WO2021010485A1 - Vehicle light-fixture system, vehicle light-fixture control device and vehicle light-fixture control method - Google Patents

Vehicle light-fixture system, vehicle light-fixture control device and vehicle light-fixture control method Download PDF

Info

Publication number
WO2021010485A1
WO2021010485A1 PCT/JP2020/027943 JP2020027943W WO2021010485A1 WO 2021010485 A1 WO2021010485 A1 WO 2021010485A1 JP 2020027943 W JP2020027943 W JP 2020027943W WO 2021010485 A1 WO2021010485 A1 WO 2021010485A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
vehicle
unit
gradation region
low gradation
Prior art date
Application number
PCT/JP2020/027943
Other languages
French (fr)
Japanese (ja)
Inventor
隆雄 村松
佳典 柴田
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2021533121A priority Critical patent/JP7442528B2/en
Publication of WO2021010485A1 publication Critical patent/WO2021010485A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/24Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments for lighting other areas than only the way ahead
    • B60Q1/249Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments for lighting other areas than only the way ahead for illuminating the field of view of a sensor or camera

Definitions

  • the present invention relates to a vehicle lamp system, a vehicle lamp control device, and a vehicle lamp control method, and more particularly to a vehicle lamp system used for an automobile or the like, a vehicle lamp control device, and a vehicle lamp control method.
  • Patent Document 1 proposes a technology that assists the driver's driving by irradiating the front of the vehicle with infrared rays to detect obstacles and pedestrians existing in front of the vehicle and irradiating the detected targets with visible light. It has been proposed (see, for example, Patent Document 1).
  • ADAS advanced driver-assistance systems
  • autonomous driving technology the situation around the vehicle is grasped by the camera, which is the eye of the machine, and vehicle control is executed according to the situation.
  • the above-mentioned visibility support using infrared rays is also effective for the eyes of machines in ADAS and automatic driving technology.
  • the present inventors have conducted diligent studies on visual field support using infrared rays, and found that there is room for improving the safety of vehicle driving with conventional visual field support.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a technique for enhancing the safety of vehicle driving.
  • one aspect of the present invention is a vehicle lamp system.
  • This vehicle lighting system is based on image information obtained from at least one of an infrared irradiation unit that irradiates the front of the vehicle with infrared rays, an infrared imaging unit that images the front of the vehicle, and a visible light imaging unit that images the front of the vehicle. It is provided with a low gradation region detection unit that detects a predetermined low gradation region, and an irradiation control unit that controls an infrared irradiation unit so as to irradiate infrared rays toward the low gradation region.
  • Another aspect of the present invention is a control device for a vehicle lamp.
  • This control device detects a predetermined low gradation region based on image information obtained from at least one of an infrared imaging unit that images the front of the vehicle and a visible light imaging unit that images the front of the vehicle. It is provided with a unit and an irradiation control unit that controls an infrared irradiation unit that irradiates infrared rays in front of the vehicle so as to irradiate infrared rays toward a low gradation region.
  • another aspect of the present invention is a method for controlling a vehicle lamp.
  • This control method detects a predetermined low gradation region based on image information obtained from at least one of an infrared imaging unit that images the front of the vehicle and a visible light imaging unit that images the front of the vehicle, and detects a low gradation region.
  • This includes controlling an infrared irradiation unit that irradiates infrared rays in front of the vehicle so as to irradiate infrared rays toward the vehicle.
  • the safety of vehicle driving can be enhanced.
  • FIG. 2A is a front view showing a schematic configuration of the light deflector.
  • FIG. 2B is a sectional view taken along the line AA of the light deflector shown in FIG. 2A. It is a figure which shows the state in front of the own vehicle schematically. It is a timing chart which shows the exposure timing of an infrared imaging part and the irradiation timing of an infrared irradiation part.
  • One aspect of the present invention is a vehicle lighting system.
  • This vehicle lighting system is based on image information obtained from at least one of an infrared irradiation unit that irradiates the front of the vehicle with infrared rays, an infrared imaging unit that images the front of the vehicle, and a visible light imaging unit that images the front of the vehicle. It is provided with a low gradation region detection unit that detects a predetermined low gradation region, and an irradiation control unit that controls an infrared irradiation unit so as to irradiate infrared rays toward the low gradation region.
  • the vehicle lighting system includes a daytime determination unit that determines that the surroundings of the own vehicle are daytime, and the low gradation region detection unit is a low gradation region based on image information captured in the daytime. May be detected.
  • the vehicle lighting system includes a visible light irradiation unit that irradiates visible light in front of the vehicle, and the low gradation region detection unit is imaged while the visible light irradiation unit is turned off. The low gradation region may be detected based on the image information.
  • the vehicle lighting system is based on an infrared imaging unit that images the front of the vehicle and image information obtained from the infrared imaging unit while the infrared irradiation unit is controlled by the irradiation control unit.
  • a target analysis unit that detects a predetermined target existing in the low gradation region may be provided.
  • the vehicle lighting system includes a visible light imaging unit that images the front of the vehicle, and the low gradation region detection unit is a lower floor based on image information obtained from the visible light imaging unit. The tuning area may be detected.
  • the vehicle lighting system includes an infrared imaging unit that images the front of the vehicle, and the low gradation region detection unit has a low gradation region based on image information obtained from the infrared imaging unit. May be detected.
  • the irradiation control unit may control the infrared irradiation unit so as to pulse infrared rays in synchronization with the exposure timing of the infrared imaging unit.
  • Another aspect of the present invention is a control device for a vehicle lamp.
  • This control device detects a predetermined low gradation region based on image information obtained from at least one of an infrared imaging unit that images the front of the vehicle and a visible light imaging unit that images the front of the vehicle. It is provided with a unit and an irradiation control unit that controls an infrared irradiation unit that irradiates infrared rays in front of the vehicle so as to irradiate infrared rays toward a low gradation region.
  • another aspect of the present invention is a method for controlling a vehicle lamp.
  • a predetermined low gradation region is detected based on image information obtained from at least one of an infrared imaging unit that images the front of the vehicle and a visible light imaging unit that images the front of the vehicle, and the low gradation region is detected. It includes controlling an infrared irradiation unit that irradiates infrared rays in front of the vehicle so as to irradiate infrared rays toward the vehicle.
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle lighting system according to an embodiment.
  • a part of the components of the vehicle lighting system 1 is drawn as a functional block.
  • These functional blocks are realized by elements and circuits such as a computer CPU and memory as a hardware configuration, and are realized by a computer program or the like as a software configuration. Those skilled in the art will understand that these functional blocks can be realized in various ways by combining hardware and software.
  • the vehicle lighting system 1 is applied to a vehicle headlight device having a pair of headlight units arranged on the left and right in front of the vehicle. Since the pair of headlight units have substantially the same configuration except that they have a symmetrical structure, FIG. 1 shows the structure of one headlight unit as the vehicle lighting fixture 2.
  • the vehicle lighting equipment 2 included in the vehicle lighting equipment system 1 includes a lamp body 4 having an opening on the front side of the vehicle, and a translucent cover 6 attached so as to cover the opening of the lamp body 4.
  • the translucent cover 6 is made of a translucent resin, glass, or the like.
  • an infrared irradiation unit 10 a visible light irradiation unit 12, an infrared imaging unit 14, a visible light imaging unit 16, and a control device 18 are included. , Is housed.
  • the infrared irradiation unit 10 is a device that irradiates the front of the vehicle with infrared IR.
  • the infrared irradiation unit 10 of the present embodiment can independently adjust the illuminance (intensity) of the infrared IR irradiating each of the plurality of individual regions R (see FIG. 3) arranged in front of the vehicle, and the infrared rays having a desired shape.
  • a pattern can be formed in front of the vehicle.
  • the infrared irradiation unit 10 includes an infrared light source 22, a reflection optical member 24, a light deflection device 26, and a projection optical member 28. Each part is attached to the lamp body 4 by a support mechanism (not shown).
  • a semiconductor light emitting element such as an LED (Light emission diode), LD (Laser diode), or EL (Electroluminescence) element, a light bulb, an incandescent lamp (halogen lamp), a discharge lamp (discharge lamp), or the like is used. Can be done.
  • the infrared light source 22 emits near-infrared rays or mid-infrared rays having a wavelength of, for example, 0.4 ⁇ m to 4 ⁇ m.
  • the reflective optical member 24 is configured to guide the infrared IR emitted from the infrared light source 22 to the reflecting surface of the light deflector 26.
  • the reflecting optical member 24 is composed of a reflecting mirror whose inner surface is a predetermined reflecting surface.
  • the reflection optical member 24 may be a solid light guide or the like. Further, if the infrared IR emitted from the infrared light source 22 can be directly guided to the light deflector 26, the reflection optical member 24 may not be provided.
  • the light deflection device 26 is arranged on the optical axis of the projection optical member 28, and is configured to selectively reflect the infrared IR emitted from the infrared light source 22 to the projection optical member 28.
  • the light deflector 26 is composed of, for example, a DMD (Digital Mirror Device). That is, the light deflector 26 is an array (matrix) of a plurality of micromirrors. By controlling the angles of the reflecting surfaces of these plurality of micromirrors, the reflection direction of the infrared IR can be selectively changed.
  • the light deflector 26 reflects a part of the infrared IR emitted from the infrared light source 22 toward the projection optical member 28, and the other infrared IR is not effectively used by the projection optical member 28. Can be directed and reflected.
  • the direction that is not effectively used can be regarded as, for example, a direction that is incident on the projection optical member 28 but hardly contributes to the formation of the infrared pattern, or a direction toward an infrared absorbing member (shielding member) (not shown). ..
  • FIG. 2A is a front view showing a schematic configuration of the light deflector.
  • FIG. 2B is a sectional view taken along the line AA of the light deflector shown in FIG. 2A.
  • the light deflector 26 includes a micromirror array 32 in which a plurality of minute mirror elements 30 are arranged in a matrix, and a right side of the light deflector 26 shown on the front side of the reflection surface 30a of the mirror element 30 (FIG. 2B). ), And a transparent cover member 34.
  • the cover member 34 is made of, for example, glass or plastic.
  • the mirror element 30 is substantially square and has a rotation shaft 30b extending in the horizontal direction and substantially equally dividing the mirror element 30.
  • Each mirror element 30 of the micromirror array 32 reflects the infrared IR toward the projection optical member 28 so as to be used as a part of a desired infrared pattern (shown by a solid line in FIG. 2B).
  • the position) and the second reflection position (the position indicated by the dotted line in FIG. 2B) that reflects the infrared IR so as not to be effectively used can be switched.
  • Each mirror element 30 rotates around the rotation shaft 30b and is individually switched between the first reflection position and the second reflection position.
  • Each mirror element 30 takes a first reflection position when it is on and a second reflection position when it is off.
  • FIG. 3 is a diagram schematically showing the state in front of the own vehicle.
  • the infrared irradiation unit 10 has a plurality of mirror elements 30 as individual irradiation units capable of independently irradiating infrared IR toward the front of the lamp.
  • the infrared irradiation unit 10 can irradiate a plurality of individual regions R arranged in front of the vehicle by the mirror element 30 with infrared IR.
  • Each individual region R is an region corresponding to a set of one pixel or a plurality of pixels of the infrared imaging unit 14.
  • each individual region R and each mirror element 30 are associated with each other on a one-to-one basis.
  • a part of the mirror element 30 is thinned out for convenience of illustration.
  • the number of the mirror element 30 and the individual region R is not particularly limited.
  • the resolution of the micromirror array 32 (in other words, the number of mirror elements 30 and individual regions R) is 10 to 300,000 pixels.
  • the time required for the infrared irradiation unit 10 to form one infrared pattern is, for example, 0.1 to 5 ms. That is, the infrared irradiation unit 10 can change the infrared pattern every 0.1 to 5 ms.
  • the projection optical member 28 is composed of, for example, a free-curved lens whose front surface and rear surface have a free curved shape.
  • the projection optical member 28 projects a light source image formed on the rear focal plane including the rear focal point in front of the lamp as an inverted image.
  • the projection optical member 28 is arranged so that its rear focus is located on the optical axis of the vehicle lamp 2 and near the reflection surface of the micromirror array 32.
  • the projection optical member 28 may be a reflector.
  • the infrared IR emitted from the infrared light source 22 is reflected by the reflecting optical member 24 and irradiated to the micromirror array 32 of the light deflecting device 26.
  • the light deflector 26 reflects infrared IR toward the projection optical member 28 by a predetermined mirror element 30 at the first reflection position.
  • the reflected infrared IR passes through the projection optical member 28, travels in front of the lamp, and irradiates each individual region R corresponding to each mirror element 30.
  • an infrared pattern having a predetermined shape formed by gathering a plurality of partially irradiated areas is formed in front of the lamp.
  • the visible light irradiation unit 12 is a device that irradiates visible light VL in front of the vehicle, and is a lamp unit that functions as a headlight that forms, for example, a low beam or a high beam.
  • the visible light irradiation unit 12 of the present embodiment has the same structure as the infrared irradiation unit 10. That is, the visible light irradiation unit 12 includes a visible light source, a reflection optical member 24, a light deflection device 26, and a projection optical member 28.
  • the visible light irradiation unit 12 can independently adjust the illuminance (intensity) of the visible light VL that irradiates each of the plurality of individual regions R, and can form a visible light pattern having a desired shape in front of the vehicle. it can.
  • the infrared imaging unit 14 is a device that images the front of the vehicle.
  • the infrared imaging unit 14 is composed of an infrared camera or the like having sensitivity to the wavelength of the infrared IR irradiated by the infrared irradiation unit 10.
  • the infrared imaging unit 14 has a frame rate of, for example, 5 fps or more and 10,000 fps or less (0.1 to 200 ms per frame), and a resolution of, for example, 300,000 pixels or more and less than 5 million pixels.
  • the infrared imaging unit 14 images all the individual regions R.
  • the visible light imaging unit 16 is a device that images the front of the vehicle.
  • the visible light imaging unit 16 is composed of a visible light camera or the like having sensitivity to the wavelength of visible light VL emitted by the visible light irradiation unit 12.
  • the visible light imaging unit 16 has a frame rate of, for example, 200 fps or more and 10,000 fps or less (0.1 to 5 ms per frame), and a resolution of, for example, 5 million pixels or more.
  • the visible light imaging unit 16 includes a high-speed camera having a relatively high frame rate of, for example, 200 fps or more and 10,000 fps or less, and a relatively small resolution of, for example, 300,000 pixels or more and less than 5 million pixels, and a relatively high frame rate of, for example, 30 fps or more and 120 fps or less. It may be configured in combination with a low frame rate and a low speed camera having a relatively large resolution of, for example, 5 million pixels or more.
  • the visible light imaging unit 16 images all the individual regions R.
  • the control device 18 includes a low gradation region detection unit 36, an irradiation control unit 38, a target analysis unit 40, and a daytime determination unit 42. Each part can operate by executing a program held in a memory by an integrated circuit constituting itself.
  • the image information generated by the visible light imaging unit 16 is sent to the low gradation region detection unit 36.
  • the low gradation region detection unit 36 detects a predetermined low gradation region 44 (see FIG. 3) based on the image information obtained from the visible light imaging unit 16.
  • the low gradation region 44 is, for example, a shaded place formed by blocking the sunlight SL by a building on the side of the road in the daytime.
  • the low gradation region detection unit 36 holds in advance a first threshold value regarding the gradation (luminance) of visible light VL, and a region having a gradation lower than the first threshold value in visible light image information. It is detected as a low gradation region 44. Further, the low gradation region detection unit 36 further holds a second threshold value regarding the size (area) of the low gradation region 44, and the magnitude of the region whose brightness is lower than the first threshold value is larger. Those above the second threshold value may be detected as the low gradation region 44.
  • the detection result of the low gradation region detection unit 36 that is, the signal indicating the position information of the low gradation region 44 and the like is transmitted to the irradiation control unit 38.
  • the low gradation region detection unit 36 also acquires image information from the infrared imaging unit 14, and lowers the region where the gradation (luminance) is less than the threshold value in each of the visible light image information and the infrared image information.
  • the tentative determination may be made as the gradation region 44, and the tentative determination results may be integrated to detect the region determined to be the low gradation region 44 in both as the low gradation region 44.
  • the low gradation region detection unit 36 may synthesize the infrared image information and the visible light image information by known image processing, and detect the low gradation region 44 in the composite image. By these controls, the detection accuracy of the low gradation region 44 can be improved.
  • the low gradation region detection unit 36 holds in advance a learning model that has been machine-learned to estimate an object that can create a low gradation region 44 from the shape of an object around the vehicle, and uses this learning model as the learning model.
  • the low gradation region 44 may be detected by inputting image information.
  • This learning model can be generated using a known machine learning algorithm. That is, the low gradation region detection unit 36 may detect the low gradation region 44 by using AI (Artificial Intelligence) technology such as deep learning.
  • AI Artificial Intelligence
  • the irradiation control unit 38 controls the infrared irradiation unit 10 so as to irradiate the infrared IR toward the low gradation region 44.
  • the irradiation control unit 38 has an infrared pattern in which the intensity of the infrared IR irradiating the individual region R overlapping the low gradation region 44 is higher than the intensity of the infrared IR irradiating the other individual region R. To determine.
  • this infrared pattern is an infrared pattern in which the individual region R overlapping the low gradation region 44 is irradiated with infrared IR of a predetermined intensity, and the other individual regions R are not irradiated with infrared IR (that is, shielded from light). is there.
  • the irradiation control unit 38 controls the infrared irradiation unit 10 so as to form the determined infrared pattern in front of the own vehicle. Specifically, the irradiation control unit 38 controls turning on and off the infrared light source 22 and switching on / off of each mirror element 30. The irradiation control unit 38 adjusts the on-time ratio (width and density) of each mirror element 30 based on the intensity value of the infrared IR irradiating each individual region R. As a result, the infrared irradiation unit 10 generates an infrared beam having an intensity distribution corresponding to the determined infrared pattern.
  • the irradiation control unit 38 may irradiate each individual region R overlapping the low gradation region 44 with infrared IR having the same intensity, or infrared rays having different intensities depending on the gradation of each individual region R in the image information. You may irradiate IR.
  • the irradiation control unit 38 relatively weakens the intensity of the infrared IR that irradiates the individual region R having a relatively high gradation in the low gradation region 44, and irradiates the individual region R having a relatively low gradation.
  • the intensity of the infrared IR may be relatively increased.
  • the infrared IR of the first intensity is applied to the individual region R which is the first gradation, and the individual region R which is the second gradation lower than the first gradation is the first.
  • a second intensity infrared IR stronger than the first intensity is irradiated.
  • FIG. 4 is a timing chart showing the exposure timing of the infrared imaging unit and the irradiation timing of the infrared irradiation unit.
  • the irradiation control unit 38 of the present embodiment controls the infrared irradiation unit 10 so as to pulse-irradiate the infrared IR in synchronization with the exposure timing (imaging timing) of the infrared imaging unit 14.
  • the irradiation control unit 38 controls the infrared irradiation unit 10 so as to irradiate the infrared IR for a time shorter than one exposure time when the infrared imaging unit 14 is exposed.
  • the irradiation control unit 38 holds in advance infrared IR irradiation timing information determined based on the exposure timing of the infrared imaging unit 14, and controls the infrared irradiation unit 10 based on this information.
  • the target analysis unit 40 detects a predetermined target 46 existing in the low gradation region 44 based on the image information obtained from the infrared imaging unit 14 while the infrared irradiation unit 10 is controlled by the irradiation control unit 38. To do. Since the low-gradation region 44 is irradiated with the infrared IR, the infrared imaging unit 14 can image the low-gradation region 44 with high accuracy. Therefore, the target analysis unit 40 can more reliably detect the target 46 existing in the low gradation region 44 in the obtained infrared image information.
  • the low gradation region 44 can be formed by a covered bus stop or the like provided on the side of the road. In this case, it is conceivable that a traffic participant (target 46) latent in the low gradation region 44 may jump out to the road side. Therefore, it is desirable to reliably recognize the target 46 in the low gradation region 44.
  • the target analysis unit 40 transmits a signal indicating target information including the position of the detected target 46 to the irradiation control unit 38.
  • the irradiation control unit 38 sends this target information to the operation control unit 48 provided in the vehicle.
  • the operation control unit 48 executes a predetermined operation control based on the received target information in ADAS or automatic operation.
  • the target information may be sent directly from the target analysis unit 40 to the operation control unit 48. Further, the target information may be sent to a display unit (not shown) provided on the vehicle, and the driver may be alerted by displaying the information on the target 46 on the display unit.
  • the target analysis unit 40 may execute the detection process of the target 46 also in the region other than the low gradation region 44.
  • the target analysis unit 40 detects the target 46 in front of the vehicle based on the image information obtained from at least one of the infrared imaging unit 14 and the visible light imaging unit 16.
  • Examples of the target 46 to be detected include oncoming vehicles, preceding vehicles, pedestrians, obstacles that hinder the running of the own vehicle, road signs, road markings, road shapes, and the like.
  • the target analysis unit 40 can detect the target 46 by using a known method including algorithm recognition, deep learning, and the like. For example, when the target 46 is an oncoming vehicle, the target analysis unit 40 holds in advance feature points indicating the oncoming vehicle.
  • the "feature point indicating an oncoming vehicle" is, for example, a light point having a predetermined luminous intensity or higher that appears in the estimated existence region of the headlight of the oncoming vehicle. In a situation where the headlights are not illuminated, such as in the daytime, the contour shape of the oncoming vehicle is a feature. Then, the target analysis unit 40 recognizes the position of the oncoming vehicle when the image information includes data including feature points indicating the oncoming vehicle.
  • the target 46 other than the oncoming vehicle can be detected by the same processing.
  • the low gradation region detection unit 36 of the present embodiment detects the low gradation region 44 based on the image information captured in the daytime. That is, the control of irradiating the low gradation region 44 with the infrared IR is executed in the daytime. In the daytime, visible light and infrared rays contained in the solar SL are radiated around the own vehicle. As a result, there is a high possibility that the imaging contrast required for target recognition by the infrared imaging unit 14 and the visible light imaging unit 16 can be secured. Therefore, in general, infrared irradiation from the infrared irradiation unit 10 and visible light irradiation from the visible light irradiation unit 12 are not performed.
  • the control of irradiating the low gradation region 44 with infrared IR is executed in the daytime.
  • the low gradation region detection unit 36 indicates that the current state is daytime and that the image information acquired from the image pickup unit is captured in the daytime. Can be judged.
  • the daytime determination unit 42 determines that the surroundings of the own vehicle are daytime.
  • the daytime determination unit 42 can determine that it is daytime by detecting the current time with, for example, a timer (not shown).
  • the time zone determined to be daytime can be appropriately set based on experiments and simulations by the designer.
  • the daytime may include so-called dusk. Further, the time zone determined to be daytime may be changed according to the season.
  • the daytime determination unit 42 can determine that it is daytime based on, for example, the illuminance around the vehicle (environmental illuminance).
  • the environmental illuminance determined to be daytime can be appropriately set based on experiments and simulations by the designer.
  • the environmental illuminance can be obtained from the illuminance sensor 50 provided in the vehicle.
  • the environmental illuminance is the gradation of each individual region R in the image information obtained from the infrared imaging unit 14 or the visible light imaging unit 16 (for example, the average value of the gradations of all the individual regions R or the individual regions belonging to a predetermined upper region). It can be derived based on the average value of the gradation of R, etc.).
  • the illuminance sensor 50 may be provided in the light chamber 8.
  • the low gradation region detection unit 36 may detect the low gradation region 44 based on the image information captured while the visible light irradiation unit 12 is turned off. In the daytime, it is highly possible that the visible light irradiation unit 12 is turned off. Therefore, the lighting state of the visible light irradiation unit 12 can be used as an index of whether or not it is daytime. Thereby, it is possible to more easily realize the infrared irradiation control for the low gradation region 44 in the daytime.
  • the low gradation region detection unit 36 receives, for example, a signal instructing the visible light irradiation unit 12 to turn off from the irradiation control unit 38, or sets the signal instructing the visible light irradiation unit 12 to turn on in a non-received state. With this, it is possible to detect that the visible light irradiation unit 12 is turned off. Although the extinguishing of the visible light irradiation unit 12 is described here as an index indicating that it is daytime, it is low if the visible light irradiation unit 12 is extinguished regardless of whether or not it is daytime. Infrared irradiation control for the gradation region 44 may be executed.
  • the infrared irradiation control for the low gradation region 44 is not limited to being executed in the daytime.
  • the low gradation region 44 may occur even in a situation where lighting such as a street lamp is lit at night. Therefore, even when the control is executed at night, the effect that the target 46 existing in the low gradation region 44 can be detected quickly and surely can be obtained.
  • the irradiation control unit 38 may control the visible light irradiation unit 12 so as to irradiate the visible light VL with respect to the low gradation region 44 or the target 46 existing in the low gradation region 44. .. As a result, the visibility of the target 46 in the low gradation region 44 can be further improved. Further, the irradiation control unit 38 sets the illuminance value of the visible light VL to irradiate each individual region R based on the detection result of the target 46 by the target analysis unit 40, and forms a visible light pattern in front of the vehicle. May be determined.
  • the target 46 is an oncoming vehicle
  • "0" is set as a specific illuminance value for the individual region R overlapping the oncoming vehicle
  • a predetermined illuminance value is set for the other individual region R.
  • the individual region R overlapping the oncoming vehicle is shielded from light, and the visible light pattern in which the other individual region R is irradiated with visible light VL having a predetermined illuminance is determined.
  • the irradiation control unit 38 controls the visible light irradiation unit 12 so as to form the determined visible light pattern in front of the own vehicle.
  • the infrared irradiation unit 10 that irradiates the front of the vehicle with infrared IR and the image information obtained from the visible light imaging unit 16 or the visible light imaging unit 16
  • a low gradation region detection unit 36 that detects a predetermined low gradation region 44 based on image information obtained from the 16 and the infrared imaging unit 14, and an infrared irradiation unit that irradiates infrared IR toward the low gradation region 44.
  • An irradiation control unit 38 for controlling 10 is provided.
  • ADAS an automatic driving system, and visibility support for the driver of the own vehicle are realized, and it becomes possible to detect the target 46 latent in the low gradation region 44 more quickly and reliably. Therefore, the safety of vehicle driving and, by extension, the safety of road traffic can be improved. Further, by spot-irradiating the low-gradation region 44 with infrared IR, power consumption can be reduced as compared with the case where all individual regions R in front of the vehicle are irradiated with infrared IR. Further, since the infrared IR is irradiated, when the target 46 is a person, it is possible to avoid giving glare to the person.
  • the vehicle lighting system 1 of the present embodiment includes a daytime determination unit 42 that determines that the surroundings of the own vehicle are daytime. Then, the low gradation region detection unit 36 detects the low gradation region 44 based on the image information captured in the daytime. As a result, it is possible to realize the visibility support in the daytime when the ADAS, the automatic driving system, and the driver's visibility are conventionally relied on by the solar SL.
  • the vehicle lighting system 1 of the present embodiment includes a visible light irradiation unit 12 that irradiates the visible light VL in front of the own vehicle. Then, the low gradation region detection unit 36 detects the low gradation region 44 based on the image information captured while the visible light irradiation unit 12 is turned off. Thereby, the execution timing of the infrared irradiation control for the low gradation region 44 can be easily determined.
  • the vehicle lamp system 1 of the present embodiment includes an infrared imaging unit 14 and a target analysis unit 40.
  • the target analysis unit 40 is based on the image information obtained from the infrared imaging unit 14 in a state where the infrared irradiation unit 10 is controlled by the irradiation control unit 38, that is, in a state where the low gradation region 44 is irradiated with infrared IR.
  • the target 46 existing in the low gradation region 44 is detected.
  • the low gradation region detection unit 36 of the present embodiment detects the low gradation region 44 based on the image information obtained from the visible light imaging unit 16.
  • the presence or absence of the low gradation region 44 changes depending on the switching between the infrared IR irradiation and the non-irradiation from the infrared irradiation unit 10. That is, under the control of irradiating the low gradation region 44 with the infrared IR, the low gradation region 44 disappears due to the irradiation of the infrared IR and the low gradation region 44 appears due to the non-irradiation of the infrared IR in the infrared image. And are repeated alternately.
  • the low gradation region detection unit 36 detects the low gradation region 44 using the infrared image, the detection result of the low gradation region 44 changes repeatedly. Therefore, the infrared irradiation control for the low gradation region 44 tends to be unstable. Further, the intensity of the infrared IR irradiated to the low gradation region 44 is averaged and halved, and there is a possibility that the visibility of the low gradation region 44 cannot be sufficiently improved. Alternatively, it may be necessary to further increase the intensity of the infrared IR in order to ensure sufficient visibility.
  • the low gradation region 44 can be detected and the infrared IR irradiation can be performed. Can be executed stably. In addition, the visibility of the low gradation region 44 can be improved more reliably.
  • the low gradation region detection unit 36 may detect the low gradation region 44 using only the image information obtained from the infrared imaging unit 14. In this case, infrared irradiation control for the low gradation region 44 can be realized without using the visible light imaging unit 16. As a result, the structure of the vehicle lamp system 1 can be simplified. That is, the low gradation region detection unit 36 included in the vehicle lighting system 1 of the present embodiment has a predetermined low gradation region based on image information obtained from at least one of the infrared imaging unit 14 and the visible light imaging unit 16. 44 can be detected.
  • the irradiation control unit 38 of the present embodiment controls the infrared irradiation unit 10 so as to pulse-irradiate the infrared IR in synchronization with the exposure timing of the infrared imaging unit 14.
  • the irradiation control unit 38 of the present embodiment controls the infrared irradiation unit 10 so as to pulse-irradiate the infrared IR in synchronization with the exposure timing of the infrared imaging unit 14.
  • the infrared imaging unit 14, the visible light imaging unit 16, the low gradation region detection unit 36, the irradiation control unit 38, the target analysis unit 40, and the daytime determination unit 42 are provided in the light room 8.
  • Each may be provided outside the light room 8 as appropriate.
  • the visible light imaging unit 16 can use an existing camera mounted in the vehicle interior. It is desirable that the infrared irradiation unit 10, the visible light irradiation unit 12, the infrared imaging unit 14, and the visible light imaging unit 16 have the same angle of view.
  • the infrared irradiation unit 10 may include a scan optical system that scans the front of the vehicle with the light source light, and an LED array in which LEDs corresponding to each individual region R are arranged. .. Further, the visible light irradiation unit 12 may not have a lamp structure capable of independently adjusting the illuminance of the visible light VL to irradiate each individual region R.
  • the invention according to the above-described embodiment may be specified by the items described below.
  • “Item 1] Low that detects a predetermined low gradation region (44) based on image information obtained from at least one of an infrared imaging unit (14) that images the front of the vehicle and a visible light imaging unit (16) that images the front of the vehicle.
  • Gradation area detection unit (36) and An irradiation control unit (38) that controls an infrared irradiation unit (10) that irradiates infrared rays (IR) in front of the vehicle so as to irradiate infrared rays (IR) toward a low gradation region (44).
  • a predetermined low gradation region (44) is detected based on image information obtained from at least one of an infrared imaging unit (14) that images the front of the vehicle and a visible light imaging unit (16) that images the front of the vehicle. Controlling the infrared irradiation unit (10) that irradiates infrared rays (IR) in front of the vehicle so as to irradiate infrared rays (IR) toward the low gradation region (44).
  • a control method for a vehicle lamp (2) including.
  • the present invention can be used for a vehicle lamp system, a vehicle lamp control device, and a vehicle lamp control method.
  • 1 vehicle lighting system 2 vehicle lighting, 10 infrared irradiation unit, 12 visible light irradiation unit, 14 infrared imaging unit, 16 visible light imaging unit, 18 control device, 36 low gradation area detection unit, 38 irradiation control unit, 40 target analysis unit, 42 daytime judgment unit, 44 low gradation area, 46 target.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

A vehicle light-fixture system (1) comprises: an infrared projecting unit (10) that projects infrared (IR) to the area in front of the host vehicle; a low-gradation region detection unit (36) that detects a prescribed low-gradation region on the basis of image information obtained from an infrared imaging unit (14) that images the area in front of the host vehicle and/or a visible light imaging unit (16) that images the area in front of the host vehicle; and a projection control unit (38) that controls the infrared projection unit (10) so that the infrared (IR) is projected toward the low-gradation region.

Description

車両用灯具システム、車両用灯具の制御装置および車両用灯具の制御方法Vehicle lighting system, vehicle lighting control device and vehicle lighting control method
 本発明は、車両用灯具システム、車両用灯具の制御装置および車両用灯具の制御方法に関し、特に自動車などに用いられる車両用灯具システム、車両用灯具の制御装置および車両用灯具の制御方法に関する。 The present invention relates to a vehicle lamp system, a vehicle lamp control device, and a vehicle lamp control method, and more particularly to a vehicle lamp system used for an automobile or the like, a vehicle lamp control device, and a vehicle lamp control method.
 従来、赤外線を車両前方に照射して自車前方に存在する障害物や歩行者等の物標を検知し、検知された物標に可視光を照射することでドライバーの運転を支援する技術が提案されている(例えば、特許文献1参照)。 Conventionally, there is a technology that assists the driver's driving by irradiating the front of the vehicle with infrared rays to detect obstacles and pedestrians existing in front of the vehicle and irradiating the detected targets with visible light. It has been proposed (see, for example, Patent Document 1).
特開2009-18726号公報JP-A-2009-18726
 近年、ドライバーの運転操作を支援するさらなる技術として、先進運転支援システム(ADAS:Advanced driver-assistance systems)や自動運転技術の研究開発が進められている。ADASや自動運転技術では、機械の目であるカメラによって自車周囲の状況を把握して、状況に応じた車両制御を実行する。上述した赤外線を用いた視界支援は、ADASや自動運転技術における機械の目に対しても有効である。このような状況の中、本発明者らは赤外線を用いた視界支援について鋭意検討を重ねた結果、従来の視界支援には車両運転の安全性を高める余地があることを見出した。 In recent years, research and development of advanced driver-assistance systems (ADAS) and autonomous driving technology have been promoted as further technologies to support the driving operation of drivers. In ADAS and automatic driving technology, the situation around the vehicle is grasped by the camera, which is the eye of the machine, and vehicle control is executed according to the situation. The above-mentioned visibility support using infrared rays is also effective for the eyes of machines in ADAS and automatic driving technology. Under such circumstances, the present inventors have conducted diligent studies on visual field support using infrared rays, and found that there is room for improving the safety of vehicle driving with conventional visual field support.
 本発明はこうした状況に鑑みてなされたものであり、その目的は、車両運転の安全性を高める技術を提供することにある。 The present invention has been made in view of such a situation, and an object of the present invention is to provide a technique for enhancing the safety of vehicle driving.
 上記課題を解決するために、本発明のある態様は車両用灯具システムである。この車両用灯具システムは、自車前方に赤外線を照射する赤外線照射部と、自車前方を撮像する赤外線撮像部および自車前方を撮像する可視光撮像部の少なくとも一方から得られる画像情報に基づいて所定の低階調領域を検出する低階調領域検出部と、低階調領域に向けて赤外線を照射するよう赤外線照射部を制御する照射制御部と、を備える。 In order to solve the above problems, one aspect of the present invention is a vehicle lamp system. This vehicle lighting system is based on image information obtained from at least one of an infrared irradiation unit that irradiates the front of the vehicle with infrared rays, an infrared imaging unit that images the front of the vehicle, and a visible light imaging unit that images the front of the vehicle. It is provided with a low gradation region detection unit that detects a predetermined low gradation region, and an irradiation control unit that controls an infrared irradiation unit so as to irradiate infrared rays toward the low gradation region.
 本発明の他の態様は、車両用灯具の制御装置である。この制御装置は、自車前方を撮像する赤外線撮像部および自車前方を撮像する可視光撮像部の少なくとも一方から得られる画像情報に基づいて所定の低階調領域を検出する低階調領域検出部と、低階調領域に向けて赤外線を照射するよう、自車前方に赤外線を照射する赤外線照射部を制御する照射制御部と、を備える。 Another aspect of the present invention is a control device for a vehicle lamp. This control device detects a predetermined low gradation region based on image information obtained from at least one of an infrared imaging unit that images the front of the vehicle and a visible light imaging unit that images the front of the vehicle. It is provided with a unit and an irradiation control unit that controls an infrared irradiation unit that irradiates infrared rays in front of the vehicle so as to irradiate infrared rays toward a low gradation region.
 また、本発明の他の態様は、車両用灯具の制御方法である。この制御方法は、自車前方を撮像する赤外線撮像部および自車前方を撮像する可視光撮像部の少なくとも一方から得られる画像情報に基づいて所定の低階調領域を検出し、低階調領域に向けて赤外線を照射するよう、自車前方に赤外線を照射する赤外線照射部を制御すること、を含む。 Further, another aspect of the present invention is a method for controlling a vehicle lamp. This control method detects a predetermined low gradation region based on image information obtained from at least one of an infrared imaging unit that images the front of the vehicle and a visible light imaging unit that images the front of the vehicle, and detects a low gradation region. This includes controlling an infrared irradiation unit that irradiates infrared rays in front of the vehicle so as to irradiate infrared rays toward the vehicle.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム等の間で変換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above components and the conversion of the expression of the present invention between methods, devices, systems, etc. are also effective as aspects of the present invention.
 本発明によれば、車両運転の安全性を高めることができる。 According to the present invention, the safety of vehicle driving can be enhanced.
実施の形態に係る車両用灯具システムの概略構成を示す図である。It is a figure which shows the schematic structure of the vehicle lamp system which concerns on embodiment. 図2(A)は、光偏向装置の概略構成を示す正面図である。図2(B)は、図2(A)に示す光偏向装置のA-A断面図である。FIG. 2A is a front view showing a schematic configuration of the light deflector. FIG. 2B is a sectional view taken along the line AA of the light deflector shown in FIG. 2A. 自車前方の様子を模式的に示す図である。It is a figure which shows the state in front of the own vehicle schematically. 赤外線撮像部の露光タイミングと赤外線照射部の照射タイミングとを示すタイミングチャートである。It is a timing chart which shows the exposure timing of an infrared imaging part and the irradiation timing of an infrared irradiation part.
 本発明のある態様は車両用灯具システムである。この車両用灯具システムは、自車前方に赤外線を照射する赤外線照射部と、自車前方を撮像する赤外線撮像部および自車前方を撮像する可視光撮像部の少なくとも一方から得られる画像情報に基づいて所定の低階調領域を検出する低階調領域検出部と、低階調領域に向けて赤外線を照射するよう赤外線照射部を制御する照射制御部と、を備える。 One aspect of the present invention is a vehicle lighting system. This vehicle lighting system is based on image information obtained from at least one of an infrared irradiation unit that irradiates the front of the vehicle with infrared rays, an infrared imaging unit that images the front of the vehicle, and a visible light imaging unit that images the front of the vehicle. It is provided with a low gradation region detection unit that detects a predetermined low gradation region, and an irradiation control unit that controls an infrared irradiation unit so as to irradiate infrared rays toward the low gradation region.
 上記態様において、車両用灯具システムは、自車両の周囲が昼間であることを判定する昼間判定部を備え、低階調領域検出部は、昼間に撮像される画像情報に基づいて低階調領域を検出してもよい。また、上記いずれかの態様において、車両用灯具システムは、自車前方に可視光を照射する可視光照射部を備え、低階調領域検出部は、可視光照射部の消灯中に撮像される画像情報に基づいて低階調領域を検出してもよい。また、上記いずれかの態様において、車両用灯具システムは、自車前方を撮像する赤外線撮像部と、照射制御部により赤外線照射部が制御された状態で赤外線撮像部から得られる画像情報に基づいて、低階調領域に存在する所定の物標を検出する物標解析部と、を備えてもよい。また、上記いずれかの態様において、車両用灯具システムは、自車前方を撮像する可視光撮像部を備え、低階調領域検出部は、可視光撮像部から得られる画像情報に基づいて低階調領域を検出してもよい。また、上記いずれかの態様において、車両用灯具システムは、自車前方を撮像する赤外線撮像部を備え、低階調領域検出部は、赤外線撮像部から得られる画像情報に基づいて低階調領域を検出してもよい。また、上記いずれかの態様において、照射制御部は、赤外線撮像部の露光タイミングと同期して赤外線をパルス照射するよう赤外線照射部を制御してもよい。 In the above aspect, the vehicle lighting system includes a daytime determination unit that determines that the surroundings of the own vehicle are daytime, and the low gradation region detection unit is a low gradation region based on image information captured in the daytime. May be detected. Further, in any of the above embodiments, the vehicle lighting system includes a visible light irradiation unit that irradiates visible light in front of the vehicle, and the low gradation region detection unit is imaged while the visible light irradiation unit is turned off. The low gradation region may be detected based on the image information. Further, in any of the above embodiments, the vehicle lighting system is based on an infrared imaging unit that images the front of the vehicle and image information obtained from the infrared imaging unit while the infrared irradiation unit is controlled by the irradiation control unit. , A target analysis unit that detects a predetermined target existing in the low gradation region may be provided. Further, in any of the above embodiments, the vehicle lighting system includes a visible light imaging unit that images the front of the vehicle, and the low gradation region detection unit is a lower floor based on image information obtained from the visible light imaging unit. The tuning area may be detected. Further, in any of the above embodiments, the vehicle lighting system includes an infrared imaging unit that images the front of the vehicle, and the low gradation region detection unit has a low gradation region based on image information obtained from the infrared imaging unit. May be detected. Further, in any of the above embodiments, the irradiation control unit may control the infrared irradiation unit so as to pulse infrared rays in synchronization with the exposure timing of the infrared imaging unit.
 本発明の他の態様は、車両用灯具の制御装置である。この制御装置は、自車前方を撮像する赤外線撮像部および自車前方を撮像する可視光撮像部の少なくとも一方から得られる画像情報に基づいて所定の低階調領域を検出する低階調領域検出部と、低階調領域に向けて赤外線を照射するよう、自車前方に赤外線を照射する赤外線照射部を制御する照射制御部と、を備える。 Another aspect of the present invention is a control device for a vehicle lamp. This control device detects a predetermined low gradation region based on image information obtained from at least one of an infrared imaging unit that images the front of the vehicle and a visible light imaging unit that images the front of the vehicle. It is provided with a unit and an irradiation control unit that controls an infrared irradiation unit that irradiates infrared rays in front of the vehicle so as to irradiate infrared rays toward a low gradation region.
 また、本発明の他の態様は、車両用灯具の制御方法である。この制御方法は、自車前方を撮像する赤外線撮像部および自車前方を撮像する可視光撮像部の少なくとも一方から得られる画像情報に基づいて所定の低階調領域を検出し、低階調領域に向けて赤外線を照射するよう、自車前方に赤外線を照射する赤外線照射部を制御すること、を含む。 Further, another aspect of the present invention is a method for controlling a vehicle lamp. In this control method, a predetermined low gradation region is detected based on image information obtained from at least one of an infrared imaging unit that images the front of the vehicle and a visible light imaging unit that images the front of the vehicle, and the low gradation region is detected. It includes controlling an infrared irradiation unit that irradiates infrared rays in front of the vehicle so as to irradiate infrared rays toward the vehicle.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、特に言及がない限りこの用語はいかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。 Hereinafter, the present invention will be described based on a preferred embodiment with reference to the drawings. The embodiments are not limited to the invention, but are exemplary, and all the features and combinations thereof described in the embodiments are not necessarily essential to the invention. The same or equivalent components, members, and processes shown in the drawings shall be designated by the same reference numerals, and redundant description will be omitted as appropriate. In addition, the scale and shape of each part shown in each figure are set for convenience in order to facilitate explanation, and are not limitedly interpreted unless otherwise specified. In addition, when terms such as "first" and "second" are used in the present specification or claims, these terms do not represent any order or importance unless otherwise specified, and have a certain structure. It is for distinguishing between and other configurations. In addition, some of the members that are not important for explaining the embodiment in each drawing are omitted and displayed.
 図1は、実施の形態に係る車両用灯具システムの概略構成を示す図である。図1では、車両用灯具システム1の構成要素の一部を機能ブロックとして描いている。これらの機能ブロックは、ハードウェア構成としてはコンピュータのCPUやメモリをはじめとする素子や回路で実現され、ソフトウェア構成としてはコンピュータプログラム等によって実現される。これらの機能ブロックがハードウェア、ソフトウェアの組合せによっていろいろなかたちで実現できることは、当業者には理解されるところである。 FIG. 1 is a diagram showing a schematic configuration of a vehicle lighting system according to an embodiment. In FIG. 1, a part of the components of the vehicle lighting system 1 is drawn as a functional block. These functional blocks are realized by elements and circuits such as a computer CPU and memory as a hardware configuration, and are realized by a computer program or the like as a software configuration. Those skilled in the art will understand that these functional blocks can be realized in various ways by combining hardware and software.
 車両用灯具システム1は、車両前方の左右に配置される一対の前照灯ユニットを有する車両用前照灯装置に適用される。一対の前照灯ユニットは左右対称の構造を有する点以外は実質的に同一の構成であるため、図1には車両用灯具2として一方の前照灯ユニットの構造を示す。 The vehicle lighting system 1 is applied to a vehicle headlight device having a pair of headlight units arranged on the left and right in front of the vehicle. Since the pair of headlight units have substantially the same configuration except that they have a symmetrical structure, FIG. 1 shows the structure of one headlight unit as the vehicle lighting fixture 2.
 車両用灯具システム1が備える車両用灯具2は、車両前方側に開口部を有するランプボディ4と、ランプボディ4の開口部を覆うように取り付けられた透光カバー6と、を備える。透光カバー6は、透光性を有する樹脂やガラス等で形成される。ランプボディ4と透光カバー6とにより形成される灯室8内には、赤外線照射部10と、可視光照射部12と、赤外線撮像部14と、可視光撮像部16と、制御装置18と、が収容される。 The vehicle lighting equipment 2 included in the vehicle lighting equipment system 1 includes a lamp body 4 having an opening on the front side of the vehicle, and a translucent cover 6 attached so as to cover the opening of the lamp body 4. The translucent cover 6 is made of a translucent resin, glass, or the like. In the lamp chamber 8 formed by the lamp body 4 and the translucent cover 6, an infrared irradiation unit 10, a visible light irradiation unit 12, an infrared imaging unit 14, a visible light imaging unit 16, and a control device 18 are included. , Is housed.
 赤外線照射部10は、自車前方に赤外線IRを照射する装置である。本実施の形態の赤外線照射部10は、自車前方に並ぶ複数の個別領域R(図3参照)それぞれに照射する赤外線IRの照度(強度)を独立に調節可能であり、所望の形状の赤外線パターンを自車前方に形成することができる。赤外線照射部10は、赤外光源22と、反射光学部材24と、光偏向装置26と、投影光学部材28と、を有する。各部は、図示しない支持機構によりランプボディ4に取り付けられる。 The infrared irradiation unit 10 is a device that irradiates the front of the vehicle with infrared IR. The infrared irradiation unit 10 of the present embodiment can independently adjust the illuminance (intensity) of the infrared IR irradiating each of the plurality of individual regions R (see FIG. 3) arranged in front of the vehicle, and the infrared rays having a desired shape. A pattern can be formed in front of the vehicle. The infrared irradiation unit 10 includes an infrared light source 22, a reflection optical member 24, a light deflection device 26, and a projection optical member 28. Each part is attached to the lamp body 4 by a support mechanism (not shown).
 赤外光源22は、LED(Light emitting diode)、LD(Laser diode)、EL(Electroluminescence)素子等の半導体発光素子や、電球、白熱灯(ハロゲンランプ)、放電灯(ディスチャージランプ)等を用いることができる。赤外光源22は、例えば波長が0.4μm~4μmの近赤外線あるいは中赤外線を出射する。反射光学部材24は、赤外光源22から出射した赤外線IRを光偏向装置26の反射面に導くように構成される。反射光学部材24は、内面が所定の反射面となっている反射鏡で構成される。なお、反射光学部材24は、中実導光体などであってもよい。また、赤外光源22から出射した赤外線IRを光偏向装置26に直接導くことができる場合は、反射光学部材24を設けなくてもよい。 As the infrared light source 22, a semiconductor light emitting element such as an LED (Light emission diode), LD (Laser diode), or EL (Electroluminescence) element, a light bulb, an incandescent lamp (halogen lamp), a discharge lamp (discharge lamp), or the like is used. Can be done. The infrared light source 22 emits near-infrared rays or mid-infrared rays having a wavelength of, for example, 0.4 μm to 4 μm. The reflective optical member 24 is configured to guide the infrared IR emitted from the infrared light source 22 to the reflecting surface of the light deflector 26. The reflecting optical member 24 is composed of a reflecting mirror whose inner surface is a predetermined reflecting surface. The reflection optical member 24 may be a solid light guide or the like. Further, if the infrared IR emitted from the infrared light source 22 can be directly guided to the light deflector 26, the reflection optical member 24 may not be provided.
 光偏向装置26は、投影光学部材28の光軸上に配置され、赤外光源22から出射された赤外線IRを選択的に投影光学部材28へ反射するように構成される。光偏向装置26は、例えばDMD(Digital Mirror Device)で構成される。すなわち、光偏向装置26は、複数の微小ミラーをアレイ(マトリックス)状に配列したものである。これらの複数の微小ミラーの反射面の角度をそれぞれ制御することで、赤外線IRの反射方向を選択的に変えることができる。つまり、光偏向装置26は、赤外光源22から出射された赤外線IRの一部を投影光学部材28へ向けて反射し、それ以外の赤外線IRを、投影光学部材28によって有効に利用されない方向へ向けて反射することができる。ここで、有効に利用されない方向とは、例えば、投影光学部材28には入射するが赤外線パターンの形成にほとんど寄与しない方向や、図示しない赤外線吸収部材(遮蔽部材)に向かう方向と捉えることができる。 The light deflection device 26 is arranged on the optical axis of the projection optical member 28, and is configured to selectively reflect the infrared IR emitted from the infrared light source 22 to the projection optical member 28. The light deflector 26 is composed of, for example, a DMD (Digital Mirror Device). That is, the light deflector 26 is an array (matrix) of a plurality of micromirrors. By controlling the angles of the reflecting surfaces of these plurality of micromirrors, the reflection direction of the infrared IR can be selectively changed. That is, the light deflector 26 reflects a part of the infrared IR emitted from the infrared light source 22 toward the projection optical member 28, and the other infrared IR is not effectively used by the projection optical member 28. Can be directed and reflected. Here, the direction that is not effectively used can be regarded as, for example, a direction that is incident on the projection optical member 28 but hardly contributes to the formation of the infrared pattern, or a direction toward an infrared absorbing member (shielding member) (not shown). ..
 図2(A)は、光偏向装置の概略構成を示す正面図である。図2(B)は、図2(A)に示す光偏向装置のA-A断面図である。光偏向装置26は、複数の微小なミラー素子30がマトリックス状に配列されたマイクロミラーアレイ32と、ミラー素子30の反射面30aの前方側(図2(B)に示す光偏向装置26の右側)に配置された透明なカバー部材34と、を有する。カバー部材34は、例えば、ガラスやプラスチック等で構成される。 FIG. 2A is a front view showing a schematic configuration of the light deflector. FIG. 2B is a sectional view taken along the line AA of the light deflector shown in FIG. 2A. The light deflector 26 includes a micromirror array 32 in which a plurality of minute mirror elements 30 are arranged in a matrix, and a right side of the light deflector 26 shown on the front side of the reflection surface 30a of the mirror element 30 (FIG. 2B). ), And a transparent cover member 34. The cover member 34 is made of, for example, glass or plastic.
 ミラー素子30は略正方形であり、水平方向に延びミラー素子30をほぼ等分する回動軸30bを有する。マイクロミラーアレイ32の各ミラー素子30は、赤外線IRを所望の赤外線パターンの一部として利用されるように投影光学部材28へ向けて反射する第1反射位置(図2(B)において実線で示す位置)と、赤外線IRが有効に利用されないように反射する第2反射位置(図2(B)において点線で示す位置)とを切り替え可能に構成されている。各ミラー素子30は、回動軸30b周りに回動して、第1反射位置と第2反射位置との間で個別に切り替えられる。各ミラー素子30は、オン時に第1反射位置をとり、オフ時に第2反射位置をとる。 The mirror element 30 is substantially square and has a rotation shaft 30b extending in the horizontal direction and substantially equally dividing the mirror element 30. Each mirror element 30 of the micromirror array 32 reflects the infrared IR toward the projection optical member 28 so as to be used as a part of a desired infrared pattern (shown by a solid line in FIG. 2B). The position) and the second reflection position (the position indicated by the dotted line in FIG. 2B) that reflects the infrared IR so as not to be effectively used can be switched. Each mirror element 30 rotates around the rotation shaft 30b and is individually switched between the first reflection position and the second reflection position. Each mirror element 30 takes a first reflection position when it is on and a second reflection position when it is off.
 図3は、自車前方の様子を模式的に示す図である。上述のように赤外線照射部10は、灯具前方に向けて互いに独立に赤外線IRを照射可能な個別照射部としてのミラー素子30を複数有する。赤外線照射部10は、ミラー素子30によって自車前方に並ぶ複数の個別領域Rに赤外線IRを照射することができる。各個別領域Rは、赤外線撮像部14の1ピクセルまたは複数ピクセルの集合に対応する領域である。本実施の形態では各個別領域Rと各ミラー素子30とが1対1で対応付けられている。なお、図2(A)および図2(B)では、図示の便宜上、ミラー素子30の一部を間引いている。 FIG. 3 is a diagram schematically showing the state in front of the own vehicle. As described above, the infrared irradiation unit 10 has a plurality of mirror elements 30 as individual irradiation units capable of independently irradiating infrared IR toward the front of the lamp. The infrared irradiation unit 10 can irradiate a plurality of individual regions R arranged in front of the vehicle by the mirror element 30 with infrared IR. Each individual region R is an region corresponding to a set of one pixel or a plurality of pixels of the infrared imaging unit 14. In the present embodiment, each individual region R and each mirror element 30 are associated with each other on a one-to-one basis. In addition, in FIG. 2A and FIG. 2B, a part of the mirror element 30 is thinned out for convenience of illustration.
 また、ミラー素子30および個別領域Rの数は特に限定されない。例えば、マイクロミラーアレイ32の解像度(言い換えればミラー素子30および個別領域Rの数)は1000~30万ピクセルである。また、赤外線照射部10が1つの赤外線パターンの形成に要する時間は、例えば0.1~5msである。すなわち、赤外線照射部10は、0.1~5ms毎に赤外線パターンを変更することができる。 Further, the number of the mirror element 30 and the individual region R is not particularly limited. For example, the resolution of the micromirror array 32 (in other words, the number of mirror elements 30 and individual regions R) is 10 to 300,000 pixels. The time required for the infrared irradiation unit 10 to form one infrared pattern is, for example, 0.1 to 5 ms. That is, the infrared irradiation unit 10 can change the infrared pattern every 0.1 to 5 ms.
 図1に示すように、投影光学部材28は、例えば、前方側表面および後方側表面が自由曲面形状を有する自由曲面レンズからなる。投影光学部材28は、その後方焦点を含む後方焦点面上に形成される光源像を、反転像として灯具前方に投影する。投影光学部材28は、その後方焦点が車両用灯具2の光軸上、且つマイクロミラーアレイ32の反射面の近傍に位置するように配置される。なお、投影光学部材28は、リフレクタであってもよい。 As shown in FIG. 1, the projection optical member 28 is composed of, for example, a free-curved lens whose front surface and rear surface have a free curved shape. The projection optical member 28 projects a light source image formed on the rear focal plane including the rear focal point in front of the lamp as an inverted image. The projection optical member 28 is arranged so that its rear focus is located on the optical axis of the vehicle lamp 2 and near the reflection surface of the micromirror array 32. The projection optical member 28 may be a reflector.
 赤外光源22から出射された赤外線IRは、反射光学部材24で反射されて、光偏向装置26のマイクロミラーアレイ32に照射される。光偏向装置26は、第1反射位置にある所定のミラー素子30によって投影光学部材28へ向けて赤外線IRを反射する。この反射された赤外線IRは、投影光学部材28を通過して灯具前方に進行し、各ミラー素子30に対応する各個別領域Rに照射される。これにより、複数の部分照射領域が集まって構成される、所定形状の赤外線パターンが灯具前方に形成される。 The infrared IR emitted from the infrared light source 22 is reflected by the reflecting optical member 24 and irradiated to the micromirror array 32 of the light deflecting device 26. The light deflector 26 reflects infrared IR toward the projection optical member 28 by a predetermined mirror element 30 at the first reflection position. The reflected infrared IR passes through the projection optical member 28, travels in front of the lamp, and irradiates each individual region R corresponding to each mirror element 30. As a result, an infrared pattern having a predetermined shape formed by gathering a plurality of partially irradiated areas is formed in front of the lamp.
 可視光照射部12は、自車前方に可視光VLを照射する装置であり、例えばロービームやハイビーム等を形成する前照灯として機能する灯具ユニットである。図示は省略するが、本実施の形態の可視光照射部12は、赤外線照射部10と同様の構造を有する。つまり、可視光照射部12は、可視光源と、反射光学部材24と、光偏向装置26と、投影光学部材28と、を有する。したがって、可視光照射部12は、複数の個別領域Rそれぞれに照射する可視光VLの照度(強度)を独立に調節可能であり、所望の形状の可視光パターンを自車前方に形成することができる。 The visible light irradiation unit 12 is a device that irradiates visible light VL in front of the vehicle, and is a lamp unit that functions as a headlight that forms, for example, a low beam or a high beam. Although not shown, the visible light irradiation unit 12 of the present embodiment has the same structure as the infrared irradiation unit 10. That is, the visible light irradiation unit 12 includes a visible light source, a reflection optical member 24, a light deflection device 26, and a projection optical member 28. Therefore, the visible light irradiation unit 12 can independently adjust the illuminance (intensity) of the visible light VL that irradiates each of the plurality of individual regions R, and can form a visible light pattern having a desired shape in front of the vehicle. it can.
 赤外線撮像部14は、自車前方を撮像する装置である。赤外線撮像部14は、赤外線照射部10が照射する赤外線IRの波長に感度を有する赤外線カメラ等で構成される。赤外線撮像部14は、フレームレートが例えば5fps以上10000fps以下(1フレームあたり0.1~200ms)であり、解像度が例えば30万ピクセル以上500万ピクセル未満である。赤外線撮像部14は、全ての個別領域Rを撮像する。 The infrared imaging unit 14 is a device that images the front of the vehicle. The infrared imaging unit 14 is composed of an infrared camera or the like having sensitivity to the wavelength of the infrared IR irradiated by the infrared irradiation unit 10. The infrared imaging unit 14 has a frame rate of, for example, 5 fps or more and 10,000 fps or less (0.1 to 200 ms per frame), and a resolution of, for example, 300,000 pixels or more and less than 5 million pixels. The infrared imaging unit 14 images all the individual regions R.
 可視光撮像部16は、自車前方を撮像する装置である。可視光撮像部16は、可視光照射部12が照射する可視光VLの波長に感度を有する可視光カメラ等で構成される。可視光撮像部16は、フレームレートが例えば200fps以上10000fps以下(1フレームあたり0.1~5ms)であり、解像度が例えば500万ピクセル以上である。なお、可視光撮像部16は、例えば200fps以上10000fps以下の比較的高いフレームレート、および例えば30万ピクセル以上500万ピクセル未満の比較的小さい解像度を有する高速カメラと、例えば30fps以上120fps以下の比較的低いフレームレート、および例えば500万ピクセル以上の比較的大きい解像度を有する低速カメラと、の組み合わせで構成されてもよい。可視光撮像部16は、全ての個別領域Rを撮像する。 The visible light imaging unit 16 is a device that images the front of the vehicle. The visible light imaging unit 16 is composed of a visible light camera or the like having sensitivity to the wavelength of visible light VL emitted by the visible light irradiation unit 12. The visible light imaging unit 16 has a frame rate of, for example, 200 fps or more and 10,000 fps or less (0.1 to 5 ms per frame), and a resolution of, for example, 5 million pixels or more. The visible light imaging unit 16 includes a high-speed camera having a relatively high frame rate of, for example, 200 fps or more and 10,000 fps or less, and a relatively small resolution of, for example, 300,000 pixels or more and less than 5 million pixels, and a relatively high frame rate of, for example, 30 fps or more and 120 fps or less. It may be configured in combination with a low frame rate and a low speed camera having a relatively large resolution of, for example, 5 million pixels or more. The visible light imaging unit 16 images all the individual regions R.
 制御装置18は、低階調領域検出部36と、照射制御部38と、物標解析部40と、昼間判定部42と、を有する。各部は、自身を構成する集積回路が、メモリに保持されたプログラムを実行することで動作することができる。 The control device 18 includes a low gradation region detection unit 36, an irradiation control unit 38, a target analysis unit 40, and a daytime determination unit 42. Each part can operate by executing a program held in a memory by an integrated circuit constituting itself.
 可視光撮像部16が生成する画像情報は、低階調領域検出部36に送られる。低階調領域検出部36は、可視光撮像部16から得られる画像情報に基づいて所定の低階調領域44(図3参照)を検出する。低階調領域44は、例えば昼間に道路脇の建物等によって太陽光SLが遮られることで形成される日陰の場所等である。 The image information generated by the visible light imaging unit 16 is sent to the low gradation region detection unit 36. The low gradation region detection unit 36 detects a predetermined low gradation region 44 (see FIG. 3) based on the image information obtained from the visible light imaging unit 16. The low gradation region 44 is, for example, a shaded place formed by blocking the sunlight SL by a building on the side of the road in the daytime.
 例えば低階調領域検出部36は、可視光VLの階調(輝度)に関する第1しきい値を予め保持しており、可視光画像情報において第1しきい値よりも階調の低い領域を低階調領域44として検出する。また、低階調領域検出部36は、低階調領域44の大きさ(面積)に関する第2しきい値をさらに保持し、輝度が第1しきい値よりも低い領域のうち、大きさが第2しきい値以上のものを低階調領域44として検出してもよい。低階調領域検出部36の検出結果、すなわち低階調領域44の位置情報等を示す信号は、照射制御部38に送信される。 For example, the low gradation region detection unit 36 holds in advance a first threshold value regarding the gradation (luminance) of visible light VL, and a region having a gradation lower than the first threshold value in visible light image information. It is detected as a low gradation region 44. Further, the low gradation region detection unit 36 further holds a second threshold value regarding the size (area) of the low gradation region 44, and the magnitude of the region whose brightness is lower than the first threshold value is larger. Those above the second threshold value may be detected as the low gradation region 44. The detection result of the low gradation region detection unit 36, that is, the signal indicating the position information of the low gradation region 44 and the like is transmitted to the irradiation control unit 38.
 なお、低階調領域検出部36は、赤外線撮像部14からも画像情報を取得して、可視光画像情報と赤外線画像情報とのそれぞれにおいて階調(輝度)がしきい値未満の領域を低階調領域44として仮判定し、それぞれの仮判定結果を統合して両方において低階調領域44と判定された領域を低階調領域44として検出してもよい。また、低階調領域検出部36は、赤外線画像情報と可視光画像情報とを公知の画像処理によって合成し、合成画像において低階調領域44を検出してもよい。これらの制御により、低階調領域44の検出精度を高めることができる。 The low gradation region detection unit 36 also acquires image information from the infrared imaging unit 14, and lowers the region where the gradation (luminance) is less than the threshold value in each of the visible light image information and the infrared image information. The tentative determination may be made as the gradation region 44, and the tentative determination results may be integrated to detect the region determined to be the low gradation region 44 in both as the low gradation region 44. Further, the low gradation region detection unit 36 may synthesize the infrared image information and the visible light image information by known image processing, and detect the low gradation region 44 in the composite image. By these controls, the detection accuracy of the low gradation region 44 can be improved.
 また、低階調領域検出部36は、自車周囲の物の形状等から低階調領域44を創り出し得る物を推定するための機械学習を行った学習モデルを予め保持し、この学習モデルに画像情報を入力することで低階調領域44を検出してもよい。この学習モデルは、公知の機械学習アルゴリズムを利用して生成することができる。つまり、低階調領域検出部36は、ディープラーニング等のAI(Artificial Intelligence)技術を用いて低階調領域44を検出してもよい。 Further, the low gradation region detection unit 36 holds in advance a learning model that has been machine-learned to estimate an object that can create a low gradation region 44 from the shape of an object around the vehicle, and uses this learning model as the learning model. The low gradation region 44 may be detected by inputting image information. This learning model can be generated using a known machine learning algorithm. That is, the low gradation region detection unit 36 may detect the low gradation region 44 by using AI (Artificial Intelligence) technology such as deep learning.
 照射制御部38は、低階調領域44に向けて赤外線IRを照射するよう赤外線照射部10を制御する。具体的には、照射制御部38は、低階調領域44と重なる個別領域Rに対して照射する赤外線IRの強度が他の個別領域Rに対して照射する赤外線IRの強度よりも高い赤外線パターンを決定する。例えば、この赤外線パターンは、低階調領域44と重なる個別領域Rに対して所定強度の赤外線IRを照射し、他の個別領域Rに対して赤外線IRを照射しない(つまり遮光する)赤外線パターンである。 The irradiation control unit 38 controls the infrared irradiation unit 10 so as to irradiate the infrared IR toward the low gradation region 44. Specifically, the irradiation control unit 38 has an infrared pattern in which the intensity of the infrared IR irradiating the individual region R overlapping the low gradation region 44 is higher than the intensity of the infrared IR irradiating the other individual region R. To determine. For example, this infrared pattern is an infrared pattern in which the individual region R overlapping the low gradation region 44 is irradiated with infrared IR of a predetermined intensity, and the other individual regions R are not irradiated with infrared IR (that is, shielded from light). is there.
 そして、照射制御部38は、決定した赤外線パターンを自車前方に形成するように赤外線照射部10を制御する。具体的には、照射制御部38は、赤外光源22の点消灯と、各ミラー素子30のオン/オフ切り替えと、を制御する。照射制御部38は、各個別領域Rに照射する赤外線IRの強度値に基づいて、各ミラー素子30のオンの時間比率(幅や密度)を調節する。これにより、決定された赤外線パターンに応じた強度分布を有する赤外線ビームが赤外線照射部10によって生成される。 Then, the irradiation control unit 38 controls the infrared irradiation unit 10 so as to form the determined infrared pattern in front of the own vehicle. Specifically, the irradiation control unit 38 controls turning on and off the infrared light source 22 and switching on / off of each mirror element 30. The irradiation control unit 38 adjusts the on-time ratio (width and density) of each mirror element 30 based on the intensity value of the infrared IR irradiating each individual region R. As a result, the infrared irradiation unit 10 generates an infrared beam having an intensity distribution corresponding to the determined infrared pattern.
 照射制御部38は、低階調領域44と重なる各個別領域Rに対して同じ強度の赤外線IRを照射してもよいし、画像情報における各個別領域Rの階調に応じて異なる強度の赤外線IRを照射してもよい。例えば、照射制御部38は、低階調領域44において相対的に階調の高い個別領域Rに照射する赤外線IRの強度を相対的に弱め、相対的に階調の低い個別領域Rに照射する赤外線IRの強度を相対的に強めてもよい。つまり、低階調領域44において第1階調である個別領域Rに対して第1強度の赤外線IRが照射され、第1階調よりも低い第2階調である個別領域Rに対して第1強度より強い第2強度の赤外線IRが照射される。これにより、赤外線IRの照射による消費電力を抑えながら、低階調領域44に対する視認性を高めることができる。 The irradiation control unit 38 may irradiate each individual region R overlapping the low gradation region 44 with infrared IR having the same intensity, or infrared rays having different intensities depending on the gradation of each individual region R in the image information. You may irradiate IR. For example, the irradiation control unit 38 relatively weakens the intensity of the infrared IR that irradiates the individual region R having a relatively high gradation in the low gradation region 44, and irradiates the individual region R having a relatively low gradation. The intensity of the infrared IR may be relatively increased. That is, in the low gradation region 44, the infrared IR of the first intensity is applied to the individual region R which is the first gradation, and the individual region R which is the second gradation lower than the first gradation is the first. A second intensity infrared IR stronger than the first intensity is irradiated. As a result, it is possible to improve the visibility of the low gradation region 44 while suppressing the power consumption due to the irradiation of infrared IR.
 図4は、赤外線撮像部の露光タイミングと赤外線照射部の照射タイミングとを示すタイミングチャートである。本実施の形態の照射制御部38は、赤外線撮像部14の露光タイミング(撮像タイミング)と同期して赤外線IRをパルス照射するよう赤外線照射部10を制御する。例えば照射制御部38は、赤外線撮像部14が露光しているときに、1回の露光時間よりも短い時間だけ赤外線IRを照射するよう赤外線照射部10を制御する。照射制御部38は、赤外線撮像部14の露光タイミングに基づいて定めた赤外線IRの照射タイミング情報を予め保持し、この情報に基づいて赤外線照射部10を制御する。 FIG. 4 is a timing chart showing the exposure timing of the infrared imaging unit and the irradiation timing of the infrared irradiation unit. The irradiation control unit 38 of the present embodiment controls the infrared irradiation unit 10 so as to pulse-irradiate the infrared IR in synchronization with the exposure timing (imaging timing) of the infrared imaging unit 14. For example, the irradiation control unit 38 controls the infrared irradiation unit 10 so as to irradiate the infrared IR for a time shorter than one exposure time when the infrared imaging unit 14 is exposed. The irradiation control unit 38 holds in advance infrared IR irradiation timing information determined based on the exposure timing of the infrared imaging unit 14, and controls the infrared irradiation unit 10 based on this information.
 物標解析部40は、照射制御部38により赤外線照射部10が制御された状態で赤外線撮像部14から得られる画像情報に基づいて、低階調領域44に存在する所定の物標46を検出する。低階調領域44に対して赤外線IRが照射された状態であるため、赤外線撮像部14は低階調領域44を高精度に撮像することができる。このため、物標解析部40は、得られる赤外線画像情報において低階調領域44内に存在する物標46をより確実に検出することができる。 The target analysis unit 40 detects a predetermined target 46 existing in the low gradation region 44 based on the image information obtained from the infrared imaging unit 14 while the infrared irradiation unit 10 is controlled by the irradiation control unit 38. To do. Since the low-gradation region 44 is irradiated with the infrared IR, the infrared imaging unit 14 can image the low-gradation region 44 with high accuracy. Therefore, the target analysis unit 40 can more reliably detect the target 46 existing in the low gradation region 44 in the obtained infrared image information.
 典型的な例として、図3に示すように、低階調領域44は道路脇に設けられた屋根付きのバス停等によって形成され得る。この場合、低階調領域44に潜在する交通参加者(物標46)が道路側に飛び出してくる可能性が考えられる。このため、低階調領域44内の物標46を確実に認識することが望ましい。 As a typical example, as shown in FIG. 3, the low gradation region 44 can be formed by a covered bus stop or the like provided on the side of the road. In this case, it is conceivable that a traffic participant (target 46) latent in the low gradation region 44 may jump out to the road side. Therefore, it is desirable to reliably recognize the target 46 in the low gradation region 44.
 物標解析部40は、検出した物標46の位置等を含む物標情報を示す信号を照射制御部38に送信する。照射制御部38は、この物標情報を車両に設けられる運転制御部48に送る。運転制御部48は、ADASや自動運転において、受領した物標情報に基づいて所定の運転制御を実行する。なお、物標情報は、物標解析部40から直に運転制御部48に送られてもよい。また、物標情報は、車両に設けられる表示部(図示せず)に送られ、物標46に関する情報が表示部に表示されることで運転者に注意喚起がなされてもよい。 The target analysis unit 40 transmits a signal indicating target information including the position of the detected target 46 to the irradiation control unit 38. The irradiation control unit 38 sends this target information to the operation control unit 48 provided in the vehicle. The operation control unit 48 executes a predetermined operation control based on the received target information in ADAS or automatic operation. The target information may be sent directly from the target analysis unit 40 to the operation control unit 48. Further, the target information may be sent to a display unit (not shown) provided on the vehicle, and the driver may be alerted by displaying the information on the target 46 on the display unit.
 また、物標解析部40は、低階調領域44以外の領域についても物標46の検出処理を実行してもよい。例えば、物標解析部40は、赤外線撮像部14および可視光撮像部16の少なくとも一方から得られる画像情報に基づいて、自車前方の物標46を検出する。検出対象となる物標46としては、対向車、先行車、歩行者、自車両の走行に支障を来す障害物、道路標識、道路標示、道路形状等が例示される。 Further, the target analysis unit 40 may execute the detection process of the target 46 also in the region other than the low gradation region 44. For example, the target analysis unit 40 detects the target 46 in front of the vehicle based on the image information obtained from at least one of the infrared imaging unit 14 and the visible light imaging unit 16. Examples of the target 46 to be detected include oncoming vehicles, preceding vehicles, pedestrians, obstacles that hinder the running of the own vehicle, road signs, road markings, road shapes, and the like.
 物標解析部40は、アルゴリズム認識やディープラーニング等を含む、公知の方法を用いて物標46を検出することができる。例えば、物標46が対向車である場合、物標解析部40は、対向車を示す特徴点を予め保持している。前記「対向車を示す特徴点」とは、例えば対向車の前照灯の推定存在領域に現れる所定光度以上の光点である。昼間など、前照灯が照射されない状況では、対向車の輪郭形状等が特徴点となる。そして、物標解析部40は、画像情報の中に対向車を示す特徴点を含むデータが存在する場合、対向車の位置を認識する。対向車以外の物標46についても同様の処理により検出可能である。 The target analysis unit 40 can detect the target 46 by using a known method including algorithm recognition, deep learning, and the like. For example, when the target 46 is an oncoming vehicle, the target analysis unit 40 holds in advance feature points indicating the oncoming vehicle. The "feature point indicating an oncoming vehicle" is, for example, a light point having a predetermined luminous intensity or higher that appears in the estimated existence region of the headlight of the oncoming vehicle. In a situation where the headlights are not illuminated, such as in the daytime, the contour shape of the oncoming vehicle is a feature. Then, the target analysis unit 40 recognizes the position of the oncoming vehicle when the image information includes data including feature points indicating the oncoming vehicle. The target 46 other than the oncoming vehicle can be detected by the same processing.
 本実施の形態の低階調領域検出部36は、昼間に撮像される画像情報に基づいて低階調領域44を検出する。つまり、低階調領域44に対して赤外線IRを照射する制御は、昼間に実行される。昼間は、太陽光SLに含まれる可視光や赤外線が自車両の周囲に照射される。これにより、赤外線撮像部14や可視光撮像部16での物標認識に必要な撮像コントラストが確保される可能性が高い。このため、一般的に赤外線照射部10からの赤外線照射や可視光照射部12からの可視光照射は行われない。つまり、従来の視界支援では、赤外線IRを用いた物標検知を夜間に実施し、昼間は赤外線IRを照射しないことが通例であった。しかしながら、昼間であっても太陽光SLが遮られることで形成される低階調領域44では、各撮像部での物標認識に必要な撮像コントラストが得られない可能性がある。 The low gradation region detection unit 36 of the present embodiment detects the low gradation region 44 based on the image information captured in the daytime. That is, the control of irradiating the low gradation region 44 with the infrared IR is executed in the daytime. In the daytime, visible light and infrared rays contained in the solar SL are radiated around the own vehicle. As a result, there is a high possibility that the imaging contrast required for target recognition by the infrared imaging unit 14 and the visible light imaging unit 16 can be secured. Therefore, in general, infrared irradiation from the infrared irradiation unit 10 and visible light irradiation from the visible light irradiation unit 12 are not performed. That is, in the conventional visual field support, it is customary to perform target detection using infrared IR at night and not to irradiate infrared IR during the day. However, even in the daytime, in the low gradation region 44 formed by blocking the sunlight SL, there is a possibility that the imaging contrast required for target recognition by each imaging unit cannot be obtained.
 このため、低階調領域44に対して赤外線IRを照射する制御は、昼間に実行されることがより効果的である。低階調領域検出部36は、昼間判定部42から判定結果を示す信号を受信することで、現在が昼間であること、および撮像部から取得した画像情報が昼間に撮像されたものであることを判断することができる。 Therefore, it is more effective that the control of irradiating the low gradation region 44 with infrared IR is executed in the daytime. By receiving the signal indicating the determination result from the daytime determination unit 42, the low gradation region detection unit 36 indicates that the current state is daytime and that the image information acquired from the image pickup unit is captured in the daytime. Can be judged.
 昼間判定部42は、自車両の周囲が昼間であることを判定する。昼間判定部42は、例えばタイマ(図示せず)によって現在の時刻を検知することで昼間であることを判定することができる。昼間と判定される時刻帯は、設計者による実験やシミュレーションに基づき適宜設定することが可能である。なお、昼間にはいわゆる薄暮時が含まれてもよい。また、昼間と判定する時刻帯は、季節に応じて変化させてもよい。 The daytime determination unit 42 determines that the surroundings of the own vehicle are daytime. The daytime determination unit 42 can determine that it is daytime by detecting the current time with, for example, a timer (not shown). The time zone determined to be daytime can be appropriately set based on experiments and simulations by the designer. The daytime may include so-called dusk. Further, the time zone determined to be daytime may be changed according to the season.
 また、昼間判定部42は、例えば自車周囲の照度(環境照度)に基づいて昼間であることを判定することができる。昼間と判定される環境照度は、設計者による実験やシミュレーションに基づき適宜設定することが可能である。環境照度は、車両に設けられる照度センサ50から取得することができる。あるいは、環境照度は、赤外線撮像部14あるいは可視光撮像部16から得られる画像情報における各個別領域Rの階調(例えば全個別領域Rの階調の平均値や所定の上方領域に属する個別領域Rの階調の平均値等)に基づいて導出することができる。なお、照度センサ50は、灯室8内に設けられてもよい。 Further, the daytime determination unit 42 can determine that it is daytime based on, for example, the illuminance around the vehicle (environmental illuminance). The environmental illuminance determined to be daytime can be appropriately set based on experiments and simulations by the designer. The environmental illuminance can be obtained from the illuminance sensor 50 provided in the vehicle. Alternatively, the environmental illuminance is the gradation of each individual region R in the image information obtained from the infrared imaging unit 14 or the visible light imaging unit 16 (for example, the average value of the gradations of all the individual regions R or the individual regions belonging to a predetermined upper region). It can be derived based on the average value of the gradation of R, etc.). The illuminance sensor 50 may be provided in the light chamber 8.
 また、低階調領域検出部36は、可視光照射部12の消灯中に撮像される画像情報に基づいて低階調領域44を検出してもよい。昼間は、可視光照射部12を消灯している可能性が高い。このため、可視光照射部12の点灯状態を昼間であるか否かの指標として用いることができる。これにより、低階調領域44に対する赤外線照射制御を昼間に実行することをより簡単に実現することができる。低階調領域検出部36は、例えば照射制御部38から可視光照射部12の消灯を指示する信号を受信することで、あるいは可視光照射部12の点灯を指示する信号を非受信の状態にあることで、可視光照射部12の消灯を検知することができる。なお、ここでは可視光照射部12の消灯を昼間であることの指標として説明しているが、昼間であるか否かの判定とは無関係に、可視光照射部12の消灯中であれば低階調領域44に対する赤外線照射制御が実行されるという態様であってもよい。 Further, the low gradation region detection unit 36 may detect the low gradation region 44 based on the image information captured while the visible light irradiation unit 12 is turned off. In the daytime, it is highly possible that the visible light irradiation unit 12 is turned off. Therefore, the lighting state of the visible light irradiation unit 12 can be used as an index of whether or not it is daytime. Thereby, it is possible to more easily realize the infrared irradiation control for the low gradation region 44 in the daytime. The low gradation region detection unit 36 receives, for example, a signal instructing the visible light irradiation unit 12 to turn off from the irradiation control unit 38, or sets the signal instructing the visible light irradiation unit 12 to turn on in a non-received state. With this, it is possible to detect that the visible light irradiation unit 12 is turned off. Although the extinguishing of the visible light irradiation unit 12 is described here as an index indicating that it is daytime, it is low if the visible light irradiation unit 12 is extinguished regardless of whether or not it is daytime. Infrared irradiation control for the gradation region 44 may be executed.
 また、低階調領域44に対する赤外線照射制御は、昼間に実行することに限定されない。例えば、夜間において街灯等の照明が点灯している状況でも低階調領域44が発生する可能性はある。このため、当該制御を夜間に実行する場合も、低階調領域44に存在する物標46を迅速且つ確実に検出できるという効果を得ることができる。 Further, the infrared irradiation control for the low gradation region 44 is not limited to being executed in the daytime. For example, there is a possibility that the low gradation region 44 may occur even in a situation where lighting such as a street lamp is lit at night. Therefore, even when the control is executed at night, the effect that the target 46 existing in the low gradation region 44 can be detected quickly and surely can be obtained.
 照射制御部38は、低階調領域44に対して、あるいは低階調領域44に存在する物標46に対して、可視光VLを照射するように可視光照射部12を制御してもよい。これにより、低階調領域44内の物標46に対する視認性をより高めることができる。また、照射制御部38は、物標解析部40による物標46の検出結果に基づいて、各個別領域Rに照射する可視光VLの照度値を設定し、自車前方に形成する可視光パターンを決定してもよい。例えば、物標46が対向車である場合、対向車と重なる個別領域Rに対して特定照度値として「0」を定め、他の個別領域Rに対して所定の照度値を定める。これにより、対向車と重なる個別領域Rは遮光され、他の個別領域Rには所定照度の可視光VLが照射される可視光パターンが決定される。そして、照射制御部38は、決定した可視光パターンを自車前方に形成するように可視光照射部12を制御する。 The irradiation control unit 38 may control the visible light irradiation unit 12 so as to irradiate the visible light VL with respect to the low gradation region 44 or the target 46 existing in the low gradation region 44. .. As a result, the visibility of the target 46 in the low gradation region 44 can be further improved. Further, the irradiation control unit 38 sets the illuminance value of the visible light VL to irradiate each individual region R based on the detection result of the target 46 by the target analysis unit 40, and forms a visible light pattern in front of the vehicle. May be determined. For example, when the target 46 is an oncoming vehicle, "0" is set as a specific illuminance value for the individual region R overlapping the oncoming vehicle, and a predetermined illuminance value is set for the other individual region R. As a result, the individual region R overlapping the oncoming vehicle is shielded from light, and the visible light pattern in which the other individual region R is irradiated with visible light VL having a predetermined illuminance is determined. Then, the irradiation control unit 38 controls the visible light irradiation unit 12 so as to form the determined visible light pattern in front of the own vehicle.
 以上説明したように、本実施の形態に係る車両用灯具システム1は、自車前方に赤外線IRを照射する赤外線照射部10と、可視光撮像部16から得られる画像情報、あるいは可視光撮像部16および赤外線撮像部14から得られる画像情報に基づいて所定の低階調領域44を検出する低階調領域検出部36と、低階調領域44に向けて赤外線IRを照射するよう赤外線照射部10を制御する照射制御部38と、を備える。 As described above, in the vehicle lighting system 1 according to the present embodiment, the infrared irradiation unit 10 that irradiates the front of the vehicle with infrared IR and the image information obtained from the visible light imaging unit 16 or the visible light imaging unit 16 A low gradation region detection unit 36 that detects a predetermined low gradation region 44 based on image information obtained from the 16 and the infrared imaging unit 14, and an infrared irradiation unit that irradiates infrared IR toward the low gradation region 44. An irradiation control unit 38 for controlling 10 is provided.
 これにより、ADASや自動運転システム、自車両のドライバーの視界支援が実現され、低階調領域44に潜在する物標46をより迅速且つ確実に検出することが可能となる。このため、車両運転の安全性、ひいては道路交通の安全性を高めることができる。また、低階調領域44に赤外線IRをスポット照射することで、自車前方の全個別領域Rに赤外線IRを照射する場合に比べて、消費電力を低減することができる。また、赤外線IRを照射するため、物標46が人の場合に、当該人にグレアを与えることを回避することができる。 As a result, ADAS, an automatic driving system, and visibility support for the driver of the own vehicle are realized, and it becomes possible to detect the target 46 latent in the low gradation region 44 more quickly and reliably. Therefore, the safety of vehicle driving and, by extension, the safety of road traffic can be improved. Further, by spot-irradiating the low-gradation region 44 with infrared IR, power consumption can be reduced as compared with the case where all individual regions R in front of the vehicle are irradiated with infrared IR. Further, since the infrared IR is irradiated, when the target 46 is a person, it is possible to avoid giving glare to the person.
 また、本実施の形態の車両用灯具システム1は、自車両の周囲が昼間であることを判定する昼間判定部42を備える。そして、低階調領域検出部36は、昼間に撮像される画像情報に基づいて低階調領域44を検出する。これにより、従来はADASや自動運転システム、ドライバーの視界確保を太陽光SLに頼っていた昼間において、視界支援を実現することができる。 Further, the vehicle lighting system 1 of the present embodiment includes a daytime determination unit 42 that determines that the surroundings of the own vehicle are daytime. Then, the low gradation region detection unit 36 detects the low gradation region 44 based on the image information captured in the daytime. As a result, it is possible to realize the visibility support in the daytime when the ADAS, the automatic driving system, and the driver's visibility are conventionally relied on by the solar SL.
 また、本実施の形態の車両用灯具システム1は、自車前方に可視光VLを照射する可視光照射部12を備える。そして、低階調領域検出部36は、可視光照射部12の消灯中に撮像される画像情報に基づいて低階調領域44を検出する。これにより、低階調領域44に対する赤外線照射制御の実行タイミングを簡単に決定することができる。 Further, the vehicle lighting system 1 of the present embodiment includes a visible light irradiation unit 12 that irradiates the visible light VL in front of the own vehicle. Then, the low gradation region detection unit 36 detects the low gradation region 44 based on the image information captured while the visible light irradiation unit 12 is turned off. Thereby, the execution timing of the infrared irradiation control for the low gradation region 44 can be easily determined.
 また、本実施の形態の車両用灯具システム1は、赤外線撮像部14と、物標解析部40と、を備える。物標解析部40は、照射制御部38により赤外線照射部10が制御された状態、つまり低階調領域44に赤外線IRが照射された状態で赤外線撮像部14から得られる画像情報に基づいて、低階調領域44に存在する物標46を検出する。これにより、車両運転の安全性、ひいては道路交通の安全性をより高めることができる。 Further, the vehicle lamp system 1 of the present embodiment includes an infrared imaging unit 14 and a target analysis unit 40. The target analysis unit 40 is based on the image information obtained from the infrared imaging unit 14 in a state where the infrared irradiation unit 10 is controlled by the irradiation control unit 38, that is, in a state where the low gradation region 44 is irradiated with infrared IR. The target 46 existing in the low gradation region 44 is detected. As a result, the safety of vehicle driving and, by extension, the safety of road traffic can be further improved.
 また、本実施の形態の低階調領域検出部36は、可視光撮像部16から得られる画像情報に基づいて低階調領域44を検出する。赤外線撮像部14が生成する撮像画像では、赤外線照射部10からの赤外線IRの照射と非照射との切り替えによって、低階調領域44の有無が変化する。つまり、低階調領域44に対して赤外線IRを照射する制御のもとでは、赤外線画像において赤外線IRの照射による低階調領域44の消失と赤外線IRの非照射による低階調領域44の出現とが交互に繰り返される。 Further, the low gradation region detection unit 36 of the present embodiment detects the low gradation region 44 based on the image information obtained from the visible light imaging unit 16. In the captured image generated by the infrared imaging unit 14, the presence or absence of the low gradation region 44 changes depending on the switching between the infrared IR irradiation and the non-irradiation from the infrared irradiation unit 10. That is, under the control of irradiating the low gradation region 44 with the infrared IR, the low gradation region 44 disappears due to the irradiation of the infrared IR and the low gradation region 44 appears due to the non-irradiation of the infrared IR in the infrared image. And are repeated alternately.
 したがって、低階調領域検出部36が赤外線画像を用いて低階調領域44を検出する場合、低階調領域44の検出結果が繰り返し変化する。このため、低階調領域44に対する赤外線照射制御が不安定になりやすい。また、低階調領域44に照射される赤外線IRの強度が平均化して半分になり、低階調領域44に対する視認性の向上が十分に得られない可能性がある。あるいは、十分な視認性を確保するために、赤外線IRの強度をより高める必要が生じ得る。これに対し、赤外線照射の影響を受けない可視光撮像部16によって生成される可視光画像を用いて低階調領域44を検出することで、低階調領域44の検出と赤外線IRの照射とを安定的に実行することができる。また、低階調領域44に対する視認性をより確実に向上させることができる。 Therefore, when the low gradation region detection unit 36 detects the low gradation region 44 using the infrared image, the detection result of the low gradation region 44 changes repeatedly. Therefore, the infrared irradiation control for the low gradation region 44 tends to be unstable. Further, the intensity of the infrared IR irradiated to the low gradation region 44 is averaged and halved, and there is a possibility that the visibility of the low gradation region 44 cannot be sufficiently improved. Alternatively, it may be necessary to further increase the intensity of the infrared IR in order to ensure sufficient visibility. On the other hand, by detecting the low gradation region 44 using the visible light image generated by the visible light imaging unit 16 that is not affected by the infrared irradiation, the low gradation region 44 can be detected and the infrared IR irradiation can be performed. Can be executed stably. In addition, the visibility of the low gradation region 44 can be improved more reliably.
 なお、低階調領域検出部36は、赤外線撮像部14から得られる画像情報のみを用いて低階調領域44を検出してもよい。この場合、低階調領域44に対する赤外線照射制御を可視光撮像部16を用いずに実現することができる。これにより、車両用灯具システム1の構造の簡素化を図ることができる。つまり、本実施の形態の車両用灯具システム1が備える低階調領域検出部36は、赤外線撮像部14および可視光撮像部16の少なくとも一方から得られる画像情報に基づいて所定の低階調領域44を検出することができる。 The low gradation region detection unit 36 may detect the low gradation region 44 using only the image information obtained from the infrared imaging unit 14. In this case, infrared irradiation control for the low gradation region 44 can be realized without using the visible light imaging unit 16. As a result, the structure of the vehicle lamp system 1 can be simplified. That is, the low gradation region detection unit 36 included in the vehicle lighting system 1 of the present embodiment has a predetermined low gradation region based on image information obtained from at least one of the infrared imaging unit 14 and the visible light imaging unit 16. 44 can be detected.
 また、本実施の形態の照射制御部38は、赤外線撮像部14の露光タイミングと同期して赤外線IRをパルス照射するよう赤外線照射部10を制御する。これにより、赤外線IRの照射による電力の消費を抑えながら、低階調領域44における物標46の高精度な検出を実現することができる。 Further, the irradiation control unit 38 of the present embodiment controls the infrared irradiation unit 10 so as to pulse-irradiate the infrared IR in synchronization with the exposure timing of the infrared imaging unit 14. As a result, it is possible to realize highly accurate detection of the target 46 in the low gradation region 44 while suppressing the power consumption due to the irradiation of the infrared IR.
 以上、本発明の実施の形態について詳細に説明した。前述した実施の形態は、本発明を実施するにあたっての具体例を示したものにすぎない。実施の形態の内容は、本発明の技術的範囲を限定するものではなく、請求の範囲に規定された発明の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。設計変更が加えられた新たな実施の形態は、組み合わされる実施の形態および変形それぞれの効果をあわせもつ。前述の実施の形態では、このような設計変更が可能な内容に関して、「本実施の形態の」、「本実施の形態では」等の表記を付して強調しているが、そのような表記のない内容でも設計変更が許容される。以上の構成要素の任意の組み合わせも、本発明の態様として有効である。図面の断面に付したハッチングは、ハッチングを付した対象の材質を限定するものではない。 The embodiments of the present invention have been described in detail above. The above-described embodiment merely shows a specific example in carrying out the present invention. The content of the embodiment does not limit the technical scope of the present invention, and many design changes such as modification, addition, and deletion of components are made without departing from the idea of the invention defined in the claims. Is possible. The new embodiment with the design change has the effects of the combined embodiment and the modification. In the above-described embodiment, the contents that can be changed in design are emphasized by adding notations such as "in the present embodiment" and "in the present embodiment". Design changes are allowed even if there is no content. Any combination of the above components is also valid as an aspect of the present invention. The hatching attached to the cross section of the drawing does not limit the material of the object to which the hatching is attached.
 実施の形態では、赤外線撮像部14、可視光撮像部16、低階調領域検出部36、照射制御部38、物標解析部40および昼間判定部42が灯室8内に設けられているが、それぞれは適宜、灯室8外に設けられてもよい。例えば、可視光撮像部16は、車室内に搭載されている既存のカメラを利用することができる。なお、赤外線照射部10、可視光照射部12、赤外線撮像部14および可視光撮像部16は、それぞれの画角が一致していることが望ましい。 In the embodiment, the infrared imaging unit 14, the visible light imaging unit 16, the low gradation region detection unit 36, the irradiation control unit 38, the target analysis unit 40, and the daytime determination unit 42 are provided in the light room 8. , Each may be provided outside the light room 8 as appropriate. For example, the visible light imaging unit 16 can use an existing camera mounted in the vehicle interior. It is desirable that the infrared irradiation unit 10, the visible light irradiation unit 12, the infrared imaging unit 14, and the visible light imaging unit 16 have the same angle of view.
 赤外線照射部10は、DMDである光偏向装置26に代えて、光源光で自車前方を走査するスキャン光学系や、各個別領域Rに対応するLEDが配列されたLEDアレイを備えてもよい。また、可視光照射部12は、各個別領域Rに照射する可視光VLの照度を独立に調節可能な灯具構造を有しないものであってもよい。 Instead of the light deflection device 26 which is a DMD, the infrared irradiation unit 10 may include a scan optical system that scans the front of the vehicle with the light source light, and an LED array in which LEDs corresponding to each individual region R are arranged. .. Further, the visible light irradiation unit 12 may not have a lamp structure capable of independently adjusting the illuminance of the visible light VL to irradiate each individual region R.
 上述した実施の形態に係る発明は、以下に記載する項目によって特定されてもよい。
[項目1]
 自車前方を撮像する赤外線撮像部(14)および自車前方を撮像する可視光撮像部(16)の少なくとも一方から得られる画像情報に基づいて所定の低階調領域(44)を検出する低階調領域検出部(36)と、
 低階調領域(44)に向けて赤外線(IR)を照射するよう、自車前方に赤外線(IR)を照射する赤外線照射部(10)を制御する照射制御部(38)と、
を備える車両用灯具(2)の制御装置(18)。
[項目2]
 自車前方を撮像する赤外線撮像部(14)および自車前方を撮像する可視光撮像部(16)の少なくとも一方から得られる画像情報に基づいて所定の低階調領域(44)を検出し、
 低階調領域(44)に向けて赤外線(IR)を照射するよう、自車前方に赤外線(IR)を照射する赤外線照射部(10)を制御すること、
を含む車両用灯具(2)の制御方法。
The invention according to the above-described embodiment may be specified by the items described below.
[Item 1]
Low that detects a predetermined low gradation region (44) based on image information obtained from at least one of an infrared imaging unit (14) that images the front of the vehicle and a visible light imaging unit (16) that images the front of the vehicle. Gradation area detection unit (36) and
An irradiation control unit (38) that controls an infrared irradiation unit (10) that irradiates infrared rays (IR) in front of the vehicle so as to irradiate infrared rays (IR) toward a low gradation region (44).
A control device (18) for a vehicle lamp (2).
[Item 2]
A predetermined low gradation region (44) is detected based on image information obtained from at least one of an infrared imaging unit (14) that images the front of the vehicle and a visible light imaging unit (16) that images the front of the vehicle.
Controlling the infrared irradiation unit (10) that irradiates infrared rays (IR) in front of the vehicle so as to irradiate infrared rays (IR) toward the low gradation region (44).
A control method for a vehicle lamp (2) including.
 本発明は、車両用灯具システム、車両用灯具の制御装置および車両用灯具の制御方法に利用することができる。 The present invention can be used for a vehicle lamp system, a vehicle lamp control device, and a vehicle lamp control method.
 1 車両用灯具システム、 2 車両用灯具、 10 赤外線照射部、 12 可視光照射部、 14 赤外線撮像部、 16 可視光撮像部、 18 制御装置、 36 低階調領域検出部、 38 照射制御部、 40 物標解析部、 42 昼間判定部、 44 低階調領域、 46 物標。 1 vehicle lighting system, 2 vehicle lighting, 10 infrared irradiation unit, 12 visible light irradiation unit, 14 infrared imaging unit, 16 visible light imaging unit, 18 control device, 36 low gradation area detection unit, 38 irradiation control unit, 40 target analysis unit, 42 daytime judgment unit, 44 low gradation area, 46 target.

Claims (9)

  1.  自車前方に赤外線を照射する赤外線照射部と、
     自車前方を撮像する赤外線撮像部および自車前方を撮像する可視光撮像部の少なくとも一方から得られる画像情報に基づいて所定の低階調領域を検出する低階調領域検出部と、
     前記低階調領域に向けて赤外線を照射するよう前記赤外線照射部を制御する照射制御部と、
    を備えることを特徴とする車両用灯具システム。
    Infrared irradiation part that irradiates infrared rays in front of the vehicle and
    A low-gradation region detection unit that detects a predetermined low-gradation region based on image information obtained from at least one of an infrared imaging unit that images the front of the vehicle and a visible light imaging unit that images the front of the vehicle.
    An irradiation control unit that controls the infrared irradiation unit so as to irradiate infrared rays toward the low gradation region.
    A vehicle lighting system characterized by being equipped with.
  2.  前記車両用灯具システムは、自車両の周囲が昼間であることを判定する昼間判定部を備え、
     前記低階調領域検出部は、昼間に撮像される前記画像情報に基づいて前記低階調領域を検出する請求項1に記載の車両用灯具システム。
    The vehicle lighting system includes a daytime determination unit that determines that the surroundings of the own vehicle are daytime.
    The vehicle lighting system according to claim 1, wherein the low gradation region detection unit detects the low gradation region based on the image information captured in the daytime.
  3.  前記車両用灯具システムは、自車前方に可視光を照射する可視光照射部を備え、
     前記低階調領域検出部は、前記可視光照射部の消灯中に撮像される前記画像情報に基づいて前記低階調領域を検出する請求項1または2に記載の車両用灯具システム。
    The vehicle lighting system includes a visible light irradiation unit that irradiates visible light in front of the vehicle.
    The vehicle lighting system according to claim 1 or 2, wherein the low gradation region detection unit detects the low gradation region based on the image information captured while the visible light irradiation unit is turned off.
  4.  前記車両用灯具システムは、
     自車前方を撮像する赤外線撮像部と、
     前記照射制御部により前記赤外線照射部が制御された状態で前記赤外線撮像部から得られる画像情報に基づいて、前記低階調領域に存在する所定の物標を検出する物標解析部と、
    を備える請求項1乃至3のいずれか1項に記載の車両用灯具システム。
    The vehicle lighting system is
    Infrared imaging unit that captures the front of the vehicle and
    A target analysis unit that detects a predetermined target existing in the low gradation region based on image information obtained from the infrared imaging unit while the infrared irradiation unit is controlled by the irradiation control unit.
    The vehicle lighting system according to any one of claims 1 to 3.
  5.  前記車両用灯具システムは、自車前方を撮像する可視光撮像部を備え、
     前記低階調領域検出部は、前記可視光撮像部から得られる画像情報に基づいて前記低階調領域を検出する請求項1乃至4のいずれか1項に記載の車両用灯具システム。
    The vehicle lighting system includes a visible light imaging unit that images the front of the vehicle.
    The vehicle lighting system according to any one of claims 1 to 4, wherein the low gradation region detection unit detects the low gradation region based on image information obtained from the visible light imaging unit.
  6.  前記車両用灯具システムは、自車前方を撮像する赤外線撮像部を備え、
     前記低階調領域検出部は、前記赤外線撮像部から得られる画像情報に基づいて前記低階調領域を検出する請求項1乃至4のいずれか1項に記載の車両用灯具システム。
    The vehicle lighting system includes an infrared imaging unit that images the front of the vehicle.
    The vehicle lighting system according to any one of claims 1 to 4, wherein the low gradation region detection unit detects the low gradation region based on image information obtained from the infrared imaging unit.
  7.  前記照射制御部は、前記赤外線撮像部の露光タイミングと同期して赤外線をパルス照射するよう前記赤外線照射部を制御する請求項1乃至6のいずれか1項に記載の車両用灯具システム。 The vehicle lighting system according to any one of claims 1 to 6, wherein the irradiation control unit controls the infrared irradiation unit so as to pulse infrared rays in synchronization with the exposure timing of the infrared imaging unit.
  8.  自車前方を撮像する赤外線撮像部および自車前方を撮像する可視光撮像部の少なくとも一方から得られる画像情報に基づいて所定の低階調領域を検出する低階調領域検出部と、
     前記低階調領域に向けて赤外線を照射するよう、自車前方に赤外線を照射する赤外線照射部を制御する照射制御部と、
    を備えることを特徴とする車両用灯具の制御装置。
    A low-gradation region detection unit that detects a predetermined low-gradation region based on image information obtained from at least one of an infrared imaging unit that images the front of the vehicle and a visible light imaging unit that images the front of the vehicle.
    An irradiation control unit that controls an infrared irradiation unit that irradiates infrared rays in front of the vehicle so as to irradiate infrared rays toward the low gradation region.
    A control device for a vehicle lamp, which comprises.
  9.  自車前方を撮像する赤外線撮像部および自車前方を撮像する可視光撮像部の少なくとも一方から得られる画像情報に基づいて所定の低階調領域を検出し、
     前記低階調領域に向けて赤外線を照射するよう、自車前方に赤外線を照射する赤外線照射部を制御すること、
    を含むことを特徴とする車両用灯具の制御方法。
    A predetermined low gradation region is detected based on image information obtained from at least one of an infrared imaging unit that images the front of the vehicle and a visible light imaging unit that images the front of the vehicle.
    Controlling the infrared irradiation unit that irradiates infrared rays in front of the vehicle so as to irradiate infrared rays toward the low gradation region.
    A method of controlling a vehicle lamp, which comprises.
PCT/JP2020/027943 2019-07-18 2020-07-17 Vehicle light-fixture system, vehicle light-fixture control device and vehicle light-fixture control method WO2021010485A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021533121A JP7442528B2 (en) 2019-07-18 2020-07-17 Vehicle lighting system, vehicle lighting control device, and vehicle lighting control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-133071 2019-07-18
JP2019133071 2019-07-18

Publications (1)

Publication Number Publication Date
WO2021010485A1 true WO2021010485A1 (en) 2021-01-21

Family

ID=74210948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027943 WO2021010485A1 (en) 2019-07-18 2020-07-17 Vehicle light-fixture system, vehicle light-fixture control device and vehicle light-fixture control method

Country Status (2)

Country Link
JP (1) JP7442528B2 (en)
WO (1) WO2021010485A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174028A (en) * 2007-01-16 2008-07-31 Sumitomo Electric Ind Ltd Target detection system and method
JP2009090844A (en) * 2007-10-10 2009-04-30 Toyota Central R&D Labs Inc Lighting device
JP2009154615A (en) * 2007-12-25 2009-07-16 Toyota Motor Corp Illuminating device for vehicle
JP2012224317A (en) * 2011-04-22 2012-11-15 Koito Mfg Co Ltd Obstacle detection device
JP2016083987A (en) * 2014-10-24 2016-05-19 スタンレー電気株式会社 Vehicular lighting system and on-vehicle system
JP2019077204A (en) * 2017-10-19 2019-05-23 株式会社小糸製作所 Vehicular lamp fitting system, control device of vehicular lamp fitting, and control method of vehicular lamp fitting

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051441A (en) 2009-09-01 2011-03-17 Koito Mfg Co Ltd Headlight system for vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174028A (en) * 2007-01-16 2008-07-31 Sumitomo Electric Ind Ltd Target detection system and method
JP2009090844A (en) * 2007-10-10 2009-04-30 Toyota Central R&D Labs Inc Lighting device
JP2009154615A (en) * 2007-12-25 2009-07-16 Toyota Motor Corp Illuminating device for vehicle
JP2012224317A (en) * 2011-04-22 2012-11-15 Koito Mfg Co Ltd Obstacle detection device
JP2016083987A (en) * 2014-10-24 2016-05-19 スタンレー電気株式会社 Vehicular lighting system and on-vehicle system
JP2019077204A (en) * 2017-10-19 2019-05-23 株式会社小糸製作所 Vehicular lamp fitting system, control device of vehicular lamp fitting, and control method of vehicular lamp fitting

Also Published As

Publication number Publication date
JPWO2021010485A1 (en) 2021-01-21
JP7442528B2 (en) 2024-03-04

Similar Documents

Publication Publication Date Title
CN104456348B (en) Headlight for automobile
JP6932610B2 (en) Vehicle lighting system, vehicle lighting control device, and vehicle lighting control method
WO2015033764A1 (en) Vehicular lighting
JP5394901B2 (en) Vehicle headlight system
JP7121051B2 (en) VEHICLE LAMP SYSTEM, VEHICLE LAMP CONTROL DEVICE, AND VEHICLE LAMP CONTROL METHOD
JP7111708B2 (en) VEHICLE LAMP SYSTEM, VEHICLE LAMP CONTROL DEVICE, AND VEHICLE LAMP CONTROL METHOD
JP7237607B2 (en) VEHICLE LAMP SYSTEM, VEHICLE LAMP CONTROL DEVICE, AND VEHICLE LAMP CONTROL METHOD
US10919438B2 (en) Vehicle lamp system, vehicle lamp control device and vehicle lamp control method
US10883692B2 (en) Lamp unit and vehicular headlamp
JP6946352B2 (en) Vehicle lighting system, vehicle lighting control device, and vehicle lighting control method
US20220338327A1 (en) Vehicle infrared lamp system, vehicle infrared sensor system, vehicle infrared-sensor-equipped lamp, and optical-sensor-equipped lamp
JP5819153B2 (en) Vehicle headlamp device
JP5415237B2 (en) Vehicle headlight system
JP7267694B2 (en) vehicle lamp
JP7084392B2 (en) Vehicle lighting system, vehicle lighting control device, and vehicle lighting control method
JPWO2020158391A1 (en) Vehicle lighting control device, vehicle lighting system and vehicle lighting control method
WO2022220187A1 (en) Vehicular lamp system, light distribution control device, and light distribution control method
WO2021010485A1 (en) Vehicle light-fixture system, vehicle light-fixture control device and vehicle light-fixture control method
JP7173780B2 (en) vehicle lamp
WO2021002450A1 (en) Vehicle lamp system, control device for vehicle lamp, and control method for vehicle lamp
JP2016000615A (en) Head lamp equipment for vehicle
WO2020246483A1 (en) Lamp system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533121

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840651

Country of ref document: EP

Kind code of ref document: A1