JP2009090844A - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
JP2009090844A
JP2009090844A JP2007264184A JP2007264184A JP2009090844A JP 2009090844 A JP2009090844 A JP 2009090844A JP 2007264184 A JP2007264184 A JP 2007264184A JP 2007264184 A JP2007264184 A JP 2007264184A JP 2009090844 A JP2009090844 A JP 2009090844A
Authority
JP
Japan
Prior art keywords
visible light
vehicle
imaging
light
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007264184A
Other languages
Japanese (ja)
Other versions
JP5003398B2 (en
Inventor
Yoshiki Ninomiya
芳樹 二宮
Kiyosumi Shirodono
清澄 城殿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2007264184A priority Critical patent/JP5003398B2/en
Publication of JP2009090844A publication Critical patent/JP2009090844A/en
Application granted granted Critical
Publication of JP5003398B2 publication Critical patent/JP5003398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lighting device capable of improving driver's visibility by controlling, for every small area, a lighting state of an area in front of a vehicle. <P>SOLUTION: The lighting device is provided with a visible light picturing part 12 and a near infrared picturing part 14 for picturing an area in front of the vehicle, a visible light lighting part 26 capable of lighting each small area formed by dividing the area in front of the vehicle into a plurality of small areas with different lighting state of visible light, a lighting intensity setting part 18 and a lighting control part 24 for controlling the visible lighting part 26 to bring a lighting state of each the small area in front of the vehicle for improving visibility of a front direction of the vehicle based on an image pictured by the visible light picturing part 12 and the near infrared picturing part 14. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、車両前方を照明する照明装置に関する。   The present invention relates to an illumination device that illuminates the front of a vehicle.

従来より、車両の運転者の視認性を向上させるため、様々な技術が提案されている。例えば、遠赤外線ステレオカメラと可視光ステレオカメラとをそれぞれ備え、検出された障害物が前照灯の照射領域外で且つ白線から所定領域内に存在するときに、前照灯の照明方向を切替えて、その障害物に対して可視照明する車両障害物検出装置が知られている(特許文献1参照。)。また、遠赤外線カメラを備え、歩行者を検出し、検出した歩行者にスポット照射光を制御して照射することによって注意を喚起する技術も提案されている(非特許文献1参照。)。
特開2000−318513号公報 新垣 洋平、外2名、“赤外線画像の特徴点密度を利用した視覚補助システム”、第11回画像センシングシンポジウム,E-8, 2005.6.
Conventionally, various techniques have been proposed to improve the visibility of a vehicle driver. For example, a far-infrared stereo camera and a visible light stereo camera are provided, and the illumination direction of the headlamp is switched when the detected obstacle is outside the illumination area of the headlamp and within a predetermined area from the white line. A vehicle obstacle detection device that visibly illuminates the obstacle is known (see Patent Document 1). There has also been proposed a technique that includes a far-infrared camera, detects a pedestrian, and alerts the detected pedestrian by controlling and irradiating spot irradiation light (see Non-Patent Document 1).
JP 2000-318513 A Yohei Aragaki, 2 others, “Visual Assistance System Using Feature Point Density of Infrared Image”, 11th Image Sensing Symposium, E-8, 2005.6.

しかしながら、上記従来の技術では、センサなどで検知した被照射対象を照明するだけであり、照明の単なるオンオフだけでは視認性としてよりよい照明状態となっていない場合もあり、場合によっては一律に照明することで全体のコントラストが低下する等、結果として視認性が低下する場合もある。   However, in the above-described conventional technology, only the illumination target detected by a sensor or the like is illuminated, and the illumination state may not be a better illumination state simply by turning on / off the illumination. As a result, the visibility may be lowered as a result, for example, the overall contrast is lowered.

本発明は、車両前方の領域の照明状態を小領域毎に制御することで運転者の視認性をより向上させることができる照明装置を提供することを目的とする。   An object of this invention is to provide the illuminating device which can improve a driver | operator's visibility more by controlling the illumination state of the area | region ahead of a vehicle for every small area | region.

上記目的を達成するために、請求項1の照明装置は、車両前方の領域を撮像する撮像手段と、前記車両前方の領域を複数の小領域に分割したときの各小領域毎に可視光の照明状態を異ならせて照明可能な可視光照明手段と、前記撮像手段で撮像して得られた画像に基づいて、前記車両前方の前記小領域毎の照明状態が前記車両前方の視認性が向上する照明状態となるように前記可視光照明手段を制御する制御手段と、を含んで構成されている。   In order to achieve the above object, an illumination device according to claim 1 includes an imaging means for imaging a region in front of the vehicle, and visible light for each small region when the region in front of the vehicle is divided into a plurality of small regions. Based on the visible light illuminating means that can illuminate with different illumination states and the image obtained by imaging with the imaging means, the illumination state for each small area in front of the vehicle improves the visibility in front of the vehicle Control means for controlling the visible light illuminating means so as to be in an illuminating state.

このように、撮像手段で撮像された画像に基づいて、車両前方の領域の照明状態を小領域毎に制御することで運転者の視認性をより向上させることができる。   Thus, the visibility of the driver can be further improved by controlling the illumination state of the area in front of the vehicle for each small area based on the image captured by the imaging means.

請求項2の発明は、請求項1記載の照明装置における制御手段を、前記撮像手段で撮像して得られた画像から輝度及び模様の少なくとも一方に関する特徴を示す特徴量が類似しない領域同士が隣接している境界を求め、該境界の両側の領域間で輝度差が大きくなるように前記可視光照明手段を制御するようにしたものである。   According to a second aspect of the present invention, regions where features that are characteristic of at least one of luminance and pattern are not similar to each other are adjacent to each other from the image obtained by imaging the control unit of the lighting device according to the first aspect with the imaging unit. The visible light illuminating means is controlled so that a difference in luminance between areas on both sides of the boundary is increased.

このような制御により、車両前方のコントラストが向上し、車両前方の照明領域の視認性が向上する。なお、特徴量は、例えば小領域内の輝度値の平均値、分散値、テクスチャー、輝度ヒストグラム等を示す値とすることができる。   Such control improves the contrast in front of the vehicle and improves the visibility of the illumination area in front of the vehicle. Note that the feature amount may be a value indicating an average value, a variance value, a texture, a luminance histogram, or the like of luminance values in a small region, for example.

請求項3の発明は、請求項1または2記載の照明装置の制御手段を、前記車両前方の前記小領域毎の照明状態が前記車両前方の視認性が向上する照明状態となるように前記可視光照明手段を制御する際に、前記車両前方の前記小領域毎の輝度値が常に所定値以上となるように前記可視光照明手段を制御するようにしたものである。   According to a third aspect of the present invention, the control means of the lighting device according to the first or second aspect is configured so that the illumination state for each of the small areas in front of the vehicle becomes an illumination state in which the visibility in front of the vehicle is improved. When the light illuminating means is controlled, the visible light illuminating means is controlled so that the luminance value for each of the small areas in front of the vehicle always becomes a predetermined value or more.

このような構成によれば、視環境の最低輝度が保証されるため、必要な明るさが確保でき、視認性が向上する。   According to such a configuration, the minimum brightness of the visual environment is guaranteed, so that necessary brightness can be ensured and visibility is improved.

請求項4の発明は、請求項1〜3のいずれか1項記載の照明装置に、前記撮像手段で撮像して得られた画像に基づいて、前記車両前方の領域に存在する障害物を検出する障害物検出手段を更に設け、前記制御手段を、前記車両前方の前記小領域毎の照明状態が前記車両前方の視認性が向上する照明状態となるように前記可視光照明手段を制御する際、前記障害物検出手段で検出された障害物の視認性が向上するように前記可視光照明手段を制御するようにしたものである。   According to a fourth aspect of the present invention, an obstacle existing in a region in front of the vehicle is detected based on an image obtained by imaging the lighting device according to any one of the first to third aspects with the imaging unit. An obstacle detecting means for controlling the visible light illuminating means so that the illumination state for each of the small areas in front of the vehicle becomes an illumination state in which the visibility in front of the vehicle is improved. The visible light illumination unit is controlled so that the visibility of the obstacle detected by the obstacle detection unit is improved.

このような構成によれば、重要対象である障害物の視認性が向上する。   According to such a configuration, the visibility of an obstacle that is an important object is improved.

請求項5の発明は、請求項4記載の照明装置の制御手段を、前記障害物検出手段で検出された障害物の領域と障害物以外の背景の領域との輝度差が大きくなるように前記可視光照明手段を制御するようにしたものである。   According to a fifth aspect of the present invention, there is provided the lighting device control means according to the fourth aspect, wherein the brightness difference between the obstacle area detected by the obstacle detection means and a background area other than the obstacle is increased. The visible light illumination means is controlled.

これにより、コントラストの点で、障害物及びその付近の領域の視認性が向上する。   Thereby, the visibility of the obstacle and the area in the vicinity thereof is improved in terms of contrast.

請求項6の発明は、請求項1〜5のいずれか1項記載の照明装置の撮像手段を、前記車両前方の領域から放射される遠赤外線を検知して前記車両前方の領域を撮像するようにしたものである。   According to a sixth aspect of the present invention, the imaging means of the lighting device according to any one of the first to fifth aspects of the present invention detects the far infrared rays emitted from the area in front of the vehicle and images the area in front of the vehicle. It is a thing.

また、請求項7の発明は、請求項1〜5のいずれか1項記載の照明装置に、前記車両前方の領域に近赤外光を照射する近赤外光照射手段を更に設け、前記撮像手段を、該近赤外光照射手段により前記車両前方の領域に照射された近赤外光の反射光を受光することにより前記車両前方を撮像するようにしたものである。   The invention of claim 7 further includes a near-infrared light irradiating means for irradiating a near-infrared light to the area in front of the vehicle in the illumination device according to any one of claims 1 to 5, wherein the imaging is performed. The means captures the front of the vehicle by receiving the reflected light of the near-infrared light irradiated to the area in front of the vehicle by the near-infrared light irradiation means.

このような構成によれば、運転者が視認しにくい範囲においても視認性をより高める照明状態に制御できるため、車両前方視野全体において視認性が向上する。   According to such a structure, since it can control to the illumination state which raises visibility more in the range where a driver | operator is hard to visually recognize, visibility improves in the whole vehicle forward visual field.

請求項8の発明は、請求項1〜5のいずれか1項記載の照明装置に、前記車両前方に存在する車両の運転者及び歩行者が眩惑しない程度に短い時間であって前記撮像手段で前記車両前方の領域を撮像可能な時間のパルス幅で前記車両前方の領域に可視光をパルス照射するパルス光照射手段を更に設け、前記撮像手段を、前記パルス光照射手段により前記車両前方の領域に前記パルス幅の可視光が照射されたときに前記車両前方の領域を撮像するようにしたものである。   According to an eighth aspect of the present invention, in the lighting device according to any one of the first to fifth aspects of the present invention, it is a time that is short enough that the driver and pedestrian of the vehicle existing in front of the vehicle are not dazzled, and Pulse light irradiating means is further provided for irradiating the area in front of the vehicle with visible light with a pulse width of a time during which the area in front of the vehicle can be imaged, and the imaging means is provided in the area in front of the vehicle by the pulse light irradiating means. The area in front of the vehicle is imaged when visible light having the pulse width is irradiated.

このような構成によれば、眩惑を与えず、撮像装置のみ撮像可能な光量を車両前方に照射して得られた可視光画像に基づいて、運転者が視認しにくい範囲においても視認性をより高める照明状態に制御できるため、車両前方視野全体において視認性が向上する。   According to such a configuration, the visibility is further improved in a range in which it is difficult for the driver to visually recognize based on the visible light image obtained by irradiating the front of the vehicle with a light amount that can be captured only by the imaging device without being dazzled. Since it can control to the lighting state to raise, visibility improves in the whole vehicle front visual field.

請求項9の発明は、請求項1〜5のいずれか1項記載の照明装置の前記撮像手段を、前記車両前方の領域で反射された可視光を受光することにより前記車両前方を撮像する可視光撮像手段、および前記車両前方の領域から放射される遠赤外線を検知して前記車両前方の領域を撮像する遠赤外線撮像手段を含めて構成し、前記可視光撮像手段で撮像して得られた可視画像及び前記遠赤外線撮像手段で撮像して得られた遠赤外画像に基づいて、前記可視画像における輝度が第1の閾値未満であって前記遠赤外画像における輝度が第2の閾値以上である低視認領域を検出する低視認領域検出手段を更に設け、前記制御手段を、前記車両前方の前記小領域毎の照明状態が前記低視認領域検出手段で検出された低視認領域の視認性が向上する照明状態となるように前記可視光照明手段を制御するようにしたものである。   A ninth aspect of the present invention is such that the imaging unit of the lighting device according to any one of the first to fifth aspects receives visible light reflected by a region in front of the vehicle, and images the front of the vehicle. An optical imaging means, and a far infrared imaging means for detecting the far infrared ray emitted from the area in front of the vehicle and imaging the area in front of the vehicle are configured and obtained by imaging with the visible light imaging means Based on the visible image and the far-infrared image obtained by imaging with the far-infrared imaging means, the luminance in the visible image is less than a first threshold and the luminance in the far-infrared image is greater than or equal to a second threshold. The low visual recognition area detecting means for detecting the low visual recognition area is further provided, and the control means is configured so that the illumination state of each small area in front of the vehicle is detected by the low visual recognition area detection means. Improved lighting conditions and It is obtained so as to control the visible light illumination means so that.

このような構成によれば、視認性の悪い領域の視認性が向上する。   According to such a configuration, the visibility of an area with poor visibility is improved.

請求項10の発明は、請求項1〜5のいずれか1項記載の照明装置の撮像手段を、前記車両前方の領域で反射された可視光を受光することにより前記車両前方を撮像する可視光撮像手段、および前記車両前方の領域で反射された近赤外光を受光することにより前記車両前方を撮像する近赤外撮像手段を含めて構成し、前記車両前方の領域に近赤外光を照射する近赤外光照射手段と、前記可視光撮像手段で撮像して得られた可視画像及び前記近赤外光照射手段により前記車両前方の領域に近赤外光を照射した状態で前記近赤外撮像手段で撮像して得られた近赤外画像に基づいて、前記可視画像における輝度が第1の閾値未満であって前記近赤外画像における輝度が第2の閾値以上である低視認領域を検出する低視認領域検出手段とを更に設け、前記制御手段を、前記車両前方の前記小領域毎の照明状態が前記低視認領域検出手段で検出された低視認領域の視認性が向上する照明状態となるように前記可視光照明手段を制御するようにしたものである。   In a tenth aspect of the present invention, the imaging device of the lighting device according to any one of the first to fifth aspects receives visible light reflected by a region in front of the vehicle, thereby imaging the front of the vehicle. An imaging means and a near-infrared imaging means for imaging the front of the vehicle by receiving near-infrared light reflected by the area in front of the vehicle are configured, and near-infrared light is emitted in the area in front of the vehicle. The near-infrared light irradiating means for irradiating, the visible image obtained by imaging with the visible light imaging means, and the near-infrared light being irradiated to the area in front of the vehicle by the near-infrared light irradiating means. Low visibility based on a near-infrared image obtained by imaging with an infrared imaging means, wherein the luminance in the visible image is less than a first threshold and the luminance in the near-infrared image is greater than or equal to a second threshold A low visual recognition area detecting means for detecting the area; The control means controls the visible light illuminating means so that the illumination state of each of the small areas in front of the vehicle becomes an illumination state in which the visibility of the low visual recognition area detected by the low visual recognition area detection means is improved. It is what I did.

このような構成によれば、視認性の悪い領域の視認性が向上する。   According to such a configuration, the visibility of an area with poor visibility is improved.

請求項11の発明は、請求項8記載の照明装置に、前記パルス光照射手段により前記パルス幅の可視光を照射しないときに前記撮像手段で撮像して得られた第1の画像及び前記パルス光照射手段により前記パルス幅の可視光を照射したときに前記撮像手段で撮像して得られた第2の画像に基づいて、前記第1の画像における輝度が第1の閾値未満であって前記第2の画像における輝度が第2の閾値以上である低視認領域を検出する低視認領域検出手段を更に設け、前記制御手段を、前記車両前方の前記小領域毎の照明状態が前記低視認領域検出手段で検出された低視認領域の視認性が向上する照明状態となるように前記可視光照明手段を制御するようにしたものである。   According to an eleventh aspect of the present invention, in the lighting device according to the eighth aspect, the first image and the pulse obtained by imaging with the imaging means when the pulsed light irradiating means does not irradiate visible light having the pulse width. Based on the second image obtained by imaging with the imaging means when the light irradiation means irradiates visible light with the pulse width, the luminance in the first image is less than a first threshold, and A low visual recognition area detecting means for detecting a low visual recognition area whose luminance in the second image is equal to or higher than a second threshold is further provided, and the control means is configured such that the illumination state of each small area in front of the vehicle is the low visual recognition area. The visible light illuminating means is controlled such that the visibility of the low visual recognition area detected by the detecting means is improved.

このような構成によれば、視認性の悪い領域の視認性が向上する。   According to such a configuration, the visibility of an area with poor visibility is improved.

請求項12の発明は、請求項1〜請求項11のいずれか1項記載の照明装置の前記撮像手段が前記車両前方の領域で反射された可視光を受光することにより前記車両前方を撮像する可視光撮像手段を含んで構成されている場合において、前記制御手段を、前記車両前方の視認性が向上するように各小領域毎の目標の輝度値を求め、前記可視光撮像手段で撮像された可視画像に基づいて、前記車両前方の領域の各小領域毎の輝度値が前記目標の輝度値に近付くように前記可視光照明手段の制御量を調整するようにしたものである。   According to a twelfth aspect of the present invention, the imaging unit of the lighting device according to any one of the first to eleventh aspects captures the front of the vehicle by receiving visible light reflected by a region in front of the vehicle. In the case of including the visible light imaging means, the control means obtains a target luminance value for each small region so that the visibility ahead of the vehicle is improved, and is picked up by the visible light imaging means. On the basis of the visible image, the control amount of the visible light illuminating means is adjusted so that the luminance value of each small area in the area in front of the vehicle approaches the target luminance value.

このような構成によれば、実際の照明状態と目標値とを比較して可視光照明手段の制御量を調整することができるため、実際の被照明環境の輝度値を目標輝度値に近づけることができる。   According to such a configuration, the actual illumination state and the target value can be compared to adjust the control amount of the visible light illumination means, so that the actual luminance value of the environment to be illuminated is brought close to the target luminance value. Can do.

請求項13の発明は、請求項1〜12のいずれか1項記載の照明装置の前記可視光照明手段を、少なくとも可視光を発する光源、および該光源からの光の透過を制御する多数の液晶素子を配列した液晶パネルを含んで構成したものである。。   A thirteenth aspect of the present invention is the illumination device according to any one of the first to twelfth aspects, wherein the visible light illuminating means includes at least a light source that emits visible light, and a large number of liquid crystals that control transmission of light from the light source. A liquid crystal panel in which elements are arranged is included. .

請求項14の発明は、請求項1〜12のいずれか1項記載の照明装置の前記可視光照明手段を、少なくとも可視光を発する光源、および該光源からの光の反射方向を制御する多数の反射素子を配列した反射装置を含んで構成したものである。   According to a fourteenth aspect of the present invention, the visible light illuminating means of the illuminating device according to any one of the first to twelfth aspects includes at least a light source that emits visible light, and a plurality of light reflection directions that control the light reflected from the light source. A reflection device in which reflection elements are arranged is configured.

請求項15の発明は、請求項1〜12のいずれか1項記載の照明装置の前記可視光照明手段を、複数のLEDチップが配列されたLED光源を含んで構成したものである。   According to a fifteenth aspect of the present invention, the visible light illuminating means of the illuminating device according to any one of the first to twelfth aspects includes an LED light source in which a plurality of LED chips are arranged.

このように可視光照明手段を構成することにより、容易に小領域毎の照明状態を制御できる。   By configuring the visible light illumination means in this way, it is possible to easily control the illumination state for each small area.

請求項16の発明は、請求項7、10、および12のいずれか1項に記載の照明装置の前記可視光照明手段及び前記近赤外光照射手段を、近赤外光から可視光までの波長の光を発する光源、該光源からの光の透過を制御する多数の液晶素子を配列した液晶パネル、および入射した可視光を部分的に遮断するフィルタを含む光学系で構成したものである。   The invention of claim 16 provides the visible light illuminating means and the near infrared light irradiating means of the illumination device according to any one of claims 7, 10, and 12 from near infrared light to visible light. The optical system includes a light source that emits light of a wavelength, a liquid crystal panel in which a large number of liquid crystal elements that control transmission of light from the light source are arranged, and a filter that partially blocks incident visible light.

請求項17の発明は、請求項7、10、および12のいずれか1項に記載の照明装置の前記可視光照明手段及び前記近赤外光照射手段を、近赤外光から可視光までの波長の光を発する光源、該光源からの光の反射方向を制御する多数の反射素子を配列した反射装置、および入射した可視光の透過を遮断する移動可能なフィルタを含む光学系で構成したものである。   The invention of claim 17 provides the visible light illuminating means and the near infrared light irradiating means of the illumination device according to any one of claims 7, 10, and 12 from near infrared light to visible light. A light source that emits light of a wavelength, a reflection device in which a number of reflection elements that control the reflection direction of light from the light source are arranged, and an optical system that includes a movable filter that blocks transmission of incident visible light It is.

このような構成によれば、1つの光学系を可視光照明手段及び前記近赤外光照射手段として兼用することができるため、可視光及び近赤外光を高空間分解能に制御できる照明装置がコンパクトに実現できる。   According to such a configuration, since one optical system can be used as both the visible light illuminating unit and the near-infrared light irradiating unit, an illuminating device that can control visible light and near-infrared light with high spatial resolution is provided. It can be realized compactly.

以上説明したように、本発明の照明装置によれば、車両前方の領域の照明状態を小領域毎に制御することで運転者の視認性をより向上させることができる、という優れた効果を奏する。   As described above, according to the illumination device of the present invention, the driver's visibility can be further improved by controlling the illumination state of the area in front of the vehicle for each small area. .

以下、図面を参照して、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本実施の形態に係る照明装置10の概略的な構成を示すブロック図である。
本実施の形態の照明装置10は、車両に搭載され、可視光撮像部12、近赤外撮像部14、近赤外光照射部16、照明強度設定部18、障害物検出部20、視認性推定部22、照明制御部24、および可視光照明部26を備えている。
FIG. 1 is a block diagram showing a schematic configuration of a lighting apparatus 10 according to the present embodiment.
Illumination device 10 of the present embodiment is mounted on a vehicle and has a visible light imaging unit 12, a near infrared imaging unit 14, a near infrared light irradiation unit 16, an illumination intensity setting unit 18, an obstacle detection unit 20, and visibility. An estimation unit 22, an illumination control unit 24, and a visible light illumination unit 26 are provided.

可視光撮像部12は、車両前方の領域から可視光を受光して車両前方の領域を撮像する。近赤外撮像部14は、車両前方の領域から近赤外光を受光して車両前方の領域を撮像する。なお、可視光撮像部12及び近赤外撮像部14を1つの撮像装置で構成してもよい。例えば、撮像装置の受光部に可視光カットフィルタと近赤外光カットフィルタとを交互に配置したフィルタを設け、単一のレンズ系で可視画像と近赤外画像の両方を撮像できるように構成する。   The visible light imaging unit 12 receives visible light from an area in front of the vehicle and images the area in front of the vehicle. The near infrared imaging unit 14 receives near infrared light from a region in front of the vehicle and images the region in front of the vehicle. Note that the visible light imaging unit 12 and the near-infrared imaging unit 14 may be configured by a single imaging device. For example, a filter in which a visible light cut filter and a near-infrared light cut filter are alternately arranged is provided in the light receiving unit of the image pickup device, so that both a visible image and a near-infrared image can be captured with a single lens system. To do.

近赤外光照射部16は、照明制御部24により制御され、車両前方の領域に近赤外光を照射する。照明強度設定部18は、可視光撮像部12で撮像されて得られた可視画像及び近赤外撮像部14で撮像されて得られた近赤外画像に基づいて、可視光照明部26で車両前方を照明するときの照明強度値を設定する。照明制御部24は、照明強度設定部18で設定された照明強度値に基づいて可視光照明部26を制御し、車両前方の領域を可視光で照明する。   The near-infrared light irradiation unit 16 is controlled by the illumination control unit 24 and irradiates a region in front of the vehicle with near-infrared light. The illumination intensity setting unit 18 uses the visible light illumination unit 26 based on the visible image obtained by the visible light imaging unit 12 and the near infrared image obtained by the near infrared imaging unit 14. Set the illumination intensity value when illuminating the front. The illumination control unit 24 controls the visible light illumination unit 26 based on the illumination intensity value set by the illumination intensity setting unit 18 and illuminates the area ahead of the vehicle with visible light.

図2(A)〜(C)は、可視光照明部26の構成例を示す図である。図2(A)に示す可視光照明部26は、液晶プロジェクタ型の照明装置であって、光源としてのランプ40と、ランプ40から受けた可視光の透過を制御する多数の液晶素子を配列した液晶パネル42と、液晶パネル42を透過した可視光を結像する対物レンズ44とを備えている。液晶パネル42に備えられた多数の液晶素子の各々は、入射光の反射・透過状態を変調する機能を有しており、電圧が印加されると電場が変化して液晶分子の配向が変化し、入射光の反射・透過状態を変化させる。従って、各液晶素子毎に電場を異ならせれば、部分的に可視光を照射したり遮断したりすることができる。   2A to 2C are diagrams illustrating a configuration example of the visible light illumination unit 26. The visible light illumination unit 26 shown in FIG. 2A is a liquid crystal projector type illumination device in which a lamp 40 as a light source and a large number of liquid crystal elements that control transmission of visible light received from the lamp 40 are arranged. A liquid crystal panel 42 and an objective lens 44 that forms an image of visible light transmitted through the liquid crystal panel 42 are provided. Each of a large number of liquid crystal elements provided in the liquid crystal panel 42 has a function of modulating the reflection / transmission state of incident light. When a voltage is applied, the electric field changes and the alignment of liquid crystal molecules changes. , Change the reflection / transmission state of incident light. Therefore, if the electric field is different for each liquid crystal element, visible light can be partially irradiated or blocked.

また、図2(B)に示す可視光照明部26は、ミラー素子プロジェクタ型照明装置であって、光源としてのランプ46と、ランプ46から受けた可視光の反射方向を制御する多数の反射素子(ミラー)を配列したミラーデバイス48と、ミラーデバイス48から受けた反射光を結像する対物レンズ50とを備えている。ミラーデバイス48の各ミラーは、電気入力に応答して機械的にその傾斜角度が変化する。従って、それぞれのミラーに入射する光は、それぞれ選択的に傾斜角度が変化した各ミラーによって反射方向が選択的に変調される。   2B is a mirror element projector type illumination device, and includes a lamp 46 as a light source and a number of reflecting elements that control the reflection direction of visible light received from the lamp 46. A mirror device 48 in which (mirrors) are arranged, and an objective lens 50 that forms an image of reflected light received from the mirror device 48 are provided. Each mirror of the mirror device 48 changes its tilt angle mechanically in response to an electrical input. Therefore, the reflection direction of the light incident on each mirror is selectively modulated by each mirror whose inclination angle is selectively changed.

また、図2(C)に示す可視光照明部26は、LEDチップ51が複数配列されたLEDアレイ52、およびLEDアレイ52から出射した可視光を結像する複数の対物レンズ54を備えている。各LEDチップ51に対する電流量や電流供給時間を変化させることで、LEDチップ51の各々の光量を異ならせることができる。   2C includes an LED array 52 in which a plurality of LED chips 51 are arranged, and a plurality of objective lenses 54 that image visible light emitted from the LED array 52. . The amount of light of each LED chip 51 can be varied by changing the amount of current and the current supply time for each LED chip 51.

なお、本実施の形態の可視光照明部26は、図2(A)〜(C)のいずれの構成であってもよい。いずれの構成であっても、照明空間に対して高分解能で照明度合いを変化させることできる。   Note that the visible light illumination unit 26 of the present embodiment may have any of the configurations shown in FIGS. In any configuration, the illumination degree can be changed with high resolution with respect to the illumination space.

本実施の形態の照明装置10に設けられている障害物検出部20は、近赤外撮像部14で撮像されて得られた近赤外画像に基づいて、車両前方の領域に存在する障害物を検出する。その検出結果は、照明強度設定部18に出力され、照明強度値の設定に用いられる。   The obstacle detection unit 20 provided in the illumination device 10 of the present embodiment is based on a near-infrared image obtained by being picked up by the near-infrared imaging unit 14 and is present in an area in front of the vehicle. Is detected. The detection result is output to the illumination intensity setting unit 18 and used for setting the illumination intensity value.

また、視認性推定部22は、可視光撮像部12で撮像されて得られた可視画像及び近赤外撮像部14で撮像されて得られた近赤外画像に基づいて、可視画像における輝度が第1の閾値T1未満であって近赤外画像における輝度が第2の閾値T2以上である低視認領域(以下、本実施の形態では視認不可能領域と呼称)を検出する。その検出結果は、照明強度設定部18に出力され、照明強度値の設定に用いられる。   In addition, the visibility estimation unit 22 has a luminance in the visible image based on the visible image obtained by being imaged by the visible light imaging unit 12 and the near-infrared image obtained by being imaged by the near-infrared imaging unit 14. A low visual recognition area (hereinafter referred to as an invisible area in the present embodiment) that is less than the first threshold T1 and whose luminance in the near-infrared image is equal to or higher than the second threshold T2 is detected. The detection result is output to the illumination intensity setting unit 18 and used for setting the illumination intensity value.

ここで、照明強度設定部18の詳細な構成について説明する。照明強度設定部18は、画像分割部30、輝度目標値設定部32、輝度フィードバック制御部34、及び照明強度値設定部36を備えている。   Here, a detailed configuration of the illumination intensity setting unit 18 will be described. The illumination intensity setting unit 18 includes an image dividing unit 30, a luminance target value setting unit 32, a luminance feedback control unit 34, and an illumination intensity value setting unit 36.

画像分割部30は、近赤外撮像部14で撮像されて得られた近赤外画像を小領域に分割して、分割した小領域毎に隣接する小領域との類似度を求め、隣接する小領域に対して連続する領域か不連続な領域かを求める。輝度目標値設定部32は、画像分割部30で求めた小領域の情報に基づいて、明るさとコントラストの点で車両前方の領域の視認性をより向上させるように、各小領域毎の輝度目標値を求める。輝度フィードバック制御部34は、輝度目標値設定部32で求めた小領域毎の輝度目標値と、可視光撮像部12で実際に撮像して得られた可視画像の輝度値を比較して、該比較結果を照明強度値設定部36に出力する。照明強度値設定部36は、可視光照明部26の照明強度値と近赤外光照射部16の照明強度値を設定する。照明制御部24は、照明強度値設定部36で設定された照明強度値で可視光照明部26及び近赤外光照射部16の照明を制御する。   The image dividing unit 30 divides the near-infrared image obtained by being picked up by the near-infrared imaging unit 14 into small regions, obtains the degree of similarity with the adjacent small region for each divided small region, and is adjacent. Determine whether the region is continuous or discontinuous with respect to the small region. Based on the information on the small area obtained by the image dividing unit 30, the luminance target value setting unit 32 sets the luminance target for each small area so as to improve the visibility of the area in front of the vehicle in terms of brightness and contrast. Find the value. The luminance feedback control unit 34 compares the luminance target value for each small region obtained by the luminance target value setting unit 32 with the luminance value of the visible image actually captured by the visible light imaging unit 12, The comparison result is output to the illumination intensity value setting unit 36. The illumination intensity value setting unit 36 sets the illumination intensity value of the visible light illumination unit 26 and the illumination intensity value of the near infrared light irradiation unit 16. The illumination control unit 24 controls the illumination of the visible light illumination unit 26 and the near infrared light irradiation unit 16 with the illumination intensity value set by the illumination intensity value setting unit 36.

上記説明した、照明強度設定部18、障害物検出部20、視認性推定部22、照明制御部24の各構成部は、CPU、RAM、ROMを含んで構成されたコンピュータによって実現される。すなわちCPUが、ROMや所定の記憶装置に記憶されたプログラムを実行することにより上記各構成部を実現し、後述する処理を行う。   Each component of the illumination intensity setting unit 18, the obstacle detection unit 20, the visibility estimation unit 22, and the illumination control unit 24 described above is realized by a computer that includes a CPU, a RAM, and a ROM. That is, the CPU executes the program stored in the ROM or a predetermined storage device, thereby realizing each of the above-described components, and performs the processing described later.

次に、本実施の形態の作用を夜間に車両が走行する場合を前提として説明する。また、車両前方の被照明環境例として、図5(A)に示すように、夜間の舗装路上に2人の歩行者が存在し、左前方の歩行者は街路照明の照明外に位置しており、右後ろの歩行者は街路照明の前に位置している場合を例に挙げる。なお、図5(A)は、車両から可視光が全く照明されていない状態の被照明環境を示す。   Next, the operation of the present embodiment will be described on the assumption that the vehicle travels at night. In addition, as an example of an illuminated environment in front of the vehicle, as shown in FIG. 5 (A), there are two pedestrians on a paved road at night, and the pedestrian in the left front is located outside the street lighting. For example, the right back pedestrian is located in front of the street lighting. FIG. 5A shows an illuminated environment in which no visible light is illuminated from the vehicle.

照明強度値設定部36は、初期値として可視光照明部26に対しては通常のロービーム(小さな光量で車両近傍のみを照明する状態)の照射範囲で一様な照明強度値を設定し、近赤外光照射部16に対してはハイビーム(可視光で車両前方の視野全体の範囲を照明する状態)の照射範囲で一様な照明強度値を設定する。可視光のロービームの照射は、夜間に車両が走行する上で、最低限必要な照明となる。   The illumination intensity value setting unit 36 sets a uniform illumination intensity value as an initial value in the irradiation range of a normal low beam (a state in which only the vicinity of the vehicle is illuminated with a small amount of light) with respect to the visible light illumination unit 26. For the infrared light irradiation unit 16, a uniform illumination intensity value is set in the irradiation range of the high beam (the state in which the entire field of view in front of the vehicle is illuminated with visible light). The irradiation with the low beam of visible light is the minimum illumination necessary for the vehicle to travel at night.

照明制御部24は、この設定値に応じて可視光照明部26及び近赤外光照射部16を制御して、可視光及び近赤外光を照射する。   The illumination control unit 24 controls the visible light illumination unit 26 and the near-infrared light irradiation unit 16 according to this set value, and irradiates visible light and near-infrared light.

可視光撮像部12及び近赤外撮像部14は、車両前方の被照明環境をそれぞれ撮像し、可視画像及び近赤外画像を生成する。以下、可視光撮像部12及び近赤外撮像部14で得られた可視画像及び近赤外画像から照明強度値を設定するまでの具体例を図3、4のフローチャート及び図6〜図8で示す処理例を参照して説明する。なお、図6〜図8に示す処理例は一連の処理であるため、異なる図番に跨ってはいるが(A)〜(H)までアルファベット順の通し符号を付して説明する。   The visible light imaging unit 12 and the near-infrared imaging unit 14 respectively capture an illumination environment in front of the vehicle and generate a visible image and a near-infrared image. Hereinafter, specific examples of setting the illumination intensity value from the visible image and the near infrared image obtained by the visible light imaging unit 12 and the near infrared imaging unit 14 are shown in the flowcharts of FIGS. 3 and 4 and FIGS. A description will be given with reference to the processing example shown. Since the processing examples shown in FIGS. 6 to 8 are a series of processing, the description will be given with serial numbers in alphabetical order from (A) to (H) although they extend over different figure numbers.

照明強度設定部18は、上記撮像された近赤外画像(図6(A)参照)及び可視画像(図6(B)参照)から照明強度値を設定する。   The illumination intensity setting unit 18 sets an illumination intensity value from the captured near-infrared image (see FIG. 6A) and visible image (see FIG. 6B).

図3は、照明強度設定部18が行なう照明強度値の設定処理の流れを示すフローチャートである。   FIG. 3 is a flowchart showing the flow of the setting process of the illumination intensity value performed by the illumination intensity setting unit 18.

ステップ100では、画像分割部30が、2つの撮像画像のうち近赤外撮像部14で撮像して得られた近赤外画像を取得する。近赤外画像は、ハイビーム領域の撮像画像であるため、車両前方視野全体の状態が把握できる。   In step 100, the image dividing unit 30 acquires a near-infrared image obtained by imaging by the near-infrared imaging unit 14 out of the two captured images. Since the near-infrared image is a captured image in the high beam region, the state of the entire vehicle front visual field can be grasped.

ステップ102では、画像分割部30は、取得した近赤外画像に対して画像の分割を行なう。ここでは、赤外画像を予め大きさを定めた矩形の小領域に分割する。図7(C)に、近赤外画像を小領域に分割したときの分割例を示す。   In step 102, the image dividing unit 30 performs image division on the acquired near-infrared image. Here, the infrared image is divided into rectangular small areas having a predetermined size. FIG. 7C shows an example of division when the near-infrared image is divided into small regions.

ステップ104では、分割した小領域毎に特徴量を算出する。求める特徴量は、例えば小領域内の輝度値の平均値、分散値、テクスチャー、輝度ヒストグラム等を示す値とすることができる。次に、各小領域について、隣接する小領域との類似度を求める。これは、各小領域と各小領域に隣接する小領域の特徴量の比較により求める。類似度が所定値より高ければ、隣接する小領域に連続する領域であると判断し、類似度が所定値より低ければ、隣接する小領域とは不連続な領域であると判断する。不連続な領域と判断された場合には、その小領域は、特徴量が類似しない領域同士が隣接している境界に位置する小領域であるといえる。図7(D)に、連続する領域か不連続な領域かを判断した判断結果例を示す。画像分割部30での判断結果は、輝度目標値設定部32に出力される。   In step 104, a feature amount is calculated for each divided small area. The feature quantity to be obtained can be a value indicating an average value, a variance value, a texture, a brightness histogram, and the like of brightness values in a small area, for example. Next, for each small region, the similarity with the adjacent small region is obtained. This is obtained by comparing feature amounts of each small region and small regions adjacent to each small region. If the similarity is higher than a predetermined value, it is determined that the area is continuous with the adjacent small area. If the similarity is lower than the predetermined value, it is determined that the adjacent small area is a discontinuous area. When it is determined that the region is discontinuous, it can be said that the small region is a small region located at a boundary where adjacent regions having similar feature amounts are not adjacent to each other. FIG. 7D shows an example of a determination result obtained by determining whether the region is a continuous region or a discontinuous region. The determination result in the image dividing unit 30 is output to the luminance target value setting unit 32.

なお、ここでは、画像分割部30は、近赤外画像を同じ大きさの複数の小領域に分割して、類似度を求め、連続、不連続を判断する例について説明したが、エッジ検出などの画像処理を行なって対象物の境界を求め、該境界に応じて画像を複数の領域に分割し、各々の領域の輝度の特徴量を求めて、連続、不連続を判断するようにしてもよい。   Here, the image dividing unit 30 has described the example in which the near-infrared image is divided into a plurality of small regions having the same size, the similarity is obtained, and continuous or discontinuous is determined. The image processing is performed to determine the boundary of the object, the image is divided into a plurality of regions according to the boundary, the luminance feature amount of each region is determined, and continuous or discontinuous is determined. Good.

ステップ106では、輝度目標値設定部32は、障害物検出部20から障害物検出結果を取得する。障害物検出部20では、近赤外画像を取得して、該近赤外画像に存在する障害物を検出する。障害物は、重要な視認対象を意味し、例えば、歩行者など他の移動物や路側構造物などをいう。障害物の検出手法としては、エッジ輪郭形状に基づく検出方法や輝度パターン分布に基づく検出方法などが利用可能である。図7(E)に、障害物検出結果例を示す。   In step 106, the luminance target value setting unit 32 acquires an obstacle detection result from the obstacle detection unit 20. The obstacle detection unit 20 acquires a near-infrared image and detects an obstacle present in the near-infrared image. An obstacle means an important visual recognition target, for example, another moving object such as a pedestrian or a roadside structure. As an obstacle detection method, a detection method based on an edge contour shape, a detection method based on a luminance pattern distribution, or the like can be used. FIG. 7E shows an example of the obstacle detection result.

ステップ108では、輝度目標値設定部32は、視認性推定部22から視認性推定結果を取得する。ここで、視認性推定部22で行なわれる視認性推定処理の流れについて図4のフローチャートを用いて詳細に説明する。   In step 108, the luminance target value setting unit 32 acquires the visibility estimation result from the visibility estimation unit 22. Here, the flow of the visibility estimation process performed by the visibility estimation unit 22 will be described in detail with reference to the flowchart of FIG.

ステップ120で、可視光撮像部12で撮像して得られた可視画像及び近赤外撮像部14で撮像して得られた近赤外画像を取得する。   In step 120, a visible image obtained by imaging with the visible light imaging unit 12 and a near-infrared image obtained by imaging with the near-infrared imaging unit 14 are acquired.

ステップ122で、視認性推定部22は、画素数をカウントするカウンタkを初期化する。ステップ124で、視認性推定部22は、画素D(k)における可視光輝度L1を算出する。次のステップ126で、視認性推定部22は、L1がT1以上かどうか判断する。このT1は、第1の閾値であり、その画素D(k)が示す領域が、運転者が視認可能な明るさであるかどうかを判断するための閾値である。   In step 122, the visibility estimation unit 22 initializes a counter k that counts the number of pixels. In step 124, the visibility estimation unit 22 calculates the visible light luminance L1 at the pixel D (k). In the next step 126, the visibility estimation unit 22 determines whether L1 is equal to or greater than T1. This T1 is a first threshold value, and is a threshold value for determining whether or not the area indicated by the pixel D (k) has brightness that can be visually recognized by the driver.

ステップ126で、肯定判断されると、その画素は、運転者が視認可能であることを示しているため、ステップ128で、視認性推定部22は、D(k)を視認可能領域とする。   If an affirmative determination is made in step 126, the pixel indicates that the driver can visually recognize, and in step 128, the visibility estimation unit 22 sets D (k) as a visible region.

ステップ126で、否定判断(VがT1未満)された場合、ステップ130で、視認性推定部22は、画素D(k)における赤外光輝度L2を算出する。ステップ132で、視認性推定部22は、L2がT2以上かどうか判断する。このT2は、第2の閾値であり、その画素D(k)が示す領域が近赤外光で認識可能かどうかを判断するための閾値である。   If a negative determination is made in step 126 (V is less than T1), in step 130, the visibility estimation unit 22 calculates the infrared light luminance L2 in the pixel D (k). In step 132, the visibility estimation unit 22 determines whether L2 is equal to or greater than T2. This T2 is a second threshold value and is a threshold value for determining whether or not the region indicated by the pixel D (k) can be recognized by near infrared light.

ステップ132で、否定判断されると、その画素は、近赤外光で認識不可能で、かつ運転者も視認不可能であることを示しているので、ステップ136で、視認性推定部22は、D(k)を不可視領域とする。   If a negative determination is made in step 132, the pixel cannot be recognized with near-infrared light, and the driver cannot be visually recognized. In step 136, the visibility estimating unit 22 , D (k) is an invisible region.

ステップ132で、肯定判断されると、その画素は、近赤外光で認識可能で、かつ運転者が視認不可能であることを示しているので、ステップ134で、視認性推定部22は、D(k)を視認不可能領域とする。このように、視認不可能領域は、ドライバには見えないが、近赤外光で認識できるものが存在する領域である。なお、視認不可能領域は、本発明の視認性が低い低視認性領域に該当する。   If an affirmative determination is made in step 132, the pixel is recognizable with near-infrared light and indicates that the driver cannot visually recognize. Therefore, in step 134, the visibility estimation unit 22 Let D (k) be an invisible region. As described above, the invisible region is a region where there is something that cannot be seen by the driver but can be recognized by near infrared light. The invisible area corresponds to a low visibility area having low visibility according to the present invention.

次に、ステップ138でkを1つ増分する。ステップ140では、kが近赤外画像の全画素数を超えたか否かを判断する。この判断は、全ての画素に対して領域を定める処理を実行したか否かの判断である。ここで肯定判断した場合は、まだ領域を定めていない画素が存在するため、再びステップ122の処理が実行される。否定判断した場合は、全ての画素に対して領域を定めたことを示しているため処理は終了する。   Next, in step 138, k is incremented by one. In step 140, it is determined whether or not k exceeds the total number of pixels of the near-infrared image. This determination is a determination as to whether or not a process for determining an area has been executed for all pixels. If the determination is affirmative, there is a pixel that has not yet been defined, so the process of step 122 is executed again. If a negative determination is made, it indicates that an area has been defined for all pixels, and the process ends.

視認性推定部22は、このように視認可能領域、不可視領域、視認不可能領域を検出し、視認不可能領域についてはその位置を示す情報を視認性推定結果として輝度目標値設定部32に出力する。   The visibility estimation unit 22 thus detects the visible region, the invisible region, and the invisible region, and outputs information indicating the position of the invisible region to the luminance target value setting unit 32 as the visibility estimation result. To do.

なお、障害物検出結果や視認性推定結果の取得タイミングは、上記ステップ106、108に限定されず、障害物検出部20の検出処理や視認性推定部22の視認性推定処理後、輝度目標値設定部32で輝度目標値を設定する前であればいつでもよい。   The acquisition timing of the obstacle detection result and the visibility estimation result is not limited to the above steps 106 and 108, and the luminance target value after the detection process of the obstacle detection unit 20 and the visibility estimation process of the visibility estimation unit 22 is obtained. Any time before setting the luminance target value by the setting unit 32 may be used.

次に、図3のステップ110では、輝度目標値設定部32は、連続・不連続領域の判定結果、障害物検出結果、及び視認性推定結果に基づいて、車両前方の領域の輝度目標値を算出する。   Next, in step 110 of FIG. 3, the luminance target value setting unit 32 determines the luminance target value of the area ahead of the vehicle based on the determination result of the continuous / discontinuous area, the obstacle detection result, and the visibility estimation result. calculate.

本実施の形態の輝度目標値設定部32は、4段階(強、中、弱、無)の設定値が可能とする。例えば、近赤外画像での輝度を「中」として、その強弱を判断して設定するようにしてもよい。輝度目標値の設定ルールは、以下のとおりである。   The luminance target value setting unit 32 according to the present embodiment allows four levels (strong, medium, weak, and none) of setting values. For example, the brightness in the near-infrared image may be set to “medium”, and the intensity may be determined and set. The rule for setting the luminance target value is as follows.

1)各小領域の明るさが予め定められた最低輝度値以上となるようにする。 1) The brightness of each small area is set to be equal to or higher than a predetermined minimum luminance value.

2)不連続境界では境界の両側の領域で十分な輝度差(コントラスト)を持つこと。また、重要な障害物として検出された領域の境界では特に十分な輝度差を持つこと。また、視認不可能領域において障害物が存在する場合には、その領域を照明すると共に障害物の領域と背景の領域とで十分な輝度差が出るようにする。 2) At the discontinuous boundary, there should be a sufficient luminance difference (contrast) in the regions on both sides of the boundary. In addition, there should be a sufficient brightness difference especially at the boundaries of areas detected as important obstacles. When an obstacle exists in the invisible area, the area is illuminated and a sufficient luminance difference is generated between the obstacle area and the background area.

3)類似する小領域が連続する部分は、該小領域間の輝度差は少なくする。 3) In a portion where similar small areas are continuous, the luminance difference between the small areas is reduced.

輝度目標値設定部32は、以上のルール順に基づいて輝度目標値を定める。
なお、ルール1の最低輝度値は、視認に必要な明るさを最低限保証するために、予め輝度目標値設定部32に設定されている輝度値である。
The luminance target value setting unit 32 determines the luminance target value based on the above rule order.
Note that the minimum luminance value of rule 1 is a luminance value set in advance in the luminance target value setting unit 32 in order to guarantee the minimum brightness necessary for visual recognition.

図8(F)に、設定した輝度目標値の具体例を示す。図8(F)に示すように、左前方の歩行者については、歩行者の領域の輝度を「強」に上げ、歩行者の領域と不連続な領域である周辺領域の輝度は「弱」に下げる。一方、右後方の歩行者については、街路照明の前に位置しているため、左前方の歩行者と逆のコントラストになっている。従って、この歩行者の領域の輝度を「弱」とし、周辺の領域を「強」とする設定する。また、路面全体の領域は「中」のままとし必要以上に明るくしない。なお、ここでは輝度目標値の値を4段階に設定する例を説明したが、これに限定されず、輝度目標値はアナログ的に可変でもよいし、2値のみでもよい。輝度目標値設定部32は、設定した輝度目標値を輝度フィードバック制御部34に出力する。   FIG. 8F shows a specific example of the set brightness target value. As shown in FIG. 8F, for the left front pedestrian, the luminance of the pedestrian area is increased to “strong”, and the luminance of the peripheral area that is discontinuous with the pedestrian area is “weak”. To lower. On the other hand, since the pedestrian on the right rear is located in front of the street lighting, the contrast is opposite to that of the pedestrian on the left front. Accordingly, the brightness of the pedestrian area is set to “weak” and the surrounding area is set to “strong”. The area of the entire road surface remains “medium” and is not brighter than necessary. Here, an example in which the value of the luminance target value is set in four stages has been described, but the present invention is not limited to this, and the luminance target value may be variable in an analog manner or only two values. The luminance target value setting unit 32 outputs the set luminance target value to the luminance feedback control unit 34.

ステップ112では、輝度フィードバック制御部34は、可視光撮像部12で撮像され得られた可視画像を取得し(図8(G)参照。なお、図6(B)と図8(G)は同じ可視画像である)、該可視画像の輝度値と輝度目標値設定部32で設定した輝度目標値とを比較する。そして輝度フィードバック制御部34は、該比較結果から各小領域毎に可視光照明部26の照明強度値の目標値である照明目標値を求め、該照明目標値を照明強度値設定部36に出力する(フィードバック制御の第1STEP)。また、輝度フィードバック制御部34では、照明強度値設定部36が照明目標値を照明強度値として設定して照明した状態で撮像された可視画像を引き続き取得し、該可視画像の輝度値と輝度目標値設定部32で設定した輝度目標値とを比較する。そして輝度目標値に近づいているが輝度が足りない場合はさらに高い照明目標値を、照明を変化させても可視光画像が変化しない場合は照明目標値を維持または低い照明目標値を、輝度目標値に近づいているが輝度が高い場合はさらに低い照明目標値をそれぞれ設定し、該照明目標値を照明強度値設定部36に出力する(フィードバック制御の第2STEP)。   In step 112, the luminance feedback control unit 34 obtains a visible image obtained by the visible light imaging unit 12 (see FIG. 8G. Note that FIGS. 6B and 8G are the same). The luminance value of the visible image is compared with the luminance target value set by the luminance target value setting unit 32. Then, the luminance feedback control unit 34 obtains an illumination target value that is a target value of the illumination intensity value of the visible light illumination unit 26 for each small region from the comparison result, and outputs the illumination target value to the illumination intensity value setting unit 36. (First step of feedback control). Further, in the luminance feedback control unit 34, the illumination intensity value setting unit 36 continues to acquire the visible image captured in the illumination state with the illumination target value set as the illumination intensity value, and the luminance value of the visible image and the luminance target are obtained. The brightness target value set by the value setting unit 32 is compared. If the luminance target value is approaching but the luminance is insufficient, a higher illumination target value is maintained.If the visible light image does not change even when the illumination is changed, the illumination target value is maintained or a lower illumination target value is selected. If the values are close to each other but the brightness is high, lower illumination target values are set, and the illumination target values are output to the illumination intensity value setting unit 36 (second step of feedback control).

例えば、図8(G)に示すように、右後ろの歩行者近辺には街路照明が存在しており、車両から可視光を照射しなくても、十分な輝度を有している。従って、この領域に関して輝度フィードバック制御部34で求められる照明目標値(フィードバック制御の第1STEP)は、現在の照明目標値を維持または下げる方向の照明目標値となる。また、照明目標値に対して可視画像の輝度が不足する場合など、輝度目標値となる可視画像を得るにはどれだけの照明量の増加が必要かは一意には決められないが、輝度フィードバック制御部34で求められる照明目標値(フィードバック制御の第2STEP)により、各小領域の輝度を輝度目標値に近づけることができる。   For example, as shown in FIG. 8 (G), street illumination exists in the vicinity of the right rear pedestrian, and has sufficient luminance even if no visible light is emitted from the vehicle. Therefore, the illumination target value (first step of feedback control) obtained by the luminance feedback control unit 34 with respect to this region is an illumination target value in a direction that maintains or lowers the current illumination target value. Also, it is not possible to uniquely determine how much the amount of illumination needs to be increased in order to obtain a visible image that is the target brightness value, such as when the brightness of the visible image is insufficient with respect to the target lighting value. With the illumination target value (second step of feedback control) obtained by the control unit 34, the luminance of each small area can be brought close to the luminance target value.

ステップ114では、照明強度値設定部36は、輝度フィードバック制御部34でフィードバック制御された照明目標値に基づき、各小領域毎に可視光照明部26の照明強度値を設定する。ここでは、照明目標値の値そのままを照明強度値として設定する。   In step 114, the illumination intensity value setting unit 36 sets the illumination intensity value of the visible light illumination unit 26 for each small area based on the illumination target value feedback-controlled by the luminance feedback control unit 34. Here, the value of the illumination target value is set as the illumination intensity value.

図8(H)に、設定した最終的な照明強度値の例を示す。ここでは、照明強度値も輝度目標値と同じく4段階(強、中、弱、無)の値を用いている。照明強度値設定部36は、設定した照明強度値を照明制御部24に出力する。照明制御部24は、照明強度値に従って可視光照明部26を制御し、各小領域毎に光量を調整することで、車両前方視野全体に渡り可視光の照射量の制御を行なう。   FIG. 8H shows an example of the set final illumination intensity value. Here, the illumination intensity value is also a value of four levels (strong, medium, weak, and none), similar to the luminance target value. The illumination intensity value setting unit 36 outputs the set illumination intensity value to the illumination control unit 24. The illumination control unit 24 controls the visible light illumination unit 26 according to the illumination intensity value, and controls the irradiation amount of visible light over the entire vehicle front visual field by adjusting the light amount for each small region.

これにより、図5(A)に示す被照明環境が、図5(C)に示すように、明るさコントラストの点で視認性が向上するように歩行者と背景それぞれで照明強度が調整され、視認性が向上する。図5(C)に示す例では、前述したように、左前方の歩行者に対しては路面全体を必要以上に明るくしないことや、歩行者の周囲の輝度を抑えることと、歩行者部分を強く照明することでコントラストが改善され視認性が向上されている。また、右後方の歩行者は左前方とは対象と背景の明るさが逆転しているため、歩行者の照明を抑えたり、背景の明るさをさらに強めることでコントラストを改善し視認性を向上させている。   Thereby, as shown in FIG. 5C, the illumination intensity shown in FIG. 5A is adjusted for the pedestrian and the background so that the visibility is improved in terms of brightness contrast. Visibility is improved. In the example shown in FIG. 5C, as described above, for the pedestrian on the left front, the entire road surface is not brightened more than necessary, the luminance around the pedestrian is suppressed, Visible illumination improves contrast and improves visibility. In addition, the right and left pedestrians have the same background and background brightness as that of the left front, so the contrast of the pedestrians can be improved by reducing the lighting of the pedestrians and increasing the background brightness. I am letting.

図5(B)に、比較例として、単に可視画像の暗い部分の輝度を一律に上げるように可視光を照射した場合の照明例を示す。歩行者部分の輝度は上がり、照明なしに比べて視認性が向上しているが、左前方の歩行者は路面輝度が高く、また右後方の歩行者は背景の輝度が元々高いため、十分な視認性向上には至っていない。   FIG. 5B shows an illumination example when the visible light is simply irradiated so as to uniformly increase the luminance of the dark part of the visible image as a comparative example. The brightness of the pedestrian area is increased and the visibility is improved compared to the case without lighting, but the left front pedestrian has a high road surface brightness, and the right rear pedestrian has a high background brightness. Visibility has not been improved.

なお、本実施の形態では、輝度フィードバック制御部34により、一律にフィードバック制御を行なう例について説明したが、フィードバック制御の効果を検証して、その効果がでない場合には制御を止める、或いは現状から輝度値が下回らない条件で照明強度を下げる制御を行なっても良い。   In the present embodiment, the example in which the feedback control is uniformly performed by the luminance feedback control unit 34 has been described. However, the effect of the feedback control is verified, and if the effect is not achieved, the control is stopped, or the current state You may perform control which reduces illumination intensity on the conditions that a luminance value does not fall.

また、1つの光学系を可視光照明部26及び近赤外光照射部16として兼用する構成としてもよい。図9(A)は、可視光と近赤外光の双方を照射することが可能な照明部68の構成例を示す図である。この照明部68は、可視光から近赤外光までの波長の光を発する光源60、光源60からの入射光の透過を制御する多数の液晶素子を配列した液晶パネル62、可視光の透過を遮断するフィルタが部分的に配置されたモザイク型可視光カットフィルタ64、および液晶パネル62を透過した可視光を結像する対物レンズ66を備えている。   One optical system may be used as both the visible light illumination unit 26 and the near infrared light irradiation unit 16. FIG. 9A is a diagram illustrating a configuration example of the illumination unit 68 capable of emitting both visible light and near infrared light. The illumination unit 68 includes a light source 60 that emits light having a wavelength from visible light to near-infrared light, a liquid crystal panel 62 in which a number of liquid crystal elements that control transmission of incident light from the light source 60 are arranged, and transmission of visible light. A mosaic type visible light cut filter 64 in which a filter to be blocked is partially disposed, and an objective lens 66 that forms an image of visible light transmitted through the liquid crystal panel 62 are provided.

図10(A)は、モザイク型可視光カットフィルタ64の一例を示す図である。図10(A)に示すように、モザイク型可視光カットフィルタ64は、近赤外光の透過を遮断するフィルタ64aと可視光の透過を遮断するフィルタ64bとが交互に配置されている。照明制御部24は、照明部68で可視光を照射する場合には、光源60の光が近赤外光の透過を遮断するフィルタ64aの領域にのみ入射するように液晶パネル62の各画素のオンオフを制御する。また、照明部68で近赤外光を照射する場合には、光源60の光が可視光の透過を遮断するフィルタ64bの領域にのみ入射するように液晶パネル62の各画素のオンオフを制御する。このように液晶パネル62を制御すれば、可視光と近赤外光とを1つの照明部68から照射することができる。なお、ここでは、近赤外光の透過を遮断するフィルタ64aを設けたが、このフィルタ64aは設けず、このフィルタ64aが配置される部分については入射した全波長の光を透過するように構成してもよい。近赤外光は不可視光であるため、可視光と同時に照射しても視認性に何ら影響はないからである。   FIG. 10A is a diagram illustrating an example of the mosaic-type visible light cut filter 64. As shown in FIG. 10A, in the mosaic type visible light cut filter 64, filters 64a that block transmission of near-infrared light and filters 64b that block transmission of visible light are alternately arranged. When the illumination unit 68 emits visible light, the illumination control unit 24 allows each pixel of the liquid crystal panel 62 so that the light from the light source 60 enters only the region of the filter 64a that blocks transmission of near-infrared light. Control on / off. When the illumination unit 68 irradiates near infrared light, on / off of each pixel of the liquid crystal panel 62 is controlled so that light from the light source 60 is incident only on a region of the filter 64b that blocks transmission of visible light. . By controlling the liquid crystal panel 62 in this way, visible light and near-infrared light can be emitted from one illumination unit 68. Here, the filter 64a for blocking the transmission of near-infrared light is provided, but this filter 64a is not provided, and the portion where the filter 64a is arranged is configured to transmit the incident light of all wavelengths. May be. This is because near-infrared light is invisible light, so that even if it is irradiated simultaneously with visible light, the visibility is not affected.

また、可視光照明部26及び近赤外光照射部16を1つの光学系で構成する他の例を図9(B)に示す。この照明部78は、可視光から近赤外光までの波長の光を発する光源70、可視光の透過を遮断するフィルタが部分的に配置され、全体が回転することにより該可視光の透過を遮断するフィルタ位置が変動する回転式可視光カットフィルタ72、入射光の反射方向を制御する多数の反射素子(ミラー)を配列したミラーデバイス74、およびミラーデバイス48から受けた反射光を結像する対物レンズ76を備えている。   Further, FIG. 9B shows another example in which the visible light illumination unit 26 and the near infrared light irradiation unit 16 are configured by one optical system. In the illumination unit 78, a light source 70 that emits light having a wavelength from visible light to near infrared light, and a filter that blocks transmission of visible light are partially arranged, and the entire unit rotates to transmit the visible light. The rotary visible light cut filter 72 whose filter position to be blocked fluctuates, the mirror device 74 in which a number of reflecting elements (mirrors) for controlling the reflection direction of incident light are arranged, and the reflected light received from the mirror device 48 is imaged. An objective lens 76 is provided.

図10(B)は、回転式可視光カットフィルタ72の一例を示す図である。図10(B)に示すように、回転式可視光カットフィルタ72は、近赤外光の透過を遮断するフィルタ72aと可視光の透過を遮断するフィルタ72bとを備えている。この回転式可視光カットフィルタ72は、回転軸72cを中心として回転可能に構成されている。照明制御部24は、照明部78で可視光を照射する場合には、光源70とミラーデバイス74との間に近赤外光の透過を遮断するフィルタ72aが配置されるように回転式可視光カットフィルタ72を回転させる。また、照明制御部24は、照明部78で近赤外光を照射する場合には、光源70とミラーデバイス74との間に可視光の透過を遮断するフィルタ72bが配置されるように回転式可視光カットフィルタ72を回転させる。このように回転式可視光カットフィルタ72を制御すれば、可視光と近赤外光とを1つの照明部78から照射することができる。なお、ここでは、近赤外光の透過を遮断するフィルタ72aを設けたが、このフィルタ72aは設けず、このフィルタ72aが配置される部分については入射した全波長の光を透過するように構成してもよい。   FIG. 10B is a diagram illustrating an example of the rotary visible light cut filter 72. As shown in FIG. 10B, the rotary visible light cut filter 72 includes a filter 72a that blocks transmission of near-infrared light and a filter 72b that blocks transmission of visible light. The rotary visible light cut filter 72 is configured to be rotatable about a rotation shaft 72c. When the illumination control unit 24 irradiates visible light with the illumination unit 78, the rotary visible light is arranged such that a filter 72a that blocks transmission of near-infrared light is disposed between the light source 70 and the mirror device 74. The cut filter 72 is rotated. Further, when the illumination control unit 24 irradiates near infrared light with the illumination unit 78, the illumination control unit 24 rotates so that a filter 72 b that blocks transmission of visible light is disposed between the light source 70 and the mirror device 74. The visible light cut filter 72 is rotated. By controlling the rotary visible light cut filter 72 in this way, visible light and near infrared light can be emitted from one illumination unit 78. Here, the filter 72a for blocking the transmission of near-infrared light is provided. However, the filter 72a is not provided, and the portion where the filter 72a is arranged is configured to transmit the incident light of all wavelengths. May be.

このように、可視光照明部26及び近赤外光照射部16を1つの光学系で構成することにより、照明装置10が小型化できる。   Thus, the illuminating device 10 can be reduced in size by comprising the visible light illumination part 26 and the near-infrared light irradiation part 16 by one optical system.

また、上記実施の形態では、照明強度設定部18を、画像分割部30、輝度目標値設定部32、輝度フィードバック制御部34、及び照明強度値設定部36により構成した例について説明したが、これに限定されず、例えば、輝度フィードバック制御部34を設けない構成としてもよい。このような構成の場合には、照明強度値設定部36が輝度目標値設定部32で求めた輝度目標値をそのまま用いて照明強度値を設定する。これによっても、従来の照明装置に比較して視認性は向上するが、輝度フィードバック制御部34を設けずによりよい視認性を実現するために、予め近赤外画像と可視画像の特性や見え方の相違をテスト画像等に基づいて予め求めておいて何らかのメモリに記憶し、可視光を照明する照明制御において、該メモリを参照してその相違がなくなるように輝度目標値を補正する補正処理を行なうようにしてもよい。   In the above embodiment, an example in which the illumination intensity setting unit 18 includes the image dividing unit 30, the luminance target value setting unit 32, the luminance feedback control unit 34, and the illumination intensity value setting unit 36 has been described. For example, the luminance feedback control unit 34 may not be provided. In such a configuration, the illumination intensity value setting unit 36 sets the illumination intensity value using the luminance target value obtained by the luminance target value setting unit 32 as it is. This also improves the visibility compared with the conventional lighting device, but in order to realize better visibility without providing the luminance feedback control unit 34, the characteristics and appearance of the near-infrared image and the visible image in advance. Is obtained in advance based on a test image or the like, stored in some memory, and in illumination control for illuminating visible light, a correction process for correcting the luminance target value so as to eliminate the difference with reference to the memory is performed. You may make it perform.

また、照明装置10に障害物検出部20や視認性推定部22を設けない構成としてもよい。障害物の存在の有無、あるいは視認性の良し悪しは考慮せず、単に画像を分割して連続/不連続の判定を行なって輝度目標値を求めても、従来のようにコントラストや明るさを考慮せずに一律に可視光を照明する装置と比較して視認性は向上する。   Moreover, it is good also as a structure which does not provide the obstruction detection part 20 and the visibility estimation part 22 in the illuminating device 10. FIG. Without considering the presence or absence of obstacles or whether the visibility is good or not, simply dividing the image and determining whether it is continuous or discontinuous and obtaining the brightness target value will result in the same contrast and brightness. Visibility is improved as compared with a device that uniformly illuminates visible light without consideration.

さらにまた、近赤外撮像部14に代えて、例えば、車両前方の領域から放射される遠赤外線を検知して車両前方の視野全体の領域を撮像する遠赤外撮像部を設けても良い。遠赤外撮像部は、熱を持った物体からは遠赤外線が放射される特性を利用するものであるため、可視光以外の波長の光を照射する必要はない。これによっても、視認不可能な領域を撮像することができ、上記実施の形態と同様に輝度目標値を求めることができる。   Furthermore, instead of the near-infrared imaging unit 14, for example, a far-infrared imaging unit that detects far-infrared radiation emitted from a region in front of the vehicle and images the entire field of view in front of the vehicle may be provided. The far-infrared imaging unit uses the characteristic that far-infrared rays are emitted from an object having heat, and therefore does not need to irradiate light having a wavelength other than visible light. Also by this, it is possible to image an area that cannot be visually recognized, and to obtain a luminance target value as in the above embodiment.

また、撮像手段としては、可視光撮像部12のみを設けて近赤外撮像部14は設けない構成とし、更に、車両前方に存在する車両の運転者及び歩行者が眩惑しない程度に短い時間であって可視光撮像部12で車両前方の領域を撮像可能な時間のパルス幅で車両前方の領域(この場合ももちろんロービームではなく、ハイビーム領域を照射する)に可視光をパルス照射するパルス光照射部を設けるようにしてもよい。   Moreover, as an imaging means, it is set as the structure which provides only the visible light imaging part 12 and does not provide the near-infrared imaging part 14, and also in a short time so that the driver and pedestrian of the vehicle which exist in front of a vehicle may not be dazzled. In this case, the visible light imaging unit 12 irradiates pulsed light with pulsed visible light to a region ahead of the vehicle (in this case, the high beam region is irradiated instead of the low beam of course) with a pulse width of a time during which the region ahead of the vehicle can be imaged. A portion may be provided.

これにより、車両の運転者や歩行者が眩惑しない状態で可視光を照射して車両前方の領域の可視光画像が得られる。この可視光画像を上記実施の形態の近赤外画像と同様に用いて輝度目標値を求め、照明強度値を設定する。この場合には、近赤外画像と可視光画像の特性上の違いを考慮する必要がなくなるので、上記説明したフィードバック制御を省略したとしても十分な視認性は確保できる。   Thereby, a visible light image of the area ahead of the vehicle is obtained by irradiating visible light in a state where the driver or pedestrian of the vehicle is not dazzled. Using this visible light image in the same manner as the near-infrared image of the above embodiment, a luminance target value is obtained and an illumination intensity value is set. In this case, since it is not necessary to consider the difference in characteristics between the near-infrared image and the visible light image, sufficient visibility can be ensured even if the feedback control described above is omitted.

また、上記実施の形態では、可視光撮像部12及び近赤外撮像部14を設け、可視光画像と近赤外画像とを撮像し、可視光照明を制御する例について説明したが、視認性推定部22や輝度フィードバック制御部34を設けない構成であれば、可視光撮像部12は設けずに近赤外撮像部14あるいは遠赤外撮像部のみを設ける構成としてもよいし、或いは近赤外撮像部14あるいは遠赤外撮像部を設けずに可視光撮像部12及び上述のパルス照射部を設けて可視画像を撮像する構成としてもよい。このような構成によっても、上記と同様に輝度目標値設定部32で小領域毎に輝度目標値を求めて照明強度値設定部36で照明強度を設定することで従来の装置と比較して視認性は向上する。   Moreover, although the said embodiment demonstrated the example which provides the visible light imaging part 12 and the near-infrared imaging part 14, images a visible light image and a near-infrared image, and controls visible light illumination, visibility As long as the estimation unit 22 and the luminance feedback control unit 34 are not provided, the visible light imaging unit 12 may not be provided, and only the near-infrared imaging unit 14 or the far-infrared imaging unit may be provided. The visible light imaging unit 12 and the pulse irradiation unit described above may be provided without the outer imaging unit 14 or the far infrared imaging unit, and a visible image may be captured. Even with such a configuration, the luminance target value setting unit 32 obtains the luminance target value for each small area and the illumination intensity value setting unit 36 sets the illumination intensity in the same manner as described above. Improves.

本発明の実施の形態に係る照明装置の概略的な構成を示すブロック図である。It is a block diagram which shows schematic structure of the illuminating device which concerns on embodiment of this invention. (A)〜(C)は、可視光照明部の構成例を示す図である。(A)-(C) are figures which show the structural example of a visible light illumination part. 照明強度設定部が行なう照明強度値の設定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the setting process of the illumination intensity value which an illumination intensity setting part performs. 視認性推定部で行なわれる視認性推定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the visibility estimation process performed in a visibility estimation part. (A)は、車両から可視光が全く照明されていない状態の被照明環境を示す図であり、(B)は、単に可視画像の暗い部分の輝度を上げるように可視光を照射した場合の照明例であり、(C)は、本実施の形態の照明装置で照明した場合の照明例を示す図である。(A) is a figure which shows the to-be-illuminated environment in the state in which visible light is not illuminated at all from a vehicle, (B) is the case where visible light is irradiated so that the brightness | luminance of the dark part of a visible image may only be raised It is an example of illumination and (C) is a figure which shows the example of illumination at the time of illuminating with the illuminating device of this Embodiment. (A)は、近赤外撮像部14で撮像された近赤外画像の例、(B)は可視光撮像部で撮像された可視画像の例を示す図である。(A) is a figure which shows the example of the near-infrared image imaged with the near-infrared imaging part 14, (B) is a figure which shows the example of the visible image imaged with the visible light imaging part. (C)は、近赤外画像を小領域に分割したときの分割例を示す図であり、(D)は、連続する領域か不連続な領域かを判断した判断結果例を示す図であり、(E)は、障害物検出結果例を示す図である。(C) is a figure which shows the example of a division | segmentation when a near-infrared image is divided | segmented into a small area, (D) is a figure which shows the example of a judgment result which judged whether it was a continuous area | region or a discontinuous area | region. (E) is a figure which shows the example of an obstruction detection result. (F)は、設定した輝度目標値の具体例を示す図であり、(G)は撮像された可視画像の例を示す図であり、(H)は、(F)と(G)から設定した照明強度値の例を示す図である。(F) is a figure which shows the example of the set brightness | luminance target value, (G) is a figure which shows the example of the imaged visible image, (H) is set from (F) and (G) It is a figure which shows the example of the done illumination intensity value. 可視光と近赤外光の双方を照射することが可能な照明部の構成例を示す図である。It is a figure which shows the structural example of the illumination part which can irradiate both visible light and near-infrared light. (A)は、モザイク型可視光カットフィルタの一例を示す図であり、(B)は、回転式可視光カットフィルタの一例を示す図である。(A) is a figure which shows an example of a mosaic type | mold visible light cut filter, (B) is a figure which shows an example of a rotation type visible light cut filter.

符号の説明Explanation of symbols

10 照明装置
12 可視光撮像部
14 近赤外撮像部
16 近赤外光照射部
18 照明強度設定部
20 障害物検出部
22 視認性推定部
24 照明制御部
26 可視光照明部
30 画像分割部
32 輝度目標値設定部
34 輝度フィードバック制御部
36 照明強度値設定部
DESCRIPTION OF SYMBOLS 10 Illumination device 12 Visible light imaging part 14 Near infrared imaging part 16 Near infrared light irradiation part 18 Illumination intensity setting part 20 Obstacle detection part 22 Visibility estimation part 24 Illumination control part 26 Visible light illumination part 30 Image division part 32 Luminance target value setting unit 34 Luminance feedback control unit 36 Illumination intensity value setting unit

Claims (17)

車両前方の領域を撮像する撮像手段と、
前記車両前方の領域を複数の小領域に分割したときの各小領域毎に可視光の照明状態を異ならせて照明可能な可視光照明手段と、
前記撮像手段で撮像して得られた画像に基づいて、前記車両前方の前記小領域毎の照明状態が前記車両前方の視認性が向上する照明状態となるように前記可視光照明手段を制御する制御手段と、
を含む照明装置。
Imaging means for imaging an area in front of the vehicle;
Visible light illuminating means capable of illuminating by varying the illumination state of visible light for each small area when the area in front of the vehicle is divided into a plurality of small areas;
Based on the image obtained by imaging with the imaging means, the visible light illumination means is controlled so that the illumination state of each small region in front of the vehicle becomes an illumination state in which the visibility in front of the vehicle is improved. Control means;
Including lighting device.
前記制御手段は、前記撮像手段で撮像して得られた画像から輝度及び模様の少なくとも一方に関する特徴を示す特徴量が類似しない領域同士が隣接している境界を求め、該境界の両側の領域間で輝度差が大きくなるように前記可視光照明手段を制御する
請求項1記載の照明装置。
The control means obtains a boundary where areas having similar features that are characteristic of at least one of luminance and pattern are adjacent to each other from an image obtained by imaging with the imaging means, and between the areas on both sides of the boundary The illuminating device according to claim 1, wherein the visible light illuminating means is controlled so that the luminance difference becomes large.
前記制御手段は、前記車両前方の前記小領域毎の照明状態が前記車両前方の視認性が向上する照明状態となるように前記可視光照明手段を制御する際に、前記車両前方の前記小領域毎の輝度値が常に所定値以上となるように前記可視光照明手段を制御する
請求項1または2記載の照明装置。
The control means controls the visible light illuminating means so that the illumination state of each small area in front of the vehicle becomes an illumination state in which the visibility in front of the vehicle is improved. The illuminating device according to claim 1 or 2, wherein the visible light illuminating unit is controlled so that a luminance value for each unit always exceeds a predetermined value.
前記撮像手段で撮像して得られた画像に基づいて、前記車両前方の領域に存在する障害物を検出する障害物検出手段を更に備え、
前記制御手段は、前記車両前方の前記小領域毎の照明状態が前記車両前方の視認性が向上する照明状態となるように前記可視光照明手段を制御する際、前記障害物検出手段で検出された障害物の視認性が向上するように前記可視光照明手段を制御する
請求項1〜3のいずれか1項記載の照明装置。
Based on an image obtained by imaging with the imaging means, further comprising an obstacle detection means for detecting an obstacle present in the area in front of the vehicle,
The control means is detected by the obstacle detection means when controlling the visible light illumination means so that the illumination state of each small region in front of the vehicle becomes an illumination state in which visibility in front of the vehicle is improved. The illuminating device according to claim 1, wherein the visible light illuminating unit is controlled so that the visibility of the obstruction is improved.
前記制御手段は、前記障害物検出手段で検出された障害物の領域と障害物以外の背景の領域との輝度差が大きくなるように前記可視光照明手段を制御する
請求項4記載の照明装置。
The lighting device according to claim 4, wherein the control unit controls the visible light illuminating unit such that a luminance difference between an obstacle area detected by the obstacle detection unit and a background area other than the obstacle is increased. .
前記撮像手段は、前記車両前方の領域から放射される遠赤外線を検知して前記車両前方の領域を撮像する
請求項1〜5のいずれか1項記載の照明装置。
The lighting device according to claim 1, wherein the imaging unit detects far infrared rays emitted from a region in front of the vehicle and images the region in front of the vehicle.
前記車両前方の領域に近赤外光を照射する近赤外光照射手段を更に備え、
前記撮像手段は、該近赤外光照射手段により前記車両前方の領域に照射された近赤外光の反射光を受光することにより前記車両前方を撮像する
請求項1〜5のいずれか1項記載の照明装置。
Further comprising a near infrared light irradiating means for irradiating the region in front of the vehicle with near infrared light,
The said imaging means images the said vehicle front by receiving the reflected light of the near infrared light irradiated to the area | region ahead of the said vehicle by this near infrared light irradiation means. The lighting device described.
前記車両前方に存在する車両の運転者及び歩行者が眩惑しない程度に短い時間であって前記撮像手段で前記車両前方の領域を撮像可能な時間のパルス幅で前記車両前方の領域に可視光をパルス照射するパルス光照射手段を更に備え、
前記撮像手段は、前記パルス光照射手段により前記車両前方の領域に前記パルス幅の可視光が照射されたときに前記車両前方の領域を撮像する
請求項1〜5のいずれか1項記載の照明装置。
Visible light is emitted to the area in front of the vehicle with a pulse width of a time that is short enough that the driver and pedestrian of the vehicle existing in front of the vehicle are not dazzled and can capture the area in front of the vehicle with the imaging means. It further comprises pulsed light irradiation means for performing pulse irradiation,
The illumination according to any one of claims 1 to 5, wherein the imaging unit images the region in front of the vehicle when visible light having the pulse width is irradiated onto the region in front of the vehicle by the pulsed light irradiation unit. apparatus.
前記撮像手段は、前記車両前方の領域で反射された可視光を受光することにより前記車両前方を撮像する可視光撮像手段、および前記車両前方の領域から放射される遠赤外線を検知して前記車両前方の領域を撮像する遠赤外線撮像手段を含んで構成され、
前記可視光撮像手段で撮像して得られた可視画像及び前記遠赤外線撮像手段で撮像して得られた遠赤外画像に基づいて、前記可視画像における輝度が第1の閾値未満であって前記遠赤外画像における輝度が第2の閾値以上である低視認領域を検出する低視認領域検出手段を更に備え、
前記制御手段は、前記車両前方の前記小領域毎の照明状態が前記低視認領域検出手段で検出された低視認領域の視認性が向上する照明状態となるように前記可視光照明手段を制御する
請求項1〜5のいずれか1項記載の照明装置。
The imaging means detects visible light imaging means for imaging the front of the vehicle by receiving visible light reflected by the area in front of the vehicle, and far infrared rays emitted from the area in front of the vehicle to detect the vehicle It is configured to include a far infrared imaging means for imaging a front area,
Based on the visible image obtained by imaging with the visible light imaging means and the far-infrared image obtained by imaging with the far-infrared imaging means, the luminance in the visible image is less than a first threshold, and A low visual recognition area detecting means for detecting a low visual recognition area whose luminance in the far-infrared image is equal to or higher than a second threshold;
The control means controls the visible light illuminating means so that the illumination state of each small area in front of the vehicle becomes an illumination state in which the visibility of the low visual recognition area detected by the low visual recognition area detection means is improved. The illuminating device of any one of Claims 1-5.
前記撮像手段は、前記車両前方の領域で反射された可視光を受光することにより前記車両前方を撮像する可視光撮像手段、および前記車両前方の領域で反射された近赤外光を受光することにより前記車両前方を撮像する近赤外撮像手段を含んで構成され、
前記車両前方の領域に近赤外光を照射する近赤外光照射手段と、
前記可視光撮像手段で撮像して得られた可視画像及び前記近赤外光照射手段により前記車両前方の領域に近赤外光を照射した状態で前記近赤外撮像手段で撮像して得られた近赤外画像に基づいて、前記可視画像における輝度が第1の閾値未満であって前記近赤外画像における輝度が第2の閾値以上である低視認領域を検出する低視認領域検出手段とを更に備え、
前記制御手段は、前記車両前方の前記小領域毎の照明状態が前記低視認領域検出手段で検出された低視認領域の視認性が向上する照明状態となるように前記可視光照明手段を制御する
請求項1〜5のいずれか1項記載の照明装置。
The imaging means receives visible light reflected from the area in front of the vehicle to receive the visible light imaging means for imaging the front of the vehicle, and receives near-infrared light reflected from the area in front of the vehicle. Comprising near-infrared imaging means for imaging the front of the vehicle,
Near-infrared light irradiating means for irradiating near-infrared light to a region in front of the vehicle;
Visible image obtained by imaging with the visible light imaging means and obtained by imaging with the near infrared imaging means with the near infrared light irradiating means irradiating the area in front of the vehicle with near infrared light A low-visibility region detection means for detecting a low-visibility region in which the luminance in the visible image is less than a first threshold and the luminance in the near-infrared image is greater than or equal to a second threshold based on the near-infrared image Further comprising
The control means controls the visible light illuminating means so that the illumination state of each small area in front of the vehicle becomes an illumination state in which the visibility of the low visual recognition area detected by the low visual recognition area detection means is improved. The illuminating device of any one of Claims 1-5.
前記パルス光照射手段により前記パルス幅の可視光を照射しないときに前記撮像手段で撮像して得られた第1の画像及び前記パルス光照射手段により前記パルス幅の可視光を照射したときに前記撮像手段で撮像して得られた第2の画像に基づいて、前記第1の画像における輝度が第1の閾値未満であって前記第2の画像における輝度が第2の閾値以上である低視認領域を検出する低視認領域検出手段を更に備え、
前記制御手段は、前記車両前方の前記小領域毎の照明状態が前記低視認領域検出手段で検出された低視認領域の視認性が向上する照明状態となるように前記可視光照明手段を制御する
請求項8記載の照明装置。
The first image obtained by imaging with the imaging unit when the pulsed light irradiating unit does not irradiate visible light with the pulse width, and the irradiating unit with the pulsed width visible light with the pulsed light irradiating unit. Low visual recognition based on the second image obtained by imaging with the imaging means, wherein the luminance in the first image is less than the first threshold and the luminance in the second image is greater than or equal to the second threshold Further comprising a low visual recognition area detecting means for detecting an area,
The control means controls the visible light illuminating means so that the illumination state of each small area in front of the vehicle becomes an illumination state in which the visibility of the low visual recognition area detected by the low visual recognition area detection means is improved. The lighting device according to claim 8.
前記撮像手段が前記車両前方の領域で反射された可視光を受光することにより前記車両前方を撮像する可視光撮像手段を含んで構成されている場合において、
前記制御手段は、前記車両前方の視認性が向上するように各小領域毎の目標の輝度値を求め、前記可視光撮像手段で撮像された可視画像に基づいて、前記車両前方の領域の各小領域毎の輝度値が前記目標の輝度値に近付くように前記可視光照明手段の制御量を調整する
請求項1〜請求項11のいずれか1項記載の照明装置。
In the case where the imaging means is configured to include visible light imaging means for imaging the front of the vehicle by receiving visible light reflected by the area in front of the vehicle,
The control means obtains a target luminance value for each small area so that visibility in front of the vehicle is improved, and each of the areas in front of the vehicle is determined based on a visible image captured by the visible light imaging means. The illuminating device according to any one of claims 1 to 11, wherein a control amount of the visible light illumination unit is adjusted so that a luminance value for each small region approaches the target luminance value.
前記可視光照明手段は、少なくとも可視光を発する光源、および該光源からの光の透過を制御する多数の液晶素子を配列した液晶パネルを含んで構成された請求項1〜12のいずれか1項記載の照明装置。   The said visible light illumination means is comprised including the liquid crystal panel which arranged the light source which emits at least visible light, and many liquid crystal elements which control permeation | transmission of the light from this light source. The lighting device described. 前記可視光照明手段は、少なくとも可視光を発する光源、および該光源からの光の反射方向を制御する多数の反射素子を配列した反射装置を含んで構成された請求項1〜12のいずれか1項記載の照明装置。   The said visible light illumination means is comprised including the reflection apparatus which arranged the light source which emits at least visible light, and many reflective elements which control the reflection direction of the light from this light source. The lighting device according to item. 前記可視光照明手段は、複数のLEDチップが配列されたLED光源を含んで構成された請求項1〜12のいずれか1項記載の照明装置。   The illumination device according to claim 1, wherein the visible light illumination unit includes an LED light source in which a plurality of LED chips are arranged. 前記可視光照明手段及び前記近赤外光照射手段を、近赤外光から可視光までの波長の光を発する光源、該光源からの光の透過を制御する多数の液晶素子を配列した液晶パネル、および入射した可視光を部分的に遮断するフィルタを含む光学系で構成した
請求項7、10、および12のいずれか1項に記載の照明装置。
A liquid crystal panel in which the visible light illuminating means and the near infrared light irradiating means are arranged with a light source that emits light having a wavelength from near infrared light to visible light, and a large number of liquid crystal elements that control transmission of light from the light source. The illumination device according to any one of claims 7, 10, and 12, comprising: an optical system including a filter that partially blocks incident visible light.
前記可視光照明手段及び前記近赤外光照射手段を、近赤外光から可視光までの波長の光を発する光源、該光源からの光の反射方向を制御する多数の反射素子を配列した反射装置、および入射した可視光の透過を遮断する移動可能なフィルタを含む光学系で構成した
請求項7、10、および12のいずれか1項に記載の照明装置。
Reflection in which the visible light illuminating unit and the near infrared light irradiating unit are arranged with a light source that emits light having a wavelength from near infrared light to visible light, and a plurality of reflective elements that control the reflection direction of light from the light source. The illuminating device according to any one of claims 7, 10, and 12, comprising: an apparatus; and an optical system including a movable filter that blocks transmission of incident visible light.
JP2007264184A 2007-10-10 2007-10-10 Lighting device Active JP5003398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007264184A JP5003398B2 (en) 2007-10-10 2007-10-10 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007264184A JP5003398B2 (en) 2007-10-10 2007-10-10 Lighting device

Publications (2)

Publication Number Publication Date
JP2009090844A true JP2009090844A (en) 2009-04-30
JP5003398B2 JP5003398B2 (en) 2012-08-15

Family

ID=40663260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007264184A Active JP5003398B2 (en) 2007-10-10 2007-10-10 Lighting device

Country Status (1)

Country Link
JP (1) JP5003398B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052602A (en) * 2008-08-28 2010-03-11 Koito Mfg Co Ltd Headlight control device and vehicular headlight device
JP2011084237A (en) * 2009-10-19 2011-04-28 Koito Mfg Co Ltd Control system of vehicular headlamp
WO2011068308A2 (en) * 2009-12-03 2011-06-09 주식회사 라이트그린컨셉 Lighting system and lighting method using same
JP2014061747A (en) * 2012-09-20 2014-04-10 Stanley Electric Co Ltd Lighting control device of vehicle front lamp, and vehicle front lamp system
JP2014184851A (en) * 2013-03-22 2014-10-02 Toyota Central R&D Labs Inc Irradiation device
EP2933143A2 (en) 2014-04-15 2015-10-21 Toyota Jidosha Kabushiki Kaisha Irradiation apparatus
WO2015189672A1 (en) 2014-06-10 2015-12-17 Toyota Jidosha Kabushiki Kaisha Vehicle headlamp control device
WO2018096619A1 (en) * 2016-11-24 2018-05-31 マクセル株式会社 Lighting apparatus
WO2018167879A1 (en) * 2017-03-15 2018-09-20 三菱電機株式会社 Light quantity adjustment device, light quantity adjustment method, and light quantity adjustment program
WO2019003887A1 (en) * 2017-06-27 2019-01-03 株式会社小糸製作所 Vehicle lamp fitting system, vehicle lamp fitting control device, and vehicle lamp fitting control method
KR20190003409A (en) * 2017-06-30 2019-01-09 발레오 비젼 Light system for a motor vehicle
JP2019048526A (en) * 2017-09-08 2019-03-28 スタンレー電気株式会社 Control device of head light of vehicle
WO2019131055A1 (en) * 2017-12-27 2019-07-04 株式会社小糸製作所 Vehicle lamp system, vehicle lamp control device, and vehicle lamp control method
JP2019202580A (en) * 2018-05-21 2019-11-28 クラリオン株式会社 Light distribution controller, light projection system, and light distribution control method
JP2020032872A (en) * 2018-08-30 2020-03-05 日産自動車株式会社 Headlamp control method and headlamp control apparatus
WO2021010485A1 (en) * 2019-07-18 2021-01-21 株式会社小糸製作所 Vehicle light-fixture system, vehicle light-fixture control device and vehicle light-fixture control method
WO2021049462A1 (en) * 2019-09-11 2021-03-18 株式会社小糸製作所 Vehicular lamp system and vehicular lamp
US11396986B2 (en) 2019-05-23 2022-07-26 Valeo North America, Inc. Apparatus and method for masking residual visible light from an infrared emission source
US11481996B2 (en) 2018-09-20 2022-10-25 Nec Corporation Calculation device, information processing method, and storage medium
JP2023506620A (en) * 2019-12-13 2023-02-17 プラスティック オムニウム ライティング システムズ ゲーエムベーハー Vehicle assembly, lighting unit, vehicle and vehicle with assembly

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990269A (en) * 1995-09-26 1997-04-04 Olympus Optical Co Ltd Video display device
JP2000318513A (en) * 1999-05-17 2000-11-21 Mitsubishi Electric Corp Obstacle detection device for vehicle
JP2003045210A (en) * 2001-06-20 2003-02-14 Daimlerchrysler Ag Vehicle head lamp
JP2004231178A (en) * 2003-01-30 2004-08-19 Valeo Vision Method of modulation illuminating road and vehicular headlight for executing the same
JP2004345419A (en) * 2003-05-20 2004-12-09 Nissan Motor Co Ltd Night vision system for vehicle and headlight device for vehicle
JP2005512875A (en) * 2001-12-10 2005-05-12 ジェンテクス・コーポレーション Headlamp control to prevent glare
JP2006176020A (en) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd Pedestrian informing device and method
JP2006188224A (en) * 2005-01-03 2006-07-20 Ford Global Technologies Llc Night vision system for vehicle, light source operation system and its control method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990269A (en) * 1995-09-26 1997-04-04 Olympus Optical Co Ltd Video display device
JP2000318513A (en) * 1999-05-17 2000-11-21 Mitsubishi Electric Corp Obstacle detection device for vehicle
JP2003045210A (en) * 2001-06-20 2003-02-14 Daimlerchrysler Ag Vehicle head lamp
JP2005512875A (en) * 2001-12-10 2005-05-12 ジェンテクス・コーポレーション Headlamp control to prevent glare
JP2004231178A (en) * 2003-01-30 2004-08-19 Valeo Vision Method of modulation illuminating road and vehicular headlight for executing the same
JP2004345419A (en) * 2003-05-20 2004-12-09 Nissan Motor Co Ltd Night vision system for vehicle and headlight device for vehicle
JP2006176020A (en) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd Pedestrian informing device and method
JP2006188224A (en) * 2005-01-03 2006-07-20 Ford Global Technologies Llc Night vision system for vehicle, light source operation system and its control method

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052602A (en) * 2008-08-28 2010-03-11 Koito Mfg Co Ltd Headlight control device and vehicular headlight device
JP2011084237A (en) * 2009-10-19 2011-04-28 Koito Mfg Co Ltd Control system of vehicular headlamp
WO2011068308A2 (en) * 2009-12-03 2011-06-09 주식회사 라이트그린컨셉 Lighting system and lighting method using same
WO2011068308A3 (en) * 2009-12-03 2011-09-09 주식회사 라이트그린컨셉 Lighting system and lighting method using same
JP2014061747A (en) * 2012-09-20 2014-04-10 Stanley Electric Co Ltd Lighting control device of vehicle front lamp, and vehicle front lamp system
JP2014184851A (en) * 2013-03-22 2014-10-02 Toyota Central R&D Labs Inc Irradiation device
US10118534B2 (en) 2014-04-15 2018-11-06 Toyota Jidosha Kabushiki Kaisha Irradiation apparatus
EP2933143A2 (en) 2014-04-15 2015-10-21 Toyota Jidosha Kabushiki Kaisha Irradiation apparatus
JP2015202822A (en) * 2014-04-15 2015-11-16 株式会社豊田中央研究所 Irradiating device
WO2015189672A1 (en) 2014-06-10 2015-12-17 Toyota Jidosha Kabushiki Kaisha Vehicle headlamp control device
US10189396B2 (en) 2014-06-10 2019-01-29 Toyota Jidosha Kabushiki Kaisha Vehicle headlamp control device
WO2018096619A1 (en) * 2016-11-24 2018-05-31 マクセル株式会社 Lighting apparatus
US10688911B2 (en) 2016-11-24 2020-06-23 Maxell, Ltd. Illumination apparatus
JPWO2018096619A1 (en) * 2016-11-24 2019-10-17 マクセル株式会社 Lighting device
WO2018167879A1 (en) * 2017-03-15 2018-09-20 三菱電機株式会社 Light quantity adjustment device, light quantity adjustment method, and light quantity adjustment program
JPWO2018167879A1 (en) * 2017-03-15 2019-11-07 三菱電機株式会社 Light amount adjusting device, light amount adjusting method and light amount adjusting program
WO2019003887A1 (en) * 2017-06-27 2019-01-03 株式会社小糸製作所 Vehicle lamp fitting system, vehicle lamp fitting control device, and vehicle lamp fitting control method
JP7111708B2 (en) 2017-06-27 2022-08-02 株式会社小糸製作所 VEHICLE LAMP SYSTEM, VEHICLE LAMP CONTROL DEVICE, AND VEHICLE LAMP CONTROL METHOD
US11001194B2 (en) 2017-06-27 2021-05-11 Koito Manufacturing Co., Ltd. Vehicular lamp system, vehicular lamp control device, and vehicular lamp control method
CN110770081A (en) * 2017-06-27 2020-02-07 株式会社小糸制作所 Vehicle lamp system, vehicle lamp control device, and vehicle lamp control method
EP3647115A4 (en) * 2017-06-27 2021-03-24 Koito Manufacturing Co., Ltd. Vehicle lamp fitting system, vehicle lamp fitting control device, and vehicle lamp fitting control method
JPWO2019003887A1 (en) * 2017-06-27 2020-04-23 株式会社小糸製作所 Vehicle lighting system, vehicle lighting control device, and vehicle lighting control method
JP7278722B2 (en) 2017-06-30 2023-05-22 ヴァレオ ビジョン Optical system for automobiles
KR102581750B1 (en) * 2017-06-30 2023-09-21 발레오 비젼 Light system for a motor vehicle
JP2019011051A (en) * 2017-06-30 2019-01-24 ヴァレオ ビジョンValeo Vision Light system for motor vehicle
KR20190003409A (en) * 2017-06-30 2019-01-09 발레오 비젼 Light system for a motor vehicle
JP7000084B2 (en) 2017-09-08 2022-01-19 スタンレー電気株式会社 Vehicle headlight control device
JP2019048526A (en) * 2017-09-08 2019-03-28 スタンレー電気株式会社 Control device of head light of vehicle
WO2019131055A1 (en) * 2017-12-27 2019-07-04 株式会社小糸製作所 Vehicle lamp system, vehicle lamp control device, and vehicle lamp control method
EP3733452A4 (en) * 2017-12-27 2021-08-18 Koito Manufacturing Co., Ltd. Vehicle lamp system, vehicle lamp control device, and vehicle lamp control method
JPWO2019131055A1 (en) * 2017-12-27 2020-12-17 株式会社小糸製作所 Vehicle lighting system, vehicle lighting control device, and vehicle lighting control method
CN109969073A (en) * 2017-12-27 2019-07-05 株式会社小糸制作所 Lamp system for vehicle, the control device of lamps apparatus for vehicle and control method
JP7121051B2 (en) 2017-12-27 2022-08-17 株式会社小糸製作所 VEHICLE LAMP SYSTEM, VEHICLE LAMP CONTROL DEVICE, AND VEHICLE LAMP CONTROL METHOD
WO2019225165A1 (en) * 2018-05-21 2019-11-28 クラリオン株式会社 Light distribution control device, light projection system, and light distribution control method
JP2019202580A (en) * 2018-05-21 2019-11-28 クラリオン株式会社 Light distribution controller, light projection system, and light distribution control method
JP2020032872A (en) * 2018-08-30 2020-03-05 日産自動車株式会社 Headlamp control method and headlamp control apparatus
JP7053409B2 (en) 2018-08-30 2022-04-12 日産自動車株式会社 Headlamp control method and headlamp control device
US11481996B2 (en) 2018-09-20 2022-10-25 Nec Corporation Calculation device, information processing method, and storage medium
US11396986B2 (en) 2019-05-23 2022-07-26 Valeo North America, Inc. Apparatus and method for masking residual visible light from an infrared emission source
US11821598B2 (en) 2019-05-23 2023-11-21 Valeo North America, Inc. Apparatus and method for masking residual visible light from an infrared emission source
WO2021010485A1 (en) * 2019-07-18 2021-01-21 株式会社小糸製作所 Vehicle light-fixture system, vehicle light-fixture control device and vehicle light-fixture control method
JP7442528B2 (en) 2019-07-18 2024-03-04 株式会社小糸製作所 Vehicle lighting system, vehicle lighting control device, and vehicle lighting control method
WO2021049462A1 (en) * 2019-09-11 2021-03-18 株式会社小糸製作所 Vehicular lamp system and vehicular lamp
JP2023506620A (en) * 2019-12-13 2023-02-17 プラスティック オムニウム ライティング システムズ ゲーエムベーハー Vehicle assembly, lighting unit, vehicle and vehicle with assembly

Also Published As

Publication number Publication date
JP5003398B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5003398B2 (en) Lighting device
US9732926B2 (en) Illumination system for generating a boundary between a shaded area and an irradiated area
JP6751307B2 (en) Vehicle lighting
JP6416085B2 (en) Gated imaging using applicable depth of field
JP6380843B2 (en) Object detection apparatus, mobile device control system including the same, and object detection program
JP5348100B2 (en) Headlamp device, brightness control method
US10369922B2 (en) Vehicle headlight device
JP5761002B2 (en) Lighting control device
WO2013080363A1 (en) Light distribution control system for vehicle
CN110770081B (en) Vehicle lamp system, vehicle lamp control device, and vehicle lamp control method
US11275288B2 (en) Ballistic light modulations for image enhancement through fog
JP2005350010A (en) Stereoscopic vehicle exterior monitoring device
JP7339963B2 (en) vehicle lamp system
CN110709281A (en) Vehicle lamp, and control device and control method thereof
JP2013097885A (en) Headlight device and headlight system
JP7050779B2 (en) Lighting systems and driving assistance systems that determine geometric properties and their methods
JP7084392B2 (en) Vehicle lighting system, vehicle lighting control device, and vehicle lighting control method
WO2022039231A1 (en) In-vehicle sensing systems and gating camera
JP7173780B2 (en) vehicle lamp
JP7137414B2 (en) vehicle lamp
US20200039420A1 (en) Vehicle lamp
CN112240529B (en) Light distribution control device and vehicle lamp system
WO2024057975A1 (en) Vehicle headlight
JP7161337B2 (en) vehicle lamp
JP2022141445A (en) Control device of vehicle lamp, control method of the lamp vehicle, vehicle lamp system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5003398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3