WO2020246483A1 - Lamp system - Google Patents
Lamp system Download PDFInfo
- Publication number
- WO2020246483A1 WO2020246483A1 PCT/JP2020/021833 JP2020021833W WO2020246483A1 WO 2020246483 A1 WO2020246483 A1 WO 2020246483A1 JP 2020021833 W JP2020021833 W JP 2020021833W WO 2020246483 A1 WO2020246483 A1 WO 2020246483A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- light source
- lamp
- visible light
- invisible
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q1/00—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
- B60Q1/26—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
- B60Q1/50—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q1/00—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q1/00—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
- B60Q1/02—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
- B60Q1/04—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q1/00—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
- B60Q1/02—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
- B60Q1/04—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
- B60Q1/14—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V14/00—Controlling the distribution of the light emitted by adjustment of elements
- F21V14/04—Controlling the distribution of the light emitted by adjustment of elements by movement of reflectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V5/00—Refractors for light sources
- F21V5/04—Refractors for light sources of lens shape
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
Definitions
- the present invention relates to a lamp system.
- Light deflectors such as DMD (Digital Micromirror Device) are known. Since light deflectors generally have high resolution and can switch patterns at high speed, ADB (Adaptive Driving Beam) systems that adaptively switch light distribution according to driving conditions and driving support on the road surface It is being considered for use in lighting system such as a road surface drawing system that draws a pattern for.
- DMD Digital Micromirror Device
- ADB Adaptive Driving Beam
- the lighting system or the vehicle ECU may erroneously detect a figure drawn on the road surface as a road marking or the like. False positives can adversely affect control based on detection results, such as control over autonomous driving.
- the invisible light does not give glare to the driver of the other vehicle, it can give glare to the image pickup unit of the other vehicle and having sensitivity in the wavelength range of the invisible light. If the glare given to the image pickup unit of another vehicle can be reduced, the other vehicle can grasp the surrounding situation more accurately, and as a result, the traffic safety is improved.
- one of the exemplary purposes of the embodiment is to provide a lamp system capable of suppressing false detection of a figure drawn on a road surface as a road marking or the like. There is.
- Another one of the exemplary purposes of one aspect is to provide a lamp system that contributes to traffic safety.
- the lighting system of a certain aspect of the present invention includes a plurality of optical elements, and each optical element can be tilted to a first reflection position and a second reflection position.
- a visible light source that irradiates the light deflector with visible light
- an invisible light source that irradiates the light deflector with invisible light
- an image pickup unit that is sensitive to the visible light source and the wavelength range of light from the invisible light source.
- It includes a control unit that controls an optical deflection device.
- the optical element tilted to the first reflection position reflected the light from the visible light source so as to be effectively used, reflected the light from the invisible light source so as not to be effectively used, and tilted to the second reflection position.
- the optical element reflects the light from the invisible light source so that it is effectively used, and reflects the light from the visible light source so that it is not effectively used, and the control unit controls the light deflector to control a plurality of optics. Some of the optics are tilted to the first reflection position to draw a figure on the road surface with visible light, and the remaining optics of the plurality of optics are tilted to the second reflection position to be invisible. Irradiate the road surface with light.
- the lighting system of an embodiment of the present invention includes a light deflector including a plurality of optical elements, a visible light source that irradiates the light deflector with visible light, and an invisible light source that irradiates the light deflector with invisible light. It also includes an imaging unit and a control unit that are sensitive to the wavelength range of light from an invisible light source. The control unit sets the optical element corresponding to the visible light irradiation region to the first reflection position and the optical element corresponding to the invisible light irradiation region to the second reflection position with respect to the light deflection device.
- the control unit is inspected at least one of the periods during which the invisible light is irradiated in front of the lamp. In the period of the unit, the imaging unit is exposed, and in at least a part of the period when the invisible light is not irradiated in front of the lamp, the imaging unit is in the non-exposed state.
- FIG. 4 (a) and 4 (b) are views showing a light deflector.
- 5 (a) to 5 (c) are diagrams illustrating the operation of the lamp system of FIG. 6 (a) and 6 (b) are diagrams for explaining the operation of the lamp system of FIG. 1 in chronological order.
- It is sectional drawing of the lamp unit. 9 (a) and 9 (b) are views showing a light deflector.
- FIG. 1 is a block diagram of the lamp system 100 according to the first embodiment.
- the lighting system 100 includes a variable light distribution lamp 110, an imaging unit 130, a low beam 140, a high beam 150, and a control unit 160. All of these may be built in the same housing, or some members may be provided outside the housing, in other words, on the vehicle side.
- the variable light distribution lamp 110 receives the control signal CTRL instructing the pattern PTN from the control unit 160, emits a beam BM corresponding to the control signal CTRL, and emits an illuminance distribution (pattern) according to the control signal CTRL in front of the vehicle. PTN) is formed.
- the irradiation area by the variable light distribution lamp 110 is defined to cover at least the road surface. Therefore, in the present embodiment, the irradiation area by the variable light distribution lamp 110 overlaps with a part of the irradiation area of the low beam 140. Therefore, the variable light distribution lamp 110 may irradiate the pattern PTN with an illuminance brighter than that of the low beam.
- FIG. 2 is a diagram showing an example of a pattern PTN formed by the variable light distribution lamp 110.
- the broken line 10 indicates an area where the beam BM of the variable light distribution lamp 110 can be irradiated. More specifically, the variable light distribution lamp 110 irradiates (draws) the road surface with the figure F for driving support by visible light. Further, as will be described in detail later, in order to solve the problem that the pattern drawn on the road surface is erroneously detected as a road marking, the light distribution variable lamp 110 irradiates invisible light at the same time as visible light.
- variable light distribution lamp 110 may irradiate a portion of the pattern PTN other than the figure F with invisible light, or irradiate only a portion of the road surface other than the figure F with invisible light, for example. May be good.
- the type of the figure F is not particularly limited, but may be a figure F indicating the direction in which the vehicle should travel, a legal speed, a road sign, or the like, or may be a figure F extending from the vehicle toward a pedestrian. ..
- FIG. 3 is a cross-sectional view of the light distribution variable lamp 110.
- the variable light distribution lamp 110 includes a visible light source 112, an invisible light source 114, a projection optical system 116, and a light deflector 120.
- the visible light source 112 is a light source that emits visible light L1.
- the visible light L1 of the present embodiment is white light.
- semiconductor light emitting elements such as LED (Light emission diode), LD (Laser diode), and EL (Electroluminescence) elements, light bulbs, incandescent lamps (halogen lamps), discharge lamps (discharge lamps), and the like are used. Can be done.
- the invisible light source 114 is a light source that emits invisible light L2.
- the invisible light L2 of the present embodiment is infrared light.
- the invisible light L2 may be near-infrared light or light having a longer wavelength.
- semiconductor light emitting elements such as LEDs, LDs, and EL elements, light bulbs, incandescent lamps, discharge lamps, and the like can be used.
- the light deflector 120 is arranged on the optical axis X behind the projection optical system 116, and is configured to selectively reflect the light emitted from the visible light source 112 or the invisible light source 114 to the projection optical system 116. ..
- the light deflector 120 is composed of, for example, a DMD. That is, the light deflector 120 is an array of a plurality of minute mirror elements (optical elements) arranged in a matrix of m rows and n columns. By controlling the angles of the reflecting surfaces of the plurality of mirror elements, the reflection direction of the light emitted from the visible light source 112 or the invisible light source 114 can be selectively changed.
- FIG. 4 (a) and 4 (b) are views showing the light deflector 120.
- 4 (a) is a front view of the light deflector 120
- FIG. 4 (b) is a sectional view taken along line AA of FIG. 4 (a).
- the light deflector 120 includes a micromirror array 124 in which a plurality of minute mirror elements 122 are arranged in a matrix, and a front side (light fixture front side) of a reflection surface 122a of the mirror element 122. It has a transparent cover member 126 arranged on the right side in FIG. 4B).
- the cover member 126 is, for example, glass, plastic, or the like.
- the number of mirror elements 122 is 80 (horizontal 10 ⁇ vertical 8), but the number of mirror elements 122 is not particularly limited. In reality, for example, the number of mirror elements 122 is 1,000 to 300,000.
- the mirror element 122 is substantially square and has a rotation shaft 122b extending in the horizontal direction and substantially equally dividing the mirror element 122.
- the plurality of mirror elements 122 are not shown in the projection optical system 116 (not shown in FIGS. 4A and 4B) so that the light emitted from the visible light source 112 can be effectively used as a part of the pattern PTN (that is, the figure F). ), And the first reflection position (solid line position shown in FIG. 4B) that reflects the light emitted from the invisible light source 114 so as not to be effectively used, and the light emitted from the invisible light source 114.
- the light is reflected toward the projection optical system 116 so that it can be effectively used as the remaining part of the pattern PTN (that is, the part other than the figure F), and the light emitted from the visible light source 112 is reflected so as not to be effectively used. It is configured to be tiltable at the second reflection position (dotted line position shown in FIG. 4B).
- the directions that are not effectively used are, for example, a direction that does not enter the projection optical system 116 and is directed toward a light absorbing member (light-shielding member) (not shown), or a direction that is incident on the projection optical system 116 but forms a light distribution. It is a direction that makes little contribution.
- the projection optical system 116 is composed of, for example, a free-curved lens whose front surface and rear surface have a free curved shape.
- the projection optical system 116 is arranged so that its rear focus is located on the optical axis of the lamp system 100 and near the reflection surface of the micromirror array 124 of the light deflector 120.
- the projection optical system 116 may be a reflector.
- the imaging unit 130 images the front of the vehicle.
- the imaging unit 130 has sensitivity in the wavelength region of visible light L1 and the wavelength region of invisible light L2.
- the control unit 160 may control the pattern PTN to be drawn on the road surface by the light distribution variable lamp 110 based on the image captured by the image pickup unit 130 (hereinafter referred to as image IMG).
- image IMG image captured by the image pickup unit 130
- the vehicle ECU (Electronic Control Unit) 200 controls the vehicle and the lamp system 100 mounted on the vehicle in an integrated manner. Commands such as turning on / off of the light distribution variable lamp 110, the low beam 140, and the high beam 150 are transmitted from the vehicle ECU 200 to the lighting system 100. In addition, information necessary for light distribution control is transmitted.
- the vehicle ECU may perform automatic driving based on the image IMG.
- 5 (a) to 5 (c) are diagrams illustrating the operation of the lamp system 100 of FIG. In the traveling scenes of FIGS. 5A to 5C, the preceding vehicle 3 and the oncoming vehicle 4 exist.
- the broken line 10 indicates an area where the beam BM of the variable light distribution lamp 110 can be irradiated.
- FIG. 5A shows a pattern PTN formed by the variable light distribution lamp 110.
- the figure F of the arrow by the visible light L1 is drawn on the road surface by the light distribution variable lamp 110.
- the figure F of this arrow is a figure linked to the car navigation system, and indicates that the own vehicle should go straight (or keep the lane).
- the variable light distribution lamp 110 irradiates the portion of the pattern PTN other than the figure F with invisible light L2.
- FIG. 5B is a diagram showing an example of the field of view seen from the driver's seat. Since only the figure F drawn by visible light is recognized by the human eye, the driver can grasp the direction in which the vehicle should travel by visually recognizing the figure F. In addition, the direction in which the vehicle is traveling can be indicated to traffic participants and drivers of other vehicles.
- FIG. 5C is a diagram showing an image IMG captured by the imaging unit 130. Since the difference (or contrast) in illuminance between the visible light L1 that draws the figure F and the invisible light that irradiates the other portion of the pattern PTN is low or not, the figure F is not recognized from the image IMG. In other words, the illuminance of the visible light L1 by the visible light source 112 and the illuminance of the invisible light L2 by the invisible light source 114 are controlled so that the figure F is not recognized from the image IMG. That is, the control unit 160 is configured to be able to individually control the brightness of the visible light source 112 and the brightness of the invisible light source 114.
- the control unit 160 or the vehicle ECU 200 erroneously detects the figure F drawn on the road surface as a road marking, for example, a lane boundary line (so-called lane mark) is solved.
- FIG. 6 is a diagram illustrating the operation of the lamp system 100 in another driving scene.
- 6 (a) and 6 (b) are diagrams for explaining the operation of the lamp system 100 of FIG. 1 in chronological order.
- the variable light distribution lamp 110 irradiates the entire irradiation area with invisible light L2.
- the reflected light of the invisible light L2 by the pedestrian 5 is reflected in the image IMG.
- the control unit 160 analyzes the image IMG to detect the pedestrian 5. When the control unit 160 detects the pedestrian 5, it draws the figure F with visible light L1 as shown in FIG. 6B, and irradiates the other parts with invisible light L2.
- the figure F is a plurality of bars arranged in a direction extending from the own vehicle toward the pedestrian 5. As a result, the pedestrian 5 can be alerted without giving glare to the pedestrian 5. Since the figure F is not recognized from the image IMG as in the example of FIG. 5, the problem that the control unit 160 or the vehicle ECU 200 erroneously detects the figure F drawn on the road surface as a road marking, for example, a lane boundary line is solved. Will be done.
- FIG. 7 is a block diagram of the lamp system 100 according to the second embodiment.
- FIG. 8 is a cross-sectional view of the lamp unit.
- the lamp system 100 includes a lamp unit 110, an imaging unit 130, and a control unit 160. All of these may be built in the same housing, or some members may be provided outside the housing, in other words, on the vehicle side.
- the lamp unit 110 includes a visible light source 112, an invisible light source 114, a projection optical system 116, and a light deflector 120.
- the visible light source 112 is a light source that emits visible light L1.
- the visible light L1 of the present embodiment is white light.
- semiconductor light emitting elements such as LED (Light emission diode), LD (Laser diode), and EL (Electroluminescence) elements, light bulbs, incandescent lamps (halogen lamps), discharge lamps (discharge lamps), and the like are used. Can be done.
- the invisible light source 114 is a light source that emits invisible light L2.
- the invisible light L2 of the present embodiment is infrared light.
- the invisible light L2 may be near infrared light or light having a longer wavelength.
- semiconductor light emitting elements such as LEDs, LDs, and EL elements, light bulbs, incandescent lamps, discharge lamps, and the like can be used.
- the light deflector 120 is arranged on the optical axis X behind the projection optical system 116, and is configured to selectively reflect the light emitted from the visible light source 112 or the invisible light source 114 to the projection optical system 116. ..
- the light deflector 120 is composed of, for example, a DMD. That is, the light deflector 120 is an array of a plurality of minute mirror elements (optical elements) arranged in a matrix of m rows and n columns. By controlling the angles of the reflecting surfaces of the plurality of mirror elements, the reflection direction of the light emitted from the visible light source 112 or the invisible light source 114 can be selectively changed.
- 9 (a) and 9 (b) are views showing the light deflector 120.
- 9 (a) is a front view of the light deflector 120
- FIG. 9 (b) is a sectional view taken along line AA of FIG. 9 (a).
- the light deflector 120 includes a micromirror array 124 in which a plurality of minute mirror elements 122 are arranged in a matrix, and a front side (light fixture front side) of the reflection surface 122a of the mirror element 122. It has a transparent cover member 126 arranged on the right side in FIG. 9B).
- the cover member 126 is, for example, glass, plastic, or the like.
- the number of mirror elements 122 is 80 (horizontal 10 ⁇ vertical 8), but the number of mirror elements 122 is not particularly limited. In reality, for example, the number of mirror elements 122 is 1,000 to 300,000.
- the mirror element 122 is substantially square and has a rotation shaft 122b extending in the horizontal direction and substantially equally dividing the mirror element 122. All or some of the mirror elements 122 are configured to be able to switch between the first reflection position (solid line position shown in FIG. 9B) and the second reflection position (dotted line position shown in FIG. 9B). ..
- the mirror element 122 uses the projection optical system 116 (FIGS. 9A and 9B) so that the light emitted from the visible light source 112 is effectively used as a part of the light distribution pattern by the visible light. ) Is reflected toward (not shown), and the light emitted from the invisible light source 114 is reflected so as not to be effectively used.
- the mirror element 122 reflects the light emitted from the invisible light source 114 toward the projection optical system 116 so as to be effectively used as a part of the light distribution pattern by the invisible light.
- the light emitted from the visible light source 112 is reflected so as not to be effectively used.
- the directions that are not effectively used are, for example, a direction that does not enter the projection optical system 116 and is directed toward a light absorbing member (light-shielding member) (not shown), or a direction that is incident on the projection optical system 116 but forms a light distribution. It is a direction that makes little contribution.
- the visible light from the visible light source 112 is projected by the mirror element 122 set to the first reflection position. It is reflected toward the optical system 116, and a visible light pattern, which is a light distribution pattern by visible light, is irradiated to the front of the lamp.
- the invisible light from the invisible light source 114 is set to the second reflection position. It is reflected by the mirror element 122 toward the projection optical system 116, and an invisible light pattern, which is a light distribution pattern by invisible light, is irradiated to the front of the lamp.
- the projection optical system 116 is, for example, a light source formed of a free curved lens whose front surface and rear surface have a free curved shape, and is formed on a rear focal plane including the rear focal point of the projection optical system 116.
- the image is projected as an inverted image on a virtual vertical screen in front of the lamp.
- the projection optical system 116 is arranged so that its rear focus is located on the optical axis of the lamp system 100 and near the reflection surface of the micromirror array 124 of the light deflector 120.
- the projection optical system 116 may be a reflector.
- the imaging unit 130 captures the reflected light L3 of the invisible light L2 by the object in front of the vehicle.
- the imaging unit 130 may have sensitivity at least in the wavelength range of invisible light L2, and is preferably insensitive to visible light (has no sensitivity or has a sensitivity of a predetermined value or less).
- the imaging unit 130 includes an electronic or mechanical shutter (not shown) for adjusting the exposure time.
- the control unit 160 includes a lamp control unit 162 that controls the lamp unit 110, an image pickup control unit 164 that controls the image pickup unit 130, and a pattern determination unit 166 that determines a light distribution pattern.
- the lamp control unit 162 alternately turns on and off the visible light source 112 and the invisible light source 114.
- the lamp control unit 162 selectively executes the first mode, the second mode, the third mode, and the fourth mode as the control for the light deflection device 120.
- the lamp control unit 162 executes control in the first mode or the third mode when the visible light source 112 is lit, and executes control in the second mode or the fourth mode when the invisible light source 114 is lit. That is, the first mode and the third mode are modes for irradiating the visible light pattern, and the second mode and the fourth mode are modes for irradiating the invisible light pattern.
- the control in either the first mode or the third mode is executed when irradiating the visible light pattern, and the control in either the second mode or the fourth mode is performed when irradiating the invisible light pattern.
- the driver may choose whether to execute.
- the mirror element 122 corresponding to the region to be irradiated with visible light is set at the first reflection position based on the visible light pattern determined by the pattern determination unit 166, for example.
- the mirror element 122 that is, the mirror element 122 corresponding to the region where visible light should not be irradiated (visible light shading region) is set at the second reflection position.
- the third mode all the mirror elements 122 are set to the first reflection position.
- the third mode can also be regarded as a kind of the first mode.
- the visible light L1 emitted from the visible light source 112 to the light deflector 120 is a mirror element set at the first reflection position. It is reflected by 122 and emitted in front of the lamp. As a result, a visible light pattern is formed in front of the lamp and thus the vehicle.
- the invisible light source 114 is turned off, the light deflector 120 is not irradiated with the invisible light L2. Therefore, even if the mirror element 122 set at the second reflection position is present, the invisible light is not visible. L2 is not emitted in front of the lamp.
- the third mode all the mirror elements 122 are set to the first reflection position, so even if the invisible light source 114 is lit, the invisible light L2 is not emitted to the front of the lamp.
- the mirror element 122 corresponding to the region to be irradiated with invisible light is set at the second reflection position, and the other mirror element 122, that is, the invisible light should not be irradiated.
- the mirror element 122 corresponding to the region (invisible light shading region) is set at the first reflection position.
- the fourth mode all the mirror elements 122 are set to the second reflection position.
- the fourth mode can also be regarded as a kind of the second mode.
- the invisible light L2 emitted from the invisible light source 114 to the light deflector 120 is set to the second reflection position. It is reflected by the mirror element 122 and emitted to the front of the lamp. As a result, an invisible light pattern is formed in front of the lamp and thus the vehicle.
- the visible light source 112 since the visible light source 112 is turned off, the visible light L1 is not irradiated to the light deflector 120. Therefore, even if the mirror element 122 set at the first reflection position exists, the visible light L1 is a lamp. It is not emitted forward.
- the fourth mode all the mirror elements 122 are set to the second reflection position, so even if the visible light source 112 is lit, the visible light L1 is not emitted to the front of the lamp.
- the image pickup control unit 164 causes the image pickup unit 130 to take an image.
- the image pickup control unit 164 is at least one of a period during which the visible light pattern by the visible light L1 is irradiated to the front of the lamp, that is, a period during which the first mode or the third mode is executed and the visible light source 112 is lit.
- the shutter of the imaging unit 130 is closed to leave the imaging unit 130 in a non-exposed state.
- the image pickup control unit 164 executes the second mode or the fourth mode during the period in which the invisible light pattern by the invisible light L2 is irradiated to the front of the lamp, that is, the invisible light source 114 is lit.
- the shutter of the imaging unit 130 is opened to bring the imaging unit 130 into an exposed state.
- the pattern determination unit 166 determines the light distribution pattern of visible light supplied to the lamp unit 110 based on the image captured by the image pickup unit 130. Based on the image obtained by the image pickup unit 130, the pattern determination unit 166 detects an object such as a preceding vehicle or an oncoming vehicle that should not be given glare by image processing.
- the object detection algorithm is not particularly limited.
- the pattern determination unit 166 may detect an object based on a plurality of consecutive frames of the image. Then, the pattern determination unit 166 generates a light distribution pattern in which the portion corresponding to the object is shielded from light. That is, the lamp system 100 can execute so-called ADB control.
- shadeing a certain part includes not only the case where the brightness (illuminance) of the part is completely set to zero, but also the case where the brightness (illuminance) of the part is lowered.
- FIG. 10 is a diagram illustrating an example of controlling the light distribution of visible light L1 and invisible light L2.
- FIG. 10 shows a visible light pattern P1 by visible light L1 and a non-visible light pattern P2 by invisible light L2.
- the visible light pattern P1 and the invisible light pattern P2 are drawn in an overlapping manner, but in reality, these are alternately irradiated.
- the control unit 160 executes the first mode as a mode for irradiating the visible light pattern P1 and executes the second mode as a mode for irradiating the invisible light pattern P2.
- the portion corresponding to the object (oncoming vehicle) is shielded from light.
- the invisible light pattern P2 illuminates a relatively wide area in front of the lamp.
- the invisible light pattern P2 may irradiate, for example, a range including the entire imaging range of the imaging unit 130.
- the invisible light pattern P2 does not give glare to the driver of the oncoming vehicle or the preceding vehicle.
- FIG. 11 is an example of a time chart for explaining the operation of the lamp system 100.
- Controller 160 at a predetermined period T S, off point of visible light source 112, turns off the point of the non-visible light source 114, switching of the reflection position of the mirror element 122, and to execute the switching of the exposure state of the imaging unit 130.
- the non-visible light source 114 is a period of the second period T 2 which is turned, the first mode for the optical deflecting device 120 or runs the control according to the third mode, and the period in which the visible light source 112 is lit, namely the period during which the visible light pattern P1 is irradiated to the front of the lamp third period T 3, with respect to the optical deflecting device 120 first 2 mode or the control according to the fourth mode is performed, and non-visible light source 114 period is lit, i.e. non-visible light pattern P2 a period that is irradiated to the front of the lamp fourth period T 4, the imaging unit 130 There is referred to as a fifth time period T 5 and the period is an exposure state.
- the visible light source 112 and the invisible light source 114 are turned on at different timings, and the light deflector 120 switches the reflection position of the mirror element 122 accordingly, whereby the visible light pattern P1 or the invisible light pattern P2 is in front of the lamp. Is irradiated to.
- the imaging unit 130 is in an unexposed state of the imaging unit 130 during at least a part of the period during which the visible light pattern P1 is irradiated to the front of the lamp, and the invisible light pattern P2 is emitted to the front of the lamp.
- the imaging unit 130 is exposed during at least a part of the period.
- the visible light source 112 is turned off, the invisible light source 114 is turned on, and the mirror element 122 is switched from the first reflection position to the second reflection position at substantially the same timing.
- the invisible light source 114 is turned off, the visible light source 112 is turned on, and the mirror element 122 is switched from the second reflection position to the first reflection position at substantially the same timing. Therefore, the second period T 1 in which the visible light source 112 is lit coincides with the third period T 3 in which the visible light pattern P1 is illuminated in front of the lamp, and the invisible light source 114 is lit.
- the period T 2 coincides with the fourth period T 4 in which the invisible light pattern P2 is illuminated in front of the lamp.
- these timings may be slightly different.
- the invisible light source 114 may be turned on after a predetermined time has passed since the visible light source 112 was turned off, or the visible light source 112 may be turned on after a predetermined time has passed since the invisible light source 114 was turned off. You may. In other words, a rest period may be provided between the first period T 1 and the second period T 2 , or between the second period T 2 and the first period T 1 .
- the smaller T 5 / T 4 is, the less noise is obtained, and the larger T 5 / T 4 is, the brighter the image is obtained. That is, as T 5 / T 4 is closer to 1, a clear image with a good balance between less noise and brightness can be obtained, and the situation in front of the vehicle can be grasped more accurately.
- the visible light pattern P1 and the invisible light pattern P2 are alternately irradiated to the front of the vehicle, and the imaging unit 130 is basically in an unexposed state at the timing when the visible light pattern P1 is irradiated.
- the exposure state is set. Therefore, when a plurality of vehicles, for example, two opposing vehicles all include the lamp system 100 of the present embodiment, the timing at which the lamp unit 110 of the lamp system 100 of one vehicle irradiates the invisible light pattern P2.
- the invisible light pattern P2 emitted by the lamp system 100 of one vehicle captures the image of the lamp system 100 of the other vehicle.
- the glare given to the unit 130 can be reduced.
- the imaging unit 130 of the other vehicle can grasp the situation in front of the vehicle more accurately, and as a result, the traffic safety is enhanced.
- the imaging unit 130 is in an exposed state for at least a part of the period during which the invisible light pattern P2 is irradiated in front of the lamp, and the invisible light pattern P2 is in front of the lamp. Since the non-exposed state is set for at least a part of the non-irradiated period, an image with less noise can be obtained as compared with the case where the non-visible light pattern P2 is not emitted in front of the lamp and is exposed all the time. Therefore, the situation in front of the vehicle can be grasped more accurately. As a result, traffic safety is improved.
- the mirror element corresponding to the time when the imaging unit 130 is in the exposed state (the state in which the shutter is open), the invisible light source 114 is lit, and the invisible light irradiation region is provided.
- the time that 122 is in the second reflection position is equal.
- variable light distribution lamp 110 was an additional light source for the low beam 140 and the high beam 150, but the function of at least one of the low beam 140 and the high beam 150 was integrated with the variable light distribution lamp 110. You may.
- FIG. 12 is a block diagram of the lamp system 100 according to a modified example of the second embodiment.
- the differences from the second embodiment will be mainly described.
- a lamp system mounted on another vehicle which is the same as the lamp system 100 of this modified example, and its constituent elements will be described with "'".
- the lamp system 100 further includes a display device 180.
- the display device 180 may be a monitor installed in the vehicle interior or a head-up display (HUD: Head Up Display).
- the control unit 160 displays the image captured by the image pickup unit 130 on the display device 180.
- the driver can grasp the situation in front of the vehicle by looking at the image displayed on the display device 180, and for example, the safety at night when the visibility is poor is improved.
- the lighting equipment system 100 further includes a marking lamp 170 for indicating the position of the imaging unit 130, which is arranged adjacent to the imaging unit 130.
- the image pickup unit 130 and the marking lamp 170 are provided inside the housing, but may be provided outside the housing, in other words, on the vehicle side.
- the marking lamp 170 is configured to include an invisible light source and emits invisible light.
- the marking lamp 170 is arranged adjacent to the image pickup unit 130 and emits invisible light to notify the position of the image pickup unit 130 to other surrounding vehicles.
- the control unit 160 determines the light distribution pattern of the invisible light supplied to the lamp unit 110 based on the image captured by the image pickup unit 130.
- the control unit 160 detects the image pickup unit 130'of the lamp system 100' mounted on another vehicle, for example, an oncoming vehicle, by image processing based on the image obtained by the image pickup unit 130.
- the control unit 160 detects the range displayed by the marking lamp 170'as the range of the imaging unit 130'.
- the control unit 160 irradiates the irradiation pattern of invisible light L2 that blocks the area so as not to irradiate the area. That is, the control unit 160 executes the second mode as a mode for irradiating the invisible light pattern P2.
- FIG. 13 is a diagram illustrating an example of controlling the light distribution of the invisible light L2.
- FIG. 13 shows an irradiation pattern of invisible light L2.
- the imaging unit 130' is provided on the vehicle side, specifically on the front window. Further, two marking lamps 170'that shine in a dot shape are provided on the left and right sides of the image pickup unit 130' so as to sandwich the image pickup unit 130'on the left and right sides.
- the number and configuration of the marking lamps 170' are not particularly limited. For example, one marking lamp 170'that shines in a dot shape may be arranged adjacent to the imaging unit 130', or the marking lamp 170' with three or more lights in a dot shape surrounds the imaging unit 130'. It may be arranged around the', for example, at equal intervals. Further, the marking lamp 170'may have an annular light emitting surface surrounding the imaging unit 130'.
- the invisible light L2 is in the range indicated by the marking lamp 170', and the portion corresponding to the imaging unit 130'is shielded from light.
- the method of specifying the light-shielding range from the marking of the marking lamp 170' is not particularly limited, and a predetermined range centered on each marking lamp 170' may be specified as the light-shielding range, or the marking lamp 170' may be specified.
- the range connecting the marking lamps 170'with a straight line may be specified as a light-shielding range, and when the marking lamp 170'has an annular light emitting surface, the inside of the light emitting surface is specified as a light-shielding range. You may.
- the control unit 160'of the lamp system 100' preferably blinks the marking lamp 170'in a predetermined pattern.
- the control unit 160 of the lamp system 100 can distinguish the light emitted from the marking lamp 170'from the light emitted from a light source other than the marking lamp 170', and can suppress erroneous detection of the marking lamp 170'.
- the present invention can be used for a lamp system.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lighting Device Outwards From Vehicle And Optical Signal (AREA)
Abstract
This lamp system comprises: an optical deflector including a plurality of optical elements; a visible light source; an invisible light source; an imaging unit sensitive to the wavelength range of light from the visible light source and the invisible light source; and a control unit that controls the optical deflector. The optical element tilted to a first reflection position reflects the light from the visible light source such that the light is effectively used, and reflects the light from the invisible light source such that the light is not effectively used, and the optical element tilted to a second reflection position reflects the light from the invisible light source such that the light is effectively used, and reflects the light from the visible light source such that the light is not effectively used. The control unit controls the light deflector, tilts some optical elements of the plurality of optical elements to the first reflection position to draw the figure F on a road surface with the visible light L1, and tilts the remaining optical elements of the plurality of optical elements to the second reflection position to irradiate the road surface with the invisible light L2.
Description
本発明は、灯具システムに関する。
The present invention relates to a lamp system.
(1)従来、図形字を路面に描画し、自車両や他車両の運転者や周囲の交通参加者にさまざまな情報を提示する技術が提案されている。
(1) Conventionally, a technique has been proposed in which graphic characters are drawn on the road surface and various information is presented to the driver of the own vehicle or another vehicle and surrounding traffic participants.
(2)DMD(Digital Micromirror Device)などの光偏向装置が知られている。光偏向装置は、一般的に、高分解能であり、高速にパターンを切替可能であることから、走行状況に応じて配光を適応的に切り替えるADB(Adaptive Driving Beam)システムや、路面に運転支援のためのパターンを描画する路面描画システムなど、灯具システムへの採用が検討されている。
(2) Light deflectors such as DMD (Digital Micromirror Device) are known. Since light deflectors generally have high resolution and can switch patterns at high speed, ADB (Adaptive Driving Beam) systems that adaptively switch light distribution according to driving conditions and driving support on the road surface It is being considered for use in lighting system such as a road surface drawing system that draws a pattern for.
(1)灯具システムあるいは車両ECU(Electronic Control Unit)が、路面に描画された図形を路面標示等として誤検出する場合がある。誤検出すると、検出結果に基づく制御、例えば自動運転に関する制御に悪影響を及ぼしうる。
(1) The lighting system or the vehicle ECU (Electronic Control Unit) may erroneously detect a figure drawn on the road surface as a road marking or the like. False positives can adversely affect control based on detection results, such as control over autonomous driving.
(2)赤外線などの非可視光を照射し、物体による非可視光の反射光を撮像して画像解析することで、車両周囲の状況を把握する技術が知られている。本発明者達は、可視光に加えて、この非可視光の配光も、光偏向装置を用いて制御することを検討している。これにより、たとえは非可視光を複雑な形状の配光パターンにするなど、非可視光の配光の自由度も向上する。
(2) There is known a technique for grasping the situation around the vehicle by irradiating invisible light such as infrared rays, capturing the reflected light of the invisible light by an object, and analyzing the image. The present inventors are considering controlling the light distribution of this invisible light in addition to the visible light by using a light deflector. As a result, the degree of freedom of light distribution of invisible light is also improved, for example, the invisible light is made into a light distribution pattern having a complicated shape.
ところで、非可視光は、他車両の運転者にはグレアを与えないものの、当該他車両の撮像部であって、当該非可視光の波長域に感度を有する撮像部にはグレアを与えうる。他車両の撮像部に与えるグレアも低減できれば、当該他車両はより精度良く周囲の状況を把握でき、その結果、交通の安全性が高まる。
By the way, although the invisible light does not give glare to the driver of the other vehicle, it can give glare to the image pickup unit of the other vehicle and having sensitivity in the wavelength range of the invisible light. If the glare given to the image pickup unit of another vehicle can be reduced, the other vehicle can grasp the surrounding situation more accurately, and as a result, the traffic safety is improved.
本発明はこうした状況においてなされたものであり、(1)そのある態様の例示的な目的のひとつは、路面に描画された図形を路面標示等として誤検出するのを抑止できる灯具システムを提供することにある。
The present invention has been made in such a situation, and (1) one of the exemplary purposes of the embodiment is to provide a lamp system capable of suppressing false detection of a figure drawn on a road surface as a road marking or the like. There is.
(2)また、ある態様の例示的な目的の他のひとつは、交通安全に寄与する灯具システムを提供することにある。
(2) Further, another one of the exemplary purposes of one aspect is to provide a lamp system that contributes to traffic safety.
(1)上記課題を解決するために、本発明のある態様の灯具システムは、複数の光学素子を含み、各光学素子は第1反射位置、第2反射位置に傾動可能である、光偏向装置と、光偏向装置に可視光を照射する可視光源と、光偏向装置に非可視光を照射する非可視光源と、可視光源および非可視光源からの光の波長域に感度を有する撮像部と、光偏向装置を制御する制御部と、を備える。第1反射位置に傾動した光学素子は、可視光源からの光を有効に利用されるように反射し、非可視光源からの光を有効に利用されないように反射し、第2反射位置に傾動した光学素子は、非可視光源からの光を有効に利用されるように反射し、可視光源からの光を有効に利用されないように反射し、制御部は、光偏向装置を制御し、複数の光学素子のうちの一部の光学素子を第1反射位置に傾動して可視光により図形を路面に描画し、複数の光学素子のうちの残りの光学素子を第2反射位置に傾動して非可視光を路面に照射する。
(1) In order to solve the above problems, the lighting system of a certain aspect of the present invention includes a plurality of optical elements, and each optical element can be tilted to a first reflection position and a second reflection position. A visible light source that irradiates the light deflector with visible light, an invisible light source that irradiates the light deflector with invisible light, an image pickup unit that is sensitive to the visible light source and the wavelength range of light from the invisible light source. It includes a control unit that controls an optical deflection device. The optical element tilted to the first reflection position reflected the light from the visible light source so as to be effectively used, reflected the light from the invisible light source so as not to be effectively used, and tilted to the second reflection position. The optical element reflects the light from the invisible light source so that it is effectively used, and reflects the light from the visible light source so that it is not effectively used, and the control unit controls the light deflector to control a plurality of optics. Some of the optics are tilted to the first reflection position to draw a figure on the road surface with visible light, and the remaining optics of the plurality of optics are tilted to the second reflection position to be invisible. Irradiate the road surface with light.
(2)本発明のある態様の灯具システムは、複数の光学素子を含む光偏向装置と、光偏向装置へ可視光を照射する可視光源と、光偏向装置へ非可視光を照射する非可視光源と、非可視光源からの光の波長域に感度を有する撮像部と、制御部と、を備える。制御部は、光偏向装置に対して、可視光照射領域に対応する光学素子を第1反射位置に設定する第1モードと、非可視光照射領域に対応する光学素子を第2反射位置に設定する第2モードと、を実行可能であり、第1モードが実行され、かつ、可視光源が点灯しているときに、灯具前方の可視光照射領域に可視光が照射され、第2モードが実行され、かつ、非可視光源が点灯しているときに、灯具前方の非可視光照射領域に非可視光が照射され、制御部は、非可視光が灯具前方に照射されている期間の少なくとも一部の期間では、撮像部を露光状態とし、非可視光が灯具前方に照射されていない期間の少なくとも一部の期間では、撮像部を非露光状態とする。
(2) The lighting system of an embodiment of the present invention includes a light deflector including a plurality of optical elements, a visible light source that irradiates the light deflector with visible light, and an invisible light source that irradiates the light deflector with invisible light. It also includes an imaging unit and a control unit that are sensitive to the wavelength range of light from an invisible light source. The control unit sets the optical element corresponding to the visible light irradiation region to the first reflection position and the optical element corresponding to the invisible light irradiation region to the second reflection position with respect to the light deflection device. When the first mode is executed and the visible light source is lit, the visible light irradiation area in front of the lamp is irradiated with visible light, and the second mode is executed. And when the invisible light source is lit, the invisible light irradiation area in front of the lamp is irradiated with invisible light, and the control unit is inspected at least one of the periods during which the invisible light is irradiated in front of the lamp. In the period of the unit, the imaging unit is exposed, and in at least a part of the period when the invisible light is not irradiated in front of the lamp, the imaging unit is in the non-exposed state.
なお、以上の構成要素の任意の組み合わせや、本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。
It should be noted that any combination of the above components and those in which the components and expressions of the present invention are mutually replaced between methods, devices, systems, etc. are also effective as aspects of the present invention.
(1)本発明によれば、路面に描画された図形を路面標示等として誤検出するのを抑止できる。あるいは、(2)本発明によれば、交通安全に寄与する灯具システムを提供できる。
(1) According to the present invention, it is possible to prevent erroneous detection of a figure drawn on a road surface as a road marking or the like. Alternatively, (2) according to the present invention, it is possible to provide a lamp system that contributes to traffic safety.
以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。
Hereinafter, the present invention will be described based on a preferred embodiment with reference to the drawings. The embodiments are not limited to the invention, but are exemplary, and all the features and combinations thereof described in the embodiments are not necessarily essential to the invention. The same or equivalent components, members, and processes shown in the drawings shall be designated by the same reference numerals, and redundant description will be omitted as appropriate.
(第1の実施の形態)
図1は、第1の実施の形態に係る灯具システム100のブロック図である。灯具システム100は、配光可変ランプ110と、撮像部130と、ロービーム140と、ハイビーム150と、制御部160と、を備える。これらはすべて同じ筐体に内蔵されていてもよいし、いくつかの部材は、筐体の外部、言い換えれば車両側に設けられてもよい。 (First Embodiment)
FIG. 1 is a block diagram of thelamp system 100 according to the first embodiment. The lighting system 100 includes a variable light distribution lamp 110, an imaging unit 130, a low beam 140, a high beam 150, and a control unit 160. All of these may be built in the same housing, or some members may be provided outside the housing, in other words, on the vehicle side.
図1は、第1の実施の形態に係る灯具システム100のブロック図である。灯具システム100は、配光可変ランプ110と、撮像部130と、ロービーム140と、ハイビーム150と、制御部160と、を備える。これらはすべて同じ筐体に内蔵されていてもよいし、いくつかの部材は、筐体の外部、言い換えれば車両側に設けられてもよい。 (First Embodiment)
FIG. 1 is a block diagram of the
配光可変ランプ110は、制御部160からパターンPTNを指示する制御信号SCTRLを受け、制御信号SCTRLに応じたビームBMを出射し、車両前方に制御信号SCTRLに応じた照度分布(パターンPTN)を形成する。
The variable light distribution lamp 110 receives the control signal CTRL instructing the pattern PTN from the control unit 160, emits a beam BM corresponding to the control signal CTRL, and emits an illuminance distribution (pattern) according to the control signal CTRL in front of the vehicle. PTN) is formed.
配光可変ランプ110による照射エリアは、少なくとも路面をカバーするように定められる。したがって本実施の形態では、配光可変ランプ110による照射エリアは、ロービーム140の照射エリアの一部とオーバーラップする。したがって配光可変ランプ110は、ロービームよりも明るい照度でパターンPTNを照射してもよい。
The irradiation area by the variable light distribution lamp 110 is defined to cover at least the road surface. Therefore, in the present embodiment, the irradiation area by the variable light distribution lamp 110 overlaps with a part of the irradiation area of the low beam 140. Therefore, the variable light distribution lamp 110 may irradiate the pattern PTN with an illuminance brighter than that of the low beam.
図2は、配光可変ランプ110が形成するパターンPTNの一例を示す図である。図2の走行シーンでは、先行車3および対向車4が存在する。破線10は、配光可変ランプ110のビームBMの照射可能なエリアを示す。より詳しくは、配光可変ランプ110は、運転支援のための図形Fを可視光により路面に照射(描画)する。また、詳しくは後述するが、路面に描画されたパターンを路面標示として誤検出される問題を解決するために、配光可変ランプ110は、可視光と同時に非可視光を照射する。配光可変ランプ110は、例えば図示のように図形F以外のパターンPTNの部分を非可視光により照射してもよいし、また例えば図形F以外の路面の部分のみを非可視光により照射してもよい。図形Fの種類は特に限定されないが、自車が進行すべき方向、法定速度、道路標識などを示す図形Fであってもよく、自車から歩行者に向かって伸びる図形Fであってもよい。
FIG. 2 is a diagram showing an example of a pattern PTN formed by the variable light distribution lamp 110. In the traveling scene of FIG. 2, there are a preceding vehicle 3 and an oncoming vehicle 4. The broken line 10 indicates an area where the beam BM of the variable light distribution lamp 110 can be irradiated. More specifically, the variable light distribution lamp 110 irradiates (draws) the road surface with the figure F for driving support by visible light. Further, as will be described in detail later, in order to solve the problem that the pattern drawn on the road surface is erroneously detected as a road marking, the light distribution variable lamp 110 irradiates invisible light at the same time as visible light. As shown in the figure, the variable light distribution lamp 110 may irradiate a portion of the pattern PTN other than the figure F with invisible light, or irradiate only a portion of the road surface other than the figure F with invisible light, for example. May be good. The type of the figure F is not particularly limited, but may be a figure F indicating the direction in which the vehicle should travel, a legal speed, a road sign, or the like, or may be a figure F extending from the vehicle toward a pedestrian. ..
図3は、配光可変ランプ110の断面図である。配光可変ランプ110は、可視光源112と、非可視光源114と、投影光学系116と、光偏向装置120と、を備える。
FIG. 3 is a cross-sectional view of the light distribution variable lamp 110. The variable light distribution lamp 110 includes a visible light source 112, an invisible light source 114, a projection optical system 116, and a light deflector 120.
可視光源112は、可視光L1を出射する光源である。本実施の形態の可視光L1は、白色光である。可視光源112としては、LED(Light emitting diode)、LD(Laser diode)、EL(Electroluminescence)素子等の半導体発光素子や、電球、白熱灯(ハロゲンランプ)、放電灯(ディスチャージランプ)等を用いることができる。
The visible light source 112 is a light source that emits visible light L1. The visible light L1 of the present embodiment is white light. As the visible light source 112, semiconductor light emitting elements such as LED (Light emission diode), LD (Laser diode), and EL (Electroluminescence) elements, light bulbs, incandescent lamps (halogen lamps), discharge lamps (discharge lamps), and the like are used. Can be done.
非可視光源114は、非可視光L2を出射する光源である。本実施の形態の非可視光L2は、赤外光である。非可視光L2は、近赤外光であってもよいし、より長波長の光であってもよい。非可視光源114としては、LED、LD、EL素子等の半導体発光素子や、電球、白熱灯、放電灯等を用いることができる。
The invisible light source 114 is a light source that emits invisible light L2. The invisible light L2 of the present embodiment is infrared light. The invisible light L2 may be near-infrared light or light having a longer wavelength. As the invisible light source 114, semiconductor light emitting elements such as LEDs, LDs, and EL elements, light bulbs, incandescent lamps, discharge lamps, and the like can be used.
光偏向装置120は、投影光学系116の後方の光軸X上に配置され、可視光源112または非可視光源114から出射した光を選択的に投影光学系116へ反射するように構成されている。光偏向装置120は、例えばDMDで構成される。すなわち、光偏向装置120は、m行n列のマトリクス状に配列される複数の微小なミラー素子(光学素子)のアレイである。これらの複数のミラー素子の反射面の角度をそれぞれ制御することで、可視光源112または非可視光源114から出射された光の反射方向を選択的に変えることができる。
The light deflector 120 is arranged on the optical axis X behind the projection optical system 116, and is configured to selectively reflect the light emitted from the visible light source 112 or the invisible light source 114 to the projection optical system 116. .. The light deflector 120 is composed of, for example, a DMD. That is, the light deflector 120 is an array of a plurality of minute mirror elements (optical elements) arranged in a matrix of m rows and n columns. By controlling the angles of the reflecting surfaces of the plurality of mirror elements, the reflection direction of the light emitted from the visible light source 112 or the invisible light source 114 can be selectively changed.
図4(a)、(b)は、光偏向装置120を示す図である。図4(a)は、光偏向装置120の正面図であり、図4(b)は、図4(a)のA-A線断面図である。
4 (a) and 4 (b) are views showing the light deflector 120. 4 (a) is a front view of the light deflector 120, and FIG. 4 (b) is a sectional view taken along line AA of FIG. 4 (a).
光偏向装置120は、図4(a)に示すように、複数の微小なミラー素子122がマトリックス状に配列されたマイクロミラーアレイ124と、ミラー素子122の反射面122aの前方側(灯具前方側であって図4(b)では右側)に配置された透明なカバー部材126と、を有する。カバー部材126は、例えば、ガラスやプラスチック等である。
As shown in FIG. 4A, the light deflector 120 includes a micromirror array 124 in which a plurality of minute mirror elements 122 are arranged in a matrix, and a front side (light fixture front side) of a reflection surface 122a of the mirror element 122. It has a transparent cover member 126 arranged on the right side in FIG. 4B). The cover member 126 is, for example, glass, plastic, or the like.
図4では、説明の便宜上、ミラー素子122の数を80(横10×縦8)としているが、ミラー素子122の数は特に限定されない。実際には例えば、ミラー素子122の数は1000~30万である。
In FIG. 4, for convenience of explanation, the number of mirror elements 122 is 80 (horizontal 10 × vertical 8), but the number of mirror elements 122 is not particularly limited. In reality, for example, the number of mirror elements 122 is 1,000 to 300,000.
ミラー素子122は、略正方形であり、水平方向に延びミラー素子122をほぼ等分する回動軸122bを有する。複数のミラー素子122は、可視光源112から出射された光をパターンPTNの一部分(すなわち図形F)として有効に利用されるように投影光学系116(図4(a)、(b)では不図示)へ向けて反射し、非可視光源114から出射された光を有効に利用されないように反射する第1反射位置(図4(b)に示す実線位置)と、非可視光源114から出射された光をパターンPTNの残りの部分(すなわち図形F以外の部分)として有効に利用されるように投影光学系116へ向けて反射し、可視光源112から出射された光を有効に利用されないように反射する第2反射位置(図4(b)に示す点線位置)に、傾動可能に構成されている。ここで、有効に利用されない方向は、例えば、投影光学系116に入射しない方向であって図示しない光吸収部材(遮光部材)に向かう方向や、投影光学系116に入射するが配光の形成にほとんど寄与しない方向である。
The mirror element 122 is substantially square and has a rotation shaft 122b extending in the horizontal direction and substantially equally dividing the mirror element 122. The plurality of mirror elements 122 are not shown in the projection optical system 116 (not shown in FIGS. 4A and 4B) so that the light emitted from the visible light source 112 can be effectively used as a part of the pattern PTN (that is, the figure F). ), And the first reflection position (solid line position shown in FIG. 4B) that reflects the light emitted from the invisible light source 114 so as not to be effectively used, and the light emitted from the invisible light source 114. The light is reflected toward the projection optical system 116 so that it can be effectively used as the remaining part of the pattern PTN (that is, the part other than the figure F), and the light emitted from the visible light source 112 is reflected so as not to be effectively used. It is configured to be tiltable at the second reflection position (dotted line position shown in FIG. 4B). Here, the directions that are not effectively used are, for example, a direction that does not enter the projection optical system 116 and is directed toward a light absorbing member (light-shielding member) (not shown), or a direction that is incident on the projection optical system 116 but forms a light distribution. It is a direction that makes little contribution.
図3に戻り、投影光学系116は、例えば、前方側表面および後方側表面が自由曲面形状を有する自由曲面レンズからなる。投影光学系116は、その後方焦点が灯具システム100の光軸上、かつ光偏向装置120のマイクロミラーアレイ124の反射面の近傍に位置するように配置される。なお、投影光学系116はリフレクタであってもよい。
Returning to FIG. 3, the projection optical system 116 is composed of, for example, a free-curved lens whose front surface and rear surface have a free curved shape. The projection optical system 116 is arranged so that its rear focus is located on the optical axis of the lamp system 100 and near the reflection surface of the micromirror array 124 of the light deflector 120. The projection optical system 116 may be a reflector.
撮像部130は、車両前方を撮像する。撮像部130は、可視光L1の波長域および非可視光L2の波長域に感度を有する。制御部160は、撮像部130が撮影した画像(以下、画像IMGという)に基づいて、配光可変ランプ110が路面に描画すべきパターンPTNを制御してもよい。車両ECU(Electronic Control Unit)200は、車両および車両に搭載された灯具システム100を統合的に制御する。車両ECU200から灯具システム100には、配光可変ランプ110、ロービーム140、ハイビーム150のオン、オフなどの指令が送信される。また配光制御に必要な情報が送信される。車両ECUは、画像IMGに基づいて、自動運転を行ってもよい。
The imaging unit 130 images the front of the vehicle. The imaging unit 130 has sensitivity in the wavelength region of visible light L1 and the wavelength region of invisible light L2. The control unit 160 may control the pattern PTN to be drawn on the road surface by the light distribution variable lamp 110 based on the image captured by the image pickup unit 130 (hereinafter referred to as image IMG). The vehicle ECU (Electronic Control Unit) 200 controls the vehicle and the lamp system 100 mounted on the vehicle in an integrated manner. Commands such as turning on / off of the light distribution variable lamp 110, the low beam 140, and the high beam 150 are transmitted from the vehicle ECU 200 to the lighting system 100. In addition, information necessary for light distribution control is transmitted. The vehicle ECU may perform automatic driving based on the image IMG.
続いて、灯具システム100の動作を説明する。
Next, the operation of the lamp system 100 will be described.
図5(a)~(c)は、図1の灯具システム100の動作を説明する図である。図5(a)~(c)の走行シーンでは、先行車3および対向車4が存在する。破線10は、配光可変ランプ110のビームBMの照射可能なエリアを示す。
5 (a) to 5 (c) are diagrams illustrating the operation of the lamp system 100 of FIG. In the traveling scenes of FIGS. 5A to 5C, the preceding vehicle 3 and the oncoming vehicle 4 exist. The broken line 10 indicates an area where the beam BM of the variable light distribution lamp 110 can be irradiated.
図5(a)は、配光可変ランプ110が形成するパターンPTNを示す。配光可変ランプ110により、可視光L1による矢印の図形Fが路面に描画されている。例えばこの矢印の図形Fは、カーナビゲーションシステムと連動した図形であり、自車が直進(あるいはレーンキープ)すべき状態であることを示す。また、配光可変ランプ110により、図形F以外のパターンPTNの部分に非可視光L2が照射されている。
FIG. 5A shows a pattern PTN formed by the variable light distribution lamp 110. The figure F of the arrow by the visible light L1 is drawn on the road surface by the light distribution variable lamp 110. For example, the figure F of this arrow is a figure linked to the car navigation system, and indicates that the own vehicle should go straight (or keep the lane). Further, the variable light distribution lamp 110 irradiates the portion of the pattern PTN other than the figure F with invisible light L2.
図5(b)は、運転席から見た視野の一例を示す図である。人間の目には、可視光により描画された図形Fだけが認識されるため、運転者は図形Fを視認することによって、自車が進行すべき方向を把握できる。また、自車が進行する方向を、交通参加者や他車の運転者に示すことができる。
FIG. 5B is a diagram showing an example of the field of view seen from the driver's seat. Since only the figure F drawn by visible light is recognized by the human eye, the driver can grasp the direction in which the vehicle should travel by visually recognizing the figure F. In addition, the direction in which the vehicle is traveling can be indicated to traffic participants and drivers of other vehicles.
図5(c)は、撮像部130が撮像した画像IMGを示す図である。図形Fを描画する可視光L1と、それ以外のパターンPTNの部分を照射する非可視光との照度の差(あるいはコントラスト)が低いあるいは無いため、画像IMGから図形Fは認識されない。言い換えると、画像IMGから図形Fが認識されないように、可視光源112による可視光L1の照度と非可視光源114による非可視光L2の照度が制御される。つまり、制御部160は、可視光源112の輝度と非可視光源114の輝度とを個別に制御可能に構成される。画像IMGから図形Fは認識されないため、制御部160あるいは車両ECU200が、路面に描画された図形Fを路面標示、例えば車線境界線(いわゆるレーンマーク)として誤検出する問題が解決される。
FIG. 5C is a diagram showing an image IMG captured by the imaging unit 130. Since the difference (or contrast) in illuminance between the visible light L1 that draws the figure F and the invisible light that irradiates the other portion of the pattern PTN is low or not, the figure F is not recognized from the image IMG. In other words, the illuminance of the visible light L1 by the visible light source 112 and the illuminance of the invisible light L2 by the invisible light source 114 are controlled so that the figure F is not recognized from the image IMG. That is, the control unit 160 is configured to be able to individually control the brightness of the visible light source 112 and the brightness of the invisible light source 114. Since the figure F is not recognized from the image IMG, the problem that the control unit 160 or the vehicle ECU 200 erroneously detects the figure F drawn on the road surface as a road marking, for example, a lane boundary line (so-called lane mark) is solved.
図6は、別の走行シーンにおける灯具システム100の動作を説明する図である。図6(a)、(b)は、図1の灯具システム100の動作を時系列で説明する図である。図6(a)では、対向車4および歩行者5が存在する。配光可変ランプ110により、その照射エリアの全体に非可視光L2が照射される。画像IMGには、歩行者5による非可視光L2の反射光が写る。制御部160は、この画像IMGを画像解析して、歩行者5を検出する。制御部160は、歩行者5を検出すると、図6(b)に示すように図形Fを可視光L1により描画し、それ以外の部分に非可視光L2を照射する。図形Fは、自車から歩行者5に向かって伸びる方向に並べられた複数のバーである。これにより、歩行者5にグレアを与えずに歩行者5に注意喚起を与えることができる。なお、図5の例と同様に、画像IMGから図形Fは認識されないため、制御部160あるいは車両ECU200が、路面に描画された図形Fを路面標示、例えば車線境界線として誤検出する問題が解決される。
FIG. 6 is a diagram illustrating the operation of the lamp system 100 in another driving scene. 6 (a) and 6 (b) are diagrams for explaining the operation of the lamp system 100 of FIG. 1 in chronological order. In FIG. 6A, there are an oncoming vehicle 4 and a pedestrian 5. The variable light distribution lamp 110 irradiates the entire irradiation area with invisible light L2. The reflected light of the invisible light L2 by the pedestrian 5 is reflected in the image IMG. The control unit 160 analyzes the image IMG to detect the pedestrian 5. When the control unit 160 detects the pedestrian 5, it draws the figure F with visible light L1 as shown in FIG. 6B, and irradiates the other parts with invisible light L2. The figure F is a plurality of bars arranged in a direction extending from the own vehicle toward the pedestrian 5. As a result, the pedestrian 5 can be alerted without giving glare to the pedestrian 5. Since the figure F is not recognized from the image IMG as in the example of FIG. 5, the problem that the control unit 160 or the vehicle ECU 200 erroneously detects the figure F drawn on the road surface as a road marking, for example, a lane boundary line is solved. Will be done.
(第2の実施の形態)
図7は、第2の実施の形態に係る灯具システム100のブロック図である。図8は、灯具ユニットの断面図である。灯具システム100は、灯具ユニット110と、撮像部130と、制御部160と、を備える。これらはすべて同じ筐体に内蔵されていてもよいし、いくつかの部材は、筐体の外部、言い換えれば車両側に設けられてもよい。 (Second Embodiment)
FIG. 7 is a block diagram of thelamp system 100 according to the second embodiment. FIG. 8 is a cross-sectional view of the lamp unit. The lamp system 100 includes a lamp unit 110, an imaging unit 130, and a control unit 160. All of these may be built in the same housing, or some members may be provided outside the housing, in other words, on the vehicle side.
図7は、第2の実施の形態に係る灯具システム100のブロック図である。図8は、灯具ユニットの断面図である。灯具システム100は、灯具ユニット110と、撮像部130と、制御部160と、を備える。これらはすべて同じ筐体に内蔵されていてもよいし、いくつかの部材は、筐体の外部、言い換えれば車両側に設けられてもよい。 (Second Embodiment)
FIG. 7 is a block diagram of the
灯具ユニット110は、可視光源112と、非可視光源114と、投影光学系116と、光偏向装置120と、を備える。
The lamp unit 110 includes a visible light source 112, an invisible light source 114, a projection optical system 116, and a light deflector 120.
可視光源112は、可視光L1を出射する光源である。本実施の形態の可視光L1は、白色光である。可視光源112としては、LED(Light emitting diode)、LD(Laser diode)、EL(Electroluminescence)素子等の半導体発光素子や、電球、白熱灯(ハロゲンランプ)、放電灯(ディスチャージランプ)等を用いることができる。
The visible light source 112 is a light source that emits visible light L1. The visible light L1 of the present embodiment is white light. As the visible light source 112, semiconductor light emitting elements such as LED (Light emission diode), LD (Laser diode), and EL (Electroluminescence) elements, light bulbs, incandescent lamps (halogen lamps), discharge lamps (discharge lamps), and the like are used. Can be done.
非可視光源114は、非可視光L2を出射する光源である。本実施の形態の非可視光L2は、赤外光である。非可視光L2は、近赤外であってもよいし、より長波長の光であってもよい。非可視光源114としては、LED、LD、EL素子等の半導体発光素子や、電球、白熱灯、放電灯等を用いることができる。
The invisible light source 114 is a light source that emits invisible light L2. The invisible light L2 of the present embodiment is infrared light. The invisible light L2 may be near infrared light or light having a longer wavelength. As the invisible light source 114, semiconductor light emitting elements such as LEDs, LDs, and EL elements, light bulbs, incandescent lamps, discharge lamps, and the like can be used.
光偏向装置120は、投影光学系116の後方の光軸X上に配置され、可視光源112または非可視光源114から出射した光を選択的に投影光学系116へ反射するように構成されている。光偏向装置120は、例えばDMDで構成される。すなわち、光偏向装置120は、m行n列のマトリクス状に配列される複数の微小なミラー素子(光学素子)のアレイである。これらの複数のミラー素子の反射面の角度をそれぞれ制御することで、可視光源112または非可視光源114から出射された光の反射方向を選択的に変えることができる。
The light deflector 120 is arranged on the optical axis X behind the projection optical system 116, and is configured to selectively reflect the light emitted from the visible light source 112 or the invisible light source 114 to the projection optical system 116. .. The light deflector 120 is composed of, for example, a DMD. That is, the light deflector 120 is an array of a plurality of minute mirror elements (optical elements) arranged in a matrix of m rows and n columns. By controlling the angles of the reflecting surfaces of the plurality of mirror elements, the reflection direction of the light emitted from the visible light source 112 or the invisible light source 114 can be selectively changed.
図9(a)、(b)は、光偏向装置120を示す図である。図9(a)は、光偏向装置120の正面図であり、図9(b)は、図9(a)のA-A線断面図である。
9 (a) and 9 (b) are views showing the light deflector 120. 9 (a) is a front view of the light deflector 120, and FIG. 9 (b) is a sectional view taken along line AA of FIG. 9 (a).
光偏向装置120は、図9(a)に示すように、複数の微小なミラー素子122がマトリックス状に配列されたマイクロミラーアレイ124と、ミラー素子122の反射面122aの前方側(灯具前方側であって図9(b)では右側)に配置された透明なカバー部材126と、を有する。カバー部材126は、例えば、ガラスやプラスチック等である。
As shown in FIG. 9A, the light deflector 120 includes a micromirror array 124 in which a plurality of minute mirror elements 122 are arranged in a matrix, and a front side (light fixture front side) of the reflection surface 122a of the mirror element 122. It has a transparent cover member 126 arranged on the right side in FIG. 9B). The cover member 126 is, for example, glass, plastic, or the like.
図9では、説明の便宜上、ミラー素子122の数を80(横10×縦8)としているが、ミラー素子122の数は特に限定されない。実際には例えば、ミラー素子122の数は1000~30万である。
In FIG. 9, for convenience of explanation, the number of mirror elements 122 is 80 (horizontal 10 × vertical 8), but the number of mirror elements 122 is not particularly limited. In reality, for example, the number of mirror elements 122 is 1,000 to 300,000.
ミラー素子122は、略正方形であり、水平方向に延びミラー素子122をほぼ等分する回動軸122bを有する。全てあるいは一部のミラー素子122は、第1反射位置(図9(b)に示す実線位置)と第2反射位置(図9(b)に示す点線位置)とを切り替え可能に構成されている。ミラー素子122は、第1反射位置では、可視光源112から出射された光を可視光による配光パターンの一部として有効に利用されるように投影光学系116(図9(a)、(b)では不図示)へ向けて反射し、非可視光源114から出射された光を有効に利用されないように反射する。また、ミラー素子122は、第2反射位置では、非可視光源114から出射された光を非可視光による配光パターンの一部として有効に利用されるように投影光学系116へ向けて反射し、可視光源112から出射された光を有効に利用されないように反射する。ここで、有効に利用されない方向は、例えば、投影光学系116に入射しない方向であって図示しない光吸収部材(遮光部材)に向かう方向や、投影光学系116に入射するが配光の形成にほとんど寄与しない方向である。
The mirror element 122 is substantially square and has a rotation shaft 122b extending in the horizontal direction and substantially equally dividing the mirror element 122. All or some of the mirror elements 122 are configured to be able to switch between the first reflection position (solid line position shown in FIG. 9B) and the second reflection position (dotted line position shown in FIG. 9B). .. At the first reflection position, the mirror element 122 uses the projection optical system 116 (FIGS. 9A and 9B) so that the light emitted from the visible light source 112 is effectively used as a part of the light distribution pattern by the visible light. ) Is reflected toward (not shown), and the light emitted from the invisible light source 114 is reflected so as not to be effectively used. Further, at the second reflection position, the mirror element 122 reflects the light emitted from the invisible light source 114 toward the projection optical system 116 so as to be effectively used as a part of the light distribution pattern by the invisible light. , The light emitted from the visible light source 112 is reflected so as not to be effectively used. Here, the directions that are not effectively used are, for example, a direction that does not enter the projection optical system 116 and is directed toward a light absorbing member (light-shielding member) (not shown), or a direction that is incident on the projection optical system 116 but forms a light distribution. It is a direction that makes little contribution.
少なくとも一部のミラー素子122が第1反射位置に設定され、かつ、可視光源112が点灯しているときに、可視光源112からの可視光が第1反射位置に設定されたミラー素子122によって投影光学系116に向けて反射され、灯具前方に可視光による配光パターンである可視光パターンが照射される。また、少なくとも一部のミラー素子122が第2反射位置に設定され、かつ、非可視光源114が点灯しているときに、非可視光源114からの非可視光が第2反射位置に設定されたミラー素子122によって投影光学系116に向けて反射され、灯具前方に非可視光による配光パターンである非可視光パターンが照射される。
When at least a part of the mirror elements 122 are set to the first reflection position and the visible light source 112 is lit, the visible light from the visible light source 112 is projected by the mirror element 122 set to the first reflection position. It is reflected toward the optical system 116, and a visible light pattern, which is a light distribution pattern by visible light, is irradiated to the front of the lamp. Further, when at least a part of the mirror elements 122 are set to the second reflection position and the invisible light source 114 is lit, the invisible light from the invisible light source 114 is set to the second reflection position. It is reflected by the mirror element 122 toward the projection optical system 116, and an invisible light pattern, which is a light distribution pattern by invisible light, is irradiated to the front of the lamp.
図7に戻り、投影光学系116は、例えば、前方側表面および後方側表面が自由曲面形状を有する自由曲面レンズからなり、投影光学系116の後方焦点を含む後方焦点面上に形成される光源像を、反転像として灯具前方の仮想鉛直スクリーン上に投影する。投影光学系116は、その後方焦点が灯具システム100の光軸上、かつ光偏向装置120のマイクロミラーアレイ124の反射面の近傍に位置するように配置される。なお、投影光学系116はリフレクタであってもよい。
Returning to FIG. 7, the projection optical system 116 is, for example, a light source formed of a free curved lens whose front surface and rear surface have a free curved shape, and is formed on a rear focal plane including the rear focal point of the projection optical system 116. The image is projected as an inverted image on a virtual vertical screen in front of the lamp. The projection optical system 116 is arranged so that its rear focus is located on the optical axis of the lamp system 100 and near the reflection surface of the micromirror array 124 of the light deflector 120. The projection optical system 116 may be a reflector.
撮像部130は、車両前方の物体による非可視光L2の反射光L3を撮像する。撮像部130は、少なくとも非可視光L2の波長域に感度を有していればよく、可視光に対して不感(感度を有しないあるいは感度が所定値以下)であることが好ましい。撮像部130は、露光時間を調整するための電子的またはメカニカルなシャッター(不図示)を備える。
The imaging unit 130 captures the reflected light L3 of the invisible light L2 by the object in front of the vehicle. The imaging unit 130 may have sensitivity at least in the wavelength range of invisible light L2, and is preferably insensitive to visible light (has no sensitivity or has a sensitivity of a predetermined value or less). The imaging unit 130 includes an electronic or mechanical shutter (not shown) for adjusting the exposure time.
制御部160は、灯具ユニット110を制御する灯具制御部162と、撮像部130を制御する撮像制御部164と、配光パターンを決定するパターン決定部166と、を含む。
The control unit 160 includes a lamp control unit 162 that controls the lamp unit 110, an image pickup control unit 164 that controls the image pickup unit 130, and a pattern determination unit 166 that determines a light distribution pattern.
灯具制御部162は、可視光源112と非可視光源114とを交互に点消灯させる。
The lamp control unit 162 alternately turns on and off the visible light source 112 and the invisible light source 114.
また、灯具制御部162は、光偏向装置120に対する制御として、第1モード、第2モード、第3モードおよび第4モードを選択的に実行する。灯具制御部162は、可視光源112の点灯時は、第1モードまたは第3モードによる制御を実行し、非可視光源114の点灯時は、第2モードまたは第4モードによる制御を実行する。つまり、第1モードおよび第3モードは、可視光パターンを照射するためのモードであり、第2モードおよび第4モードは、非可視光パターンを照射するためのモードである。なお、可視光パターンを照射するときに第1モードまたは第3モードのどちらのモードによる制御を実行するか、非可視光パターンを照射するときに第2モードまたは第4モードのどちらのモードによる制御を実行するかは、それぞれ運転者が選択してもよい。
Further, the lamp control unit 162 selectively executes the first mode, the second mode, the third mode, and the fourth mode as the control for the light deflection device 120. The lamp control unit 162 executes control in the first mode or the third mode when the visible light source 112 is lit, and executes control in the second mode or the fourth mode when the invisible light source 114 is lit. That is, the first mode and the third mode are modes for irradiating the visible light pattern, and the second mode and the fourth mode are modes for irradiating the invisible light pattern. It should be noted that the control in either the first mode or the third mode is executed when irradiating the visible light pattern, and the control in either the second mode or the fourth mode is performed when irradiating the invisible light pattern. The driver may choose whether to execute.
第1モードでは、例えばパターン決定部166によって決定される可視光パターンに基づいて、可視光を照射すべき領域(可視光照射領域)に対応するミラー素子122が第1反射位置に設定され、他のミラー素子122、すなわち可視光を照射すべきでない領域(可視光遮光領域)に対応するミラー素子122が第2反射位置に設定される。
In the first mode, the mirror element 122 corresponding to the region to be irradiated with visible light (visible light irradiation region) is set at the first reflection position based on the visible light pattern determined by the pattern determination unit 166, for example. The mirror element 122, that is, the mirror element 122 corresponding to the region where visible light should not be irradiated (visible light shading region) is set at the second reflection position.
第3モードでは、全てのミラー素子122が第1反射位置に設定される。なお、第3モードは、第1モードの一種と捉えることもできる。
In the third mode, all the mirror elements 122 are set to the first reflection position. The third mode can also be regarded as a kind of the first mode.
第1モードあるいは第3モードが実行され、かつ、可視光源112が点灯している場合、可視光源112から光偏向装置120に照射された可視光L1は、第1反射位置に設定されたミラー素子122に反射されて、灯具前方に出射される。その結果、灯具ひいては車両前方に可視光パターンが形成される。このとき、非可視光源114は消灯しているため、光偏向装置120に非可視光L2は照射されず、したがって、第2反射位置に設定されたミラー素子122が存在しても、非可視光L2は灯具前方に出射されない。なお、第3モードでは、全てのミラー素子122が第1反射位置に設定されるため、仮に非可視光源114が点灯していても、非可視光L2は灯具前方に出射されない。
When the first mode or the third mode is executed and the visible light source 112 is lit, the visible light L1 emitted from the visible light source 112 to the light deflector 120 is a mirror element set at the first reflection position. It is reflected by 122 and emitted in front of the lamp. As a result, a visible light pattern is formed in front of the lamp and thus the vehicle. At this time, since the invisible light source 114 is turned off, the light deflector 120 is not irradiated with the invisible light L2. Therefore, even if the mirror element 122 set at the second reflection position is present, the invisible light is not visible. L2 is not emitted in front of the lamp. In the third mode, all the mirror elements 122 are set to the first reflection position, so even if the invisible light source 114 is lit, the invisible light L2 is not emitted to the front of the lamp.
第2モードでは、非可視光を照射すべき領域(非可視光照射領域)に対応するミラー素子122が第2反射位置に設定され、他のミラー素子122、すなわち非可視光を照射すべきでない領域(非可視光遮光領域)に対応するミラー素子122が第1反射位置に設定される。
In the second mode, the mirror element 122 corresponding to the region to be irradiated with invisible light (invisible light irradiation region) is set at the second reflection position, and the other mirror element 122, that is, the invisible light should not be irradiated. The mirror element 122 corresponding to the region (invisible light shading region) is set at the first reflection position.
第4モードでは、全てのミラー素子122が第2反射位置に設定される。なお、第4モードは、第2モードの一種と捉えることもできる。
In the fourth mode, all the mirror elements 122 are set to the second reflection position. The fourth mode can also be regarded as a kind of the second mode.
第2モードあるいは第4モードが実行され、かつ、非可視光源114が点灯している場合、非可視光源114から光偏向装置120に照射された非可視光L2は、第2反射位置に設定されたミラー素子122に反射されて灯具前方に出射される。その結果、灯具ひいては車両前方に非可視光パターンが形成される。このとき、可視光源112は消灯しているため、光偏向装置120に可視光L1は照射されず、したがって、第1反射位置に設定されたミラー素子122が存在しても、可視光L1は灯具前方に出射されない。なお、第4モードでは、全てのミラー素子122が第2反射位置に設定されるため、仮に可視光源112が点灯していても、可視光L1は灯具前方に出射されない。
When the second mode or the fourth mode is executed and the invisible light source 114 is lit, the invisible light L2 emitted from the invisible light source 114 to the light deflector 120 is set to the second reflection position. It is reflected by the mirror element 122 and emitted to the front of the lamp. As a result, an invisible light pattern is formed in front of the lamp and thus the vehicle. At this time, since the visible light source 112 is turned off, the visible light L1 is not irradiated to the light deflector 120. Therefore, even if the mirror element 122 set at the first reflection position exists, the visible light L1 is a lamp. It is not emitted forward. In the fourth mode, all the mirror elements 122 are set to the second reflection position, so even if the visible light source 112 is lit, the visible light L1 is not emitted to the front of the lamp.
撮像制御部164は、撮像部130に撮像させる。撮像制御部164は、可視光L1による可視光パターンが灯具前方に照射されている期間、すなわち第1モードまたは第3モードが実行され、かつ、可視光源112が点灯している期間、の少なくとも一部の期間では、撮像部130のシャッターを閉じて撮像部130を非露光状態とする。また、撮像制御部164は、非可視光L2による非可視光パターンが灯具前方に照射されている期間、すなわち第2モードまたは第4モードが実行され、かつ、非可視光源114が点灯している期間、の少なくとも一部の期間では、撮像部130のシャッターを開いて撮像部130を露光状態とする。
The image pickup control unit 164 causes the image pickup unit 130 to take an image. The image pickup control unit 164 is at least one of a period during which the visible light pattern by the visible light L1 is irradiated to the front of the lamp, that is, a period during which the first mode or the third mode is executed and the visible light source 112 is lit. During the period of the unit, the shutter of the imaging unit 130 is closed to leave the imaging unit 130 in a non-exposed state. Further, the image pickup control unit 164 executes the second mode or the fourth mode during the period in which the invisible light pattern by the invisible light L2 is irradiated to the front of the lamp, that is, the invisible light source 114 is lit. During at least a part of the period, the shutter of the imaging unit 130 is opened to bring the imaging unit 130 into an exposed state.
パターン決定部166は、撮像部130が撮像した画像にもとづいて、灯具ユニット110に供給する可視光の配光パターンを決定する。パターン決定部166は、撮像部130により得られた画像にもとづいて、画像処理によって先行車、対向車などグレアを与えるべきでない物体を検出する。物体の検出アルゴリズムは特に限定されない。パターン決定部166は、画像の連続する複数のフレームにもとづいて、物体を検知してもよい。そしてパターン決定部166は、物体に対応する部分が遮光された配光パターンを生成する。つまり灯具システム100は、いわゆるADB制御を実行可能である。なお、「或る部分を遮光する」とはその部分の輝度(照度)を完全にゼロとする場合のほか、その部分の輝度(照度)を低下させる場合も含む。
The pattern determination unit 166 determines the light distribution pattern of visible light supplied to the lamp unit 110 based on the image captured by the image pickup unit 130. Based on the image obtained by the image pickup unit 130, the pattern determination unit 166 detects an object such as a preceding vehicle or an oncoming vehicle that should not be given glare by image processing. The object detection algorithm is not particularly limited. The pattern determination unit 166 may detect an object based on a plurality of consecutive frames of the image. Then, the pattern determination unit 166 generates a light distribution pattern in which the portion corresponding to the object is shielded from light. That is, the lamp system 100 can execute so-called ADB control. In addition, "shading a certain part" includes not only the case where the brightness (illuminance) of the part is completely set to zero, but also the case where the brightness (illuminance) of the part is lowered.
以上が灯具システム100の基本構成である。続いて、灯具システム100の動作を説明する。
The above is the basic configuration of the lamp system 100. Subsequently, the operation of the lamp system 100 will be described.
図10は、可視光L1と非可視光L2の配光の制御の一例を説明する図である。図10には、可視光L1による可視光パターンP1と非可視光L2による非可視光パターンP2が示される。図10では、可視光パターンP1と非可視光パターンP2を重ねて描いているが、実際には、これらは交互に照射される。図10の例では、制御部160は、可視光パターンP1を照射するためのモードとして第1モードを実行し、非可視光パターンP2を照射するためのモードとして第2モードを実行する。
FIG. 10 is a diagram illustrating an example of controlling the light distribution of visible light L1 and invisible light L2. FIG. 10 shows a visible light pattern P1 by visible light L1 and a non-visible light pattern P2 by invisible light L2. In FIG. 10, the visible light pattern P1 and the invisible light pattern P2 are drawn in an overlapping manner, but in reality, these are alternately irradiated. In the example of FIG. 10, the control unit 160 executes the first mode as a mode for irradiating the visible light pattern P1 and executes the second mode as a mode for irradiating the invisible light pattern P2.
可視光パターンP1は、物体(対向車)に対応する部分が遮光されている。非可視光パターンP2は、灯具前方の比較的広い範囲に照射されている。非可視光パターンP2は、例えば撮像部130の撮像範囲全体を含む範囲を照射してもよい。なお、非可視光パターンP2は、対向車や先行車のドライバにグレアを与えない。
In the visible light pattern P1, the portion corresponding to the object (oncoming vehicle) is shielded from light. The invisible light pattern P2 illuminates a relatively wide area in front of the lamp. The invisible light pattern P2 may irradiate, for example, a range including the entire imaging range of the imaging unit 130. The invisible light pattern P2 does not give glare to the driver of the oncoming vehicle or the preceding vehicle.
図11は、灯具システム100の動作を説明するタイムチャートの一例である。制御部160は、所定の周期TSで、可視光源112の点消灯、非可視光源114の点消灯、ミラー素子122の反射位置の切り替え、および撮像部130の露光状態の切り替えを実行させる。
FIG. 11 is an example of a time chart for explaining the operation of the lamp system 100. Controller 160, at a predetermined period T S, off point of visible light source 112, turns off the point of the non-visible light source 114, switching of the reflection position of the mirror element 122, and to execute the switching of the exposure state of the imaging unit 130.
各周期TSにおいて、可視光源112が点灯している期間を第1期間T1、非可視光源114が点灯している期間を第2期間T2、光偏向装置120に対して第1モードまたは第3モードによる制御が実行され、かつ、可視光源112が点灯している期間、すなわち可視光パターンP1が灯具前方に照射されている期間を第3期間T3、光偏向装置120に対して第2モードまたは第4モードによる制御が実行され、かつ、非可視光源114が点灯している期間、すなわち非可視光パターンP2が灯具前方に照射されている期間を第4期間T4、撮像部130が露光状態である期間を第5期間T5と称する。
In each period T S, the period of the first period T 1 in which the visible light source 112 is lit, the non-visible light source 114 is a period of the second period T 2 which is turned, the first mode for the optical deflecting device 120 or runs the control according to the third mode, and the period in which the visible light source 112 is lit, namely the period during which the visible light pattern P1 is irradiated to the front of the lamp third period T 3, with respect to the optical deflecting device 120 first 2 mode or the control according to the fourth mode is performed, and non-visible light source 114 period is lit, i.e. non-visible light pattern P2 a period that is irradiated to the front of the lamp fourth period T 4, the imaging unit 130 There is referred to as a fifth time period T 5 and the period is an exposure state.
可視光源112および非可視光源114は、互いにタイミングをずらして点灯し、光偏向装置120はそれに合わせてミラー素子122の反射位置を切り替え、これにより可視光パターンP1または非可視光パターンP2が灯具前方に照射される。撮像部130は、各周期において、可視光パターンP1が灯具前方に照射されている期間のうちの少なくとも一部の期間では撮像部130非露光状態とし、非可視光パターンP2が灯具前方に出射されている期間のうちの少なくとも一部の期間では撮像部130を露光状態とする。
The visible light source 112 and the invisible light source 114 are turned on at different timings, and the light deflector 120 switches the reflection position of the mirror element 122 accordingly, whereby the visible light pattern P1 or the invisible light pattern P2 is in front of the lamp. Is irradiated to. In each cycle, the imaging unit 130 is in an unexposed state of the imaging unit 130 during at least a part of the period during which the visible light pattern P1 is irradiated to the front of the lamp, and the invisible light pattern P2 is emitted to the front of the lamp. The imaging unit 130 is exposed during at least a part of the period.
図11では、可視光源112の消灯、非可視光源114の点灯、およびミラー素子122の第1反射位置から第2反射位置への切り替えは、実質的に同一のタイミングで実施されている。図11では、非可視光源114の消灯、可視光源112の点灯、およびミラー素子122の第2反射位置から第1反射位置への切り替えは、実質的に同一のタイミングで実施されている。したがって、可視光源112が点灯している第1期間T1と、可視光パターンP1が灯具前方に照射されている第3期間T3とが一致し、非可視光源114が点灯している第2期間T2と、非可視光パターンP2が灯具前方に照射されている第4期間T4とが一致している。しかしながらこれに限らず、これらのタイミングは多少ずれていてもよい。
In FIG. 11, the visible light source 112 is turned off, the invisible light source 114 is turned on, and the mirror element 122 is switched from the first reflection position to the second reflection position at substantially the same timing. In FIG. 11, the invisible light source 114 is turned off, the visible light source 112 is turned on, and the mirror element 122 is switched from the second reflection position to the first reflection position at substantially the same timing. Therefore, the second period T 1 in which the visible light source 112 is lit coincides with the third period T 3 in which the visible light pattern P1 is illuminated in front of the lamp, and the invisible light source 114 is lit. The period T 2 coincides with the fourth period T 4 in which the invisible light pattern P2 is illuminated in front of the lamp. However, not limited to this, these timings may be slightly different.
例えば、可視光源112を消灯してから所定時間が経過してから非可視光源114を点灯してもよいし、非可視光源114を消灯してから所定時間が経過してから可視光源112を点灯してもよい。言い換えると、第1期間T1と第2期間T2との間、あるいは第2期間T2と第1期間T1との間に休止期間を設けてもよい。
For example, the invisible light source 114 may be turned on after a predetermined time has passed since the visible light source 112 was turned off, or the visible light source 112 may be turned on after a predetermined time has passed since the invisible light source 114 was turned off. You may. In other words, a rest period may be provided between the first period T 1 and the second period T 2 , or between the second period T 2 and the first period T 1 .
可視光パターンP1が照射される第3期間T3、非可視光パターンP2が照射される第4期間T4およびそれらを繰り返す周期TSは、人間が違和感を感じない長さに、すなわち人間が可視光パターンP1が点滅していることを人間が知覚できず、可視光パターンP1が点灯し続けているように知覚する長さに設定される。
Third period T 3 in which the visible light pattern P1 is emitted, period T S of the fourth period T 4 and repeat them to non-visible light pattern P2 is irradiated, the length of a human can not feel uncomfortable, that human The length is set so that the human cannot perceive that the visible light pattern P1 is blinking, and the visible light pattern P1 is perceived as being continuously lit.
また、図11では、撮像部130が露光状態(シャッターが開いている状態)である第5期間T5よりも、非可視光パターンP2が灯具前方に照射されている第4期間T4が長くなっている。つまり、T5/T4=1となっている。なお、第4期間T4と第5期間T5は、両者がT5/T4=0.6~1.4を満たす関係にあればよく、好ましくは両者がT5/T4=0.8~1.2を満たす関係にあればよく、さらに好ましくは両者がT5/T4=1を満たす関係にあればよい。T5/T4が小さいほどノイズの少ない画像を得られ、T5/T4が大きいほど明るい画像を得られる。つまりT5/T4が1に近いほど、ノイズの少なさと明るさのバランスがとれた鮮明な画像を得られ、より精度よく車両前方の状況を把握できる。
Further, in FIG. 11, the fourth period T 4 in which the invisible light pattern P2 is irradiated to the front of the lamp is longer than the fifth period T 5 in which the imaging unit 130 is in the exposed state (the state in which the shutter is open). It has become. That is, T 5 / T 4 = 1. The fourth period T 4 and the fifth period T 5 need only be in a relationship in which they satisfy T 5 / T 4 = 0.6 to 1.4, and preferably both are T 5 / T 4 = 0. It suffices if the relationship satisfies 8 to 1.2, and more preferably both of them satisfy T 5 / T 4 = 1. The smaller T 5 / T 4 is, the less noise is obtained, and the larger T 5 / T 4 is, the brighter the image is obtained. That is, as T 5 / T 4 is closer to 1, a clear image with a good balance between less noise and brightness can be obtained, and the situation in front of the vehicle can be grasped more accurately.
続いて、以上説明した本実施の形態が奏する効果について述べる。本実施の形態によれば、可視光パターンP1と非可視光パターンP2が交互に車両前方に照射され、撮像部130は、基本的に、可視光パターンP1が照射されるタイミングでは非露光状態とされ、非可視光パターンP2が照射されるタイミングでは露光状態とされる。このため、複数の車両、例えば対向する2つの車両がいずれも本実施の形態の灯具システム100を備える場合、一方の車両の灯具システム100の灯具ユニット110が非可視光パターンP2を照射するタイミングと他方の車両の灯具システム100の撮像部130が露光状態とされるタイミングとが異なっていれば、一方の車両の灯具システム100が照射する非可視光パターンP2が他方の車両の灯具システム100の撮像部130に与えるグレアを低減できる。これにより、他方の車両の撮像部130は、より精度良く車両前方の状況を把握することが可能となり、その結果、交通の安全性が高まる。
Next, the effects of the present embodiment described above will be described. According to the present embodiment, the visible light pattern P1 and the invisible light pattern P2 are alternately irradiated to the front of the vehicle, and the imaging unit 130 is basically in an unexposed state at the timing when the visible light pattern P1 is irradiated. At the timing when the invisible light pattern P2 is irradiated, the exposure state is set. Therefore, when a plurality of vehicles, for example, two opposing vehicles all include the lamp system 100 of the present embodiment, the timing at which the lamp unit 110 of the lamp system 100 of one vehicle irradiates the invisible light pattern P2. If the timing at which the imaging unit 130 of the lamp system 100 of the other vehicle is exposed is different, the invisible light pattern P2 emitted by the lamp system 100 of one vehicle captures the image of the lamp system 100 of the other vehicle. The glare given to the unit 130 can be reduced. As a result, the imaging unit 130 of the other vehicle can grasp the situation in front of the vehicle more accurately, and as a result, the traffic safety is enhanced.
また、本実施の形態によれば、撮像部130は、非可視光パターンP2が灯具前方に照射されている期間の少なくとも一部の期間では露光状態とされ、非可視光パターンP2が灯具前方に照射されていない期間の少なくとも一部の期間では非露光状態とされるため、非可視光パターンP2が灯具前方に出射されていない期間をずっと露光状態とする場合に比べてノイズが少ない画像が得られ、より精度よく車両前方の状況を把握できる。その結果、交通の安全性が高まる。
Further, according to the present embodiment, the imaging unit 130 is in an exposed state for at least a part of the period during which the invisible light pattern P2 is irradiated in front of the lamp, and the invisible light pattern P2 is in front of the lamp. Since the non-exposed state is set for at least a part of the non-irradiated period, an image with less noise can be obtained as compared with the case where the non-visible light pattern P2 is not emitted in front of the lamp and is exposed all the time. Therefore, the situation in front of the vehicle can be grasped more accurately. As a result, traffic safety is improved.
また、本実施の形態によれば、撮像部130が露光状態(シャッターが開いている状態)である時間と、非可視光源114が点灯し、かつ、非可視光の照射領域に対応するミラー素子122が第2反射位置にある時間が等しくなっている。この場合、非可視光パターンP2が車両前方に照射されているときだけ撮像部130が非露光状態とされるため、ノイズの少なさと明るさのバランスがとれた鮮明な画像を得られ、より精度よく車両前方の状況を把握できる。その結果、交通の安全性が高まる。
Further, according to the present embodiment, the mirror element corresponding to the time when the imaging unit 130 is in the exposed state (the state in which the shutter is open), the invisible light source 114 is lit, and the invisible light irradiation region is provided. The time that 122 is in the second reflection position is equal. In this case, since the imaging unit 130 is in the non-exposed state only when the invisible light pattern P2 is irradiated to the front of the vehicle, a clear image with a good balance between less noise and brightness can be obtained, and the accuracy is higher. You can grasp the situation in front of the vehicle well. As a result, traffic safety is improved.
以上、本発明について、実施の形態をもとに説明した。これらの実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
The present invention has been described above based on the embodiments. It will be appreciated by those skilled in the art that these embodiments are exemplary and that various modifications are possible for each of these components and combinations of processing processes, and that such modifications are also within the scope of the present invention. By the way.
(変形例1)
第1の実施の形態では、配光可変ランプ110が、ロービーム140およびハイビーム150に対する付加的な光源であったが、ロービーム140およびハイビーム150の少なくとも一方の機能と、配光可変ランプ110とを統合してもよい。 (Modification example 1)
In the first embodiment, the variablelight distribution lamp 110 was an additional light source for the low beam 140 and the high beam 150, but the function of at least one of the low beam 140 and the high beam 150 was integrated with the variable light distribution lamp 110. You may.
第1の実施の形態では、配光可変ランプ110が、ロービーム140およびハイビーム150に対する付加的な光源であったが、ロービーム140およびハイビーム150の少なくとも一方の機能と、配光可変ランプ110とを統合してもよい。 (Modification example 1)
In the first embodiment, the variable
(変形例2)
図12は、第2の実施の形態の変形例に係る灯具システム100のブロック図である。以下、第2の実施の形態との相違点を中心に説明する。以下では、他車両に搭載された灯具システムであって、本変形例の灯具システム100と同様の灯具システムとその構成要素の符号に「’」を付して説明する。 (Modification 2)
FIG. 12 is a block diagram of thelamp system 100 according to a modified example of the second embodiment. Hereinafter, the differences from the second embodiment will be mainly described. In the following, a lamp system mounted on another vehicle, which is the same as the lamp system 100 of this modified example, and its constituent elements will be described with "'".
図12は、第2の実施の形態の変形例に係る灯具システム100のブロック図である。以下、第2の実施の形態との相違点を中心に説明する。以下では、他車両に搭載された灯具システムであって、本変形例の灯具システム100と同様の灯具システムとその構成要素の符号に「’」を付して説明する。 (Modification 2)
FIG. 12 is a block diagram of the
灯具システム100は、表示装置180をさらに備える。表示装置180は、車室内に設置されたモニターであってもよいし、ヘッドアップディスプレイ(HUD:Head Up Display)であってもよい。制御部160は、撮像部130が撮像した画像を、表示装置180に表示する。運転者は、表示装置180に表示された画像を見ることによっても車両前方の状況を把握でき、例えば視界の悪い夜間の安全性が向上する。
The lamp system 100 further includes a display device 180. The display device 180 may be a monitor installed in the vehicle interior or a head-up display (HUD: Head Up Display). The control unit 160 displays the image captured by the image pickup unit 130 on the display device 180. The driver can grasp the situation in front of the vehicle by looking at the image displayed on the display device 180, and for example, the safety at night when the visibility is poor is improved.
また、灯具システム100は、撮像部130に隣接して配置される、撮像部130の位置を示すための標示ランプ170をさらに備える。図12では、撮像部130および標示ランプ170は筐体内に設けられているが、筐体の外部、言い換えれば車両側に設けられてもよい。標示ランプ170は、非可視光源を含んで構成され、非可視光を出射する。標示ランプ170は、撮像部130に隣接配置されて非可視光を出射することで、撮像部130の位置を周囲の他車両に報知する。
Further, the lighting equipment system 100 further includes a marking lamp 170 for indicating the position of the imaging unit 130, which is arranged adjacent to the imaging unit 130. In FIG. 12, the image pickup unit 130 and the marking lamp 170 are provided inside the housing, but may be provided outside the housing, in other words, on the vehicle side. The marking lamp 170 is configured to include an invisible light source and emits invisible light. The marking lamp 170 is arranged adjacent to the image pickup unit 130 and emits invisible light to notify the position of the image pickup unit 130 to other surrounding vehicles.
制御部160は、撮像部130が撮像した画像に基づいて、灯具ユニット110に供給する非可視光の配光パターンを決定する。制御部160は、撮像部130により得られた画像にもとづいて、画像処理によって、他車両、例えば対向車に搭載される灯具システム100’の撮像部130’を検出する。本変形例では、制御部160は、標示ランプ170’が表示する範囲を撮像部130’の範囲として検出する。制御部160は、当該範囲を照射しないように、当該範囲を遮光した非可視光L2の照射パターンを照射する。つまり、制御部160は、非可視光パターンP2を照射するためのモードとして、第2モードを実行する。
The control unit 160 determines the light distribution pattern of the invisible light supplied to the lamp unit 110 based on the image captured by the image pickup unit 130. The control unit 160 detects the image pickup unit 130'of the lamp system 100' mounted on another vehicle, for example, an oncoming vehicle, by image processing based on the image obtained by the image pickup unit 130. In this modification, the control unit 160 detects the range displayed by the marking lamp 170'as the range of the imaging unit 130'. The control unit 160 irradiates the irradiation pattern of invisible light L2 that blocks the area so as not to irradiate the area. That is, the control unit 160 executes the second mode as a mode for irradiating the invisible light pattern P2.
図13は、非可視光L2の配光の制御の一例を説明する図である。図13には、非可視光L2の照射パターンが示される。
FIG. 13 is a diagram illustrating an example of controlling the light distribution of the invisible light L2. FIG. 13 shows an irradiation pattern of invisible light L2.
図13では、撮像部130’は車両側、具体的にはフロントウィンドウに設けられている。また、点状に光るい2つの標示ランプ170’が、撮像部130’を左右に挟み込むように、撮像部130’の左右に設けられている。なお、標示ランプ170’の数や構成は特には限定されない。例えば、点状に光る1つの標示ランプ170’が撮像部130’に隣接配置されてもよいし、点状に光3つ以上の標示ランプ170’が撮像部130’を囲むように撮像部130’の周囲に例えば等間隔に配置されてもよい。また、標示ランプ170’は、撮像部130’を環囲する環状の発光面を有していてもよい。
In FIG. 13, the imaging unit 130'is provided on the vehicle side, specifically on the front window. Further, two marking lamps 170'that shine in a dot shape are provided on the left and right sides of the image pickup unit 130' so as to sandwich the image pickup unit 130'on the left and right sides. The number and configuration of the marking lamps 170'are not particularly limited. For example, one marking lamp 170'that shines in a dot shape may be arranged adjacent to the imaging unit 130', or the marking lamp 170' with three or more lights in a dot shape surrounds the imaging unit 130'. It may be arranged around the', for example, at equal intervals. Further, the marking lamp 170'may have an annular light emitting surface surrounding the imaging unit 130'.
非可視光L2は、標示ランプ170’が標示する範囲であって、撮像部130’に対応する部分が遮光されている。なお、標示ランプ170’の標示から遮光する範囲を特定する方法は特に限定されず、各標示ランプ170’を中心とする所定の範囲を遮光範囲と特定してもよいし、標示ランプ170’が3つ以上の場合は標示ランプ170’を直線で結んだ範囲を遮光範囲と特定してもよいし、標示ランプ170’が環状の発光面を有する場合はその発光面の内側を遮光範囲と特定してもよい。
The invisible light L2 is in the range indicated by the marking lamp 170', and the portion corresponding to the imaging unit 130'is shielded from light. The method of specifying the light-shielding range from the marking of the marking lamp 170'is not particularly limited, and a predetermined range centered on each marking lamp 170' may be specified as the light-shielding range, or the marking lamp 170' may be specified. In the case of three or more, the range connecting the marking lamps 170'with a straight line may be specified as a light-shielding range, and when the marking lamp 170'has an annular light emitting surface, the inside of the light emitting surface is specified as a light-shielding range. You may.
灯具システム100’の制御部160’は、好ましくは、標示ランプ170’を所定のパターンで点滅させる。これにより、灯具システム100の制御部160は、標示ランプ170’から出射される光を、標示ランプ170’以外の光源から出射された光と区別でき、標示ランプ170’の誤検出を抑止できる。
The control unit 160'of the lamp system 100'preferably blinks the marking lamp 170'in a predetermined pattern. As a result, the control unit 160 of the lamp system 100 can distinguish the light emitted from the marking lamp 170'from the light emitted from a light source other than the marking lamp 170', and can suppress erroneous detection of the marking lamp 170'.
本変形例によれば、自車両に搭載された灯具システム100が他車両に搭載された灯具システム100’の撮像部130’にグレアを与えるのを抑止できる。
According to this modification, it is possible to prevent the lamp system 100 mounted on the own vehicle from giving glare to the image pickup unit 130'of the lamp system 100'mounted on another vehicle.
(変形例3)
第2の実施の形態および変形例2では、可視光源112および非可視光源114を点消灯させる場合について説明したが、これに限定されず、可視光源112および非可視光源114の少なくとも一方を、点灯させたままにしてもよい。 (Modification 3)
In the second embodiment and the second modification, the case where the visiblelight source 112 and the invisible light source 114 are turned on and off has been described, but the present invention is not limited to this, and at least one of the visible light source 112 and the invisible light source 114 is turned on. You can leave it alone.
第2の実施の形態および変形例2では、可視光源112および非可視光源114を点消灯させる場合について説明したが、これに限定されず、可視光源112および非可視光源114の少なくとも一方を、点灯させたままにしてもよい。 (Modification 3)
In the second embodiment and the second modification, the case where the visible
実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用の一側面を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。
The present invention has been described using specific terms and phrases based on the embodiments, but the embodiments show only one aspect of the principles and applications of the present invention, and the embodiments are claimed. Many modifications and arrangement changes are permitted within the range not departing from the idea of the present invention defined in the scope.
本発明は、灯具システムに利用できる。
The present invention can be used for a lamp system.
100 灯具システム、 112 可視光源、 114 非可視光源、 120 光偏向装置、 122 ミラー素子、 130 撮像部、 160 制御部、 L1 可視光、 L2 非可視光、 F 図形。
100 lamp system, 112 visible light source, 114 invisible light source, 120 light deflector, 122 mirror element, 130 imaging unit, 160 control unit, L1 visible light, L2 invisible light, F figure.
Claims (11)
- 複数の光学素子を含み、各光学素子は第1反射位置、第2反射位置に傾動可能である、光偏向装置と、
前記光偏向装置に可視光を照射する可視光源と、
前記光偏向装置に非可視光を照射する非可視光源と、
前記可視光源および前記非可視光源からの光の波長域に感度を有する撮像部と、
前記光偏向装置を制御する制御部と、を備え、
前記第1反射位置に傾動した前記光学素子は、前記可視光源からの光を有効に利用されるように反射し、前記非可視光源からの光を有効に利用されないように反射し、
前記第2反射位置に傾動した前記光学素子は、前記非可視光源からの光を有効に利用されるように反射し、前記可視光源からの光を有効に利用されないように反射し、
前記制御部は、光偏向装置を制御し、前記複数の光学素子のうちの一部の光学素子を第1反射位置に傾動して可視光により図形を路面に描画し、前記複数の光学素子のうちの残りの光学素子を第2反射位置に傾動して非可視光を路面に照射することを特徴とする灯具システム。 An optical deflector that includes a plurality of optical elements, and each optical element can tilt to a first reflection position and a second reflection position.
A visible light source that irradiates the light deflector with visible light,
An invisible light source that irradiates the light deflector with invisible light,
An imaging unit that is sensitive to the wavelength range of light from the visible light source and the invisible light source.
A control unit that controls the light deflector is provided.
The optical element tilted to the first reflection position reflects the light from the visible light source so as to be effectively used, and reflects the light from the invisible light source so as not to be effectively used.
The optical element tilted to the second reflection position reflects the light from the invisible light source so as to be effectively used, and reflects the light from the visible light source so as not to be effectively used.
The control unit controls an optical deflection device, tilts some of the optical elements among the plurality of optical elements to the first reflection position, draws a figure on the road surface with visible light, and draws a figure on the road surface of the plurality of optical elements. A lighting system characterized by tilting the remaining optical elements to the second reflection position and irradiating the road surface with invisible light. - 前記制御部は、前記可視光源および前記非可視光源の輝度を、個別に制御可能であることを特徴とする請求項1に記載の灯具システム。 The lamp system according to claim 1, wherein the control unit can individually control the brightness of the visible light source and the invisible light source.
- 前記図形は、前記灯具システムを搭載する車両から歩行者あるいは歩行者の前方位置に向かって伸びることを特徴とする請求項1または2に記載の灯具システム。 The lamp system according to claim 1 or 2, wherein the figure extends from a vehicle equipped with the lamp system toward a pedestrian or a pedestrian's front position.
- 前記図形は、前記灯具システムを搭載する車両の進行すべき方向に向かって伸びることを特徴とする請求項1から3のいずれかに記載の灯具システム。 The lamp system according to any one of claims 1 to 3, wherein the figure extends in a direction in which the vehicle equipped with the lamp system should travel.
- 複数の光学素子を含む光偏向装置と、
前記光偏向装置へ可視光を照射する可視光源と、
前記光偏向装置へ非可視光を照射する非可視光源と、
前記非可視光源からの光の波長域に感度を有する撮像部と、
制御部と、を備え、
前記制御部は、前記光偏向装置に対して、可視光照射領域に対応する光学素子を第1反射位置に設定する第1モードと、非可視光照射領域に対応する光学素子を第2反射位置に設定する第2モードと、を実行可能であり、
前記第1モードが実行され、かつ、前記可視光源が点灯しているときに、灯具前方の前記可視光照射領域に可視光が照射され、
前記第2モードが実行され、かつ、前記非可視光源が点灯しているときに、灯具前方の前記非可視光照射領域に非可視光が照射され、
前記制御部は、非可視光が灯具前方に照射されている期間の少なくとも一部の期間では、前記撮像部を露光状態とし、非可視光が灯具前方に照射されていない期間の少なくとも一部の期間では、前記撮像部を非露光状態とすることを特徴とする灯具システム。 An optical deflector containing multiple optical elements and
A visible light source that irradiates the light deflector with visible light,
An invisible light source that irradiates the light deflector with invisible light,
An imaging unit that is sensitive to the wavelength range of light from the invisible light source,
With a control unit
The control unit sets the optical element corresponding to the visible light irradiation region to the first reflection position for the light deflector, and sets the optical element corresponding to the non-visible light irradiation region to the second reflection position. It is possible to execute the second mode, which is set to
When the first mode is executed and the visible light source is lit, the visible light irradiation region in front of the lamp is irradiated with visible light.
When the second mode is executed and the invisible light source is lit, the invisible light irradiation region in front of the lamp is irradiated with invisible light.
The control unit exposes the imaging unit to an exposed state during at least a part of the period during which the invisible light is radiated to the front of the lamp, and at least a part of the period during which the invisible light is not radiated to the front of the lamp. A lamp system characterized in that the imaging unit is in a non-exposed state during the period. - 前記第1反射位置は、前記可視光源からの光を有効に利用されるように反射し、前記非可視光源からの光を有効に利用されないように反射する位置であり、
前記第2反射位置は、前記非可視光源からの光を有効に利用されるように反射し、前記可視光源からの光を有効に利用されないように反射する位置であることを特徴とする請求項5に記載の灯具システム。 The first reflection position is a position where the light from the visible light source is reflected so as to be effectively used, and the light from the invisible light source is reflected so as not to be effectively used.
The second reflection position is a position that reflects the light from the invisible light source so as to be effectively used and reflects the light from the visible light source so as not to be effectively used. The lighting system according to 5. - 前記制御部は、前記可視光源と、前記非可視光源とを交互に点灯することを特徴とする請求項5または6に記載の灯具システム。 The lamp system according to claim 5 or 6, wherein the control unit alternately lights the visible light source and the invisible light source.
- 前記撮像部は、可視光に対して不感であることを特徴とする請求項5から7のいずれかに記載の灯具システム。 The lamp system according to any one of claims 5 to 7, wherein the imaging unit is insensitive to visible light.
- 前記非可視光パターンが灯具前方に照射されている期間に対する前記撮像部の露光時間の比は、0.8~1.2の範囲であることを特徴とする請求項5から8のいずれかに記載の灯具システム。 According to any one of claims 5 to 8, the ratio of the exposure time of the imaging unit to the period during which the invisible light pattern is irradiated to the front of the lamp is in the range of 0.8 to 1.2. The lamp system described.
- 非可視光を照射して前記撮像部の位置を標示する、前記撮像部に隣接配置される標示ランプをさらに備えることを特徴とする請求項5から8のいずれかに記載の灯具システム。 The lighting system according to any one of claims 5 to 8, further comprising a marking lamp arranged adjacent to the imaging unit, which irradiates invisible light to indicate the position of the imaging unit.
- 前記制御部は、非可視光に対して感度を有する他車両の撮像部に対応する範囲であって、当該他車両の標示ランプが非可視光を照射して標示する範囲を照射しないように前記光偏向装置を制御することを特徴とする請求項5から8のいずれかに記載の灯具システム。 The control unit is a range corresponding to an imaging unit of another vehicle having sensitivity to invisible light, and the marking lamp of the other vehicle irradiates the invisible light so as not to irradiate the marked range. The lamp system according to any one of claims 5 to 8, wherein the light deflector is controlled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021524864A JP7496352B2 (en) | 2019-06-04 | 2020-06-02 | Lighting System |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019104683 | 2019-06-04 | ||
JP2019-104683 | 2019-06-04 | ||
JP2019113909 | 2019-06-19 | ||
JP2019-113909 | 2019-06-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020246483A1 true WO2020246483A1 (en) | 2020-12-10 |
Family
ID=73652556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/021833 WO2020246483A1 (en) | 2019-06-04 | 2020-06-02 | Lamp system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7496352B2 (en) |
WO (1) | WO2020246483A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006311216A (en) * | 2005-04-28 | 2006-11-09 | Aisin Seiki Co Ltd | Monitoring system for periphery of vehicle |
JP2013119357A (en) * | 2011-12-08 | 2013-06-17 | Toyota Central R&D Labs Inc | Illumination control device |
JP2014165130A (en) * | 2013-02-27 | 2014-09-08 | Koito Mfg Co Ltd | Vehicular lighting fixture |
JP2015174551A (en) * | 2014-03-14 | 2015-10-05 | トヨタ自動車株式会社 | Vehicle headlight system |
JP2016011039A (en) * | 2014-06-27 | 2016-01-21 | シャープ株式会社 | Illuminating apparatus, vehicle headlamp, and control system for vehicle headlamp |
WO2019026438A1 (en) * | 2017-08-03 | 2019-02-07 | 株式会社小糸製作所 | Vehicular lighting system, vehicle system, and vehicle |
WO2019026437A1 (en) * | 2017-08-03 | 2019-02-07 | 株式会社小糸製作所 | Vehicular lighting system and vehicle |
-
2020
- 2020-06-02 JP JP2021524864A patent/JP7496352B2/en active Active
- 2020-06-02 WO PCT/JP2020/021833 patent/WO2020246483A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006311216A (en) * | 2005-04-28 | 2006-11-09 | Aisin Seiki Co Ltd | Monitoring system for periphery of vehicle |
JP2013119357A (en) * | 2011-12-08 | 2013-06-17 | Toyota Central R&D Labs Inc | Illumination control device |
JP2014165130A (en) * | 2013-02-27 | 2014-09-08 | Koito Mfg Co Ltd | Vehicular lighting fixture |
JP2015174551A (en) * | 2014-03-14 | 2015-10-05 | トヨタ自動車株式会社 | Vehicle headlight system |
JP2016011039A (en) * | 2014-06-27 | 2016-01-21 | シャープ株式会社 | Illuminating apparatus, vehicle headlamp, and control system for vehicle headlamp |
WO2019026438A1 (en) * | 2017-08-03 | 2019-02-07 | 株式会社小糸製作所 | Vehicular lighting system, vehicle system, and vehicle |
WO2019026437A1 (en) * | 2017-08-03 | 2019-02-07 | 株式会社小糸製作所 | Vehicular lighting system and vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP7496352B2 (en) | 2024-06-06 |
JPWO2020246483A1 (en) | 2020-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6321932B2 (en) | Vehicle headlamp | |
JP6114653B2 (en) | Vehicle lighting | |
JP5388546B2 (en) | Lamp unit | |
WO2015033764A1 (en) | Vehicular lighting | |
WO2019131055A1 (en) | Vehicle lamp system, vehicle lamp control device, and vehicle lamp control method | |
CN112770938B (en) | Lighting lamp for vehicle | |
WO2018225710A1 (en) | Vehicular lamp, and device and method for controlling same | |
JP2020104561A (en) | Vehicular lighting fixture system, control device for vehicular lighting fixture, and control method for vehicular lighting fixture | |
JP2019077204A (en) | Vehicular lamp fitting system, control device of vehicular lamp fitting, and control method of vehicular lamp fitting | |
CN111486402A (en) | Vehicle lamp system, vehicle lamp control device, and vehicle lamp control method | |
JP2013097885A (en) | Headlight device and headlight system | |
CN110966571A (en) | Vehicle headlamp | |
JP3800758B2 (en) | Vehicle information presentation device | |
WO2020262445A1 (en) | Lighting fixture system | |
WO2020158391A1 (en) | Control device for vehicle lamp, vehicle lamp system and method for controlling vehicle lamp | |
JP7084392B2 (en) | Vehicle lighting system, vehicle lighting control device, and vehicle lighting control method | |
WO2020246483A1 (en) | Lamp system | |
US11850992B2 (en) | Lighting device | |
JP6245903B2 (en) | Vehicle lighting | |
WO2022196296A1 (en) | Vehicle lamp control device, vehicle lamp control method and vehicle lamp system | |
WO2020241263A1 (en) | Vehicular lamp | |
WO2021010485A1 (en) | Vehicle light-fixture system, vehicle light-fixture control device and vehicle light-fixture control method | |
JP2020044946A (en) | Vehicular lighting fixture | |
JP7407096B2 (en) | Vehicle lamp control method and control device | |
JP7310024B2 (en) | Vehicle assembly, lighting unit, vehicle and vehicle with assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20818226 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021524864 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20818226 Country of ref document: EP Kind code of ref document: A1 |