JP2009090184A - Catalyst for water-gas-shift reaction and its manufacturing method - Google Patents

Catalyst for water-gas-shift reaction and its manufacturing method Download PDF

Info

Publication number
JP2009090184A
JP2009090184A JP2007261919A JP2007261919A JP2009090184A JP 2009090184 A JP2009090184 A JP 2009090184A JP 2007261919 A JP2007261919 A JP 2007261919A JP 2007261919 A JP2007261919 A JP 2007261919A JP 2009090184 A JP2009090184 A JP 2009090184A
Authority
JP
Japan
Prior art keywords
catalyst
acid
oxide
present
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007261919A
Other languages
Japanese (ja)
Inventor
Gakubu Yamamoto
学武 山本
Nariya Kobayashi
斉也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2007261919A priority Critical patent/JP2009090184A/en
Publication of JP2009090184A publication Critical patent/JP2009090184A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for water-gas-shift reaction, which has a high activity even in a small amount of noble metals, and can suppress a deactivation due to an exposure to water and steam at low temperatures. <P>SOLUTION: The catalyst for water-gas-shift reaction is characterized in that Pt is present in a solid solution of oxides of zirconium and cerium with iron and/or yttrium, and at the same time, particles of one or more kinds of metal elements A selected from Au, Ag, Cu, Fe, Pd, Ni, Ir, Rh, Co, Os, and Ru are present by being partly buried in the oxide solid solution. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水性ガスシフト反応に好適に用いることができる触媒に関するものである。   The present invention relates to a catalyst that can be suitably used for a water gas shift reaction.

水性ガスシフト反応(CO+HO→CO+H)は、コークス、天然ガスなどの炭化水素及び水蒸気から得られる水性ガスに含まれるCOとHOの比率を変える、あるいはHの製造等のため、化学工業プロセスにおいて利用されている大変重要な反応である。 The water gas shift reaction (CO + H 2 O → CO 2 + H 2 ) changes the ratio of CO and H 2 O contained in water gas obtained from hydrocarbons and steam such as coke and natural gas, or production of H 2 , etc. Therefore, it is a very important reaction used in the chemical industry process.

また、近年注目を浴びている燃料電池の燃料となる水素を、都市ガス等を改質して得る場合、副生したCOが燃料電池電極を被毒して発電効率が低下するため、この副生したCOを低減させる反応としてより高活性な水性ガスシフト反応に注目が集まっている。こうした水性ガスシフト反応の触媒は、一般に、150〜230℃程度の低温においては銅−亜鉛系や白金/アルミナ系が、350〜450℃程度の高温においては鉄−クロム系が使用される。   In addition, when hydrogen, which is the fuel of fuel cells that has been attracting attention in recent years, is obtained by reforming city gas or the like, the by-produced CO poisons the fuel cell electrode, reducing power generation efficiency. Attention has been focused on a highly active water gas shift reaction as a reaction for reducing the generated CO. As a catalyst for such a water gas shift reaction, a copper-zinc system or a platinum / alumina system is generally used at a low temperature of about 150 to 230 ° C., and an iron-chromium system is used at a high temperature of about 350 to 450 ° C.

銅−亜鉛系触媒は、水や酸素による酸化やシンタリングによって短時間で失活してしまう問題がある。鉄−クロム系触媒の耐熱性は高いが、反応温度が高いため、平衡ガス組成のCO濃度がある一定基準より下がらないという問題点がある。また、クロムは有害な金属であり、近年その利用が急速に規制されつつある。また、ビーズのような成形体とする場合には、触媒活性の劣化を避けるために高い熱処理を施すことができず、成形体強度が弱いため粉化してしまい触媒反応管の閉塞や反応場圧の上昇が起こりやすいという難点もある。   The copper-zinc catalyst has a problem of being deactivated in a short time due to oxidation or sintering with water or oxygen. Although the heat resistance of the iron-chromium catalyst is high, there is a problem that the CO concentration of the equilibrium gas composition does not fall below a certain standard because the reaction temperature is high. Chromium is a harmful metal and its use is being regulated rapidly in recent years. In addition, when a molded body such as a bead is used, high heat treatment cannot be performed in order to avoid deterioration of the catalytic activity, and the molded body is weak and powdered, resulting in clogging of the catalyst reaction tube and reaction field pressure. There is also a drawback that the rise of the is likely to occur.

一方、白金/アルミナ系触媒の耐熱性は高いが、高い活性を発現させるためには白金の担持量を多くする必要があるため触媒自体が非常に高価になってしまう問題点がある。さらには稀少な元素を大量に使用することによる資源の枯渇問題やさらなる値段の高騰などの問題が懸念される。   On the other hand, although the heat resistance of the platinum / alumina catalyst is high, there is a problem that the catalyst itself becomes very expensive because it is necessary to increase the amount of platinum supported in order to exhibit high activity. Furthermore, there are concerns about problems such as resource depletion due to the use of a large amount of rare elements and further price increases.

近年注目されている家庭用燃料電池の運転方法の一つとして、日中だけ起動して、夜間の電力消費が少ないときは停止するというDairy Start−up and Shutdown(DSS)という運転方法がとられる。この起動、停止を伴う運転方法では、Start−up(起動)やshutdown(停止)時の低温域において触媒が水及び水蒸気に繰り返しさらされることによって触媒活性金属の焼結が進み触媒活性が劣化してしまう。 One of the driving methods for household fuel cells that has been attracting attention in recent years is an operation method called Daily Start-up and Shutdown (DSS) that starts only during the day and stops when power consumption is low at night. . In this operation method with start-up and stop, the catalyst is repeatedly exposed to water and water vapor in the low temperature range at the start-up (start-up) or shutdown (stop), so that the catalytic active metal is sintered and the catalyst activity is deteriorated. End up.

上記問題点を克服する大量の貴金属を使用しない高耐性且つ高活性な水性ガスシフト反応用触媒が得られれば、一定条件下の化学工業プロセスのみならず、特に運転条件の変動幅が大きい燃料電池システムに安心して使用ができる。   If a highly durable and highly active water gas shift reaction catalyst that does not use a large amount of noble metal that overcomes the above problems is obtained, not only a chemical industry process under a certain condition but also a fuel cell system with a large fluctuation range of operating conditions in particular. Can be used with confidence.

ジルコニウム及びセリウム若しくはそれらの固溶体にPt,Pd,Rh等を担持した触媒は、自動車の排ガス処理触媒などでよく知られている一方で、水性ガスシフト反応用触媒としても活性を示すことが知られている(特許文献1〜3)。   Catalysts having Pt, Pd, Rh, etc. supported on zirconium and cerium or their solid solutions are well known as exhaust gas treatment catalysts for automobiles, but are also known to exhibit activity as catalysts for water gas shift reactions. (Patent Documents 1 to 3).

自動車の排ガス処理触媒では、活性金属のシンタリングを防ぐ方法として、活性金属の周囲に種々の元素を配置して、活性金属を固定化する方法が考案されている(特許文献4〜6)。   In the exhaust gas treatment catalyst for automobiles, as a method for preventing active metal sintering, methods for fixing active metal by arranging various elements around the active metal have been devised (Patent Documents 4 to 6).

また、通常触媒を使用するときは成形体として使用するので何らかの方法で成形体を作製する必要があり、触媒粉体を型に詰め、圧力をかける方法が広く用いられている。   Further, since a catalyst is usually used as a molded body, it is necessary to produce the molded body by some method, and a method in which catalyst powder is packed in a mold and pressure is applied is widely used.

他の成形体の作製方法としてアルミナ等の成形体にセリウム水溶液を浸透させて、触媒成形体を作製する方法も記載されている(特許文献7)。   As another method for producing a molded article, a method for producing a catalyst molded article by allowing a cerium aqueous solution to penetrate into a molded article such as alumina is also described (Patent Document 7).

特開2004−89908号公報JP 2004-89908 A 特開2004−97948号公報JP 2004-97948 A 国際公開第00/48261号パンフレットInternational Publication No. 00/48261 Pamphlet 特開2005−305300号公報JP-A-2005-305300 特開平8−131830号公報JP-A-8-131830 特開2005−185956号公報JP-A-2005-185556 特開2003−144925号公報JP 2003-144925 A

少量の貴金属でも高い活性を有し、且つ水及び水蒸気に対する耐性をもつ触媒は、現在最も要求されているところであるが、この要求を満たすような水性ガスシフト反応用の触媒は未だ提供されていない。   A catalyst having high activity even with a small amount of noble metal and having resistance to water and water vapor is currently most demanded, but a catalyst for a water gas shift reaction that satisfies this requirement has not yet been provided.

即ち、前記特許文献1〜7記載の技術は、触媒活性が低活性である及び/又は水及び水蒸気に対する耐性がないので、水性ガスシフト反応に用いる触媒として有用とは言い難いものである。   That is, the techniques described in Patent Documents 1 to 7 are hardly useful as a catalyst used in a water gas shift reaction because of low catalytic activity and / or lack of resistance to water and water vapor.

特許文献6には硝酸を用いる実施例部分があるが、これは酸添加によってハニカム塗布時のスラリー粘度を下げる効果を期待するものである。特許文献6には、担体に触媒スラリーを付着させる際に、触媒スラリーに硝酸を添加しているが、硝酸を添加してpHを下げることによってスラリー粘度を下げて触媒スラリーを担体(ハニカム)に容易に塗布するためのものであり、本発明の酸の添加とは明らかにその効果が異なる。   Patent Document 6 has an embodiment using nitric acid, which is expected to have an effect of lowering the slurry viscosity at the time of honeycomb coating by addition of acid. In Patent Document 6, nitric acid is added to the catalyst slurry when adhering the catalyst slurry to the carrier, but the catalyst viscosity is lowered to the carrier (honeycomb) by adding nitric acid to lower the pH by lowering the pH. It is for easy application, and the effect is clearly different from the addition of the acid of the present invention.

本発明は、前記特許文献1〜7に記載された従来技術の現状に鑑みてなされたものであり、その主な目的は、少なくともジルコニウム、セリウム、鉄及び/又はイットリウムを含む酸化物固溶体に、Ptを存在させ、Ptに対して、Au,Ag,Cu,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれる1種または2種以上の金属元素Aを存在させ、Pt及び該金属元素Aの粒子が該酸化物固溶体に埋まって成ることにより、水及び水蒸気に対する耐性と高活性を併せ持つ触媒及びその製造方法を提供することである。   The present invention has been made in view of the current state of the prior art described in Patent Documents 1 to 7, and the main object thereof is an oxide solid solution containing at least zirconium, cerium, iron and / or yttrium. Pt is present, and one or more metal elements A selected from Au, Ag, Cu, Fe, Pd, Ni, Ir, Rh, Co, Os, and Ru are present with respect to Pt. It is to provide a catalyst having both resistance to water and water vapor and high activity, and a method for producing the same, by embedding particles of Pt and the metal element A in the oxide solid solution.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、ジルコニウム及びセリウムとともに鉄及び/又はイットリウムからなる酸化物固溶体に、Ptを存在させるとともに、Ptに対して、Au,Ag,Cu,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれる1種または2種以上の金属元素Aを0.001〜500重量%存在させ、Pt及び該金属元素Aの粒子が該酸化物固溶体に埋まって成ることを特徴とする水性ガスシフト反応用の触媒である(本発明1)。   That is, the present invention allows Pt to exist in an oxide solid solution composed of iron and / or yttrium together with zirconium and cerium, and Au, Ag, Cu, Fe, Pd, Ni, Ir, Rh, Co to Pt. , Os, Ru, one or more metal elements A are present in an amount of 0.001 to 500% by weight, and Pt and particles of the metal elements A are embedded in the oxide solid solution. The water gas shift reaction catalyst (Invention 1).

また、本発明は、ジルコニウム及びセリウムとともに鉄及び/又はイットリウムからなる酸化物固溶体に、Ptを存在させるとともに、Ptに対して、Au,Ag,Cu,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれる1種または2種以上の金属元素Aを0.001〜500重量%存在させた触媒であって、該触媒の劣化試験方法で触媒活性が10%以上低下しない水性ガスシフト反応用の触媒である(本発明2)。   Further, the present invention allows Pt to be present in an oxide solid solution composed of iron and / or yttrium together with zirconium and cerium, and Au, Ag, Cu, Fe, Pd, Ni, Ir, Rh, Co to Pt. , Os, Ru, a catalyst in which 0.001 to 500% by weight of one or more metal elements A selected from the group consisting of Os, Ru is present, and the catalytic activity does not decrease by more than 10% in the deterioration test method of the catalyst. It is a catalyst for water gas shift reaction (Invention 2).

また、本発明は、前記触媒を構成する鉄の含有量が、酸化鉄(Fe)換算で5.0重量%以下であり、イットリウムの含有量が酸化イットリウム(Y)換算で10重量%以下であることを特徴とする水性ガスシフト反応用の触媒である(本発明3)。 In the present invention, the content of iron constituting the catalyst is 5.0% by weight or less in terms of iron oxide (Fe 3 O 4 ), and the content of yttrium is in terms of yttrium oxide (Y 2 O 3 ). It is a catalyst for water gas shift reaction characterized by being 10 wt% or less (Invention 3).

また、本発明は、前記いずれか本発明の触媒において、PtとAu,Ag,Cu,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれる1種または2種以上の金属元素Aをジルコニウム及びセリウムとともに鉄及び/又はイットリウムからなる酸化物固溶体に存在させ、前記Pt、金属元素Aを触媒に対して0.001〜40重量%担持させたことを特徴とする水性ガスシフト反応用の触媒である(本発明4)。   Further, the present invention provides the catalyst according to any one of the present invention, wherein one or more selected from Pt and Au, Ag, Cu, Fe, Pd, Ni, Ir, Rh, Co, Os, and Ru. Water gas shift characterized in that metal element A is present in an oxide solid solution composed of iron and / or yttrium together with zirconium and cerium, and Pt and metal element A are supported in an amount of 0.001 to 40% by weight with respect to the catalyst. This is a catalyst for the reaction (Invention 4).

また、本発明は、本発明1記載の触媒において、ジルコニウム及びセリウムとともに鉄及び/又はイットリウムからなる酸化物固溶体に、Ptを存在させ、Ptに対して、Au,Ag,Cu,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれる1種または2種以上の金属元素Aを0.001〜500重量%存在させるときに酸を添加し、次いで、乾燥し、得られた乾燥物を焼成することを特徴とする前記請求項1記載の水性ガスシフト反応用の触媒の製造方法である(本発明5)。   Further, the present invention provides the catalyst according to the present invention 1, wherein Pt is present in an oxide solid solution composed of iron and / or yttrium together with zirconium and cerium, and Au, Ag, Cu, Fe, Pd, When one or more metal elements A selected from Ni, Ir, Rh, Co, Os, and Ru are present in an amount of 0.001 to 500% by weight, an acid is added, followed by drying. The method for producing a catalyst for water gas shift reaction according to claim 1, wherein the dried product is calcined (Invention 5).

また、本発明は、サポート材上にジルコニウム及びセリウムとともに鉄及び/又はイットリウムからなる酸化物固溶体が存在し、更に、Ptが存在するとともにPtに対して、Au,Ag,Cu,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれる1種または2種以上の金属元素Aを0.001〜500重量%存在させたものであり、Pt及び該金属元素Aの粒子が前記酸化物固溶体に埋まった状態であることを特徴とする水性ガスシフト反応用の触媒体である(本発明6)。   Further, in the present invention, an oxide solid solution composed of iron and / or yttrium together with zirconium and cerium is present on the support material, and further, Pt is present and Au, Ag, Cu, Fe, Pd, One or two or more metal elements A selected from Ni, Ir, Rh, Co, Os, and Ru are present in an amount of 0.001 to 500% by weight, and Pt and particles of the metal element A are present. A catalyst body for a water gas shift reaction characterized by being embedded in the oxide solid solution (Invention 6).

また、本発明は、サポート材の表面に、ジルコニウム及びセリウムとともに鉄及び/又はイットリウムからなる酸化物固溶体を含むスラリーを塗布、焼成して被覆した後、PtとAu,Ag,Cu,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれる1種または2種以上の金属元素Aを存在させるときに酸を添加し、次いで、乾燥し、得られた乾燥物を焼成することを特徴とする水性ガスシフト反応用の触媒の製造方法である(本発明7)。   In the present invention, a slurry containing an oxide solid solution composed of iron and / or yttrium together with zirconium and cerium is applied to the surface of the support material, and then fired and coated, and then Pt and Au, Ag, Cu, Fe, Pd. , Ni, Ir, Rh, Co, Os, Ru, in the presence of one or more metal elements A, an acid is added and then dried, and the resulting dried product is fired. This is a method for producing a catalyst for water gas shift reaction (Invention 7).

また、本発明は、本発明1〜4、6のいずれかに記載の触媒を用いる水性ガスシフト反応の反応方法である(本発明8)。   Moreover, this invention is the reaction method of the water gas shift reaction using the catalyst in any one of this invention 1-4, or 6 (this invention 8).

本発明に係る水性ガスシフト反応用の触媒は、ジルコニウム及びセリウムとともに鉄及び/又はイットリウムからなる酸化物固溶体に、Ptを存在させ、Ptに対して、Au,Ag,Cu,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれる1種または2種以上の金属元素Aを存在させ、Pt及び該金属元素Aの粒子が該酸化物固溶体に埋まって成ることにより、水性ガスシフト反応をより効率よく行えるという優れた効果を奏する。   The catalyst for water gas shift reaction according to the present invention comprises Pt in an oxide solid solution composed of iron and / or yttrium together with zirconium and cerium, and Au, Ag, Cu, Fe, Pd, Ni, One or more metal elements A selected from Ir, Rh, Co, Os, and Ru are present, and Pt and the particles of the metal elements A are embedded in the oxide solid solution, thereby causing a water gas shift. There is an excellent effect that the reaction can be performed more efficiently.

また、本発明6に係るサポート材に触媒を存在させた場合には、触媒のほぼ全量が水性ガスシフト反応に寄与することができるので、触媒の機能を十分に発揮することができる。   In addition, when the catalyst is present in the support material according to the sixth aspect of the invention, almost the entire amount of the catalyst can contribute to the water gas shift reaction, so that the function of the catalyst can be sufficiently exhibited.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

本発明に係る水性ガスシフト反応用の触媒は、少なくともジルコニウム、セリウム、鉄及び/又はイットリウムからなる固溶体酸化物に、PtとAu,Ag,Cu,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれる1種または2種以上の金属元素Aとを存在させ、Pt及び該金属元素Aの金属粒子が該酸化物固溶体に埋まってなる水性ガスシフト反応用の触媒である。   The catalyst for the water gas shift reaction according to the present invention comprises a solid solution oxide composed of at least zirconium, cerium, iron and / or yttrium, Pt, Au, Ag, Cu, Fe, Pd, Ni, Ir, Rh, Co, Os. , Ru, a catalyst for water gas shift reaction in which one or more metal elements A selected from Ru are present, and Pt and metal particles of the metal elements A are embedded in the oxide solid solution.

本発明に係る水性ガスシフト反応用の触媒においては、セリウム、ジルコニウム、鉄及び/又はイットリウムが固溶体を形成した酸化物である。即ち、Ce−Zr−Feの複合酸化物、Ce−Zr−Yの複合酸化物又はCe−Zr−Fe−Yの複合酸化物のいずれかからなるものである。本発明において前記元素が固溶体を形成していない場合、酸素の貯蔵放出能が低下する。また、鉄及び/又はイットリウムが固溶体を形成しない場合は、比表面積が低下し、水性ガスシフト反応用の触媒としての機能が十分でない。   In the catalyst for water gas shift reaction according to the present invention, cerium, zirconium, iron and / or yttrium is an oxide in which a solid solution is formed. That is, it is made of any one of a composite oxide of Ce—Zr—Fe, a composite oxide of Ce—Zr—Y, or a composite oxide of Ce—Zr—Fe—Y. In the present invention, when the element does not form a solid solution, the ability to store and release oxygen decreases. Moreover, when iron and / or yttrium do not form a solid solution, the specific surface area decreases, and the function as a catalyst for the water gas shift reaction is not sufficient.

本発明に係る水性ガスシフト反応用の触媒は、Pt及び該金属元素Aの金属粒子が該酸化物固溶体に埋まってなるものである。本発明においてPt及び該金属元素Aの粒子の一部が該酸化物固溶体に埋まっていない場合、低温での水及び水蒸気に対する耐性が低く、前記金属粒子がシンタリングして失活してしまい、水性ガスシフト反応用の触媒としての機能が十分でない。   The catalyst for water gas shift reaction according to the present invention is obtained by embedding Pt and metal particles of the metal element A in the oxide solid solution. In the present invention, when some of the particles of Pt and the metal element A are not embedded in the oxide solid solution, the resistance to water and water vapor at a low temperature is low, the metal particles are sintered and deactivated, The function as a catalyst for the water gas shift reaction is not sufficient.

本発明1〜4のいずれかに係る水性ガスシフト反応用の触媒を構成するセリウムの含有量は酸化セリウム(CeO)換算で10〜70重量%、ジルコニウムの含有量は酸化ジルコニウム(ZrO)換算で30〜90重量%、鉄の含有量は酸化鉄(Fe)換算で0〜5.0重量%、イットリウムの含有量は酸化イットリウム(Y)換算で0〜10重量%の範囲内であることが好ましい。セリウム、ジルコニウム、イットリウム、鉄が前記範囲外の場合には、本発明の目的とする効果が得られない。より好ましくは、セリウムの含有量が20〜60重量%、ジルコニウムの含有量が40〜75重量%、鉄の含有量が0.01〜4.5重量%、イットリウムの含有量が0.01〜9.0重量%の範囲である。更により好ましくは、鉄の含有量が0.1〜4.5重量%、イットリウムの含有量が1.0〜9.0重量%の範囲である。 The content of cerium constituting the catalyst for the water gas shift reaction according to any one of the present inventions 1 to 4 is 10 to 70% by weight in terms of cerium oxide (CeO 2 ), and the content of zirconium is in terms of zirconium oxide (ZrO 2 ). 30 to 90% by weight, the iron content is 0 to 5.0% by weight in terms of iron oxide (Fe 3 O 4 ), and the yttrium content is 0 to 10% by weight in terms of yttrium oxide (Y 2 O 3 ) It is preferable to be within the range. When cerium, zirconium, yttrium, and iron are out of the above ranges, the intended effect of the present invention cannot be obtained. More preferably, the cerium content is 20 to 60% by weight, the zirconium content is 40 to 75% by weight, the iron content is 0.01 to 4.5% by weight, and the yttrium content is 0.01 to It is in the range of 9.0% by weight. Even more preferably, the iron content is in the range of 0.1 to 4.5% by weight and the yttrium content is in the range of 1.0 to 9.0% by weight.

金属元素Aの存在量は、Ptに対して0.001〜500重量%である。金属元素Aの存在量が前記範囲外の場合には、十分な活性を得ることができない。金属元素Aの存在量は、より好ましくは0.001〜300重量%、さらにより好ましくは0.001〜200重量%である。   The abundance of the metal element A is 0.001 to 500% by weight with respect to Pt. When the abundance of the metal element A is outside the above range, sufficient activity cannot be obtained. The abundance of the metal element A is more preferably 0.001 to 300% by weight, still more preferably 0.001 to 200% by weight.

本発明に係る水性ガスシフト反応用の触媒のPtの存在量は、触媒に対して0.001〜40重量%が好ましく、Ptの存在量が前記範囲外の場合には、十分な活性を得ることができない。Ptの存在量は、より好ましくは0.01〜30重量%、さらにより好ましくは0.01〜10重量%である。   The amount of Pt present in the catalyst for water gas shift reaction according to the present invention is preferably 0.001 to 40% by weight with respect to the catalyst. When the amount of Pt present is outside the above range, sufficient activity is obtained. I can't. The amount of Pt present is more preferably 0.01 to 30% by weight, still more preferably 0.01 to 10% by weight.

本発明1乃至4のいずれかに係る水性ガスシフト反応用の触媒のBET比表面積は15m/g以上が好ましく、より好ましくは50m/g以上である。上限は350m/g程度である。 The BET specific surface area of the catalyst for water gas shift reaction according to any one of the present inventions 1 to 4 is preferably 15 m 2 / g or more, more preferably 50 m 2 / g or more. The upper limit is about 350 m 2 / g.

本発明に係る水性ガスシフト反応用の触媒は、後述する劣化試験方法で触媒活性が10%以上低下しないものである。触媒活性の低下が10%より大きい触媒は、容易にシンタリングを起こすものであり、水性ガスシフト反応用として十分な活性を安定的に有するものではない。好ましくは触媒活性が低下する割合が8%以下である。   The catalyst for water gas shift reaction according to the present invention is one whose catalytic activity does not decrease by 10% or more by the deterioration test method described later. A catalyst having a decrease in catalytic activity of more than 10% easily causes sintering, and does not stably have sufficient activity for a water gas shift reaction. Preferably, the rate at which the catalyst activity decreases is 8% or less.

本発明1乃至4のいずれかに係る水性ガスシフト反応用の触媒の劣化試験前後のCO転化率は、後述する評価法において、いずれも、50%以上が好ましく、より好ましくは70%以上である。   The CO conversion rate before and after the deterioration test of the catalyst for water gas shift reaction according to any one of the present inventions 1 to 4 is preferably 50% or more, more preferably 70% or more, in the evaluation method described later.

本発明1乃至4のいずれかに係る触媒は、使用する各用途に合わせて成形しても良い。形状やサイズは特に限定しないが、例えば球状や円柱状、管状、ハニカム体への塗布などの形状でも良い。通常、球状や円柱状、管状の形状を持つ触媒体の場合のサイズは0.1〜30mm程度が好適である。条件によっては有機物や無機物などの各種バインダーを添加することで成形体の強度や細孔分布密度を調整しても良い。   You may shape | mold the catalyst which concerns on either of this invention 1 thru | or 4 according to each use to be used. The shape and size are not particularly limited, but may be, for example, a spherical shape, a cylindrical shape, a tubular shape, or a shape applied to a honeycomb body. In general, the size of a catalyst body having a spherical, cylindrical, or tubular shape is preferably about 0.1 to 30 mm. Depending on conditions, the strength and pore distribution density of the molded body may be adjusted by adding various binders such as organic substances and inorganic substances.

本発明6に係る触媒体は、サポート材上にジルコニウム及びセリウムとともに鉄及び/又はイットリウムからなる酸化物固溶体が存在し、更に、Ptが存在するとともにPtに対して、金属元素Aを0.001〜500重量%存在させたものであり、Pt及び該金属元素Aの粒子が該酸化物固溶体に埋まった状態の触媒である。   In the catalyst body according to the sixth aspect of the present invention, an oxide solid solution composed of iron and / or yttrium together with zirconium and cerium is present on the support material, and further, Pt is present and the metal element A is 0.001 with respect to Pt. The catalyst is present in a state of ˜500% by weight, in which the particles of Pt and the metal element A are embedded in the oxide solid solution.

本発明6に係る触媒体の状態は、以下のような状態である。
1)サポート材上に本発明1乃至4に係るいずれかの触媒が付着・被覆されている状態であり、この場合、該酸化物固溶体の二次粒子(凝集粒子)内部及び表面付近にPt及び金属元素Aが存在している状態である。
2)サポート材上にジルコニウム及びセリウムとともに鉄及び/又はイットリウムからなる酸化物固溶体が付着・被覆され、該酸化物固溶体の二次粒子(凝集粒子)表面付近にPt及び金属元素Aが存在している状態である。
The state of the catalyst body according to the present invention 6 is as follows.
1) A state in which any of the catalysts according to the first to fourth aspects of the present invention is attached and coated on a support material. In this case, Pt and the inside of secondary particles (aggregated particles) of the oxide solid solution and in the vicinity of the surface thereof The metal element A is present.
2) An oxide solid solution composed of iron and / or yttrium together with zirconium and cerium is adhered and coated on the support material, and Pt and metal element A are present in the vicinity of the secondary particle (aggregated particle) surface of the oxide solid solution. It is in a state.

本発明におけるサポート材としては、鉄板、SUS管、ムライト、アルミナ、シリカ、コージェライト等から成る成形体であり、好ましくはシリカ、アルミナ、コージェライト等である。   The support material in the present invention is a molded body made of iron plate, SUS tube, mullite, alumina, silica, cordierite or the like, and preferably silica, alumina, cordierite or the like.

なお、本発明においては、前記サポート材の表面をケイ素、アルミニウム、ジルコニウム等の酸化物又は水酸化物などであらかじめ被覆してもよい。   In the present invention, the surface of the support material may be coated in advance with an oxide or hydroxide of silicon, aluminum, zirconium or the like.

サポート材と本発明に係る触媒の線膨張係数の相違は少ないほど理想であり、好ましくは±6%以下、より好ましくは±3%以下が良い。   The smaller the difference in linear expansion coefficient between the support material and the catalyst according to the present invention, the more ideal it is, and preferably ± 6% or less, more preferably ± 3% or less.

本発明6に係る触媒体は、活性金属元素Aの担持量を触媒に対し0.0001〜40重量%としたものである。より好ましくは0.01〜30重量%担持させた触媒である。なお、触媒体中の活性金属元素の全含有量(Ptと活性金属元素Aとの合計量)は0.1〜30重量%が好ましい。   The catalyst body according to the sixth aspect of the present invention has an active metal element A loading of 0.0001 to 40% by weight based on the catalyst. More preferably, the catalyst is supported by 0.01 to 30% by weight. The total content of active metal elements in the catalyst body (total amount of Pt and active metal element A) is preferably 0.1 to 30% by weight.

また、本発明6に係る触媒体は、前記サポート材に本発明1乃至4のいずれかの触媒を存在させることによって、高価なジルコニウムやセリウムの使用量を減らすことができ、より安価な触媒を作製できる。   Further, the catalyst body according to the present invention 6 can reduce the amount of expensive zirconium and cerium used by allowing the catalyst of any one of the present invention 1 to 4 to be present in the support material, thereby reducing the cost of the catalyst. Can be made.

次に、本発明に係る水性ガスシフト反応用の触媒の製造法について述べる。   Next, a method for producing a catalyst for water gas shift reaction according to the present invention will be described.

本発明に係る水性ガスシフト反応用の触媒は、アルカリ性溶液と、ジルコニウム、セリウム、鉄及び/又はイットリウムとを含む溶液とを混合、熟成した後、濾別、水洗、乾燥し、次いで、100〜1300℃の温度範囲で加熱して前記元素の酸化物固溶体を得、該酸化物固溶体にPtと金属元素Aとを担持させるときに、酸を加え、水洗、乾燥し、得られた乾燥物を100〜1300℃の温度範囲で焼成することで得ることができる。
前記製造方法によって活性金属の一部を、セリウムを含む酸化物で覆うことができ、Pt及び金属元素Aの金属粒子が埋まった状態となる。その結果、活性金属粒子のシンタリングを抑制することができる。また、酸を添加することで、担体のセリウムを含む酸化物の一部を溶かし、焼成することで、Pt−Ceの様な強固な結合ができ、シンタリングを抑制していると推察される。
The catalyst for water gas shift reaction according to the present invention is prepared by mixing and aging an alkaline solution and a solution containing zirconium, cerium, iron and / or yttrium, followed by filtration, washing and drying, and then 100 to 1300. An oxide solid solution of the above elements is obtained by heating in the temperature range of ° C. When Pt and the metal element A are supported on the oxide solid solution, an acid is added, washed with water and dried. It can be obtained by firing in a temperature range of ˜1300 ° C.
Part of the active metal can be covered with the oxide containing cerium by the manufacturing method, and the metal particles of Pt and metal element A are buried. As a result, sintering of the active metal particles can be suppressed. Moreover, it is speculated that by adding an acid, a part of the oxide containing cerium of the carrier is dissolved and baked, whereby a strong bond like Pt-Ce can be formed and sintering is suppressed. .

熟成時のpHは特に限定されないが4〜13.5が好ましく、6〜13がより好ましい。   The pH during aging is not particularly limited, but is preferably 4 to 13.5, and more preferably 6 to 13.

ジルコニウム、セリウム、鉄及び/又はイットリウムからなる酸化物固溶体は、ジルコニウム、セリウム、鉄及び/又はイットリウムを含む水溶液を同時に混合し熟成するので、ここで生成した沈澱粒子は、元素の組成が均一な粒子になり、各元素が高分散し、固溶体を形成しやすくなる。本発明においては、ジルコニウム及びセリウムとともに、鉄及び/又はイットリウムが固溶した酸化物であるので、高い触媒活性を有するものである。   Since the oxide solid solution composed of zirconium, cerium, iron and / or yttrium is simultaneously mixed and aged with an aqueous solution containing zirconium, cerium, iron and / or yttrium, the produced precipitated particles have a uniform elemental composition. It becomes particles and each element is highly dispersed, and a solid solution is easily formed. In the present invention, since it is an oxide in which iron and / or yttrium is dissolved together with zirconium and cerium, it has a high catalytic activity.

また、ジルコニウム及びセリウムとともに、鉄及び/又はイットリウムが固溶した酸化物を合成するときに、金属元素Aを混合して得られた酸化物に、Ptを含浸法によって担持させてもよい。即ち、アルカリ性溶液と、ジルコニウム、セリウム、鉄及び/又はイットリウム、金属元素Aを含む溶液とを混合、熟成した後、濾別、水洗、乾燥し、次いで、100〜1300℃の温度範囲で加熱して前記元素の酸化物固溶体を得、該酸化物固溶体にPtを担持させるときに、酸を加え、乾燥し、得られた乾燥物を100〜1300℃の温度範囲で焼成すること得ることができる。   Moreover, when synthesizing an oxide in which iron and / or yttrium is dissolved together with zirconium and cerium, Pt may be supported on the oxide obtained by mixing the metal element A by an impregnation method. That is, an alkaline solution and a solution containing zirconium, cerium, iron and / or yttrium, and metal element A are mixed and aged, then filtered, washed with water, dried, and then heated in a temperature range of 100 to 1300 ° C. When an oxide solid solution of the element is obtained and Pt is supported on the oxide solid solution, an acid is added and dried, and the resulting dried product can be fired at a temperature range of 100 to 1300 ° C. .

本発明においては、Pt、金属元素Aを存在・担持させるときに酸を添加する。添加する酸の種類は、特に限定されるものではないが、例えば、過塩素酸、硫酸、発煙硫酸、亜硫酸、塩酸、ヨウ化水素酸、臭化水素酸、硝酸、発煙硝酸、亜硝酸、王水、混酸、メタンスルホン酸、ベンゼンスルホン酸、フルオロスルホン酸、クロロスルホン酸、ヨウ素酸、臭素酸、塩素酸等が好ましい。該酸の使用方法としては、1種類あるいは2種類以上の混合物でもよい。   In the present invention, an acid is added when Pt and metal element A are present and supported. The type of acid to be added is not particularly limited. For example, perchloric acid, sulfuric acid, fuming sulfuric acid, sulfurous acid, hydrochloric acid, hydroiodic acid, hydrobromic acid, nitric acid, fuming nitric acid, nitrous acid, king Water, mixed acid, methanesulfonic acid, benzenesulfonic acid, fluorosulfonic acid, chlorosulfonic acid, iodic acid, bromic acid, chloric acid and the like are preferable. As a method of using the acid, one kind or a mixture of two or more kinds may be used.

通常、Pt源は硝酸PtやジニトロジアンミンPt溶液、塩化白金酸等が用いられ、何れも酸性ではあるが比較的酸性が低い。例えば、ジニトロジアンミンPt溶液の場合、通常、濃硝酸でPtを溶解させるが、多くてもPtの5倍程度の重量の濃硝酸を用いる程度であり、さらに、その酸はPtを溶かすために使われているので、担体の酸化物固溶体を溶かし得るほど酸性が強いわけではない。別途、Pt等の活性金属の数十倍の重量の濃硝酸を加えないと本発明の目的とする効果を有する触媒を得ることができない。これは金属元素A源においてもPtの場合と同様である。   Usually, Pt nitrate, dinitrodiammine Pt solution, chloroplatinic acid or the like is used as the Pt source, all of which are acidic but relatively low in acidity. For example, in the case of a dinitrodiammine Pt solution, Pt is usually dissolved with concentrated nitric acid, but at most, concentrated nitric acid having a weight about five times that of Pt is used, and the acid is used to dissolve Pt. Therefore, the acidity is not strong enough to dissolve the oxide solid solution of the carrier. Separately, a catalyst having the intended effect of the present invention cannot be obtained unless concentrated nitric acid having a weight several tens of times that of an active metal such as Pt is added. This is the same as in the case of Pt in the metal element A source.

添加する酸は、濃度が高いほうが好ましい。酸の量は、Ptや金属元素Aの溶液に入っている酸を除いて、例えば、硫酸、塩酸、臭化水素酸、硝酸、王水、クロロスルホン酸等の場合、触媒100重量部に対して水分等の溶媒以外の酸の量が0.5〜40重量部となる量を添加することが好ましい。0.5重量部未満では、担体の酸化物固溶体を本発明の効果を得られるほどに十分溶かすことが出来ず、40重量部を超える場合、酸化物固溶体が溶解しすぎてPtが酸化物固溶体に完全に覆われてしまうので活性が低下してしまう。酸の添加量は、より好ましくは1〜20重量部である。   The acid to be added preferably has a higher concentration. For example, in the case of sulfuric acid, hydrochloric acid, hydrobromic acid, nitric acid, aqua regia, chlorosulfonic acid, etc., the amount of acid is 100 parts by weight of the catalyst, excluding the acid contained in the solution of Pt and metal element A. Thus, it is preferable to add an amount such that the amount of acid other than a solvent such as moisture is 0.5 to 40 parts by weight. If the amount is less than 0.5 parts by weight, the oxide solid solution of the carrier cannot be sufficiently dissolved to obtain the effects of the present invention. If the amount exceeds 40 parts by weight, the oxide solid solution is excessively dissolved and Pt becomes an oxide solid solution. Since it is completely covered with, the activity decreases. The amount of acid added is more preferably 1 to 20 parts by weight.

加熱温度は、100〜800℃がより好ましい。加熱雰囲気は、大気中が好ましい。   As for heating temperature, 100-800 degreeC is more preferable. The heating atmosphere is preferably in the air.

触媒は通常、触媒を成形した触媒体として使用されることが多く、その製造方法も多岐にわたる。一般的な触媒体の製法としては触媒粉体を型に詰めて加圧成形する方法、ケーキ状の触媒を押し出し機によって押し出しその後焼成する方法、若しくは触媒粉体をパンに入れ転動させて造粒する方法等が挙げられる。   Usually, the catalyst is often used as a catalyst body obtained by molding the catalyst, and its production methods are diverse. As a general method for producing a catalyst body, a method in which a catalyst powder is packed in a mold and pressure-molded, a method in which a cake-like catalyst is extruded by an extruder and then calcined, or a catalyst powder is placed in a pan and rolled. The method of granulating etc. is mentioned.

しかし、実際に触媒を使用する場合、触媒反応に用いられるガスは主に触媒体の表面付近で反応し、触媒体内部にまでは侵入しにくい。よって触媒体内部の触媒成分は触媒反応に十分に寄与することができなくなる。特に、触媒が高価な材料からなる場合、触媒体内部の触媒は無駄になることとなる。   However, when a catalyst is actually used, the gas used for the catalytic reaction reacts mainly near the surface of the catalyst body and hardly penetrates into the catalyst body. Therefore, the catalyst component inside the catalyst body cannot sufficiently contribute to the catalytic reaction. In particular, when the catalyst is made of an expensive material, the catalyst inside the catalyst body is wasted.

そこで、本発明では、セラミックス又はメタル等のサポート材の表面に、前記本発明1〜4のいずれかの触媒を含むスラリーを、必要により、セラミックスを含むスラリーとともに塗布、焼成してコーティングさせる製造方法を用いることができる。得られた触媒体は、サポート材上に本発明1乃至4に係るいずれかの触媒が付着・被覆されている状態であり、酸化物固溶体(Ce−Zr−Fe/Y複合酸化物)の二次粒子(凝集粒子)内部及び表面付近にPt及び金属元素Aが存在している状態である。従って、サポート材表面に触媒成分の相を形成させ、触媒成分を有効に活用することができる。   Accordingly, in the present invention, a slurry containing the catalyst according to any one of the present inventions 1 to 4 is applied to the surface of a support material such as ceramics or metal together with a slurry containing ceramics, if necessary, and coated to be coated. Can be used. The obtained catalyst body is in a state in which any of the catalysts according to the first to fourth aspects of the present invention is attached to and coated on a support material, and is an oxide solid solution (Ce—Zr—Fe / Y composite oxide). In this state, Pt and metal element A are present inside and near the surface of the next particle (aggregated particle). Therefore, the phase of the catalyst component can be formed on the surface of the support material, and the catalyst component can be effectively utilized.

本発明7では、セラミックス又はメタル等のサポート材の表面に、ジルコニウム及びセリウムとともに鉄及び/又はイットリウムからなる酸化物固溶体を含むスラリーを、必要により、セラミックスを含むスラリーとともに塗布、焼成してコーティングさせ、その後Ptと金属元素Aを存在させるものである。前記製造方法によって得られた触媒体は、サポート材上にジルコニウム及びセリウムとともに鉄及び/又はイットリウムからなる酸化物固溶体が付着・被覆され、該酸化物固溶体の二次粒子(凝集粒子)表面付近にPt及び金属元素Aが存在している状態となる。従って、活性金属成分をサポート材表面に担持することができ、より活性金属を有効に活用することができる。   In the present invention 7, on the surface of a support material such as ceramics or metal, a slurry containing an oxide solid solution composed of iron and / or yttrium together with zirconium and cerium is applied, fired and coated together with a slurry containing ceramics, if necessary. Then, Pt and metal element A are made to exist. In the catalyst body obtained by the above-described manufacturing method, an oxide solid solution composed of iron and / or yttrium together with zirconium and cerium is adhered and coated on a support material, and the secondary particle (aggregated particle) surface of the oxide solid solution is near the surface. Pt and metal element A are present. Therefore, the active metal component can be supported on the surface of the support material, and the active metal can be used more effectively.

本発明においては、サポート材上にアルミナ等のセラミックスをコーティングさせた後に、前記本発明1〜4のいずれかの触媒をコーティングさせる、若しくは、前記本発明1〜4のいずれかの触媒をコーティングさせた後にセラミックスをごく薄くコーティングさせてもよく、さらに多層にコーティングさせてもよい。サポート材上にセラミックスをコーティングさせた後に前記本発明1〜4のいずれかの触媒をコーティングさせることで、サポート材上に触媒をより強固にコーティングさせることができる。   In the present invention, the support material is coated with ceramics such as alumina, and then the catalyst according to any one of the present inventions 1 to 4 is coated, or the catalyst according to any one of the present inventions 1 to 4 is coated. After that, the ceramics may be coated very thinly, or may be further coated in multiple layers. The catalyst can be more firmly coated on the support material by coating the catalyst on any one of the present inventions 1 to 4 after coating the ceramic on the support material.

前出特許文献7記載の方法でもコーティングできるが、金属水溶液に浸しているので触媒層を厚くすることが難しく、触媒層の紛化も起こり易い。担体元素と触媒原料との化学反応により別相の生成も起こり予想以上の活性劣化も起こる。また、触媒層にある程度の厚みがないと十分な触媒活性が得られない。しかし、本発明においてはスラリーを塗布するため、触媒層を容易に厚くでき、粉化も抑制できる。   Although the coating can be performed by the method described in Patent Document 7, it is difficult to increase the thickness of the catalyst layer because it is immersed in a metal aqueous solution, and the catalyst layer is easily pulverized. Due to the chemical reaction between the support element and the catalyst raw material, another phase is generated and the activity is deteriorated more than expected. Further, sufficient catalytic activity cannot be obtained unless the catalyst layer has a certain thickness. However, since the slurry is applied in the present invention, the catalyst layer can be easily thickened and powdering can be suppressed.

本発明6に係る触媒体おいて、サポート材に本発明1乃至4に係るいずれかの触媒を被覆する場合には、通常の方法によって行えばよく、例えば、コージェライト製のハニカム担体に本発明1乃至4に係るいずれかの触媒をスラリー化して、コーティングさせ、乾燥、焼成を経て触媒体としても良い。   In the catalyst body according to the sixth aspect of the present invention, when any of the catalysts according to the first to fourth aspects of the present invention is coated on the support material, it may be performed by an ordinary method. For example, the present invention is applied to a honeycomb carrier made of cordierite. Any one of the catalysts 1 to 4 may be made into a slurry, coated, dried, and fired to form a catalyst body.

本発明7に係る触媒体において、サポート材にジルコニウム及びセリウムとともに鉄及び/又はイットリウムからなる酸化物固溶体を被覆する場合には、通常の方法によって行えばよく、例えば、コージェライト製のハニカム担体に該酸化物固溶体をスラリー化して、コーティングさせる。その後、Ptとともに金属元素Aを存在させることで、活性金属成分をサポート材表面に担持し、乾燥、焼成を経て触媒体とする。   In the catalyst body according to the present invention 7, when the support material is coated with an oxide solid solution composed of iron and / or yttrium together with zirconium and cerium, it may be performed by an ordinary method, for example, a cordierite honeycomb carrier. The oxide solid solution is slurried and coated. Thereafter, by allowing the metal element A to be present together with Pt, the active metal component is supported on the surface of the support material, dried and fired to obtain a catalyst body.

次に、本発明に係る触媒を用いた水性ガスシフト反応について述べる。   Next, the water gas shift reaction using the catalyst according to the present invention will be described.

本発明に係る触媒の存在下で、水及び一酸化炭素を100℃〜800℃の温度範囲で反応させることで、水素と二酸化炭素が得られる。触媒の存在割合は水と一酸化炭素を合わせたガス空間速度で100/h以上が好ましい。   Hydrogen and carbon dioxide are obtained by reacting water and carbon monoxide in the temperature range of 100 ° C. to 800 ° C. in the presence of the catalyst according to the present invention. The presence ratio of the catalyst is preferably 100 / h or more in terms of gas space velocity in which water and carbon monoxide are combined.

<作用>
本発明において、ジルコニウム、セリウム及び鉄及び/又はイットリウムを含む酸化物固溶体からなる担体に、Ptを存在させ、Ptに対して、金属元素Aを存在させた触媒は、より高い活性を示す。
また、本発明においては、ジルコニアとセリアの固溶体に鉄及び/又はイットリウムを固溶させることによって、鉄又はイットリウムを固溶させずに添加したのみの触媒に対し、比表面積の増加又は触媒の酸素の貯蔵放出能が向上することによって、高い触媒活性が達成される。
<Action>
In the present invention, a catalyst in which Pt is present in a support made of an oxide solid solution containing zirconium, cerium and iron and / or yttrium, and a metal element A is present with respect to Pt exhibits higher activity.
Further, in the present invention, by dissolving iron and / or yttrium in a solid solution of zirconia and ceria, the specific surface area is increased or the oxygen of the catalyst is increased with respect to the catalyst which is added without dissolving iron or yttrium. High catalytic activity is achieved by improving the storage and release capacity of the catalyst.

ジルコニウムとセリウムが固溶体を形成することで、酸素の貯蔵放出能が向上し、効率よく水性ガスシフト反応が行えると推察される。   It is presumed that when zirconium and cerium form a solid solution, the ability to store and release oxygen is improved, and the water gas shift reaction can be performed efficiently.

なお、比表面積が増大すると担持したPt、金属元素Aの金属元素が高分散し、活性点が増加しやすくなり、活性が向上しやすくなることは一般的によく知られており、酸素の貯蔵放出能の向上は、酸素原子の移動によって達成されるとされる水性ガスシフト反応において、触媒活性の向上の要因になり得ると推察される。   In addition, it is generally well known that when the specific surface area increases, the supported Pt and the metal element of the metal element A are highly dispersed, the active sites are easily increased, and the activity is easily improved. It is surmised that the improvement of the releasing ability can be a factor of the improvement of the catalytic activity in the water gas shift reaction which is supposed to be achieved by the movement of oxygen atoms.

ジルコニアなどの固溶体にPt,金属元素Aの金属元素を担持させる方法として、Pt,金属元素Aの金属元素の塩を含有する水溶液に乾燥させたジルコニアなどの複合体を浸し、蒸発乾固させる含浸法が一般的であり、本発明においても同様に活性金属元素を含浸法によって担持してもよいが、本発明においては活性金属元素を担持する際に、酸を添加する。   As a method for supporting a metal element of Pt and metal element A in a solid solution such as zirconia, impregnation is performed by immersing a composite such as zirconia in an aqueous solution containing a salt of the metal element of Pt and metal element A and evaporating to dryness. In the present invention, the active metal element may be similarly supported by the impregnation method. However, in the present invention, an acid is added when the active metal element is supported.

本発明においては、前述したように、ジルコニウム及びセリウムとともに鉄及び/又はイットリウムからなる酸化物固溶体に、Ptを存在させ、Ptに対して、金属元素Aを0.001〜500重量%存在させるときと同時に、酸を加え、そのまま乾燥し、焼成することで、担体の酸化物固溶体の一部を溶かし、その後、活性金属(Pt及び金属元素A)の一部を、セリウムを含む酸化物で覆うものと推定され、そのため、活性金属のシンタリングを抑制することができると本発明者は推定している。   In the present invention, as described above, Pt is present in an oxide solid solution composed of iron and / or yttrium together with zirconium and cerium, and 0.001 to 500% by weight of metal element A is present with respect to Pt. At the same time, an acid is added, dried as it is, and calcined to dissolve a part of the oxide solid solution of the support, and then a part of the active metal (Pt and metal element A) is covered with an oxide containing cerium. The present inventor presumes that the sintering of the active metal can be suppressed.

また、前記特許文献7には、アルミナなどの成形体にセリウム水溶液を浸透させて触媒成形体を作製する方法も記載されているが、水溶液を浸透させるので、アルミナなどの成形体上に触媒層を厚くしっかりと付着させることが難しく、粉化がおこりやすい。これに対し、安価なサポート材(シリカなどの成形体)の表面に前記本発明1〜4のいずれかの触媒をコーティングすることによって、高価なジルコニウムやセリウムの使用量を減らすことができ、より安価な触媒を作製できる。さらに、触媒層を容易に厚くでき、粉化も起こりにくい触媒成形体を得ることができる。   Patent Document 7 also describes a method for producing a catalyst molded body by infiltrating a cerium aqueous solution into a molded body such as alumina. However, since the aqueous solution is infiltrated, the catalyst layer is formed on the molded body such as alumina. It is difficult to attach a thick and firm, and pulverization tends to occur. On the other hand, the amount of expensive zirconium or cerium used can be reduced by coating the catalyst of any one of the present inventions 1 to 4 on the surface of an inexpensive support material (molded body such as silica), An inexpensive catalyst can be produced. Furthermore, a catalyst molded body can be obtained in which the catalyst layer can be easily thickened and hardly pulverized.

以下、実施例に基づき本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

触媒を構成する金属元素、ジルコニウム、セリウム、イットリウム、鉄、Au,Ag,Cu,Pt,Pd,Ni,Ir,Rh,Co,Os,Ruの含有量は、該触媒を酸で溶解し、「プラズマ発光分光分析装置 SPS4000(セイコー電子工業(株))」で測定して求めた。   The content of the metal elements constituting the catalyst, zirconium, cerium, yttrium, iron, Au, Ag, Cu, Pt, Pd, Ni, Ir, Rh, Co, Os, Ru, is obtained by dissolving the catalyst with an acid. Plasma emission spectroscopy analyzer SPS4000 (Seiko Electronics Co., Ltd.) "

BET比表面積値は、窒素によるBET法により測定した。   The BET specific surface area value was measured by the BET method using nitrogen.

相の同定は、X線回折測定で行った。X線回折装置は「X線回折装置RINT−2500(理学電機(株)製)」(管球:Cu、管電圧:40kV、管電流:300mA、ゴニオメーター:広角ゴニオメーター、サンプリング幅:0.020°、走査速度:2°/min、発散スリット:1°、散乱スリット:1°、受光スリット:0.50mm)を使用した。   The phase was identified by X-ray diffraction measurement. The X-ray diffractometer is “X-ray diffractometer RINT-2500 (manufactured by Rigaku Corporation)” (tube: Cu, tube voltage: 40 kV, tube current: 300 mA, goniometer: wide angle goniometer, sampling width: 0. 020 °, scanning speed: 2 ° / min, divergence slit: 1 °, scattering slit: 1 °, light receiving slit: 0.50 mm).

本発明の実施例で用いた酸の濃度は以下のとおりであり、実施例では単に「酸A」、「酸B」、「酸C」、「酸D」、「酸E」、「酸F」と略記す。
酸A:硫酸(濃度96wt%)
酸B:塩酸(濃度35wt%)
酸C:硝酸(濃度61wt%)
酸D:臭化水素酸(濃度47wt%)
酸E:王水(体積比で、濃塩酸(35wt%):濃硝酸(61wt%)=3:1で混合)
酸F:クロロスルホン酸(濃度50wt%)
The concentration of the acid used in the examples of the present invention is as follows. In the examples, “acid A”, “acid B”, “acid C”, “acid D”, “acid E”, “acid F” are used. ".
Acid A: sulfuric acid (concentration 96 wt%)
Acid B: Hydrochloric acid (concentration 35 wt%)
Acid C: nitric acid (concentration 61 wt%)
Acid D: hydrobromic acid (concentration 47 wt%)
Acid E: aqua regia (volume ratio, concentrated hydrochloric acid (35 wt%): concentrated nitric acid (61 wt%) = 3: 1 mixed)
Acid F: Chlorosulfonic acid (concentration 50 wt%)

実施例1
塩化セリウム水溶液、オキシ塩化ジルコニウム水溶液及び第二塩化鉄水溶液の混合水溶液に純水を加えて500mlとしてよく撹拌したものを溶液1−1とし、苛性ソーダを水に溶解し500mlとしたものを溶液1−2とする。溶液1−2を60℃に加熱して攪拌しておき、そこに溶液1−1を投入し、80℃で3時間熟成した。得られた沈殿物を濾過、洗浄し、120℃で1時間焼成した。酸化ジルコニウム、酸化セリウム、酸化鉄の重量比は72.1:25:2.5であった。
これに酸Aを触媒全体に対して10重量部及びジニトロジアンミン白金硝酸水溶液、硝酸ルテニウム溶液を用いて、含浸法により白金及びルテニウムを担持し、400℃で1時間焼成した後、200℃で水素還元を行った。
酸化ジルコニウム、酸化セリウム、酸化鉄の重量比は72.1:25:2.5であった。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%とした。
XRD測定によって求めた触媒の格子定数のうちa軸長は、3.64189Åであって後出する実施例6より増大しており、鉄化合物に起因するピークもみられないことから、鉄が固溶していることが確認された。
Example 1
A solution obtained by adding pure water to a mixed aqueous solution of a cerium chloride aqueous solution, a zirconium oxychloride aqueous solution and a ferric chloride aqueous solution to make 500 ml is a solution 1-1, and caustic soda is dissolved in water to make 500 ml. 2. The solution 1-2 was heated to 60 ° C. and stirred, and the solution 1-1 was added thereto and aged at 80 ° C. for 3 hours. The resulting precipitate was filtered, washed and baked at 120 ° C. for 1 hour. The weight ratio of zirconium oxide, cerium oxide, and iron oxide was 72.1: 25: 2.5.
To this, 10 parts by weight of acid A with respect to the entire catalyst, dinitrodiammine platinum nitrate aqueous solution, ruthenium nitrate solution was used to support platinum and ruthenium by an impregnation method, calcined at 400 ° C for 1 hour, and then hydrogenated at 200 ° C. Reduction was performed.
The weight ratio of zirconium oxide, cerium oxide, and iron oxide was 72.1: 25: 2.5. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 0.001 wt%.
Of the lattice constants of the catalyst determined by XRD measurement, the a-axis length is 3.64189 mm, which is larger than that of Example 6 to be described later, and no peak due to the iron compound is observed. It was confirmed that

実施例2
実施例1と同様に合成し、加える酸Aの量を触媒全体に対して15重量部とし、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を72.1:25:2.5とし、硝酸ルテニウムの代わりに硝酸ロジウムを用いた。白金の担持量は0.4wt%、ロジウムの担持量は0.001wt%とした。
Example 2
Synthesis was performed in the same manner as in Example 1, and the amount of acid A added was 15 parts by weight with respect to the total catalyst, the weight ratio of zirconium oxide, cerium oxide, and iron oxide was 72.1: 25: 2.5, and ruthenium nitrate. Instead of, rhodium nitrate was used. The supported amount of platinum was 0.4 wt%, and the supported amount of rhodium was 0.001 wt%.

実施例3
実施例1と同様に合成し、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を72.1:25:2.5とし、硝酸ルテニウムの代わりに硝酸銅を用いた。白金の担持量は0.4wt%、銅の担持量は0.001wt%とした。
Example 3
Synthesis was performed in the same manner as in Example 1, and the weight ratio of zirconium oxide, cerium oxide, and iron oxide was 72.1: 25: 2.5, and copper nitrate was used instead of ruthenium nitrate. The supported amount of platinum was 0.4 wt%, and the supported amount of copper was 0.001 wt%.

実施例4
実施例1と同様に合成し、加える酸Aの量を触媒全体に対して12重量部とし、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を72.1:25:2.5とし、硝酸ルテニウムに加えて硝酸ロジウムを用いた。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%、ロジウムの担持量は0.001wt%とした。
Example 4
Synthesis was performed in the same manner as in Example 1, and the amount of acid A added was 12 parts by weight with respect to the total catalyst, the weight ratio of zirconium oxide, cerium oxide, and iron oxide was 72.1: 25: 2.5, and ruthenium nitrate. In addition, rhodium nitrate was used. The supported amount of platinum was 0.4 wt%, the supported amount of ruthenium was 0.001 wt%, and the supported amount of rhodium was 0.001 wt%.

実施例5
実施例1と同様に合成し、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を49.6:47.5:2.5とした。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%とした。
Example 5
Synthesis was performed in the same manner as in Example 1, and the weight ratio of zirconium oxide, cerium oxide, and iron oxide was 49.6: 47.5: 2.5. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 0.001 wt%.

実施例6
実施例1と同様に合成し、加える酸を酸Aから酸Bに変えて量を触媒全体に対して30重量部とし、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を73.6:25:1とした。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%とした。
XRD測定によって求めた触媒の格子定数のうちa軸長は、3.6391Åであって後出する比較例1より増大しており、鉄化合物に起因するピークもみられないことから、鉄が固溶していることが確認された。
Example 6
Synthesis was performed in the same manner as in Example 1, and the acid to be added was changed from acid A to acid B, so that the amount was 30 parts by weight based on the total catalyst, and the weight ratio of zirconium oxide, cerium oxide, and iron oxide was 73.6: 25: It was set to 1. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 0.001 wt%.
Of the lattice constants of the catalyst determined by XRD measurement, the a-axis length is 3.6391 mm, which is larger than that of Comparative Example 1 to be described later, and no peak due to the iron compound is observed. It was confirmed that

実施例7
実施例1と同様に合成し、加える酸を酸Aから酸Bに変えて量を触媒全体に対して35重量部とし、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を70.6:25:4とした。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%とした。
XRD測定によって求めた触媒の格子定数のうちa軸長は、3.65211Åであって実施例1より増大しており、鉄化合物に起因するピークもみられないことから、鉄が固溶していることが確認された。
Example 7
Synthesis was performed in the same manner as in Example 1, and the amount of acid added was changed from acid A to acid B to 35 parts by weight with respect to the total catalyst, and the weight ratio of zirconium oxide, cerium oxide and iron oxide was 70.6: 25: It was set to 4. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 0.001 wt%.
Of the lattice constants of the catalyst determined by XRD measurement, the a-axis length is 3.65211, which is larger than that of Example 1 and no peak due to the iron compound is observed, so that iron is in solid solution. It was confirmed.

実施例8
実施例1と同様に合成し、加える酸を酸Aから酸Bに変えて量を触媒全体に対して30重量部とし、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を72.1:25:2.5とした。白金の担持量は0.4wt%、ルテニウムの担持量は0.01wt%とした。
Example 8
It was synthesized in the same manner as in Example 1, and the acid added was changed from acid A to acid B to make the amount 30 parts by weight with respect to the total catalyst, and the weight ratio of zirconium oxide, cerium oxide and iron oxide was 72.1: 25: 2.5. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 0.01 wt%.

実施例9
実施例1と同様に合成し、加える酸を酸Aから酸Bに変えて量を触媒全体に対して20重量部とし、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を71.1:25:2.5とした。白金の担持量は0.4wt%、ルテニウムの担持量は1wt%とした。
Example 9
Synthesis was performed in the same manner as in Example 1, and the acid to be added was changed from acid A to acid B to make the amount 20 parts by weight with respect to the total catalyst, and the weight ratio of zirconium oxide, cerium oxide and iron oxide was 71.1: 25: 2.5. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 1 wt%.

実施例10
第二塩化鉄の代わりに硝酸イットリウムを用いて、実施例1と同様に合成した。加える酸を酸Aから酸Bに変えて量を触媒全体に対して30重量部とし、酸化ジルコニウム、酸化セリウム、酸化イットリウムの重量比を72.6:25:2とした。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%とした。
XRD測定によって求めた触媒の格子定数のうちa軸長は、3.64289Åであって比較例1より増大しており、イットリウム化合物に起因するピークも見られないことから、イットリウムが固溶していることが確認された。
Example 10
Synthesis was performed in the same manner as in Example 1 except that yttrium nitrate was used instead of ferric chloride. The acid to be added was changed from acid A to acid B so that the amount was 30 parts by weight with respect to the total catalyst, and the weight ratio of zirconium oxide, cerium oxide, and yttrium oxide was 72.6: 25: 2. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 0.001 wt%.
Of the lattice constants of the catalyst determined by XRD measurement, the a-axis length is 3.64289 mm which is larger than that of Comparative Example 1 and no peak due to the yttrium compound is observed. It was confirmed that

実施例11
実施例10と同様に合成し、加える酸を酸Bから酸Cに変えて量を触媒全体に対して15重量部とし、酸化ジルコニウム、酸化セリウム、酸化イットリウムの重量比を72.6:25:2とし、硝酸ルテニウムの代わりに硝酸ロジウムを用いた。白金の担持量は0.4wt%、ロジウムの担持量は0.001wt%とした。
Example 11
Synthesis was carried out in the same manner as in Example 10, and the acid added was changed from acid B to acid C, so that the amount was 15 parts by weight based on the total catalyst, and the weight ratio of zirconium oxide, cerium oxide and yttrium oxide was 72.6: 25: 2, rhodium nitrate was used instead of ruthenium nitrate. The supported amount of platinum was 0.4 wt%, and the supported amount of rhodium was 0.001 wt%.

実施例12
実施例10と同様に合成し、加える酸を酸Bから酸Cに変えて量を触媒全体に対して20重量部とし、酸化ジルコニウム、酸化セリウム、酸化イットリウムの重量比を72.6:25:2とし、硝酸ルテニウムの代わりに硝酸銅を用いた。白金の担持量は0.4wt%、銅の担持量は0.001wt%とした。
Example 12
Synthesis was carried out in the same manner as in Example 10, and the acid added was changed from acid B to acid C to make the amount 20 parts by weight with respect to the total catalyst, and the weight ratio of zirconium oxide, cerium oxide and yttrium oxide was 72.6: 25: 2 and copper nitrate was used instead of ruthenium nitrate. The supported amount of platinum was 0.4 wt%, and the supported amount of copper was 0.001 wt%.

実施例13
実施例10と同様に合成し、加える酸を酸Bから酸Cに変えて量を触媒全体に対して15重量部とし、酸化ジルコニウム、酸化セリウム、酸化イットリウムの重量比を72.6:25:2とし、硝酸ルテニウムに加えて硝酸銅を用いた。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%、銅の担持量は0.001wt%とした。
Example 13
Synthesis was carried out in the same manner as in Example 10, and the acid added was changed from acid B to acid C, so that the amount was 15 parts by weight based on the total catalyst, and the weight ratio of zirconium oxide, cerium oxide and yttrium oxide was 72.6: 25: 2 and copper nitrate was used in addition to ruthenium nitrate. The supported amount of platinum was 0.4 wt%, the supported amount of ruthenium was 0.001 wt%, and the supported amount of copper was 0.001 wt%.

実施例14
実施例10と同様に合成し、加える酸を酸Bから酸Cに変えて量を触媒全体に対して10重量部とし、酸化ジルコニウム、酸化セリウム、酸化イットリウムの重量比を52.6:45:2とした。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%とした。
Example 14
It was synthesized in the same manner as in Example 10, and the acid added was changed from acid B to acid C to make the amount 10 parts by weight based on the total catalyst, and the weight ratio of zirconium oxide, cerium oxide, yttrium oxide was 52.6: 45: 2. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 0.001 wt%.

実施例15
実施例10と同様に合成し、加える酸を酸Bから酸Cに変えて量を触媒全体に対して15重量部とし、酸化ジルコニウム、酸化セリウム、酸化イットリウムの重量比を69.6:25:5とした。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%とした。
XRD測定によって求めた触媒の格子定数のうちa軸長は、3.64979Åであり、実施例10より増大していることから、イットリウムが固溶していることが分かる。
Example 15
Synthesis was carried out in the same manner as in Example 10, and the acid added was changed from acid B to acid C, so that the amount was 15 parts by weight based on the total catalyst, and the weight ratio of zirconium oxide, cerium oxide and yttrium oxide was 69.6: 25: It was set to 5. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 0.001 wt%.
Of the lattice constants of the catalyst determined by XRD measurement, the a-axis length is 3.64979 mm, which is larger than Example 10, indicating that yttrium is in solid solution.

実施例16
実施例10と同様に合成し、加える酸を酸Bから酸Dに変えて量を触媒全体に対して15重量部とし、酸化ジルコニウム、酸化セリウム、酸化イットリウムの重量比を66.6:25:8とした。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%とした。
XRD測定によって求めた触媒の格子定数のうちa軸長は、3.65588Åであり、実施例15より増大していることから、イットリウムが固溶していることが分かる。
Example 16
Synthesis was carried out in the same manner as in Example 10, and the acid added was changed from acid B to acid D to make the amount 15 parts by weight based on the total catalyst, and the weight ratio of zirconium oxide, cerium oxide and yttrium oxide was 66.6: 25: It was set to 8. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 0.001 wt%.
Of the lattice constants of the catalyst determined by XRD measurement, the a-axis length is 3.65588 mm, which is larger than Example 15, indicating that yttrium is in solid solution.

実施例17
実施例10と同様に合成し、加える酸を酸Bから酸Dに変えて量を触媒全体に対して20重量部とし、酸化ジルコニウム、酸化セリウム、酸化イットリウムの重量比を72.6:25:2とした。白金の担持量は0.4wt%、ルテニウムの担持量は0.01wt%とした。
Example 17
Synthesis was performed in the same manner as in Example 10, and the acid added was changed from acid B to acid D to make the amount 20 parts by weight based on the total catalyst, and the weight ratio of zirconium oxide, cerium oxide, yttrium oxide was 72.6: 25: 2. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 0.01 wt%.

実施例18
実施例10と同様に合成し、加える酸を酸Bから酸Dに変えて量を触媒全体に対して15重量部とし、酸化ジルコニウム、酸化セリウム、酸化イットリウムの重量比を71.6:25:2とした。白金の担持量は0.4wt%、ルテニウムの担持量は1wt%とした。
Example 18
Synthesis was carried out in the same manner as in Example 10, and the acid added was changed from acid B to acid D to make the amount 15 parts by weight based on the total catalyst, and the weight ratio of zirconium oxide, cerium oxide and yttrium oxide was 71.6: 25: 2. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 1 wt%.

実施例19
実施例1と同様に合成し、加える酸を酸Bから酸Dに変えて量を触媒全体に対して10重量部とし、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を71.7:25:2.5とした。白金の担持量は0.8wt%、ルテニウムの担持量は0.001wt%とした。
Example 19
It was synthesized in the same manner as in Example 1, and the acid added was changed from acid B to acid D to make the amount 10 parts by weight based on the total catalyst, and the weight ratio of zirconium oxide, cerium oxide and iron oxide was 71.7: 25: 2.5. The supported amount of platinum was 0.8 wt%, and the supported amount of ruthenium was 0.001 wt%.

実施例20
実施例10と同様に合成し、加える酸を酸Bから酸Dに変えて量を触媒全体に対して15重量部とし、酸化ジルコニウム、酸化セリウム、酸化イットリウムの重量比を72.2:25:2とした。白金の担持量は0.8wt%、ルテニウムの担持量は0.001wt%とした。
Example 20
Synthesis was carried out in the same manner as in Example 10, and the acid added was changed from acid B to acid D to make the amount 15 parts by weight based on the total catalyst, and the weight ratio of zirconium oxide, cerium oxide and yttrium oxide was 72.2: 25: 2. The supported amount of platinum was 0.8 wt%, and the supported amount of ruthenium was 0.001 wt%.

実施例21
硝酸イットリウムを加えて実施例1と同様に合成し、加える酸を酸Aから酸Eに変えて量を触媒全体に対して15重量部とし、酸化ジルコニウム、酸化セリウム、酸化イットリウム、酸化鉄の重量比を70.1:25:2:2.5とした。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%とした。
Example 21
Yttrium nitrate was added and synthesized in the same manner as in Example 1. The acid added was changed from acid A to acid E, so that the amount was 15 parts by weight with respect to the total catalyst, and the weight of zirconium oxide, cerium oxide, yttrium oxide, and iron oxide The ratio was 70.1: 25: 2: 2.5. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 0.001 wt%.

実施例22
硝酸ロジウムを加えて実施例21と同様に合成し、加える酸の量を触媒全体に対して20重量部とし、酸化ジルコニウム、酸化セリウム、酸化イットリウム、酸化鉄の重量比を70.1:25:2:2.5とした。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%、ロジウムの担持量は0.001wt%とした。
Example 22
Rhodium nitrate was added and synthesized in the same manner as in Example 21. The amount of acid added was 20 parts by weight with respect to the total catalyst, and the weight ratio of zirconium oxide, cerium oxide, yttrium oxide, and iron oxide was 70.1: 25: 2: 2.5. The supported amount of platinum was 0.4 wt%, the supported amount of ruthenium was 0.001 wt%, and the supported amount of rhodium was 0.001 wt%.

実施例23
硝酸銅を加えて実施例21と同様に合成し、酸化ジルコニウム、酸化セリウム、酸化イットリウム、酸化鉄の重量比を65.6:25:5:4とした。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%、銅の担持量は0.001wt%とした。
Example 23
Copper nitrate was added and synthesized in the same manner as in Example 21, and the weight ratio of zirconium oxide, cerium oxide, yttrium oxide, and iron oxide was 65.6: 25: 5: 4. The supported amount of platinum was 0.4 wt%, the supported amount of ruthenium was 0.001 wt%, and the supported amount of copper was 0.001 wt%.

実施例24
実施例1と同様に合成し、加える酸を酸Aから酸Eに変えて量を触媒全体に対して10重量部とし、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を72.1:25:2.5とした。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%とした。
Example 24
It was synthesized in the same manner as in Example 1, and the acid added was changed from acid A to acid E to make the amount 10 parts by weight with respect to the total catalyst, and the weight ratio of zirconium oxide, cerium oxide and iron oxide was 72.1: 25: 2.5. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 0.001 wt%.

実施例25
実施例1と同様に合成し、加える酸を酸Aから酸Eに変えて量を触媒全体に対して15重量部とし、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を72.1:25:2.5とした。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%とした。
Example 25
It was synthesized in the same manner as in Example 1, and the acid added was changed from acid A to acid E, so that the amount was 15 parts by weight based on the total catalyst, and the weight ratio of zirconium oxide, cerium oxide, iron oxide was 72.1: 25: 2.5. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 0.001 wt%.

実施例26
実施例1と同様に合成し、加える酸を酸Aから酸Fに変えて量を触媒全体に対して15重量部とし、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を72.1:25:2.5とした。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%とした。
Example 26
It was synthesized in the same manner as in Example 1, and the acid added was changed from acid A to acid F to make the amount 15 parts by weight based on the total catalyst, and the weight ratio of zirconium oxide, cerium oxide and iron oxide was 72.1: 25: 2.5. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 0.001 wt%.

実施例27
実施例1と同様に合成し、加える酸を酸Aから酸Fに変えて量を触媒全体に対して20重量部とし、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を72.1:25:2.5とした。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%とした。
Example 27
Synthesis was performed in the same manner as in Example 1, and the acid added was changed from acid A to acid F to make the amount 20 parts by weight with respect to the total catalyst, and the weight ratio of zirconium oxide, cerium oxide and iron oxide was 72.1: 25: 2.5. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 0.001 wt%.

実施例28
実施例1と同様に合成し、加える酸を酸Aから酸Fに変えて量を触媒全体に対して15重量部とし、鉄の代わりにイットリウムを用い、酸化ジルコニウム、酸化セリウム、酸化イットリウムの重量比を71.6:25:2とし、白金の担持量は0.4wt%、ルテニウムの担持量は1wt%とした。
Example 28
Synthesis was performed in the same manner as in Example 1, and the acid to be added was changed from acid A to acid F so that the amount was 15 parts by weight with respect to the total catalyst, yttrium was used instead of iron, and the weight of zirconium oxide, cerium oxide, and yttrium oxide. The ratio was 71.6: 25: 2, the platinum loading was 0.4 wt%, and the ruthenium loading was 1 wt%.

実施例29
実施例28と同様に合成し、加える酸の量を触媒全体に対して10重量部とし、ルテニウムの代わりに銅を用い、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を47.5:25:2.5とし、白金の担持量は5wt%、銅の担持量は20wt%とした。
Example 29
Synthesis was performed in the same manner as in Example 28, and the amount of acid added was 10 parts by weight with respect to the total catalyst, copper was used instead of ruthenium, and the weight ratio of zirconium oxide, cerium oxide, and iron oxide was 47.5: 25: 2.5, the supported amount of platinum was 5 wt%, and the supported amount of copper was 20 wt%.

実施例30
実施例28と同様に合成し、ルテニウムに加えて銅を用い、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を57.5:25:2.5とし、白金の担持量は3wt%、ルテニウムの担持量は2wt%、銅の担持量は10wt%とした。
Example 30
It was synthesized in the same manner as in Example 28, using copper in addition to ruthenium, the weight ratio of zirconium oxide, cerium oxide, and iron oxide was 57.5: 25: 2.5, the supported amount of platinum was 3 wt%, The supported amount was 2 wt%, and the supported amount of copper was 10 wt%.

実施例31
実施例28と同様に合成し、ルテニウムの変わりにロジウムを用い、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を62.5:25:2.5とし、白金の担持量は5wt%、ロジウムの担持量は5wt%とした。
Example 31
It was synthesized in the same manner as in Example 28, using rhodium instead of ruthenium, the weight ratio of zirconium oxide, cerium oxide, and iron oxide was 62.5: 25: 2.5, the supported amount of platinum was 5 wt%, rhodium The supported amount was 5 wt%.

実施例32
実施例28と同様に合成し、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を67.5:25:2.5とし、白金の担持量は5wt%、ルテニウムの担持量は0.0001wt%とした。
Example 32
It was synthesized in the same manner as in Example 28, and the weight ratio of zirconium oxide, cerium oxide, and iron oxide was 67.5: 25: 2.5, the supported amount of platinum was 5 wt%, and the supported amount of ruthenium was 0.0001 wt%. did.

比較例1
ルテニウム及び鉄を添加することなく、酸化ジルコニウム、酸化セリウムの重量比を74.6:25とした以外は、実施例1と同様に合成した。白金の担持量は0.4wt%とした。XRD測定によって求めた触媒の格子定数のうちa軸長は、3.6267Åであった。
Comparative Example 1
Synthesis was performed in the same manner as in Example 1 except that the weight ratio of zirconium oxide and cerium oxide was 74.6: 25 without adding ruthenium and iron. The supported amount of platinum was 0.4 wt%. Of the lattice constants of the catalyst determined by XRD measurement, the a-axis length was 3.6267 mm.

比較例2
加える酸を酸Aから酸Bに変えて量を触媒全体に対して30重量部とし、ルテニウムを添加することなく、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を72.1:25:2.5とし、実施例1と同様に合成した。白金の担持量は0.4wt%とした。
Comparative Example 2
The acid to be added is changed from acid A to acid B so that the amount is 30 parts by weight with respect to the whole catalyst, and without adding ruthenium, the weight ratio of zirconium oxide, cerium oxide and iron oxide is 72.1: 25: 2. 5 and synthesized in the same manner as in Example 1. The supported amount of platinum was 0.4 wt%.

比較例3
加える酸を酸Bから酸Cに変えて量を触媒全体に対して15重量部とし、ルテニウムを添加することなく、酸化ジルコニウム、酸化セリウム、酸化イットリウムの重量比を50.1:47.5:2とし、実施例10と同様に合成した。白金の担持量は0.4wt%とした。
Comparative Example 3
The acid to be added is changed from acid B to acid C to make the amount 15 parts by weight with respect to the whole catalyst, and without adding ruthenium, the weight ratio of zirconium oxide, cerium oxide, yttrium oxide is 50.1: 47.5: 2 and synthesized in the same manner as in Example 10. The supported amount of platinum was 0.4 wt%.

比較例4
塩化セリウム水溶液及びオキシ塩化ジルコニウム水溶液の混合水溶液に純水を加えて500mlとしてよく撹拌したものを溶液2−1とし、苛性ソーダを水に溶解し500mlとしたものを溶液2−2とする。溶液2−2を60℃に加熱して攪拌しておき、それに溶液2−1を投入し、80℃で3時間熟成した。得られた沈殿物を濾過、洗浄し、120℃で1時間焼成した。これを担体2−1とする。
これとは別に、第二塩化鉄水溶液に純水を加えて500mlとしてよく撹拌したものを溶液2−3とし、苛性ソーダを水に溶解し500mlとしたものを溶液2−4とする。溶液2−4を60℃に加熱して攪拌しておき、それに溶液2−3を投入し、80℃で3時間熟成した。得られた沈殿物を濾過、洗浄し、120℃で1時間焼成した。これを担体2−2とする。
前記担体2−1及び前記担体2−2をよく混合し、これに酸Dを触媒全体に対して15重量部及びジニトロジアンミン白金硝酸水溶液、硝酸ルテニウム溶液を用いて、含浸法により白金及びルテニウムを担持し、400℃で1時間焼成した後、200℃で水素還元を行った。
酸化ジルコニウム、酸化セリウム、酸化鉄の重量比は72.1:25:2.5であった。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%とした。
XRD測定によって求めた触媒の格子定数のうちa軸長は、3.6271Åであり、比較例1とほぼ同じであるので鉄が固溶していないことが分かる。
Comparative Example 4
Pure water is added to a mixed aqueous solution of a cerium chloride aqueous solution and a zirconium oxychloride aqueous solution to make 500 ml, and the mixture is thoroughly stirred to make a solution 2-1, and caustic soda dissolved in water to make 500 ml is made a solution 2-2. The solution 2-2 was heated to 60 ° C. and stirred, and the solution 2-1 was added thereto and aged at 80 ° C. for 3 hours. The resulting precipitate was filtered, washed and baked at 120 ° C. for 1 hour. This is designated as Carrier 2-1.
Separately, pure water is added to the ferric chloride aqueous solution to make 500 ml, and the mixture is thoroughly stirred to make solution 2-3, and caustic soda dissolved in water to make 500 ml is made solution 2-4. The solution 2-4 was heated to 60 ° C. and stirred, and the solution 2-3 was added thereto, followed by aging at 80 ° C. for 3 hours. The resulting precipitate was filtered, washed and baked at 120 ° C. for 1 hour. This is designated as Carrier 2-2.
The carrier 2-1 and the carrier 2-2 are mixed well, and the acid D is mixed with 15 parts by weight of the total catalyst, dinitrodiammine platinum nitric acid aqueous solution, ruthenium nitrate solution, and platinum and ruthenium are impregnated by an impregnation method. After supporting and baking at 400 ° C. for 1 hour, hydrogen reduction was performed at 200 ° C.
The weight ratio of zirconium oxide, cerium oxide, and iron oxide was 72.1: 25: 2.5. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 0.001 wt%.
Of the lattice constants of the catalyst determined by XRD measurement, the a-axis length is 3.6271 mm, which is almost the same as in Comparative Example 1, and thus it can be seen that iron is not dissolved.

比較例5
塩化セリウム水溶液及びオキシ塩化ジルコニウム水溶液の混合溶液に純水を加えて500mlとしてよく撹拌したものを溶液3−1とし、苛性ソーダを水に溶解し500mlとしたものを溶液3−2とする。溶液3−2を60℃に加熱して攪拌しておき、それに溶液3−1を投入し、80℃で3時間熟成した。得られた沈殿物を濾過、洗浄し、120℃で1時間焼成した。これを担体3−1とする。
これとは別に、硝酸イットリウム水溶液に純水を加えて500mlとしてよく撹拌したものを溶液3−3とし、苛性ソーダを水に溶解し500mlとしたものを溶液3−4とする。溶液3−4を60℃に加熱して攪拌しておき、そこに溶液3−3を投入し、80℃で3時間熟成した。得られた沈殿物を濾過、洗浄し、120℃で1時間焼成した。これを担体3−2とする。
前記担体3−1及び前記担体3−2をよく混合し、これに酸Eを触媒全体に対して15重量部及びジニトロジアンミン白金硝酸水溶液及び硝酸ルテニウム溶液を用いて、含浸法により白金及びルテニウムを担持し、400℃で1時間焼成した後、200℃で水素還元を行った。
酸化ジルコニウム、酸化セリウム、酸化イットリウムの重量比を72.6:25:2とした。白金の担持量は0.4wt%とした。
XRD測定によって求めた触媒の格子定数のうちa軸長は、3.6276Åであり、比較例1とほぼ同じであるのでイットリウムが固溶していないことが分かる。
Comparative Example 5
Pure water is added to a mixed solution of a cerium chloride aqueous solution and a zirconium oxychloride aqueous solution to make 500 ml, and the mixture is thoroughly stirred to make solution 3-1, and caustic soda dissolved in water to make 500 ml is made solution 3-2. The solution 3-2 was heated to 60 ° C. and stirred, and the solution 3-1 was added thereto and aged at 80 ° C. for 3 hours. The resulting precipitate was filtered, washed and baked at 120 ° C. for 1 hour. This is designated as Carrier 3-1.
Separately, pure water was added to an aqueous yttrium nitrate solution to make 500 ml, and the mixture was thoroughly stirred to make solution 3-3. Solution obtained by dissolving caustic soda in water to make 500 ml was made solution 3-4. The solution 3-4 was heated to 60 ° C. and stirred, and the solution 3-3 was added thereto and aged at 80 ° C. for 3 hours. The resulting precipitate was filtered, washed and baked at 120 ° C. for 1 hour. This is designated as Carrier 3-2.
The carrier 3-1 and the carrier 3-2 are mixed well, and the acid E is mixed with 15 parts by weight of the whole catalyst and a dinitrodiammine platinum nitrate aqueous solution and a ruthenium nitrate solution. After supporting and baking at 400 ° C. for 1 hour, hydrogen reduction was performed at 200 ° C.
The weight ratio of zirconium oxide, cerium oxide, and yttrium oxide was 72.6: 25: 2. The supported amount of platinum was 0.4 wt%.
Of the lattice constants of the catalyst determined by XRD measurement, the a-axis length is 3.6276 mm, which is almost the same as in Comparative Example 1, so that it can be seen that yttrium is not dissolved.

比較例6
γ−アルミナに酸Fを触媒全体に対して15重量部及びジニトロジアンミン白金硝酸水溶液を用いて、含浸法により白金を担持し、400℃で1時間焼成した後、200℃で水素還元を行った。白金の担持量は0.4wt%とした。
Comparative Example 6
γ-alumina was loaded with platinum by an impregnation method using 15 parts by weight of acid F and dinitrodiammine platinum nitric acid aqueous solution based on the whole catalyst, calcined at 400 ° C. for 1 hour, and then hydrogen reduced at 200 ° C. . The supported amount of platinum was 0.4 wt%.

比較例7
オキシ塩化ジルコニウム水溶液に純水を加えて500mlとしてよく撹拌したものを溶液4−1とし、苛性ソーダを水に溶解し500mlとしたものを溶液4−2とする。溶液4−2を60℃に加熱して攪拌しておき、そこに溶液4−1を投入し、80℃で3時間熟成した。得られた沈殿物を濾過、洗浄し、120℃で1時間焼成した。これに酸Fを触媒全体に対して15重量部及びジニトロジアンミン白金硝酸水溶液を用いて、含浸法により白金を担持し、400℃で1時間焼成した後、200℃で水素還元を行った。白金の担持量は0.4wt%とした。
Comparative Example 7
A solution obtained by adding pure water to a zirconium oxychloride aqueous solution to 500 ml and stirring well is designated as Solution 4-1, and a solution obtained by dissolving caustic soda in water to obtain 500 ml is designated as Solution 4-2. The solution 4-2 was heated to 60 ° C. and stirred, and the solution 4-1 was added thereto and aged at 80 ° C. for 3 hours. The resulting precipitate was filtered, washed and baked at 120 ° C. for 1 hour. The catalyst was loaded with platinum by an impregnation method using 15 parts by weight of acid F with respect to the entire catalyst and an aqueous solution of dinitrodiammine platinum nitrate, calcined at 400 ° C. for 1 hour, and then hydrogen reduced at 200 ° C. The supported amount of platinum was 0.4 wt%.

比較例8
塩化セリウム水溶液に純水を加えて500mlとしてよく撹拌したものを溶液5−1とし、苛性ソーダを水に溶解し500mlとしたものを溶液5−2とする。溶液5−2を60℃に加熱して攪拌しておき、そこに溶液5−1を投入し、80℃で3時間熟成した。得られた沈殿物を濾過、洗浄し、120℃で1時間焼成した。これに酸Aを触媒全体に対して10重量部及びジニトロジアンミン白金硝酸水溶液を用いて、含浸法により白金を担持し、400℃で1時間焼成した後、200℃で水素還元を行った。白金の担持量は0.4wt%とした。
Comparative Example 8
A solution obtained by adding pure water to a cerium chloride aqueous solution to 500 ml and stirring well is designated as Solution 5-1, and a solution obtained by dissolving caustic soda in water to obtain 500 ml is designated as Solution 5-2. The solution 5-2 was heated to 60 ° C. and stirred, and the solution 5-1 was added thereto and aged at 80 ° C. for 3 hours. The resulting precipitate was filtered, washed and baked at 120 ° C. for 1 hour. To this, 10 parts by weight of acid A with respect to the whole catalyst and a dinitrodiammine platinum nitric acid aqueous solution were used to support platinum by an impregnation method, calcined at 400 ° C. for 1 hour, and then subjected to hydrogen reduction at 200 ° C. The supported amount of platinum was 0.4 wt%.

比較例9
塩化セリウム水溶液及び塩化イットリウム水溶液に純水を加えて500mlとしてよく撹拌したものを溶液6−1とし、苛性ソーダを水に溶解し500mlとしたものを溶液6−2とする。溶液6−2を60℃に加熱して攪拌しておき、そこに溶液6−1を投入し、80℃で3時間熟成した。得られた沈殿物を濾過、洗浄し、120℃で1時間焼成した。これに酸Bを触媒全体に対して30重量部及びジニトロジアンミン白金硝酸水溶液及び硝酸ルテニウム水溶液を用いて、含浸法により白金を担持し、400℃で1時間焼成した後、200℃で水素還元を行った。酸化セリウム、酸化イットリウムの重量比を97.6:2とした。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%とした。
Comparative Example 9
A solution obtained by adding pure water to an aqueous cerium chloride solution and an aqueous yttrium chloride solution to 500 ml and stirring well is designated as solution 6-1, and a solution obtained by dissolving caustic soda in water to obtain 500 ml is designated as solution 6-2. Solution 6-2 was heated to 60 ° C. and stirred, and then solution 6-1 was added thereto and aged at 80 ° C. for 3 hours. The resulting precipitate was filtered, washed and baked at 120 ° C. for 1 hour. To this, 30 parts by weight of acid B with respect to the whole catalyst and dinitrodiammine platinum nitrate aqueous solution and ruthenium nitrate aqueous solution were used to support platinum by impregnation method, calcined at 400 ° C for 1 hour, and then hydrogen reduced at 200 ° C. went. The weight ratio of cerium oxide and yttrium oxide was 97.6: 2. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 0.001 wt%.

比較例10
γ−アルミナにジニトロジアンミン白金硝酸水溶液を用いて、含浸法により白金を担持し、400℃で1時間焼成した後、200℃で水素還元を行った。白金の担持量は0.4wt%とした。
Comparative Example 10
Using an aqueous solution of dinitrodiammine platinum nitrate on γ-alumina, platinum was supported by an impregnation method, calcined at 400 ° C. for 1 hour, and then subjected to hydrogen reduction at 200 ° C. The supported amount of platinum was 0.4 wt%.

比較例11
酸Aを添加することなく、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を72.1:25:2.5とし、実施例1と同様に合成した。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%とした。
Comparative Example 11
The synthesis was performed in the same manner as in Example 1 without adding the acid A, with the weight ratio of zirconium oxide, cerium oxide, and iron oxide being 72.1: 25: 2.5. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 0.001 wt%.

比較例12
酸Aを添加することなく、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を72.1:25:2.5とし、実施例1と同様に合成した。白金の担持量は0.4wt%、ロジウムの担持量は0.001wt%とした。
Comparative Example 12
The synthesis was performed in the same manner as in Example 1 without adding the acid A, with the weight ratio of zirconium oxide, cerium oxide, and iron oxide being 72.1: 25: 2.5. The supported amount of platinum was 0.4 wt%, and the supported amount of rhodium was 0.001 wt%.

比較例13
酸Aを添加することなく、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を49.6:47.5:2.5とし、実施例1と同様に合成した。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%とした。
Comparative Example 13
The synthesis was performed in the same manner as in Example 1 without adding the acid A, and the weight ratio of zirconium oxide, cerium oxide, and iron oxide was 49.6: 47.5: 2.5. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 0.001 wt%.

比較例14
酸Aを添加することなく、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を47.5:25:2.5とし、実施例1と同様に合成した。白金の担持量は5wt%、銅の担持量は20wt%とした。
Comparative Example 14
The synthesis was carried out in the same manner as in Example 1 without adding acid A, with the weight ratio of zirconium oxide, cerium oxide, and iron oxide being 47.5: 25: 2.5. The supported amount of platinum was 5 wt%, and the supported amount of copper was 20 wt%.

比較例15
酸Aを添加することなく、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を62.5:25:2.5とし、実施例1と同様に合成した。白金の担持量は5wt%、ロジウムの担持量は5wt%とした。
Comparative Example 15
The synthesis was performed in the same manner as in Example 1 without adding the acid A, with the weight ratio of zirconium oxide, cerium oxide, and iron oxide being 62.5: 25: 2.5. The supported amount of platinum was 5 wt%, and the supported amount of rhodium was 5 wt%.

比較例16
酸Aを添加することなく、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を67.5:25:2.5とし、実施例1と同様に合成した。白金の担持量は5wt%、ルテニウムの担持量は0.0001wt%とした。
Comparative Example 16
The synthesis was carried out in the same manner as in Example 1 without adding acid A, with the weight ratio of zirconium oxide, cerium oxide, and iron oxide being 67.5: 25: 2.5. The supported amount of platinum was 5 wt%, and the supported amount of ruthenium was 0.0001 wt%.

比較例17
酸Aを添加することなく、酸化ジルコニウム、酸化セリウム、酸化イットリウムの重量比を69.6:25:5とし、実施例1と同様に合成した。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%とした。
Comparative Example 17
Without adding acid A, the weight ratio of zirconium oxide, cerium oxide, and yttrium oxide was 69.6: 25: 5, and synthesis was performed in the same manner as in Example 1. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 0.001 wt%.

実施例33
加える酸Aの量を触媒全体に対して5重量部とし、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を72.5:25:2.5とし、実施例1と同様に合成した。白金の担持量は0.02wt%、ルテニウムの担持量は0.0001wt%とした。
Example 33
The amount of acid A added was 5 parts by weight with respect to the total catalyst, and the weight ratio of zirconium oxide, cerium oxide, and iron oxide was 72.5: 25: 2.5. The supported amount of platinum was 0.02 wt%, and the supported amount of ruthenium was 0.0001 wt%.

実施例34
加える酸を酸Aから酸Bに変えて量を触媒全体に対して10重量部とし、酸化ジルコニウム、酸化セリウム、酸化イットリウムの重量比を69.9:25:5とし、実施例1と同様に合成した。白金の担持量は0.1wt%、ルテニウムの担持量は0.0001wt%とした。
Example 34
The acid to be added was changed from acid A to acid B, the amount was 10 parts by weight, and the weight ratio of zirconium oxide, cerium oxide and yttrium oxide was 69.9: 25: 5. Synthesized. The supported amount of platinum was 0.1 wt%, and the supported amount of ruthenium was 0.0001 wt%.

実施例35
加える酸を酸Aから酸Cに変えて量を触媒全体に対して5重量部とし、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を72.5:25:2.5とし、実施例1と同様に合成した。白金の担持量は0.02wt%、ロジウムの担持量は0.0001wt%とした。
Example 35
The acid to be added was changed from acid A to acid C, the amount was 5 parts by weight based on the total catalyst, and the weight ratio of zirconium oxide, cerium oxide and iron oxide was 72.5: 25: 2.5. It synthesized similarly. The supported amount of platinum was 0.02 wt%, and the supported amount of rhodium was 0.0001 wt%.

実施例36
加える酸を酸Aから酸Dに変えて量を触媒全体に対して5重量部とし、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を62.5:25:2.5とし、実施例1と同様に合成した。白金の担持量は5wt%、ロジウムの担持量は5wt%とした。
Example 36
The acid to be added was changed from acid A to acid D, the amount was 5 parts by weight based on the total catalyst, and the weight ratio of zirconium oxide, cerium oxide and iron oxide was 62.5: 25: 2.5. It synthesized similarly. The supported amount of platinum was 5 wt%, and the supported amount of rhodium was 5 wt%.

実施例37
加える酸を酸Aから酸Eに変えて量を触媒全体に対して5重量部とし、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を72.5:25:2.5とし、実施例1と同様に合成した。白金の担持量は0.02wt%、ルテニウムの担持量は0.0001wt%とした。
Example 37
The acid to be added is changed from acid A to acid E, the amount is 5 parts by weight with respect to the whole catalyst, and the weight ratio of zirconium oxide, cerium oxide and iron oxide is 72.5: 25: 2.5. It synthesized similarly. The supported amount of platinum was 0.02 wt%, and the supported amount of ruthenium was 0.0001 wt%.

実施例38
加える酸を酸Aから酸Fに変えて量を触媒全体に対して5重量部とし、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を50:47.5:2.5とし、実施例1と同様に合成した。白金の担持量は0.02wt%、ルテニウムの担持量は0.0001wt%とした。
Example 38
The acid to be added was changed from acid A to acid F, and the amount was 5 parts by weight with respect to the total catalyst, and the weight ratio of zirconium oxide, cerium oxide, and iron oxide was 50: 47.5: 2.5. It synthesized similarly. The supported amount of platinum was 0.02 wt%, and the supported amount of ruthenium was 0.0001 wt%.

実施例39
加える酸Aの量を触媒全体に対して15重量部とし、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を67.5:25:2.5とし、実施例1と同様に合成した。白金の担持量は5wt%、ルテニウムの担持量は0.0001wt%とした。
Example 39
The amount of acid A added was 15 parts by weight with respect to the total catalyst, and the weight ratio of zirconium oxide, cerium oxide, and iron oxide was 67.5: 25: 2.5. The supported amount of platinum was 5 wt%, and the supported amount of ruthenium was 0.0001 wt%.

実施例40
加える酸を酸Aから酸Bに変えて量を触媒全体に対して30重量部とし、酸化ジルコニウム、酸化セリウム、酸化イットリウムの重量比を66.6:25:8とし、実施例1と同様に合成した。白金の担持量は0.4wt%、ルテニウムの担持量は0.001wt%とした。
Example 40
The acid to be added is changed from acid A to acid B, the amount is 30 parts by weight with respect to the whole catalyst, and the weight ratio of zirconium oxide, cerium oxide and yttrium oxide is 66.6: 25: 8, and the same as in Example 1. Synthesized. The supported amount of platinum was 0.4 wt%, and the supported amount of ruthenium was 0.001 wt%.

比較例18
加える酸を酸Bから酸Cに変えて量を触媒全体に対して5重量部とし、ルテニウムを添加することなく、酸化ジルコニウム、酸化セリウム、酸化イットリウムの重量比を50.5:47.5:2とし、実施例10と同様に合成した。白金の担持量は0.02wt%とした。
Comparative Example 18
The acid to be added is changed from acid B to acid C to make the amount 5 parts by weight based on the total catalyst, and without adding ruthenium, the weight ratio of zirconium oxide, cerium oxide, yttrium oxide is 50.5: 47.5: 2 and synthesized in the same manner as in Example 10. The supported amount of platinum was 0.02 wt%.

比較例19
γ−アルミナに酸Dを触媒全体に対して5重量部及びジニトロジアンミン白金硝酸水溶液を用いて、含浸法により白金を担持し、400℃で1時間焼成した後、200℃で水素還元を行った。白金の担持量は0.02wt%とした。
Comparative Example 19
Using 5 parts by weight of acid D to γ-alumina and dinitrodiammine platinum nitric acid aqueous solution based on the whole catalyst, platinum was supported by an impregnation method, calcined at 400 ° C. for 1 hour, and then reduced at 200 ° C. with hydrogen. . The supported amount of platinum was 0.02 wt%.

比較例20
硝酸を加えず、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を72.5:25:2.5とし、実施例1と同様に合成した。白金の担持量は0.02wt%、ルテニウムの担持量は0.001wt%とした。
Comparative Example 20
The nitric acid was not added, and the weight ratio of zirconium oxide, cerium oxide, and iron oxide was set to 72.5: 25: 2.5. The supported amount of platinum was 0.02 wt%, and the supported amount of ruthenium was 0.001 wt%.

比較例21
硝酸を加えず、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を62.5:25:2.5とし、実施例1と同様に合成した。白金の担持量は5wt%、ロジウムの担持量は5wt%とした。
Comparative Example 21
The nitric acid was not added, and the weight ratio of zirconium oxide, cerium oxide, and iron oxide was 62.5: 25: 2.5. The supported amount of platinum was 5 wt%, and the supported amount of rhodium was 5 wt%.

比較例22
硝酸を加えず、酸化ジルコニウム、酸化セリウム、酸化鉄の重量比を67.5:25:2.5とし、実施例1と同様に合成した。白金の担持量は5wt%、ルテニウムの担持量は0.0001wt%とした。
Comparative Example 22
The nitric acid was not added, and the weight ratio of zirconium oxide, cerium oxide, and iron oxide was set to 67.5: 25: 2.5. The supported amount of platinum was 5 wt%, and the supported amount of ruthenium was 0.0001 wt%.

これらの触媒を、1から2mmに整粒した。この触媒の触媒層を電気炉で加熱し、所定の温度でCOが33体積%、水蒸気が67体積%のガスを200℃、空間速度(GHSV−ウエットベース)10000h−1及び350℃、20000h−1で流通させた。このときの出口ガス組成をガスクロマトグラフで測定し、これをCO Conv.とした。 These catalysts were sized to 1 to 2 mm. The catalyst layer of this catalyst is heated in an electric furnace, and at a predetermined temperature, a gas containing 33% by volume of CO and 67% by volume of water vapor is 200 ° C., space velocity (GHSV-wet base) 10000 h −1 and 350 ° C., 20000 h − 1 was distributed. The outlet gas composition at this time was measured with a gas chromatograph, and this was measured with CO Conv. It was.

以下、劣化試験方法を示す。
劣化試験方法
1)COが4.3体積%、水蒸気が16体積%、Nが79.7体積%のガスを250℃で流通させ、CO転化率が90%±0.5%の範囲になるように空間速度を調節した。これを劣化試験前CO CONV.とした。
2)この後、60℃でCOが4.3体積%、水蒸気が16体積%、Nが79.7体積%のガスを空間速度(GHSV−ウエットベース)2000h−1で3時間流通させ、触媒の劣化を行った。
3)さらにこの後、COが4.3体積%、水蒸気が16体積%、Nが79.7体積%のガスを1)と同じ空間速度、250℃で流通させ、CO転化率を測定した。これを劣化試験後CO CONV.とした。
本発明2に係る触媒における触媒活性の低下とは、表2及び4の劣化試験前後の変化を示しており、これは劣化試験前CO CONV.から劣化試験後CO CONV.を引いた値である。
Hereinafter, the deterioration test method is shown.
Deterioration test method 1) A gas having 4.3% by volume of CO, 16% by volume of water vapor, and 79.7% by volume of N 2 was circulated at 250 ° C., and the CO conversion rate was within a range of 90% ± 0.5%. The space velocity was adjusted so that This is the CO CONV. It was.
2) Then, at 60 ° C., a gas having 4.3% by volume of CO, 16% by volume of water vapor, and 79.7% by volume of N 2 was allowed to flow at a space velocity (GHSV-wet base) 2000 h −1 for 3 hours, The catalyst was deteriorated.
3) Further, after that, a gas having 4.3% by volume of CO, 16% by volume of water vapor, and 79.7% by volume of N 2 was circulated at the same space velocity and 250 ° C. as in 1), and the CO conversion was measured. . After this deterioration test, CO CONV. It was.
The decrease in the catalyst activity in the catalyst according to the present invention 2 indicates the change before and after the deterioration test in Tables 2 and 4, which is the CO CONV. To CO CONV. It is the value which subtracted.

劣化試験前CO CONV.を90%±0.5%の範囲にする理由は、転化率が化学平衡に達していたり、あまりに低かったりすると触媒の劣化が転化率という形で確認できない為である。   Before the deterioration test, CO CONV. The reason why the range of 90% ± 0.5% is that when the conversion rate reaches chemical equilibrium or is too low, deterioration of the catalyst cannot be confirmed in the form of conversion rate.

各触媒について、酸化ジルコニウム、酸化セリウム、酸化鉄及び酸化イットリウムの重量比、比表面積、担持金属の種類、担持量、コートした酸化物固溶体の重量部、加えた酸の重量部、200℃、(GHSV−ウエットベース)10000h−1においてのCO転化率及び劣化試験前後のCO転化率を表2に、350℃、(GHSV−ウエットベース)20000h−1においてのCO転化率及び劣化試験前後のCO転化率を表4に示した。 For each catalyst, the weight ratio of zirconium oxide, cerium oxide, iron oxide and yttrium oxide, specific surface area, supported metal type, supported amount, parts by weight of coated oxide solid solution, parts by weight of added acid, 200 ° C., ( Table 2 shows the CO conversion rate at GHSV-wet base) 10000h −1 and the CO conversion rate before and after the deterioration test. Table 2 shows the CO conversion rate at 350 ° C. (GHSV-wet base) 20000h −1 and the CO conversion before and after the deterioration test. The rates are shown in Table 4.

なお、CO転化率が100%にならないのは、反応平衡に依存するからである。   The reason why the CO conversion rate does not reach 100% is that it depends on the reaction equilibrium.

Figure 2009090184
Figure 2009090184

Figure 2009090184
Figure 2009090184

Figure 2009090184
Figure 2009090184

Figure 2009090184
Figure 2009090184

表2に示すとおり、本発明に係る触媒はいずれも反応温度が200℃であっても、高いCO転化率を有するものであることが確認された。
即ち、本発明に係る触媒は、200℃、空間速度(GHSV−ウエットベース)10000h−1の条件下で、CO転化率が70%以上の高い転化率を有する。
As shown in Table 2, it was confirmed that all the catalysts according to the present invention have a high CO conversion rate even when the reaction temperature is 200 ° C.
That is, the catalyst according to the present invention has a high CO conversion rate of 70% or more under the conditions of 200 ° C. and space velocity (GHSV-wet base) 10,000 h −1 .

表4より、350℃という高い反応温度でも高いCO転化率を有するものである。
即ち、本発明に係る触媒は、350℃、空間速度(GHSV−ウエットベース)20000h−1の条件下で、CO転化率が70%以上の高い転化率を有する。
From Table 4, it has a high CO conversion even at a high reaction temperature of 350 ° C.
That is, the catalyst according to the present invention has a high CO conversion rate of 70% or more under conditions of 350 ° C. and space velocity (GHSV-wet base) 20000 h −1 .

本発明の触媒と構成元素の重量比が同じであっても、ジルコニウム、セリウム及び鉄若しくはイットリウムを含む固溶体となっていなければ高い活性を示さない。   Even if the weight ratio of the catalyst of the present invention and the constituent elements is the same, high activity is not exhibited unless the solid solution contains zirconium, cerium and iron or yttrium.

ジルコニウム、セリウム及び鉄及び/又はイットリウムを含む溶液若しくは酸化物固溶体をコート若しくは、硝酸を添加して、活性金属粒子の一部を担体に埋めなければ劣化試験後に失活してしまうため、本発明の効果を得られない。   Since a solution or oxide solid solution containing zirconium, cerium and iron and / or yttrium is coated or nitric acid is added and a part of the active metal particles is not buried in the support, it is deactivated after the deterioration test. The effect of cannot be obtained.

実施例41
実施例1の触媒を、カイコウして20%スラリーとした。アルミナの成形体をこのスラリーに浸し、触媒成分を担持後、成形体をスラリーから引き上げ、余分なスラリーを吹き飛ばし、乾燥させ、400℃にて焼成を行った後、200℃で水素還元を行った。
Example 41
The catalyst of Example 1 was silkwormed to give a 20% slurry. The alumina compact was immersed in this slurry, and after supporting the catalyst component, the compact was lifted from the slurry, excess slurry was blown off, dried, fired at 400 ° C., and then hydrogen reduced at 200 ° C. .

実施例42
白金、ルテニウム及び硝酸を添加する前の実施例1記載の酸化物固溶体を、カイコウして20%スラリーとした。アルミナの成形体をこのスラリーに浸し、触媒成分を担持後、成形体をスラリーから引き上げ、余分なスラリーを吹き飛ばし、乾燥させ、120℃にて焼成を行った。これに硝酸を酸化物固溶体全体に対して15重量部及びジニトロジアンミン白金硝酸水溶液、硝酸ルテニウム溶液を用いて、含浸法により白金及びルテニウムを担持し、400℃で1時間焼成した後、200℃で水素還元を行った。
Example 42
The oxide solid solution described in Example 1 before adding platinum, ruthenium and nitric acid was silkwormed to give a 20% slurry. The alumina compact was immersed in this slurry, and after supporting the catalyst component, the compact was pulled up from the slurry, excess slurry was blown off, dried, and fired at 120 ° C. Nitric acid is supported on platinum and ruthenium by an impregnation method using 15 parts by weight of the total solid oxide solution, dinitrodiammine platinum nitric acid aqueous solution and ruthenium nitrate solution, and calcined at 400 ° C. for 1 hour. Hydrogen reduction was performed.

比較例23
アルミナの成形体を硝酸セリウム水溶液に浸し、セリウムを担持後、成形体を硝酸セリウム水溶液から引き上げ、乾燥させ、400℃にて焼成を行った。これにジニトロジアンミン白金硝酸水溶液を用いて、含浸法により白金を担持し、400℃で1時間焼成した後、200℃で水素還元を行った。
Comparative Example 23
The molded body of alumina was immersed in an aqueous cerium nitrate solution, and after supporting cerium, the molded body was lifted from the aqueous cerium nitrate solution, dried, and fired at 400 ° C. A dinitrodiammine platinum nitric acid aqueous solution was used for this, and platinum was supported by an impregnation method. After baking at 400 ° C. for 1 hour, hydrogen reduction was performed at 200 ° C.

比較例23では、水溶液を浸透させるので、アルミナ成形体上の触媒層を厚くしっかりと付着させることが難しく、粉化がおこりやすい。これに対し、実施例41ではアルミナ成形体の表面に触媒スラリーを塗布するので、触媒層を容易に厚くでき、しっかりと付着するため粉化も起こりにくい触媒成形体を得ることができる。
その結果、実施例41及び42で得られた触媒体は、実施例1と同程度のCO転化率、触媒劣化試験での劣化率を示した。
In Comparative Example 23, since the aqueous solution is infiltrated, it is difficult to attach the catalyst layer on the alumina molded body thickly and firmly, and pulverization is likely to occur. On the other hand, in Example 41, since the catalyst slurry is applied to the surface of the alumina molded body, the catalyst layer can be easily thickened, and a catalyst molded body that hardly adheres to powder can be obtained.
As a result, the catalyst bodies obtained in Examples 41 and 42 showed a CO conversion rate comparable to that in Example 1 and a deterioration rate in the catalyst deterioration test.

本発明に係る触媒は、ジルコニウム、セリウム、鉄及び/又はイットリウムを含む酸化物の固溶体に活性金属元素を存在させ、必要によりそれにアルミナ等を混合した触媒は、従来の触媒と比べ水性ガスシフト反応をより効率よく行え優れた効果を奏する。また、本発明の触媒成形体の作製方法を用いることでより、実用的な触媒成形体を得ることができる。   In the catalyst according to the present invention, a catalyst in which an active metal element is present in an oxide solid solution containing zirconium, cerium, iron and / or yttrium, and if necessary mixed with alumina or the like, has a water gas shift reaction as compared with a conventional catalyst. It is more efficient and has excellent effects. Moreover, a practical catalyst molded body can be obtained by using the method for producing a catalyst molded body of the present invention.

Claims (8)

ジルコニウム及びセリウムとともに鉄及び/又はイットリウムからなる酸化物固溶体に、Ptを存在させるとともに、Ptに対して、Au,Ag,Cu,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれる1種または2種以上の金属元素Aを0.001〜500重量%存在させ、Pt及び該金属元素Aの粒子が該酸化物固溶体に埋まって成ることを特徴とする水性ガスシフト反応用の触媒。 Pt is present in an oxide solid solution composed of iron and / or yttrium together with zirconium and cerium, and in relation to Pt, in Au, Ag, Cu, Fe, Pd, Ni, Ir, Rh, Co, Os, and Ru. One or more metal elements A selected from the group consisting of 0.001 to 500% by weight, Pt and particles of the metal element A are embedded in the oxide solid solution, for water gas shift reaction Catalyst. ジルコニウム及びセリウムとともに鉄及び/又はイットリウムからなる酸化物固溶体に、Ptを存在させるとともに、Ptに対して、Au,Ag,Cu,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれる1種または2種以上の金属元素Aを0.001〜500重量%存在させた触媒であって、該触媒の劣化試験方法で触媒活性が10%以上低下しない水性ガスシフト反応用の触媒。 Pt is present in an oxide solid solution composed of iron and / or yttrium together with zirconium and cerium, and in relation to Pt, in Au, Ag, Cu, Fe, Pd, Ni, Ir, Rh, Co, Os, and Ru. A catalyst for water gas shift reaction in which 0.001 to 500% by weight of one or more metal elements A selected from the above is present, and the catalytic activity does not decrease by 10% or more by the deterioration test method of the catalyst . 請求項1又は2に記載の触媒を構成する鉄の含有量が、酸化鉄(Fe)換算で5.0重量%以下であり、イットリウムの含有量が酸化イットリウム(Y)換算で10重量%以下であることを特徴とする水性ガスシフト反応用の触媒。 The content of iron constituting the catalyst according to claim 1 or 2 is 5.0% by weight or less in terms of iron oxide (Fe 3 O 4 ), and the content of yttrium is yttrium oxide (Y 2 O 3 ). A catalyst for water gas shift reaction, characterized in that it is 10% by weight or less in terms of conversion. 請求項1乃至3のいずれかに記載の触媒において、PtとAu,Ag,Cu,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれる1種または2種以上の金属元素Aをジルコニウム及びセリウムとともに鉄及び/又はイットリウムからなる酸化物固溶体に存在させ、前記Pt、金属元素Aを触媒に対して0.001〜40重量%担持させたことを特徴とする水性ガスシフト反応用の触媒。 The catalyst according to any one of claims 1 to 3, wherein Pt and one or more metals selected from Au, Ag, Cu, Fe, Pd, Ni, Ir, Rh, Co, Os, and Ru are used. Water gas shift reaction characterized in that element A is present in an oxide solid solution composed of iron and / or yttrium together with zirconium and cerium, and the Pt and metal element A are supported in an amount of 0.001 to 40% by weight with respect to the catalyst. Catalyst. 請求項1記載の触媒において、ジルコニウム及びセリウムとともに鉄及び/又はイットリウムからなる酸化物固溶体に、Ptを存在させ、Ptに対して、Au,Ag,Cu,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれる1種または2種以上の金属元素Aを0.001〜500重量%存在させるときに、酸を添加した後、乾燥し、得られた乾燥物を焼成することを特徴とする前記請求項1記載の水性ガスシフト反応用の触媒の製造方法。 The catalyst according to claim 1, wherein Pt is present in an oxide solid solution composed of iron and / or yttrium together with zirconium and cerium, and Au, Ag, Cu, Fe, Pd, Ni, Ir, Rh, When 0.001 to 500% by weight of one or more metal elements A selected from Co, Os, and Ru are present in an amount of 0.001 to 500% by weight, the acid is added and then dried, and the resulting dried product is fired. The method for producing a catalyst for a water gas shift reaction according to claim 1, wherein サポート材上にジルコニウム及びセリウムとともに鉄及び/又はイットリウムからなる酸化物固溶体が存在し、更に、Ptが存在するとともにPtに対して、Au,Ag,Cu,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれる1種または2種以上の金属元素Aを0.001〜500重量%存在させたものであり、Pt及び該金属元素Aの粒子が前記酸化物固溶体に埋まった状態であることを特徴とする水性ガスシフト反応用の触媒体。 An oxide solid solution composed of iron and / or yttrium together with zirconium and cerium exists on the support material, and further, Pt is present and Au, Ag, Cu, Fe, Pd, Ni, Ir, Rh, One or two or more metal elements A selected from Co, Os, and Ru are present in an amount of 0.001 to 500% by weight, and particles of Pt and the metal elements A are embedded in the oxide solid solution. A catalytic body for a water gas shift reaction, wherein サポート材の表面に、ジルコニウム及びセリウムとともに鉄及び/又はイットリウムからなる酸化物固溶体を含むスラリーを塗布、焼成して被覆した後、PtとAu,Ag,Cu,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれる1種または2種以上の金属元素Aを存在させるときに、酸を添加し、得られた乾燥物を焼成することを特徴とする水性ガスシフト反応用の触媒の製造方法。 The surface of the support material is coated with a slurry containing an oxide solid solution composed of iron and / or yttrium together with zirconium and cerium, fired and coated, and then coated with Pt, Au, Ag, Cu, Fe, Pd, Ni, Ir, Rh. , Co, Os, Ru, in the presence of one or more metal elements A, an acid is added, and the resulting dried product is calcined. A method for producing a catalyst. 請求項1〜4、6のいずれかに記載の触媒を用いる水性ガスシフト反応の反応方法。
The reaction method of the water gas shift reaction using the catalyst in any one of Claims 1-4 and 6.
JP2007261919A 2007-10-05 2007-10-05 Catalyst for water-gas-shift reaction and its manufacturing method Pending JP2009090184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007261919A JP2009090184A (en) 2007-10-05 2007-10-05 Catalyst for water-gas-shift reaction and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007261919A JP2009090184A (en) 2007-10-05 2007-10-05 Catalyst for water-gas-shift reaction and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009090184A true JP2009090184A (en) 2009-04-30

Family

ID=40662719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007261919A Pending JP2009090184A (en) 2007-10-05 2007-10-05 Catalyst for water-gas-shift reaction and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009090184A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105501A1 (en) * 2010-02-24 2011-09-01 三菱重工業株式会社 Co shift catalyst , co shift reaction apparatus, and method for purification of gasified gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105501A1 (en) * 2010-02-24 2011-09-01 三菱重工業株式会社 Co shift catalyst , co shift reaction apparatus, and method for purification of gasified gas
JP5550715B2 (en) * 2010-02-24 2014-07-16 三菱重工業株式会社 CO shift catalyst, CO shift reaction apparatus, and purification method of gasification gas
US8828339B2 (en) 2010-02-24 2014-09-09 Mitsubishi Heavy Industries, Ltd. CO shift catalyst, CO shift reactor, and method for purifying gasified gas

Similar Documents

Publication Publication Date Title
JP5376261B2 (en) Exhaust gas purification catalyst
KR101689356B1 (en) Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst, and method for combustion of ammonia using the catalyst
JP5778309B2 (en) Hydrogen production catalyst and hydrogen production method using the same
JP5702910B2 (en) Treatment conditions for Pt-Re bimetallic water gas shift catalyst
JP2012016685A (en) Exhaust gas purifying catalyst, and method for producing same
MX2008006912A (en) Process conditions for pt-re bimetallic water gas shift catalysts
JP5544634B2 (en) Platinum catalyst for oxidation / reduction reaction and its use
JP4296430B2 (en) Catalyst for water gas shift reaction and process for producing the same
JP2010279911A (en) Catalyst for manufacturing hydrogen, manufacturing method of the catalyst, and manufacturing method of hydrogen using the catalyst
JP6684669B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
JP4715999B2 (en) Catalyst for water gas shift reaction and process for producing the same
JP2012061398A (en) Catalyst for producing hydrogen, method for manufacturing the catalyst, and method for producing hydrogen by using the catalyst
JP6491004B2 (en) Exhaust gas purification catalyst and honeycomb catalyst structure for exhaust gas purification
JP2007054685A (en) Catalyst for water gas shift reaction
JP2008296107A (en) Exhaust gas purifying catalyst and its manufacturing method
JP2006341206A (en) Carbon monoxide selective oxidation catalyst and its manufacturing method
JP2013017913A (en) Steam-reforming catalyst and hydrogen production process using the same
JPH0729055B2 (en) Catalyst for oxidizing carbon-containing compound and method for producing the same
JP2009090184A (en) Catalyst for water-gas-shift reaction and its manufacturing method
JP4514419B2 (en) Hydrocarbon partial oxidation catalyst, method for producing the same, and method for producing hydrogen-containing gas
JP6751606B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
JP2007160254A (en) Catalyst for selectively oxidizing carbon monoxide and its manufacturing method
TWI414354B (en) Water gas shift reactions, water gas shift catalysts, and methods for manufacturing the catalysts
JP4799312B2 (en) Synthesis gas production catalyst
JP5389314B2 (en) Shift catalyst and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100921

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20120125