007260836A JP2009092746A JP 2009092746 A JP2009092746 A JP 2009092746A JP 2007260836 A JP2007260836 A JP 2007260836A JP 2007260836 A JP2007260836 A JP 2007260836A JP 2009092746 A JP2009092746 A JP 2009092746A
Authority
JP
Japan
Prior art keywords
film
layer
antireflection film
coating
antireflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007260836A
Other languages
Japanese (ja)
Inventor
Sayoko Amano
佐代子 天野
Yasuyuki Tomita
泰行 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007260836A priority Critical patent/JP2009092746A/en
Publication of JP2009092746A publication Critical patent/JP2009092746A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high performance antireflection coating having functions such as water repellency, oil repellency, pollution prevention property or the like. <P>SOLUTION: An inorganic oxide film 2 is formed as a first layer on a glass substrate 1. An inorganic oxide film 3 is formed as a second layer on the inorganic oxide film 2. A MgF<SB>2</SB>film formed by a fluoride compound in an inorganic coating 4 is formed as a third layer on the inorganic oxide film 3. In addition, an organic coating 5 formed by a fluoride-containing organic compound is formed as a fourth layer positioned on the most outside air side of the outermost surface layer to form a multilayer film 6 constituted by a four layer structure. as the outermost surface layer. The high performance antireflection coating having functions such as water repellency, oil repellency, pollution prevention property or the like can be formed by depositing the fluoride-containing organic compound as an organic coating 5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、カメラ等の光学部材に用いる反射防止膜に関するものである。   The present invention relates to an antireflection film used for an optical member such as a camera.

従来、テレビカメラやビデオカメラ、写真カメラの撮影レンズ等の光学部材の両面又は片面には、透過光量を上げると共に不要光によるゴーストやフレアを回避するための反射防止膜が成膜されている。これらの反射防止膜は高屈折率と低屈折率の無機系誘電体材料が交互に成膜されており、最表層には反射防止効果を向上させるために、低屈折率の無機系誘電体材料が使用されている。また、低屈折率の無機系誘電体材料として、MgF2(フッ化マグネシウム)やSiO2(二酸化珪素)が使われている。 Conventionally, an antireflection film for increasing the amount of transmitted light and avoiding ghost and flare due to unnecessary light has been formed on both surfaces or one surface of an optical member such as a photographic lens of a TV camera, a video camera, or a photographic camera. These anti-reflective coatings are composed of alternating high-refractive-index and low-refractive-index inorganic dielectric materials, and the outermost layer has a low-refractive-index inorganic dielectric material to improve the anti-reflection effect. Is used. Further, MgF 2 (magnesium fluoride) or SiO 2 (silicon dioxide) is used as an inorganic dielectric material having a low refractive index.

例えば、雨の中で使用する監視カメラや、お天気カメラのように常時屋外に設置されている場合には、光学部材の表面が水滴や塵埃に晒されるため、特に最表層に施されている反射防止膜の反射防止性能が劣化し易い。このような場合には、汚染された部分を布や紙で拭き取ったり、ワイパ機構を持たせたりして、汚染を除去する方法が知られている。   For example, when the camera is always installed outdoors, such as a surveillance camera used in the rain or a weather camera, the surface of the optical member is exposed to water droplets and dust. The antireflective performance of the protective film is likely to deteriorate. In such a case, there is known a method of removing the contamination by wiping the contaminated portion with a cloth or paper or providing a wiper mechanism.

しかし、反射防止膜を構成する誘電体膜は、表面の摩擦抵抗が大きいため、汚染を完全に除去することは極めて困難であり、拭きむらが発生して著しく光学特性が劣化し、反射防止性能が失われるという問題を有している。   However, the dielectric film that makes up the antireflection film has a high frictional resistance on the surface, so it is extremely difficult to completely remove the contamination. Have the problem of being lost.

そこで、汚れや水滴が容易に除去できる反射防止膜が要求されており、従来から無機系誘電体膜上に有機系被膜を形成することにより、撥水性、撥油性、防汚性等の機能を向上させることが広く知られている。   Therefore, an antireflection film capable of easily removing dirt and water droplets has been required, and functions such as water repellency, oil repellency, and antifouling properties have been conventionally formed by forming an organic coating on an inorganic dielectric film. It is widely known to improve.

特許文献1においては、防汚光学部品の製造方法として、防汚層を形成する基板最表面の反射防止膜は、SiO2を主成分とする層であることが開示されている。 In Patent Document 1, as a method for producing an antifouling optical component, it is disclosed that the antireflection film on the outermost surface of the substrate on which the antifouling layer is formed is a layer containing SiO 2 as a main component.

また、特許文献2においては、有機系被膜を無機コート膜上に形成する表面処理方法において、無機コート層の最表層がSiO2から成る反射防止膜であることが開示されている。 Patent Document 2 discloses that in the surface treatment method for forming an organic coating on an inorganic coating film, the outermost layer of the inorganic coating layer is an antireflection film made of SiO 2 .

特開2005−301208号公報Japanese Patent Laid-Open No. 2005-301208 特開平6−340966号公報JP-A-6-340966

特許文献1、2に記載されているような有機系被膜の下層膜として、SiO2膜を使用した場合には、メガネレンズ等の反射防止効果としては特に問題のない性能が得られる。 When an SiO 2 film is used as the lower layer film of the organic coating as described in Patent Documents 1 and 2, performance that is not particularly problematic as an antireflection effect of an eyeglass lens or the like can be obtained.

しかし、撮影レンズに使用される反射防止膜としては、反射防止の効果は不十分であり、ゴーストやフレアの原因となり、満足できるほどの十分な性能は得られない。   However, as an antireflection film used for a photographing lens, the effect of antireflection is insufficient, causing ghost and flare, and satisfactory performance cannot be obtained.

本発明の目的は、上述の問題点を解消し、高性能な撥水性、撥油性、防汚性等の機能を有する反射防止膜を提供することにある。   An object of the present invention is to solve the above-described problems and provide an antireflection film having functions such as high performance water repellency, oil repellency and antifouling properties.

上記目的を達成するための本発明に係る反射防止膜の技術的特徴は、基板の上に屈折率が異なる2種以上の材料を2層以上に成膜した反射防止膜において、最も外気側に成膜する層を有機系被膜とし、外気側から2層目に成膜する層をフッ化化合物から成る無機系被膜とすることにある。   In order to achieve the above object, the technical feature of the antireflection film according to the present invention is that the antireflection film in which two or more kinds of materials having different refractive indexes are formed in two or more layers on the substrate is the most external side. The layer to be formed is an organic film, and the second layer from the outside air is an inorganic film made of a fluorinated compound.

本発明によれば、撥水性、撥油性、防汚性等の機能を有しつつも、透過光量が高い反射防止膜が実現できる。   According to the present invention, an antireflection film having a high amount of transmitted light can be realized while having functions such as water repellency, oil repellency, and antifouling properties.

本発明を図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the embodiments shown in the drawings.

図1は本実施例1における反射防止膜の膜構成図を示しており、先ずd線屈折率1.52のガラスから成る基板1の上に、1層目としてd線屈折率1.63で光学的膜厚が113nmの無機系酸化膜2を成膜する。この無機系酸化膜2上の2層目には、d線屈折率2.10で光学的膜厚が243nmの無機系酸化膜3を成膜する。   FIG. 1 shows a film configuration diagram of an antireflection film in Example 1. First, on a substrate 1 made of glass having a d-line refractive index of 1.52, the first layer has a d-line refractive index of 1.63. An inorganic oxide film 2 having an optical film thickness of 113 nm is formed. As the second layer on the inorganic oxide film 2, an inorganic oxide film 3 having a d-line refractive index of 2.10 and an optical film thickness of 243 nm is formed.

そして、無機系酸化膜3上の3層目には、無機系被膜4のフッ化化合物として、d線屈折率1.38で光学的膜厚が115nmのMgF2膜を成膜する。更に、最表層の最も外気側に位置する4層目には、有機系被膜5としてd線屈折率1.36で光学的膜厚が10nmのフッ素含有有機化合物を成膜することにより、4層構造から成る多層膜6を形成する。 As the fluorinated compound of the inorganic coating 4, an MgF 2 film having a d-line refractive index of 1.38 and an optical film thickness of 115 nm is formed as the third layer on the inorganic oxide film 3. Further, the fourth layer located on the outermost surface side of the outermost layer is formed by forming a fluorine-containing organic compound having a d-line refractive index of 1.36 and an optical film thickness of 10 nm as the organic coating 5. A multilayer film 6 having a structure is formed.

無機系被膜4のフッ化化合物の屈折率と有機系被膜5の屈折率差は0.02である。有機系被膜5の屈折率が無機系被膜4のフッ化化合物の屈折率よりも高くなってしまうと反射防止性能が悪化してしまうため、0.1以下の屈折率差であることが望ましい。有機系被膜5は膜厚を厚くし過ぎた場合には、表面が白濁して機能が損なわれるため、10nm程度の膜厚が望ましい。   The difference in refractive index between the fluorinated compound of the inorganic coating 4 and the refractive index of the organic coating 5 is 0.02. If the refractive index of the organic coating 5 is higher than the refractive index of the fluorinated compound of the inorganic coating 4, the antireflection performance is deteriorated, so that the refractive index difference is preferably 0.1 or less. If the organic coating 5 is too thick, the surface becomes cloudy and its function is impaired, so a thickness of about 10 nm is desirable.

フッ素含有有機化合物としては、特許文献3に記載されているジメチルジクロロシラン、ジエチルジクロロシラン、ジフェニルビニルジクロロシランなどのハロゲン化シラン化合物が適用可能である。また、特許文献4に記載されているジメチルジエトキシシラン、ジメトキシメチル−3,3,3−トリフルオロプロピルシラン、などのアルコキシシラン化合物も適用可能である。更に、特許文献5に記載されているビス(ジメチルアミノ)メチルシラン、ヘキサメチルジシラザン、1,1,3,3,5,5,7,7−オクチルメチルシクロテトラシラザンなどのアミノシラン化合物も適用可能である。また、特許文献6に記載されているフッ素含有アミノシラン化合物も適用可能である。これらのフッ素含有有機化合物については、撥水性、撥油性、防塵性等の機能を付与し得るものであれば、特に限定されることはない。   As the fluorine-containing organic compound, halogenated silane compounds such as dimethyldichlorosilane, diethyldichlorosilane, and diphenylvinyldichlorosilane described in Patent Document 3 are applicable. Further, alkoxysilane compounds such as dimethyldiethoxysilane and dimethoxymethyl-3,3,3-trifluoropropylsilane described in Patent Document 4 are also applicable. Further, aminosilane compounds such as bis (dimethylamino) methylsilane, hexamethyldisilazane, 1,1,3,3,5,5,7,7-octylmethylcyclotetrasilazane described in Patent Document 5 are also applicable. It is. Moreover, the fluorine-containing aminosilane compound described in Patent Document 6 is also applicable. These fluorine-containing organic compounds are not particularly limited as long as they can provide functions such as water repellency, oil repellency, and dust resistance.

特開昭63−169102号公報JP 63-169102 A 特開昭62−178903号公報JP 62-178903 A 特開昭62−247302号公報JP 62-247302 A 特開昭62−296002号公報JP-A 62-296002

なお、無機系酸化膜2、3及び無機系被膜4の成膜条件としては、成膜温度を200℃以上で真空蒸着方法を用いて成膜し、最表層の有機系被膜5のフッ素含有有機化合物は100℃以下の低温で成膜する。   The inorganic oxide films 2 and 3 and the inorganic coating film 4 were formed by using a vacuum deposition method at a film formation temperature of 200 ° C. or higher, and the fluorine-containing organic layer 5 of the outermost organic coating film 5 was formed. The compound is formed at a low temperature of 100 ° C. or lower.

図2は上述の方法により成膜した反射防止膜の反射特性のグラフ図を示しており、430〜630nmの波長帯域において、分光反射率が0.2%以下の高性能な反射防止膜が実現できることが確認できた。   FIG. 2 is a graph showing the reflection characteristics of the antireflection film formed by the above-described method. A high-performance antireflection film having a spectral reflectance of 0.2% or less is realized in the wavelength band of 430 to 630 nm. I was able to confirm that it was possible.

本実施例では、反射防止特性の範囲を430〜630nmとしているが、この帯域に限定されるものではなく、上述の光学的膜厚を変化させることにより、短波長側又は長波長側に移動可能であり、同程度の反射防止効果を得ることができる。   In this embodiment, the range of the antireflection characteristic is set to 430 to 630 nm. However, it is not limited to this band, and can be moved to the short wavelength side or the long wavelength side by changing the optical film thickness described above. Therefore, the same degree of antireflection effect can be obtained.

また、本実施例においては、反射防止膜である多層膜6は屈折率が異なる4種類の材料を4層に成膜したが、4層に限定されるものではなく、4層以上に成膜することも可能である。   In this embodiment, the multilayer film 6 that is an antireflection film is formed of four types of materials having different refractive indexes in four layers, but is not limited to four layers, and is formed in four or more layers. It is also possible to do.

そして、最表層に有機系被膜5として、フッ素含有有機化合物が成膜することにより、撥水性、撥油性、防汚性等の機能、例えば水との接触角が90度以上、転落角が28度以下の機能を付与した高性能な反射防止膜が得られる。   Then, by forming a fluorine-containing organic compound as the organic coating 5 on the outermost layer, functions such as water repellency, oil repellency, antifouling properties, such as a contact angle with water of 90 degrees or more, and a sliding angle of 28 A high-performance antireflection film having a function of less than 1 degree can be obtained.

図3は実施例2における反射防止膜の膜構成図を示している。本実施例においては、先ずd線屈折率1.80のガラスレンズ等の基板11の上に、1層目としてd線屈折率1.63で光学的膜厚が246nmの無機系酸化膜12を成膜する。この無機系酸化膜12上の2層目には、d線屈折率2.10で光学的膜厚が247nmの無機系酸化膜13を成膜する。   FIG. 3 shows a film configuration diagram of the antireflection film in the second embodiment. In this embodiment, first, an inorganic oxide film 12 having a d-line refractive index of 1.63 and an optical film thickness of 246 nm is formed on a substrate 11 such as a glass lens having a d-line refractive index of 1.80. Form a film. In the second layer on the inorganic oxide film 12, an inorganic oxide film 13 having a d-line refractive index of 2.10 and an optical film thickness of 247 nm is formed.

そして、無機系酸化膜13上の3層目に無機系被膜14のフッ化化合物として、d線屈折率1.38で光学的膜厚が121nmのMgF2膜を成膜する。更に、最表層の最も外気側に位置する4層目には、有機系被膜15として、d線屈折率1.36で光学的膜厚が10nmのフッ素含有有機化合物を成膜することにより4層構造から成る多層膜16を形成する。なお、無機系酸化膜12、13、無機系被膜14、有機系被膜15の成膜方法及び成膜温度は実施例1と同様である。 Then, an MgF 2 film having a d-line refractive index of 1.38 and an optical film thickness of 121 nm is formed as the fluorinated compound of the inorganic coating 14 in the third layer on the inorganic oxide film 13. Further, the fourth layer located on the outermost air side of the outermost layer is formed by forming a fluorine-containing organic compound having a d-line refractive index of 1.36 and an optical film thickness of 10 nm as the organic coating 15. A multilayer film 16 having a structure is formed. The film formation method and film formation temperature of the inorganic oxide films 12 and 13, the inorganic coating film 14, and the organic coating film 15 are the same as those in the first embodiment.

図4は上述の方法により成膜した反射防止膜の反射特性のグラフ図を示しており、420〜650nmの波長帯域において分光反射率が0.2%以下の高性能な反射防止膜が実現できる。   FIG. 4 is a graph showing the reflection characteristics of the antireflection film formed by the above-described method. A high-performance antireflection film having a spectral reflectance of 0.2% or less in the wavelength band of 420 to 650 nm can be realized. .

本実施例においても、反射防止特性の範囲を短波長側又は長波長側に移動可能である。反射防止膜である多層膜16は4層に限定されるものではない。   Also in this embodiment, the range of the antireflection characteristic can be moved to the short wavelength side or the long wavelength side. The multilayer film 16 which is an antireflection film is not limited to four layers.

図5は実施例3における反射防止膜の膜構成図を示している。本実施例においては、d線屈折率1.52のガラスレンズ等の基板21の上に、1層目として無機系被膜22のフッ化化合物として、d線屈折率1.38で光学系膜厚が120nmのMgF2膜を成膜する。そして、この無機系被膜22上に2層目の有機系被膜23として、d線屈折率が1.36で光学的膜厚は10nmのフッ素含有有機化合物を成膜することにより2層構造から成る多層膜24を形成する。 FIG. 5 shows a film configuration diagram of an antireflection film in Example 3. In this embodiment, the optical film thickness is d38 with a d-line refractive index of 1.38 on a substrate 21 such as a glass lens having a d-line refractive index of 1.52 as the fluorinated compound of the inorganic coating 22 as the first layer. Is a 120 nm thick MgF 2 film. Then, a two-layer structure is formed by forming a fluorine-containing organic compound having a d-line refractive index of 1.36 and an optical film thickness of 10 nm as a second organic coating 23 on the inorganic coating 22. A multilayer film 24 is formed.

無機系被膜22であるMgF2は、真空蒸着方法において成膜温度を200℃以上で成膜し、有機系被膜23のフッ素含有有機化合物は100℃以下の低温条件で成膜する。 MgF 2 which is the inorganic coating 22 is formed at a film forming temperature of 200 ° C. or higher in the vacuum deposition method, and the fluorine-containing organic compound of the organic coating 23 is formed at a low temperature condition of 100 ° C. or lower.

図6は上述の方法により成膜した反射防止膜の反射特性のグラフ図を示しており、波長400〜700nmの範囲で分光反射率が2.0%以下で、520nmの波長帯域において1.3%以下と良好な反射防止膜が得られている。なお、本実施例においては、最も反射の少ない波長帯域を520nm程度としているが、上述のように光学的膜厚を変化させることにより、最小反射率波長域を変えることも可能である。更に、反射防止膜である多層膜24は2層構造に限定されることはなく、2種以上の材料を2層以上に積層することによっても得られる。   FIG. 6 is a graph showing the reflection characteristics of the antireflection film formed by the above-described method. The spectral reflectance is 2.0% or less in the wavelength range of 400 to 700 nm, and 1.3 in the wavelength band of 520 nm. % Or less, an excellent antireflection film is obtained. In this embodiment, the wavelength band with the least reflection is set to about 520 nm. However, the minimum reflectance wavelength region can be changed by changing the optical film thickness as described above. Furthermore, the multilayer film 24 which is an antireflection film is not limited to a two-layer structure, and can be obtained by laminating two or more materials into two or more layers.

図7は実施例4における反射防止膜の膜構成図を示している。本実施例においては、d線屈折率1.81のガラスレンズ等の基板31の上に、1層目の無機系被膜32のフッ化化合物として、d線屈折率1.38で光学的膜厚が120nmのMgF2膜を成膜する。そして、この無機系被膜32上に2層目の有機系被膜33として、d線屈折率1.36で光学的膜厚10nmのフッ素含有有機化合物を成膜することにより、2層構造から成る多層膜34を形成する。 FIG. 7 shows a film configuration diagram of an antireflection film in Example 4. In this example, an optical film thickness with a d-line refractive index of 1.38 is used as a fluorinated compound of the first inorganic coating 32 on a substrate 31 such as a glass lens having a d-line refractive index of 1.81. Is a 120 nm thick MgF 2 film. Then, a multilayer organic film having a two-layer structure is formed by forming a fluorine-containing organic compound having a d-line refractive index of 1.36 and an optical film thickness of 10 nm as a second organic film 33 on the inorganic film 32. A film 34 is formed.

図8は上述の方法により成膜した反射防止膜の反射特性のグラフ図を示しており、520nmの波長帯域において、分光反射率が0.1%以下と良好な反射防止膜が得られている。   FIG. 8 is a graph showing the reflection characteristics of the antireflection film formed by the above-described method. In the wavelength band of 520 nm, a good antireflection film having a spectral reflectance of 0.1% or less is obtained. .

本実施例においては最も反射の少ない波長帯域を520nm程度としているが、上述の光学的膜厚を変化させることにより、最小反射率波長域を変えることもできる。   In the present embodiment, the wavelength band with the least reflection is set to about 520 nm, but the minimum reflectance wavelength region can be changed by changing the optical film thickness described above.

図9は屋外で使用されるお天気カメラ等のパン、チルト機構を持つ撮影システムの正面図を示している。撮影レンズ41は光学部材として保護ガラス42を備え、保護ガラス42の表面には、上述の実施例による反射防止膜が施されている。また、保護ガラス42上を水滴除去機構としてワイパ43が動作するようにされている。   FIG. 9 is a front view of a photographing system having a pan / tilt mechanism such as a weather camera used outdoors. The taking lens 41 includes a protective glass 42 as an optical member, and the surface of the protective glass 42 is provided with the antireflection film according to the above-described embodiment. Further, the wiper 43 operates on the protective glass 42 as a water droplet removing mechanism.

本実施例においては、雨に濡れることにより保護ガラス42の表面に水滴が付着した場合や、塵埃等が付着した場合には、外部からの遠隔操作によりワイパ43が稼働し、水滴や汚れを除去することができる。   In this embodiment, when water drops adhere to the surface of the protective glass 42 due to rain or when dust or the like adheres, the wiper 43 is activated by remote operation from the outside to remove water drops and dirt. can do.

従来例のように、最表層に無機系被膜が形成されている場合には、表面の摩擦抵抗が大きいため、ワイパ43によっても水滴や汚れを完全に除去することはできない。更に、ワイパ43のブレードが摩耗し、反射防止膜が剥がれ、反射防止性能が低下するのみならず、光学性能にも影響を与えることになる。   In the case where an inorganic coating is formed on the outermost layer as in the conventional example, since the surface frictional resistance is large, even with the wiper 43, water droplets and dirt cannot be completely removed. Further, the blade of the wiper 43 is worn, the antireflection film is peeled off, and not only the antireflection performance is lowered but also the optical performance is affected.

本実施例においては、保護ガラス42の外気側である最表層に、フィルタとして実施例1〜4の反射防止膜に施すことにより、水の接触角が例えば90度以上と大きくなり、転落角が例えば28度以下と小さくなるため、水滴が付着し難くなる。更に、汚れの付着力も低下し、表面の摩擦抵抗も小さくなるため、ワイパ43により水滴や汚れが簡単に除去できる。   In this example, by applying the antireflection film of Examples 1 to 4 as a filter to the outermost layer on the outside air side of the protective glass 42, the contact angle of water is increased to, for example, 90 degrees or more, and the falling angle is increased. For example, since it becomes 28 degrees or less, it becomes difficult for water droplets to adhere. Furthermore, since the adhesion of dirt is reduced and the frictional resistance of the surface is also reduced, water droplets and dirt can be easily removed by the wiper 43.

また、ワイパ43に対する摩擦力も弱まるため、反射防止膜を剥離することもなく、良好な光学性能を維持することができるだけでなく、ワイパ43の駆動機構の簡易化、モータの省電力化にも効果がある。   Further, since the frictional force with respect to the wiper 43 is weakened, the antireflection film is not peeled off and not only the good optical performance can be maintained, but also the driving mechanism of the wiper 43 can be simplified and the power consumption of the motor can be reduced. There is.

図10は撮影レンズ鏡筒の部分断面図を示している。鏡筒51には光学部材としてレンズ52が組み込まれ、レンズ52はねじ状の抑え環53により鏡筒51に保持されている。その際に、鏡筒51とレンズ面の接触抵抗が大きいと、レンズ52に偏心やレンズ面の歪みが生じ、光学性能が劣化することがある。   FIG. 10 shows a partial cross-sectional view of the taking lens barrel. A lens 52 is incorporated as an optical member in the lens barrel 51, and the lens 52 is held on the lens barrel 51 by a screw-shaped holding ring 53. At this time, if the contact resistance between the lens barrel 51 and the lens surface is large, the lens 52 may be decentered or the lens surface may be distorted, and the optical performance may be deteriorated.

レンズ52の外気側の表面に、実施例1〜4の反射防止膜54を成膜すると、組み込み時に塵埃や汚れが付着しても、レンズクリーニング紙に溶剤を含ませて拭くことにより、容易に塵埃等を除去することができる。   When the antireflection film 54 of Examples 1 to 4 is formed on the surface of the lens 52 on the outside air side, even if dust or dirt adheres to the lens 52 during installation, the lens cleaning paper can be easily wiped with a solvent. Dust and the like can be removed.

従来においては、レンズ52の表面の摩擦抵抗が大きいと、拭きむらが残り完全に汚れを除去できなかった。しかし、本実施例6によれば、組み込み時の汚れ除去の拭きむらを防止するだけではなく、摩擦抵抗が小さいため、レンズの偏心や歪みを小さくすることができ、高い光学性能を維持することが可能となる。   Conventionally, when the frictional resistance of the surface of the lens 52 is large, wiping unevenness remains and the dirt cannot be completely removed. However, according to the sixth embodiment, not only unevenness in removing dirt during assembly is prevented, but also because the frictional resistance is small, the eccentricity and distortion of the lens can be reduced, and high optical performance can be maintained. Is possible.

反射防止機能を有する光学系に対し、防汚耐久性向上に用いることができる。   It can be used to improve antifouling durability for an optical system having an antireflection function.

実施例1の反射防止膜の膜構成図である。2 is a film configuration diagram of an antireflection film of Example 1. FIG. 実施例1の分光反射特性のグラフ図である。3 is a graph of spectral reflection characteristics of Example 1. FIG. 実施例2の反射防止膜の膜構成図である。6 is a film configuration diagram of an antireflection film of Example 2. FIG. 実施例2の分光反射特性のグラフ図である。6 is a graph of spectral reflection characteristics of Example 2. FIG. 実施例3の反射防止膜の膜構成図である。4 is a film configuration diagram of an antireflection film of Example 3. FIG. 実施例3の分光反射特性のグラフ図である。6 is a graph of spectral reflection characteristics of Example 3. FIG. 実施例4の反射防止膜の膜構成図である。6 is a film configuration diagram of an antireflection film of Example 4. FIG. 実施例4の分光反射特性のグラフ図である。6 is a graph of spectral reflection characteristics of Example 4. FIG. 撮影システムの正面図である。It is a front view of an imaging system. 撮影レンズの鏡筒の部分断面図である。It is a fragmentary sectional view of the lens barrel of a photographic lens.

符号の説明Explanation of symbols

1、11、21、31 基板
2、3、12、13 無機系酸化膜
4、14、22、32 無機系被膜
5、15、23、33 有機系被膜
6、16、24、34 多層膜
41 撮影レンズ
42 保護ガラス
43 ワイパ
51 鏡筒
52 レンズ
53 抑え環
54 反射防止膜
1, 11, 21, 31 Substrate 2, 3, 12, 13 Inorganic oxide film 4, 14, 22, 32 Inorganic film 5, 15, 23, 33 Organic film 6, 16, 24, 34 Multilayer film 41 Lens 42 Protective glass 43 Wiper 51 Lens barrel 52 Lens 53 Retaining ring 54 Antireflection film

Claims (5)

基板の上に屈折率が異なる2種以上の材料を2層以上に成膜した反射防止膜において、最も外気側に成膜する層を有機系被膜とし、外気側から2層目に成膜する層をフッ化化合物から成る無機系被膜とすることを特徴とする反射防止膜。   In an antireflection film in which two or more kinds of materials having different refractive indexes are formed on a substrate in two or more layers, the layer that is formed most on the outside air side is an organic film, and the film is formed on the second layer from the outside air side. An antireflection film characterized in that the layer is an inorganic film made of a fluorinated compound. 430〜630nmの波長帯域において、分光反射率が0.2%以下であり、4層以上で構成することを特徴とする請求項1に記載の反射防止膜。   2. The antireflection film according to claim 1, wherein in the wavelength band of 430 to 630 nm, the spectral reflectance is 0.2% or less, and the antireflection film is composed of four or more layers. 前記フッ化化合物はMgF2から成ることを特徴とする請求項1又は2に記載の反射防止膜。 The antireflection film according to claim 1, wherein the fluorinated compound is made of MgF 2 . 前記有機系被膜はフッ素含有有機化合物であることを特徴とする請求項1〜3の何れか1つの請求項に記載の反射防止膜。   The antireflection film according to claim 1, wherein the organic coating is a fluorine-containing organic compound. 請求項1〜6の何れか1つの請求項に記載の反射防止膜を、最も外気側の光学部材の表面に設けたことを特徴とする撮影レンズ。   A photographic lens, wherein the antireflection film according to any one of claims 1 to 6 is provided on the surface of the optical member closest to the outside air.
JP2007260836A 2007-10-04 2007-10-04 Antireflection coating Pending JP2009092746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007260836A JP2009092746A (en) 2007-10-04 2007-10-04 Antireflection coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007260836A JP2009092746A (en) 2007-10-04 2007-10-04 Antireflection coating

Publications (1)

Publication Number Publication Date
JP2009092746A true JP2009092746A (en) 2009-04-30

Family

ID=40664833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007260836A Pending JP2009092746A (en) 2007-10-04 2007-10-04 Antireflection coating

Country Status (1)

Country Link
JP (1) JP2009092746A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146937A (en) * 2017-03-09 2018-09-20 マクセルホールディングス株式会社 Optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146937A (en) * 2017-03-09 2018-09-20 マクセルホールディングス株式会社 Optical element

Similar Documents

Publication Publication Date Title
US7684113B2 (en) Imaging device including an optical member having a water-repellent or water/oil-repellent coating, an antireflection coating, an infrared-cutting glass, and a lowpass filter in this order from the side of the lens
US20230384483A1 (en) Lens unit
JP2014203044A (en) Infrared cut filter and image capturing device
EP3223042B1 (en) Optical member and method of manufacturing the same
CN110346846A (en) Anti-reflection waterproof membrane and preparation method thereof, optical lens
WO2018110018A1 (en) Optical element
JP5309489B2 (en) Imaging device
TW201932876A (en) Optical device having optical and mechanical properties
JP2009092746A (en) Antireflection coating
JP7343334B2 (en) Lens unit and camera module
JP2007017591A (en) Optical apparatus
JP2020122912A (en) Lens with film, lens unit and camera module
JP2005199572A (en) Pollution prevention type anti-reflection film and display
JP7296696B2 (en) Wide-angle lens unit and camera module
WO2024066880A1 (en) S-polarized light transflective film, windshield window, display apparatus, and transportation device
JP7405405B2 (en) Anti-reflection film, optical element having same, and method for producing anti-reflection film
KR102561455B1 (en) High functional infrared optical coating and method thereof
WO2022024744A1 (en) Cover glass
JP2005001900A (en) Substrate coated with low light reflective coating film, its manufacturing method, and composition for the low light reflective coating film
JP2019159174A (en) Film-coated lens, lens unit, and camera module
JP2010066681A (en) Optical element and optical system having the same
JP2023135937A (en) Optical element, optical system, and optical apparatus
JP2008152014A (en) Optical low-pass filter and stainproof coating method thereof
JP2020181073A (en) Lens with film, lens unit, and camera module
JP2020126256A (en) Infrared cut filter

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630