JP2009089986A - Mechanism for surmounting potential barrier of hard spot/contracture - Google Patents

Mechanism for surmounting potential barrier of hard spot/contracture Download PDF

Info

Publication number
JP2009089986A
JP2009089986A JP2007265067A JP2007265067A JP2009089986A JP 2009089986 A JP2009089986 A JP 2009089986A JP 2007265067 A JP2007265067 A JP 2007265067A JP 2007265067 A JP2007265067 A JP 2007265067A JP 2009089986 A JP2009089986 A JP 2009089986A
Authority
JP
Japan
Prior art keywords
spring
pedestal
coil
muscle
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007265067A
Other languages
Japanese (ja)
Inventor
Tomio Nakazawa
富雄 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007265067A priority Critical patent/JP2009089986A/en
Publication of JP2009089986A publication Critical patent/JP2009089986A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a health appliance and a therapeutic appliance characterized in removing a normal force in the height direction from the muscle, at first, applying an external force of a weak tonic contraction level, strengthening the external force to a strong contraction level according to the reaction and returning the muscle to the original state of the muscle with the elasticity, in the antigravity muscle group continuously working even in a standing position, having the continuous tonic contraction of a relatively low level against the gravity of the body, strongly contracted according to the movement, having the continuous strong contraction in proportion to the moving time and distance, repeatedly receiving it in proportion to the momentum, gradually having a permanent contraction developed from the prolonged contraction, and becoming to have the gradually spreading rigidity. <P>SOLUTION: This mechanism for surmounting potential barrier of hard spot/contracture is fitted to the physiological curve to the back face in supine position by combining the heights of springs, each of which is a tubular compression spring having a coil apex outer diameter defined to substantially 10 mm, for placing the whole body on a flat board face and relatively equally distributing the weight; a spring pedestal is horizontally vibrated in the height direction, and the antigravity muscle group is simultaneously and repeatedly expanded/contracted by changing the direction of the horizontal component by 180°. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、長時間の立位ではたらきつづけ、疲労して永続的に収縮しやすい身体背面の「抗重力筋群」に対し、堅固なバネ台座等に全身背臥し、コイル頂点が身体接触部位相応の強さで密着するように作用して、コイル頂点が接触点からすべらない強さで身長方向の水平振動を掛け、その移動量を、バネの弧状の曲げ変形で力として蓄えて、バネの弾性エネルギーで移動量を戻し、弧状の曲げ変形に連動して傾く押圧力を垂直分力と水平分力に分力し、垂直分力が接触点に密着するように作用してすべらず、同水平振動で、水平分力が180°の方向転換を繰返し、身体の順応に応じる同水平振動で筋肉が伸び、筋肉の伸長度に応じて移動量を大きくし、筋肉の伸縮運動によって血流が向上し、血流増による酸素等の供給で細胞呼吸が活性化し、カルシウムの結合力を超すように「力」を配分してそそいで、カルシウム結合物質に風化のような作用が起るように筋肉の伸縮運動をつづけ、その水平振動を身体固有の振動数に整合して「つづける」機械化の、しこり拘縮ポテンシャル障壁乗越え機構に関する。   In the present invention, the "anti-gravity muscle group" on the back of the body, which continues to work in a long standing position and tends to contract permanently due to fatigue, sits on a solid spring pedestal, etc. Acts as a close contact with the corresponding strength, applies horizontal vibration in the height direction with the strength that the coil apex does not slip from the contact point, and stores the amount of movement as a force by the arc-shaped bending deformation of the spring. Return the amount of movement with the elastic energy of, and apply the pressing force that tilts in conjunction with the arc-shaped bending deformation to the vertical component and horizontal component, do not slip so that the vertical component is in close contact with the contact point, With the same horizontal vibration, the direction of the horizontal component force is repeatedly changed by 180 °, the muscle is stretched by the horizontal vibration corresponding to the body's adaptation, the amount of movement is increased according to the degree of muscle extension, and blood flow is achieved by stretching and contracting the muscle. Improved, and respiration is activated by supplying oxygen etc. Then, by allocating “force” so as to exceed the binding force of calcium, we continue stretching and stretching of the muscles so that the calcium-binding substance acts like weathering, and the horizontal vibration becomes the natural frequency of the body. It relates to the mechanism of crossing a lump contracture potential barrier that is mechanized consistently.

従来、多種多様の健康器具や治療器具及び理学療法器具などがあり、いずれの機器も大きな力で筋肉を柔軟性にしようとするが、従来技術は、厚さを有す筋肉を通過する間に、不調により筋肉の柔軟性が均一でなくなった状態ほど、皮膚から与えた力が、いろいろな硬さの筋肉を通過するとき変質し、代表例として低周波という本来の「波」の状態ではなくなる。すなわち、硬さの異なる深部のしこりや拘縮塊に到達すると、伝搬速度が変わったり、屈折や反射して本来の「よい波」が変質してしまい、強くて「よい波」をそそぎつづけることができなかった。
このようなことから、同一発明者が平成13年9月11日付で筋肉伸張押圧機構(特開2003−79697)を出願し、平成18年9月29日に特許第3860982号で登録され、さらに「筋肉伸張押圧機構」を改良して、平成19年10月1日に特許願(整理番号P2007−10N)で、発明の名称を「しこり発見ほぐし機構」として特許申請したが、筋肉がしこるとき潜在する石灰化したカルシウムの結合力が巨大な障壁となって多くの時間や期間を要すため、本発明は、大きなカルシウムの結合力の障壁の乗越えを効率よく時間短縮し、しこり又は拘縮を改善していく機構に関するもの。
特許第3860982号 特許願P2007−10N
Conventionally, there are a wide variety of health devices, treatment devices, and physiotherapy devices, and all of them try to make muscles flexible with great force. As the muscles become less uniform due to malfunction, the force applied from the skin changes when passing through muscles of various hardness, and the typical “wave” state of low frequency is no longer typical. . In other words, when reaching a lump or contracted mass in a deep part with different hardness, the propagation speed changes or the original “good wave” changes due to refraction and reflection, and the strong “good wave” continues to pour. I could not.
For this reason, the same inventor filed a muscle stretch pressing mechanism (Japanese Patent Laid-Open No. 2003-79697) on September 11, 2001, and was registered in Japanese Patent No. 3860982 on September 29, 2006. When the "muscle stretching and pressing mechanism" was improved and a patent application was filed on October 1, 2007 as a patent application (reference number P2007-10N) with the name of the invention as a "lump finding unraveling mechanism". Since the latent calcium binding strength becomes a huge barrier and takes a lot of time and time, the present invention effectively shortens the time to get over the large calcium binding barrier, lump or contracture Related to the mechanism to improve
Japanese Patent No. 3860982 Patent application P2007-10N

(イ)抗重力筋群は、立位姿勢時、重力により下方しようとする身体を、長時間にわたり維持又は浮かせようとはたらきつづけて疲労しやすく、疲労の蓄積時は、すでに抗重力筋になにがしかの持続性の収縮が潜在していることになり、下肢ふくらはぎの深部より始まり踝を滑車構造のように走る母指筋等から頭部の側頭筋等まで背面を中心に全身に分布するため、その改善は困難を極めている。
(ロ)筋肉が収縮して硬性化していくと筋肉内の平衡が失われ、運動時の神経の伝達やはたらき等のバランスが崩れて、筋肉の硬性化の度合で異なる「代償運動」等があらわれ、筋肉内には一生懸命はたらかされる「運動神経」とあまり働けない「運動神経」に分かれていき、同一の「筋」内に、それぞれの「運動神経」に支配される「運動単位」と呼ばれる「筋線維の束」ごとに、次第に不連続性を呈す傾向となり、特に「代償運動」によって激しい運動量を強いられる「筋線維の束」ごとに緊張がますます強まり、そのまま緊張が開放されないそれら「筋線維の束」群が一段と緊張しているとき、従来の振動性の「波」等の外力が入ると、同一の筋内でとなり同士の「筋線維群の束」でありながら、それぞれ全く異なる刺激として伝わり、一番緊張した「筋線維群の束」に該当するもっとも弱い刺激が基準となって、かつその弱さでも侵害刺激としてあらわれやすく、なかなか治療効果が出せなかった。
(ハ)筋肉が硬性を強めていくすがたは、筋細胞ではたらくカルシウムイオン(Ca2+)が石灰化して重くなり、長時間の立位姿勢や長期疲労の睡眠時での背部への圧迫等で血流が低下し、重力のため下方に向かってその重さで沈着し、カルシウムが物質を固める性質から、筋線維細胞を巻き込んで硬さが増し、石灰化は炭酸カルシウム(CaCO)等に結合する現象で、その炭酸カルシウムの結合エネルギーとして−714Kcal/mol(参考文献セメント・セッコウ・石灰ハンドブックP.23)が存在することから、長期となるが、その結合エネルギーの参考値(−714Kcal/mol)の量に近づくか、またはその量を越えることによって拘縮が開放される「拘縮の可逆性」という自然現象があった。しかし、筋肉等の拘縮を可逆性にして筋肉の伸縮性を蘇らせるのに安全で簡単に使える機器等がなかった。
(ニ)筋細胞ではたらくカルシウムイオン(Ca2+)は「遊離」と「格納」を繰り返し、筋肉がはたらくときカルシウムイオンが遊離して収縮し、瞬時に一はたらきして格納され、筋の「弛緩時」に格納されている「Ca2+」が放出される生理的現象において、筋細胞内のCa2+濃度が「10−7モル/g筋肉」から「10−5モル/g筋肉」の「約100倍の濃度」に急上昇し、「収縮」という一仕事を終えると格納されてもとの「10−7モル/g筋肉」に、瞬時に戻る正常なサイクルがあるとされ(参考文献;筋肉のなぞP.138及び筋肉はなぜ動くP.51,P.155等)、一方、「筋線維の張力測定」において、約「6pCa(10−6モル/g筋肉に対応)」から「4pCa」に急上昇して張力が上り、「3pCa」の濃度でさらに張力が強まるとのことから(参考文献新生理学第2版P.103)、カルシウムイオンの遊離濃度が1000倍以上になると、そのままではカルシウムイオンの遊離が永続的となって長い年月で石灰化する現象に対し、上記の「−714Kcal/mol」と「10−4モル/g筋肉」の関係から、石灰化を改善するために必要な時間等を概算できる原理が存在するが、従来の技術は「電気周波数」等で、生体反応に対して非常に大きい振動数を主体としていたため、治療用の外力等を身体対応の仕事率に換算できず、経験と勘が頼りで効果を出すことが困難だった。
(ホ)筋肉の不調等の改善に対して、治療後のリハビリで強化するのによく運動をとり入れ、筋を限度近くまで充分伸長する「筋の最大伸長」の訓練がよいが、それらの運動は専門的でかなりの期間にわたることや、短時間に大量のATPを消費して筋肉疲労がおきやすく、硬さのある関節自体を働かせて筋力を使う運動では、侵害刺激や、またその運動後に筋の収縮が強まって縮みを繰返すリバウンドが多かった。
(ヘ)浅筋層が改善しても深部に拘縮塊が残ってリバウンドする傾向にあり、それらの拘縮塊が比較的大きく、断面積1cm当り4〜8kgの絶対筋力(参考文献;基礎運動学第4版P.71)を有すとされる筋肉の一例として、大腿部の太さが約12cmの場合の断面積を約100cmとすると、約400kg以上の張力能力が内蔵されていて、そのうち10%が出力されても約40kgが作用し、そのような強力な張力に対して、術者の握力があまりにも小さすぎることや、従来の技術では安定して強い伸長力や押圧力を掛ける機器がなかった。
(ト)不調の第一段階で発生する浮腫は、体内の内圧を秘かにあげるため、その上がった内圧を解消する必要があり、本発明の外力で、皮膚層から骨周辺の深層部まで幾つもの筋肉層の内圧をテストしながら、侵害刺激を起こさないで異常な内圧を下げて筋肉が有する力のつりあいをとり、また「筋肉の深さごとの状態」の「内圧」等を「反力」として計測できるが、従来の技術では体内の内圧を感知して数値化する機器がなかった。
(チ)従来の健康器具等の使用において、不調時に使用する場合と、健康体等を強化する場合の条件区分が曖昧で不明確であった。
本発明は、上記の問題を、長期化するほど増大するリバウンドを回避し、治療時間や期間等を短縮して、かつあまり熟練度を要せず解決するために成したものである。
(B) The anti-gravity muscle group tends to become fatigued by working to maintain or float the body going down by gravity for a long time in a standing posture, and when it accumulates fatigue, it has already become an anti-gravity muscle. Such persistent contraction is latent, starting from the deep part of the lower leg calf and distributed throughout the body, mainly from the back to the temporal muscles of the head from the thumb muscles that run like a pulley structure, etc. Therefore, the improvement is extremely difficult.
(B) When muscles contract and harden, the balance in the muscles is lost, the balance of nerve transmission and function during exercise is lost, and "compensatory exercise" etc. that varies depending on the degree of muscle hardening It appears that it is divided into “motor nerves” that work hard in the muscles and “motor nerves” that do not work very much, and within the same “muscle” “motor units” that are governed by each “motor nerve” Each muscle fiber bundle called a tendency to show discontinuity gradually, and in particular, the tension increases more and more every muscle fiber bundle that is forced to exercise intensely by compensatory exercise, and the tension is not released as it is When these “muscle fiber bundles” are more strained, when external forces such as the conventional vibration “wave” enter, they are within the same muscle and are “muscle fiber bundles”. Each is transmitted as a completely different stimulus The most tense weakest stimulus that corresponds to the "bundle of muscle fibers group" has become a standard, and easy to appear as a noxious stimulus in its weakness, it did not put out is quite therapeutic effect.
(C) As the muscles become more rigid, calcium ions (Ca 2+ ) that work in muscle cells become calcified and heavy, pressing the back during long standing posture or long-term fatigue sleep, etc. The blood flow decreases, and due to gravity, it is deposited downward due to its weight, and the calcium solidifies the substance, so that the muscle fiber cells are involved and the hardness increases. Calcification is calcium carbonate (CaCO 2 ), etc. It is a phenomenon that binds to the surface, and there is -714 Kcal / mol (Reference Cement, Gypsum, Lime Handbook P.23) as the binding energy of the calcium carbonate, which is a long time, but the reference value of the binding energy (-714 Kcal) There was a natural phenomenon called “reversibility of contracture” where the contracture is released by approaching or exceeding that amount. However, there is no device that can be used safely and easily to reversibly contract muscles and restore muscle elasticity.
(D) Calcium ions (Ca 2+ ) that work in muscle cells repeat “free” and “store”, and when the muscles work, calcium ions are released and contracted, and they work and store instantly. In the physiological phenomenon in which “Ca 2+ ” stored in “time” is released, the Ca 2+ concentration in muscle cells is “about 10 −7 mol / g muscle” to “about 10 −5 mol / g muscle”. It is said that there is a normal cycle that instantly returns to the “10 −7 mol / g muscle” that is suddenly increased to “100 times the concentration” and stored at the end of one work called “contraction” (references; muscles). Mysterious P.138 and why the muscles move P.51, P.155, etc.) On the other hand, in “Measurement of muscle fiber tension”, from “ 6 pCa (corresponding to 10 −6 mol / g muscle)” to “4 pCa” Suddenly rises and the tension increases. Since the tension becomes stronger at the concentration of “a” (Reference New Physiology 2nd Edition, P.103), when the calcium ion release concentration becomes 1000 times or more, the calcium ion release becomes permanent as it is. For the phenomenon of calcification over a long period of time, there is a principle that can estimate the time required to improve calcification from the relationship between “−714 Kcal / mol” and “10 −4 mol / g muscle”. However, since the conventional technology is mainly “electric frequency” and mainly uses a very large frequency with respect to a biological reaction, it cannot convert the external force for treatment into the work rate corresponding to the body, and experience and intuition. It was difficult to achieve an effect with reliance.
(E) In order to improve muscle disorders, exercise is often used to reinforce after rehabilitation, and training of “maximum muscle extension” is sufficient to stretch the muscles close to the limit. Is specialized and takes a considerable period of time, or consumes a large amount of ATP in a short period of time and tends to cause muscle fatigue. In exercises that use muscle strength by working hard joints themselves, noxious stimulation, and after that exercise There were many rebounds where the contraction of the muscles strengthened and the contraction repeated.
(F) Even if the superficial muscle layer improves, the contracture mass remains in the deep part and tends to rebound, the contracture mass is relatively large, and the absolute muscle strength of 4 to 8 kg per 1 cm 2 of the cross-sectional area (references; As an example of a muscle that has basic kinematics 4th edition P.71), if the cross-sectional area is about 100 cm 2 when the thigh thickness is about 12 cm, a tension capacity of about 400 kg or more is built-in. Even if 10% of the output is output, about 40 kg is applied, and the surgeon's grip strength is too small for such a strong tension, and the conventional technique has a stable and strong extension force. There was no device to apply pressure.
(G) The edema that occurs in the first stage of the disorder is to raise the internal pressure in the body secretly, so it is necessary to eliminate the increased internal pressure. With the external force of the present invention, several levels from the skin layer to the deep layer around the bone While testing the internal pressure of the muscular layer, lower the abnormal internal pressure without causing noxious stimulation to balance the strength of the muscle, and the "internal pressure" of "the state of each muscle depth" However, in the conventional technology, there was no device that senses and digitizes internal pressure in the body.
(H) In the use of conventional health appliances, the classification of conditions when used in a poor condition and when strengthening a healthy body was ambiguous and unclear.
The present invention has been made to solve the above-mentioned problems by avoiding rebound which increases as the period becomes longer, shortening the treatment time, the period, etc., and requiring less skill.

(イ)上記の課題を解決するために、本発明の堅固なバネ台座に全身背臥し、身体又は台座に身長方向の水平振動を掛け、コイル頂点が身体接触部位相応の強さで密着するように作用して接触点からすべらず、その移動量を、バネの弧状の曲げの変形で弾性エネルギーとして蓄え、変形するバネの復元力がその移動量を戻し、変位や座屈に強くソフトなバネとして、バネ材料を横弾性係数の大きいピアノ線又はばね用ステンレス鋼線とし、コイル有効部を円筒形の圧縮コイルバネとして、バネ要目の一部を指定し、バネの高さとして約15cmまで大きくしてもよく、低い部位では有効巻数を多くしてソフト性を上げるのに6cm以上がよく、全体的に約15〜6cmの範囲とし、コイル平均径Dを、相対的な等分布間隔とするようにD≒約45〜30mmの範囲とし、バネ材料径dを、コイル平均径との標準的な関係より約d=3.2mm以下として耐久性からd=2.0mmを下限として、全体的にd=3.2〜2.0mmの範囲とし、バネ定数kを、有効巻数を増やすようにk≒1.6N/mm以下として、反応の強い部位を考慮してk≒0.7N/mmを弱いほうの下限とし、全体的にk≒1.6〜0.7N/mmの範囲とし、コイル頂点とコイル有効部の間を、バネ素線面に発生するせん断応力をなくして身体接触面にバネ素線のねじりが掛からないように、コイル有効部の上端からコイル頂点に向かってピッチをゼロに近づけながら、円錐台形状又は半円球形状や半楕円球形状で巻込んで、コイル頂点外径を約10mmにしてバネの反力の太さとし、有効巻数を多くして弾性力の大きい圧縮コイルバネを形成する(請求項1記載)。
(ロ)上記(イ)のバネ要目を指定して、バネ間隔を約5〜7.5cmの範囲とし、コイル頂点を結ぶ曲面が背臥背面の生理的彎曲に合う又は近似の波形状を呈し、背臥体重を、接触部位相応の強さに分散するように複数列とし、バネを垂直又は垂直に近づけて立設して、たわみを小さくするように堅固なバネ台座を形成し、同バネ台座上に背臥して全身水平となり、背臥身体を相対的な等分布の反力で浮かせるように作用し、立位姿勢時の重力の負担を開放して非加速度の押圧力をつくり、その押圧力を小さい機械的刺激として接触面がくぼむ機械的変形を小さくして、そこに身長方向の水平振動を掛け、コイル頂点が身体接触点に密着するように作用してすべらず、バネの曲げ変形でコイル頂点が傾き、そして、傾くバネ軸上の押圧力を水平分力と垂直分力に分力し、コイル頂点が傾いても中心点の垂直分力は接触点からずらないで押圧作用をし、移動量の戻りはバネの復元力でもどし、はねかえると同時に再度身長方向に水平の力を掛け、コイル頂点が接触点からすべらない強さを基本として、一定時間、身長方向の水平振動を掛けて、水平分力の180°方向転換の繰返しを継続できる、有効巻数が多く弾性力の大きい圧縮コイルバネ立設の堅固なバネ台座を形成する(請求項1記載)。
(ハ)脊柱を挟んで縦走して、1行、2行の俗称をもつ大きい抗重力筋群では、筋走行に沿う強い力を要すことから、縦走の抗重力筋群に対して等身大の細長の角材で対応し、背臥体重が接触部位の強さ相応に分散して効率よく掛かるように、バネ立設面を平らに近い形状の角材とし、上記(イ)に記載の指定する圧縮コイルバネを、コイル頂点を結ぶ線形が背臥背面の生理的彎曲に整合又は近似する波形状に立設して、角材台座を形成し、その角材台座を、左右の盛り上がりをみせる1行、2行の脊柱起立筋の走行に沿うように、コイル頂点と脊柱の間隙を肩部で約1〜1.5cmとり、腰部では約2.5〜3.5cmとり、厚板上に4列、6列、8列の偶数列に並べて、バネマット型又はバネベッド型になるように配置し、その上に全身背臥し、背臥身体又は堅固なバネ台座に、身長方向の水平振動を上記(ロ)の記載に準じて掛け、コイル頂点が身体接触点に密着するように作用してすべらないことを基本とし、一定時間、水平分力の180°方向転換の繰返しを継続できる、有効巻数が多く弾性力の大きい圧縮コイルバネ立設の、堅固なバネマット又はバネベッド型台座を形成する (請求項2記載)。
(ニ)リハビリ的な場合は、腕を含めて全身乗って背臥できる広い厚板台座板とし、広い厚板上に、上記(イ)に記載のバネ要目の範囲をソフト側に指定して、バネ間隔を約5〜7.5cmの範囲とし、コイル頂点を結ぶ線形が全身背臥背面の生理的彎曲に似せて緩やかな曲面の波形状として、身長方向にバネを10〜12列に並べ、ゆったりとソフトに全身が乗る広さでバネマット型又はバネベッド型になるように立設して、厚板台座板を形成し、その上に全身背臥し、バネ台座又は背臥身体に、身長方向の水平振動を上記(ロ)の記載に準じて掛け、コイル頂点が身体接触点に密着するように作用してすべらないことを基本とし、一定時間、身長方向の水平振動を掛けて、水平分力の180°方向転換の繰返しを継続できる、ソフトで弾性力の大きい圧縮コイルバネ立設の、堅固なバネマット又はバネベッド型台座を形成する (請求項3記載)。
(ホ)伏臥位で一般的な施術を行う背面の抗重力筋群に対して、伏臥背面用台座をあて、伏臥背面の上半身に手軽に乗せて、広い背面を同時に押圧して筋肉を伸長できるように、肩部から臀部に至る長さを対象に、身長方向の角材の長さを約80〜120cmとし、バネ立設面を伏臥背面の生理的彎曲に近似する波形状としてバネの高さを均一化して、安定するような角材台座を形成し、コイル頂点と脊柱の間隙を肩部で約1〜2.5cmとして、腰部を約4.5〜7cmの間隙として、堅固な上半身用台座を形成し、角材台座面に、上記(イ)のバネ要目の値の範囲を狭めて限定し、バネの高さを約6〜12cmの範囲とし、コイル平均径を約D≒30〜35mmとし、バネ材料径を約d=2.0〜2.6mmとし、バネ定数をk≒0.8〜1.2N/mmの範囲で指定して、コイル頂点を結ぶ線形が伏臥背面の生理的彎曲と近似の波形状を呈すように、約5〜7cmのバネ間隔で立設して、伏臥背面上半身型の台座を形成し、身長方向の水平振動を上記(ロ)の記載の背臥背面用に準じて掛け、かつ指定荷重の上限を約30〜60kgとして、コイル頂点が身体接触点に密着するように作用してすべらないことを基本とし、水平の移動量でバネが傾き、バネの復元力で同水平振動を戻し、脊柱脇を通り頸部の付け根から臀部の坐骨神経の通り道まで左右同時に押圧して、背筋が最大に伸縮運動の作用ができるように、アーム等で堅固に支える(請求項4記載)。
(ヘ)抗重力筋群の腰部や臀部の深部筋に多い拘縮等では、押圧をつづけて、次第に接触面の機械的変形(参考文献;新生理学第2版P.190)を大きくし、その変形に相当する分バネを大きくし、力も増すことから、上記(イ)のバネ要目を一部拡大して、バネ材料径の上限を約3.5mmとし、コイル平均径の上限を約50mm以下とし、バネ定数の上限を約2.3N/mm以下として圧縮コイルバネを形成し、台座の長さを約18〜30cm又は約80cmの範囲とし、バネ間隔を約5〜8cmの範囲とし、バネ個数を約16個以下で立設して、小型のバネ台座を形成し、自由角度で接触面に対して直角方向に近づけて、押圧力を約1〜10kg/秒ずつ増加して、指定荷重を約30kgまたは60kg前後まで上げて、コイル頂点が身体接触点に密着するように作用してすべらず、手動では固定側も不安定でコイルバネが両端自由となる欠点を補い、強い押圧でも揺動することなく正確なリズムで継続できるロボットアーム等に、弾性力の大きい圧縮コイルバネを片側固定とする(請求項5記載)。
(ト)全身の疲労性を対象として、体表面の潜在性の反射性が高い場合は微弱な圧縮コイルバネとして、上記(イ)のバネ要目の値を下げ、コイル鋼線径の下限を約0.8mmとし、バネ定数の下限を約0.1N/mmとし、コイル平均径の下限を約20mmとし、コイルの高さを約4cm以上として、台座を大きくせず長さを約15〜50cmの範囲とし、バネ間隔を約3〜5cmの範囲として、バネ個数を約12個以下で立設して、微小な弾性力の圧縮コイルバネも対応するように形成し、約0.2kg前後の弱い押圧力を掛けても、コイル頂点が身体接触面に密着するように作用してすべらず、皮膚接触面の微小な機械的変形でバネ軸がはじける現象前の荷重で、皮膚接触面の状態をゆっくりと高めつつ押圧力を大きくしていくように、圧縮コイルバネを揺動しないロボットアーム等に片側固定する(請求項6記載)。
(チ)疲労時の長時間の背臥位や長期臥床等で、特に圧迫が強い特定部位に対し、立設する圧縮コイルバネの中心軸線上に引張コイルバネを装着して、組合せコイルバネを形成し、必要に応じて装着した引張コイルバネで圧縮コイルバネをたわませて、弱い接触又は非接触とし、圧縮コイルバネ頂点の押圧を解除あるいは減縮し、接触解除部位以外ではコイル頂点が身体接触点に密着するように作用してすべらず、機械的刺激(参考文献;新生理学第2版P.190)が特定部位に及ばないように組合せコイルバネを装着する(請求項7記載)。
(リ)背臥位時の身長方向に水平振動の例として、10秒当りの往復回数を約10〜20回とし、移動長を1〜10cmの範囲とするとよい。
(A) In order to solve the above-mentioned problems, the whole body is placed on the solid spring pedestal of the present invention, and the body or the pedestal is subjected to horizontal vibration in the height direction so that the coil apex adheres with strength corresponding to the body contact part. The amount of movement is stored as elastic energy by the deformation of the arcuate bending of the spring, and the restoring force of the deforming spring returns the amount of movement, and the spring is strong against displacement and buckling. The spring material is a piano wire or a stainless steel wire for springs with a large transverse elastic coefficient, the coil effective part is a cylindrical compression coil spring, a part of the spring point is specified, and the spring height is increased to about 15 cm In order to increase the number of effective windings and increase the softness at a low part, 6 cm or more is preferable, and the overall range is about 15 to 6 cm, and the coil average diameter D is a relatively uniform distribution interval. D ≒ about In the range of 5 to 30 mm, the spring material diameter d is about d = 3.2 mm or less from the standard relationship with the average coil diameter, and d = 2.0 mm is the lower limit from the durability, and d = 3. 2 to 2.0 mm range, spring constant k, k≈1.6 N / mm or less so as to increase the effective number of turns, and k≈0.7 N / mm is the lower limit in consideration of strong reaction sites As a whole, the range of k≈1.6 to 0.7 N / mm is set, and the shear stress generated in the spring element surface is eliminated between the coil apex and the coil effective portion, and the spring element wire is applied to the body contact surface. In order not to be twisted, the coil is wound in a truncated cone shape, a semi-spherical shape, or a semi-elliptical sphere shape while making the pitch close to zero from the upper end of the effective coil portion to the coil apex, and the outer diameter of the coil apex is about 10 mm. The thickness of the reaction force of the spring and increase the effective number of turns Forming a large compression coil spring of the elastic force (claim 1).
(B) Specify the spring points in (a) above, set the spring interval to a range of about 5 to 7.5 cm, and the curved surface connecting the coil vertices matches the physiological curve on the back of the dorsal fin or approximate wave shape The dorsal body weight is divided into multiple rows so as to disperse the strength corresponding to the contact area, and the springs are set up vertically or close to vertical to form a firm spring pedestal so as to reduce the deflection. Back on the spring pedestal, it becomes horizontal throughout the body, acts to float the back body with the reaction force of relative equal distribution, frees the burden of gravity when standing and creates non-acceleration pressing force, With the pressing force as a small mechanical stimulus, the mechanical deformation of the contact surface is reduced, and horizontal vibration in the height direction is applied to the coil so that the coil vertex does not slip and adhere to the body contact point. The coil apex is tilted by bending deformation and the pressing force on the tilting spring shaft Even if the coil apex is tilted, the vertical component force of the center point does not deviate from the contact point, and the return force is returned by the restoring force of the spring. At the same time, horizontal force is applied again in the height direction, and based on the strength that the coil apex does not slip from the contact point, horizontal vibration in the height direction is applied for a certain period of time, and the horizontal component force is continuously changed by 180 °. A solid spring base is formed which is capable of erected a compression coil spring having a large effective number of turns and a large elastic force.
(C) A large anti-gravity muscle group running vertically across the spinal column and having a common name of one or two lines requires a strong force along the muscle running, so it is life-size compared to the longitudinal anti-gravity muscle group In order to cope with the slender slabs of the slabs, the spring standing surface should be a square slab with a nearly flat shape so that the weight of the dorsal fin is distributed according to the strength of the contact area and is applied efficiently. A compression coil spring is erected in a wave shape in which the line connecting the coil apexes matches or approximates the physiological curve on the back of the dorsal fin to form a square pedestal, and the square pedestal is shown in one row, two that rises to the left and right. The distance between the coil apex and the spinal column is about 1 to 1.5 cm at the shoulder, and about 2.5 to 3.5 cm at the lumbar, and 4 rows on the plank. Arranged in an even number of rows, 8 rows, arranged to be a spring mat type or spring bed type, and the whole body on it Basically, apply the horizontal vibration in the height direction to the dorsal body or solid spring pedestal according to the description in (b) above, so that the coil apex does not slide so that it touches the body contact point, A rigid spring mat or spring bed type pedestal is provided which can continue to repeat the 180 ° direction change of the horizontal component force for a certain period of time, and is provided with a compression coil spring having a large effective number of windings and a large elastic force (Claim 2).
(D) In the case of rehabilitation, use a wide pedestal base plate that can be ridden on the whole body, including the arm, and specify the range of the spring point described in (a) on the soft side on the wide thick plate. The distance between the springs is in the range of about 5 to 7.5 cm, and the line connecting the coil vertices has a gentle curved wave shape that resembles the physiological curve on the back of the whole body, and the springs are arranged in 10 to 12 rows in the height direction. Lined up, standing up so as to be a spring mat type or spring bed type with a width that allows the whole body to ride comfortably and softly, forming a thick plate pedestal plate, and lying on the whole body on it, height on the spring pedestal or back body Apply horizontal vibration in the direction according to the description in (b) above, and basically do not slip by acting so that the coil apex is in close contact with the body contact point. Soft and elastic force that can continue to change the direction of component 180 ° A rigid spring mat or spring bed type pedestal is formed with a large compression coil spring standing up (claim 3).
(E) For the anti-gravity muscle group on the back, which performs general treatment in the prone position, it can be easily placed on the upper body of the prone back, and the muscles can be stretched by pressing the wide back simultaneously Thus, for the length from the shoulder to the buttocks, the length of the square bar in the height direction is about 80 to 120 cm, and the height of the spring is set as a wave shape that approximates the physiological curvature of the back surface of the prone surface A solid pedestal that forms a stable pedestal, with a gap between the top of the coil and the spine of about 1 to 2.5 cm at the shoulder, and a waist of about 4.5 to 7 cm. The range of the value of the spring point of (A) above is narrowed and limited to the square pedestal surface, the height of the spring is in the range of about 6 to 12 cm, and the average coil diameter is about D≈30 to 35 mm. The spring material diameter is about d = 2.0 to 2.6 mm, and the spring constant is k≈0.8. Designate in the range of 1.2 N / mm, and stand upright with a spring interval of about 5-7 cm so that the line connecting the coil vertices has a similar wave shape to the physiological curve on the back surface of the prone surface. A base of the mold is formed, horizontal vibration in the height direction is applied according to the back of the dorsal back described in (b) above, and the upper limit of the specified load is about 30 to 60 kg, and the coil apex adheres to the body contact point The spring is tilted by the amount of horizontal movement, and the horizontal vibration is restored by the restoring force of the spring, passing through the spinal column and passing from the base of the neck to the path of the sciatic nerve at the same time. By pressing, the arm is firmly supported by an arm or the like so that the back muscles can be expanded and contracted as much as possible (claim 4).
(F) In the contractures that occur frequently in the lumbar region of the anti-gravity muscle group and the deep muscles of the buttocks, continue to press and gradually increase the mechanical deformation of the contact surface (reference document; New Physiology 2nd edition, P. 190) Since the spring corresponding to the deformation is enlarged and the force is also increased, the spring point of (a) above is partially enlarged, the upper limit of the spring material diameter is about 3.5 mm, and the upper limit of the coil average diameter is about 50 mm or less, the upper limit of the spring constant is about 2.3 N / mm or less to form a compression coil spring, the pedestal length is in the range of about 18-30 cm or about 80 cm, the spring interval is in the range of about 5-8 cm, Stand up with about 16 or fewer springs to form a small spring pedestal, move it at a free angle in the direction perpendicular to the contact surface, and increase the pressing force by about 1 to 10 kg / sec. Increase the load to around 30kg or 60kg For a robot arm that does not slip so that it touches the body contact point manually, compensates for the disadvantage that the fixed side is unstable and the coil spring is free at both ends, and can continue with an accurate rhythm without swinging even with strong pressure A compression coil spring having a large elastic force is fixed on one side (claim 5).
(G) For whole body fatigue, if the reflectivity of the surface of the body is high, as a weak compression coil spring, lower the value of the spring point in (a) above, and lower the coil steel wire diameter lower limit 0.8 mm, the lower limit of the spring constant is about 0.1 N / mm, the lower limit of the average coil diameter is about 20 mm, the height of the coil is about 4 cm or more, and the length is about 15-50 cm without increasing the pedestal. The spring interval is set to a range of about 3 to 5 cm, the number of springs is set up to about 12 or less, and a compression coil spring having a small elastic force is also formed, and is weak at about 0.2 kg. Even when a pressing force is applied, the coil apex does not slip so as to be in close contact with the body contact surface, and the state of the skin contact surface is changed by a load before the spring shaft is repelled by a minute mechanical deformation of the skin contact surface. To increase the pressing force while slowly increasing To one side fixed to a robot arm or the like which does not swing the compression coil spring (claim 6).
(H) A long coiled position during fatigue, long-term bed rest, etc., for a specific part that is particularly compressed, attach a tension coil spring on the center axis of the compression coil spring to be erected, and form a combined coil spring. If necessary, bend the compression coil spring with a tension coil spring attached to make it weak or non-contact, and release or reduce the pressure on the compression coil spring apex so that the coil apex is in close contact with the body contact point except at the contact release site. The combination coil spring is attached so that mechanical stimulation (reference: New Physiology 2nd edition, P.190) does not reach the specific site.
(I) As an example of horizontal vibration in the height direction in the supine position, the number of reciprocations per 10 seconds may be about 10 to 20 times, and the movement length may be in the range of 1 to 10 cm.

(イ)立位姿勢時の重力に対抗している筋肉の日常的な疲労等は、痛点性の反応とは無縁の場合が多く、そのようなことで気付かないうちに筋肉が硬性化するため、立位や座位の身体を安臥させて、背部に多い抗重力筋群を全身背臥で水平の状態とし、背臥背面にリズムを持って、同時に、身長方向の水平振動を機械的刺激として掛けることで、熟練等の数人分の仕事量をすることができる。
(ロ)筋の力は、小指より小さい1cmほどの断面で約4〜10kgの「張力」を有すとされ、そのような筋張力で縮みつづける筋肉があり、大腿部では約15cm以上の太さがあり、腰部は左右約10cm以上の大きさで、部位ごとでみても簡単に100cmを超える大きさがあり、普通でみても100cmで約400kg内蔵するとされるこのような途轍もなく大きい筋肉を、同時に長時間にわたり伸長することができる。
(ハ)前述0003(ニ)に記載の、収縮時に約「10−7モル/g筋肉」から「10−5モル/g筋肉」の「約100倍の濃度」に急上昇して一仕事を終え、瞬時に元の10−7モルに薄まるが、一方、約1000倍以上の濃度で張力が強まるとのことから、生体のシステム下において、拘縮性は筋肉1gに対して約「10−5モル/g筋肉」又は「10−4モル/g筋肉」以上のカルシウム濃度でカルシウム沈着・石灰沈着現象があらわれ、
炭酸カルシウムの結合エネルギー値(―714Kcal/mol)を国際度量衡委員会の規定によりジュールに換算すると、1cal =4.1855Jから、―714Kcal/mol×4.1855J≒―2988KJ/molとなり、カルシウム濃度がおおよそ「10−4モル/g筋肉」よりさがらない時点の1グラムの筋肉に対するジュール量を換算すると、―2988KJ/mol×10−4mol/g筋肉≒―300J/g筋肉となり、この推計値に対して、一例として静止する体重70Kgで重力をg≒10m/sとして、物理量の「力」が約70kg×10m/s≒700N(ニュートン)で、静止時の上下運動を約1cmとして、物理の仕事が約700N×0.01m≒7J(N・m)となり、背臥静止時の呼吸が平均2秒に1回として、仕事率が7N/2秒≒3.5W(J/s)となり、その収縮状態をほどくための仕事量に換算すれば、300J/g筋肉÷3.5J/s ≒86秒となり、おおむね約「1.5分/筋肉1g」を要すと、機械的ではあるが所要時間を推定でき、背筋の長さを平均50cmとして片側の幅を約10cmとすると、背部の広さは約1000cmとなり、背部の推定所要時間は1000cm×「1.5分/筋肉1g」≒1500分/1000cmと概算して、おおよそ体幹背面に対して1500分/60分≒25時間と推定でき、ここに身長方向の水平振動の運動量を加えて仕事量を増やして効率を上げ、毎日はたらくことから適度の頻度で簡単に習慣にしていくこともできる。
(ニ)身長方向の水平振動の大きさを約5cmとし、10秒当り約18回とすると1回当り約10秒÷18回≒0.56秒かかり、同振動は0.05m÷0.56秒≒0.09m/秒の速度となり、安静の状態でかかる速度は垂直下方の約0.01m/秒のみであるから、垂直と水平のちがいや合力があるものの、0.09m/0.01m≒9となり、大雑把に約9倍の速度が加えられて大きな運動量が得られる。
(ホ)拘縮等を改善するための時間や期間の予測は、身体の体表面積が平均1.8mで全身の骨格筋は体重の約半分近くを占めるとされるこれらの数値から、筋肉1cmを基準にした数値等より、軽度のもので約10倍前後から筋肉の硬質化がすすんだものでは面積でみて千倍以上と割増し等でき、筋肉の厚さが加わり、必要時間を推計して目安とすることができる。
(ヘ)X線影像が濃くなることは炭酸カルシウムの分子や原子等との衝突が増えたことであり、硬くなるほどカルシウム濃度が増すことと、カルシウム濃度が「10−5mol/g筋肉」では収縮の状態で硬質化ではないためX線写真の明確な実績がないとされ、「10−4mol/g筋肉」の濃度以上の状態が長期化して硬質化することから、その後にX線写真で確認できると推定され、X線影の濃淡や本形態のテストにより筋肉の硬さと大きさが分かり、勘に頼っていたことを計数化の一つとでき、拘縮部位と大きさを本形態でも確認して推計し、それに効率で割り増してみることもできる。
(ト)ロボットアーム等では、強い「力」でも微動することなく、伏臥位、仰臥位、横臥位のあらゆる角度から、正確な配分により加重していくことができ、手技の場合はコイル両端が自由端となり、台座を支える側を固定的にするには訓練を要すが、ロボットアーム等で片側固定として正確度が上がり、手技から眺めた場合、理想に近いこととできる。
(チ)機械化又は自動化において、コイル外径が35mmの場合、コイル最上部の接触域の面積ではπ×1.75cm≒9.6cmとなり、1個のコイルバネに約60kg掛けたときの接触面の1cm当りの力は、60kg÷9.6cm≒6.3kg/cmとなり、絶対筋力が4〜8kg/cmとされ,最大筋力が約6〜10kg/cmとされることから一般的に安全であり、このように簡単にチェックできる。
(リ)筋肉の硬性の主な原因となる、毒性の見つかっていないとのカルシウムで固まる石灰化が、それ自体病気等とされていない現象において、そのカルシウム結合物質を、分解や細かくする又は溶かすに必要となる大きなエネルギーの配分では、体温の約38℃を上げないため多くの時間を要し、また生体反応に対応して硬性を改善する「外力」が極めて単調で、巨大で、機械化で「つづける」ことが適して「可能」となり、硬性化の筋肉の伸長がなされる。
(ヌ)このように、不調となった筋肉を改善するために非常に単調で大きな労力の配分を要し、機械化によって、身体や筋肉の状態に対応するその単調な身長方向の水平振動をとり入れ、身体に「力」を掛けるほど筋肉が強くなり、その段階ごとに身長方向の水平振動を強くしていくことで、効率よく時間を短縮することができるものである。
(B) The daily fatigue of muscles that resists gravity in a standing posture is often unrelated to the painful reaction, which causes the muscles to become rigid before they are noticed. Relieve the body in standing or sitting position, make the antigravity muscle group, which is often on the back, horizontal with the whole body dorsal, have a rhythm on the back of the dorsal fin, and simultaneously mechanically stimulate horizontal vibration in the height direction As a result, it is possible to work for several people such as skilled workers.
(B) Muscle force is said to have a "tension" of about 4 to 10 kg in a cross section of about 1 cm 2 smaller than the little finger, and there is a muscle that continues to shrink with such muscle tension, and about 15 cm or more in the thigh the have thickness, waist is greater than the left and right about 10cm size, there is a size of more than simply 100 cm 2 even look at each part, such Totetsu even look typically are approximately 400kg built in 100 cm 2 Large muscles can be stretched for a long time at the same time.
(C) As described in the aforementioned 0003 (d), when it contracts, it suddenly rises from about “10 −7 mol / g muscle” to “about 100 times the concentration” of “10 −5 mol / g muscle” to finish one work. Although Usumaru the original 10 -7 mol instantaneously, whereas, since the tension is intensified at a concentration of at least about 1000-fold, in the system under biological, contracture of about on muscle 1g "10-5 Calcium / calcification phenomenon appears at a calcium concentration of “mol / g muscle” or “10 −4 mol / g muscle” or more,
When the binding energy value of calcium carbonate (−714 Kcal / mol) is converted into joules according to the regulations of the International Metrology Committee, 1cal = 4.1855J becomes −714Kcal / mol × 4.1855J≈−2988KJ / mol, and the calcium concentration is When the joule amount with respect to 1 gram of muscle at a time point that is not less than about “10 −4 mol / g muscle” is converted to −2988 KJ / mol × 10 −4 mol / g muscle≈−300 J / g muscle, On the other hand, as an example, with a stationary weight of 70 kg and gravity of g≈10 m / s 2 , the physical “force” is about 70 kg × 10 m / s 2 ≈700 N (Newton), and the up and down motion at rest is about 1 cm, Physical work is about 700N × 0.01m ≒ 7J (N ・ m) Once every 2 seconds, the work rate is 7 N / 2 seconds≈3.5 W (J / s). When converted to the work amount for unwinding the contracted state, 300 J / g muscle ÷ 3.5 J / s≈ It takes 86 seconds, and it takes about "1.5 minutes / g muscle", but it can be estimated mechanically, but the length of the back is 50cm on average and the width on one side is about 10cm. The area is approximately 1000 cm 2 , and the estimated time required for the back is approximately 1000 cm 2 × “1.5 minutes / muscle 1 g” ≈1500 minutes / 1000 cm 2 , approximately 1500 minutes / 60 minutes to the back of the trunk≈ It can be estimated to be 25 hours, and the amount of horizontal vibration in the height direction can be added here to increase the work amount to increase the efficiency.
(D) If the height of the horizontal vibration in the height direction is about 5 cm and about 18 times per 10 seconds, it takes about 10 seconds / 18 times≈0.56 seconds per time, and the vibration is 0.05 m / 0.56. Since the speed is approximately 0.09 m / sec in a resting state, and the speed that is required in a resting state is only about 0.01 m / sec in the vertical direction, there is a difference between the vertical and horizontal, and the resultant force is 0.09 m / 0.01 m. ≈9, and roughly 9 times the speed is applied to obtain a large momentum.
(E) Predicting time and duration for improving contracture, etc., based on these figures, the body surface area of the body averages 1.8 m 2 and the skeletal muscles of the whole body occupy about half of the body weight. Based on numerical values based on 1 cm 3 , it is possible to increase the thickness of muscles that are mild and about 10 times more rigid, and can be increased to over 1000 times in terms of area, adding muscle thickness and estimating the required time Can be used as a guide.
(F) The darker X-ray image means that collisions with calcium carbonate molecules and atoms have increased, and the harder the calcium concentration is, the more the calcium concentration is “10 −5 mol / g muscle”. It is said that there is no clear record of X-ray photography because it is not hardened in the contracted state, and the state above the concentration of “10 −4 mol / g muscle” becomes long-lasting and hardens. It is estimated that it can be confirmed by X-ray shadow density and the test of this form, the hardness and size of the muscle can be understood, and it can be used as one of the counts to rely on intuition, and the contracture site and size can be But you can also check and estimate, and try to increase it with efficiency.
(G) With robot arms, etc., even with strong “force”, it can be weighted by accurate distribution from any angle of prone position, supine position, and recumbent position. Training is required to fix the side that supports the pedestal as a free end, but the accuracy increases as one-side fixing with a robot arm or the like, and it can be close to ideal when viewed from the procedure.
(H) In mechanization or automation, when the outer diameter of the coil is 35 mm, the area of the contact area at the top of the coil is π × 1.75 2 cm≈9.6 cm 2 , and when about 60 kg is applied to one coil spring. 1 cm 2 per force of the contact surfaces, 60kg ÷ 9.6cm 2 ≒ 6.3kg / cm 2 , and the absolute strength is the 4~8kg / cm 2, the maximum strength is about 6~10kg / cm 2 It is generally safe and easy to check in this way.
(Li) Calcification that hardens with calcium, which is the main cause of muscle stiffness, and has not been found to be toxic, decomposes, refines, or dissolves the calcium-binding substance in a phenomenon that is not regarded as a disease in itself It takes a lot of time to distribute the large amount of energy required for the body to raise its body temperature to about 38 ° C, and the “external force” that improves the stiffness in response to biological reactions is extremely monotonous, huge, and mechanized. “Continue” is suitable and becomes “possible”, and stiffening muscles are stretched.
(Nu) In this way, it is very monotonous and requires a large amount of labor to improve the muscles that have failed, and by mechanization, it incorporates the monotonous horizontal vibration in the height direction corresponding to the state of the body and muscles. By applying “force” to the body, the muscles become stronger, and by increasing the horizontal vibration in the height direction at each stage, the time can be shortened efficiently.

以下、本発明の実施形態について、下記のように区分して説明する
0007 身長方向の水平振動の実施例 図1〜図6
0008 水平振動用の圧縮コイルバネの実施例 図7
0009 〃 角材台座の実施例 図8〜図9
0010 第一実施例(全身4連型) (水平振動用) 図10〜図11
0011 第二実施例(全身6連型) ( 〃 ) 図12〜図13
0012 第三実施例(全身10連型)( 〃 ) 図14〜図16
0013 第四実施例(伏臥背面上半身型)( 〃 ) 図17〜図18
0014 第五実施例(深部用凸型台座) 図19
0015 第六実施例(体表面用凹型台座) 図20
0016 第七実施例(反力テスト用台座) 図21
0017 臀部反力テストの実施例 図22
0018 組合せコイルバネの実施例 図23
0019 圧縮コイルバネの適用範囲の実施例 図24〜図26
Hereinafter, embodiments of the present invention will be described in the following manner. Examples of horizontal vibration in the height direction FIGS.
FIG. 7 shows an embodiment of a compression coil spring for horizontal vibration.
[0009] Example of square pedestal base Fig. 8 to Fig. 9
First Embodiment (Full-Body Quadruple Type) (For Horizontal Vibration) FIGS. 10 to 11
Second embodiment (whole body 6 type) (〃) FIGS. 12 to 13
Third embodiment (whole body 10 type) (連) FIGS. 14 to 16
FIG. 17 to FIG. 18 (Fourth embodiment)
FIG. 19 shows a fifth embodiment (convex pedestal for deep part).
FIG. 20 shows a sixth embodiment (concave pedestal for body surface).
FIG. 21 shows a seventh embodiment (base for reaction force test).
Example of buttocks reaction force test FIG.
Example of Combination Coil Spring FIG.
Examples of Application Range of Compression Coil Spring FIG.

身長方向の水平振動の実施例
(イ)図1は、堅固なバネ台座(4)に身長方向の水平振動(6a)を掛けて圧縮コイルバネ(1)が同一方向に傾く形を示し、水平又は水平に近い台座面(3a)に、高さの異なるやや大きい圧縮コイルバネ(1)を立設して、バネ台座に同振動を掛ける例で、バネ頂点曲面(4a)を背臥背面の生理的彎曲(7j)に近似させ、背臥体重が接触部位の強さに相応して分散されて、バネ1個当りに掛かる荷重が均一的に配分され、1個当りの小さくなる荷重でたわみが減少し、アームの長さに相当するコイル頂点(1c)と台座面(3a)の離れを十分に確保し、かつコイル頂点(1c)が身体接触面に密着するように作用してすべらず、台座の移動量をバネの弧状の曲げに変換するように、有効巻数を増やして弾性力の大きい圧縮コイルバネ(1)をあて、一定時間同水平振動をつづける (請求項1記載乃至請求項3に記載)。
(ロ)図2は、図1の一部を拡大して示し、同水平振動がバネに横荷重として作用してバネが傾くとき、曲線のバネ軸(4c)とコイル頂点面の傾き(5d)が形成され、振動時のバネ軸方向の力(5a)の斜めの押圧力を、同水平振動毎に、安定して垂直分力(5b)と水平分力(5c)に分力し、コイル有効部(1e)では曲線のバネ軸(4c)をはさんで、同水平振動と反対側が圧縮されてピッチ圧縮面(1j)となり、同水平振動側では引っ張られてピッチ拡大面(1k)となり、そこでバネの復元力となる弾性エネルギーを蓄えて、バネ台座を引き戻し、水平分力の180°方向転換を一定時間継続するように、有効巻数を多くして弾性力の大きい圧縮コイルバネ(1)とする(請求項1記載)。
(ハ)図3は、静止時の背臥体重が、接触部位相応の強さに分散する押圧力(5a)を模式的に示し、背臥背面の生理的彎曲の凹凸部位の中の凸部ではバネの高さ(1h)を十分取り、凹部ではバネの高さ(1h)を低くして、前項0004(イ)に記載のバネ要目の範囲で指定して、背臥背面の生理的彎曲(7j)に合う又は近似する波形状となるように形成する (請求項1から請求項2に記載)。
(ニ)身長方向の水平振動(6a)を二つの形態に区分し、堅固なバネ台座(4)を動かす場合と、背臥身体自体に押す又は引く力を掛ける場合があり、堅固なバネ台座(4)を動かす場合は、コイル固定部(1f)が動き、バネ頂点の中心の垂直分力(5b)を不動点として、水平分力(5c)が180°方向転換の運動をし、一方、背臥の身体に力を掛ける場合は、コイル固定部(1f)を不動として、接触点とバネ頂点の中心点の垂直分力(5b)が密着のようにすべらないで往復運動し、いずれも接触点がすべらず垂直分力(5b)は安定して接触面を押圧し、水平分力(5c)は圧縮コイルバネ(1)の傾きと連動し、往復運動の戻りは圧縮コイルバネ(1)の復元力で戻すことを基本とする。
(ホ)図4は、堅固なバネ台座(4)を動かす場合で、頭部側に引っ張る又は押して移動するときの分力をを示し、頭部側を前方(6b)として前方から始め、足方向に傾く押圧力が、真上を向く垂直分力(5b)と足方向に向く水平分力(5c)に分力され、バネ頂点の中心の垂直分力(5b)を不動点として、水平分力(5c)が一斉に足方向に向いて、バネの傾きと水平分力(5c)が連動して、1個1個のバネに力を配分する。
(ヘ)図5は、後方(6c)の足方向への移動時の分力を示し、前方に位置する同水平振動(6a)がバネの復元力で足側に戻されて、頭部側に傾く押圧力が、垂直分力(5b)と水平分力(5c)に分力され、バネ頂点の中心点の垂直分力(5b)は不動で真上を向き、頭部側を向く水平分力(5c)は同水平振動(6a)に連動して、バネの復元力が各部位と整合する力で、交互に頭部側と足方向に向きを変える。
(ト)図6は、傾くコイル頂点面を拡大して示し、傾くコイル頂点(1c)で、曲線のバネ軸(4c)の上方の押圧力も傾いて、水平分力(5c)と垂直分力(5b)に分力され、コイル頂点が傾いても垂直分力(5b)は不動点として、常に一定時間同じ位置で真上方向を向き、水平分力(5c)は同水平振動と逆向きに方向を変えて、接触面を伸長するように作用する(請求項1記載)。
(チ)同水平振動(6a)で移動する同台座(4)を戻す条件は、安臥の筋肉に有する三つの固有の特性から得られ、一つ目は、身長方向に加える水平振動の移動長(6d)で、二つ目は、仰臥の身体を前後に揺すったときに発生する身体ごとに僅かずつちがう振動の回数で、三つ目は、加える振動をつづける時間の長さで組み立てる。
(リ)一つ目の水平振動の移動長(6d)は、おおむね1〜10cmの範囲にあるが、一般的に最大値が6.5cm前後に集中することから、最大値を約6.5cmにして、それ以上の場合は大きい体型用等に分けて10cm前後の移動長を限度とし、二つ目は、振動の回数で、進めたら戻る1往復をその1振動として10秒間で約15〜18回の範囲に集中し、同水平振動では少し余裕をとり10秒当り約10〜20往復とし、三つ目は、振動時間の長さで、同水平振動は俊足性の強い運動に入り、その代表例となる無酸素性運動の100m走あるいは200m走等を、この時間の長さの参考として、1回当り約10秒以内で長くても30秒ほどの時間を一セットとし、一セットごとに約1〜5分間同往復運動を止めて筋肉を休ませて、約5〜20セット往復させ、背臥における同水平振動時間を約30〜90分の範囲として、それぞれの筋が最大に伸縮運動するように作用することを目標に身長方向の水平振動をつづける。
(ヌ)同水平振動(6a)による往復運動は、疲労等によって筋のサルコメアという各筋節の中央部に、両端からアクチンフィラメントがミオシンの中心に向かって滑り込んだままの状態がつづき、その滑り込みで筋肉が永続的に収縮することから、両方から滑り込むアクチンの収縮に対して、身長方向の水平振動(6a)を起こすときだけ力を掛け、同水平振動のもどりは、筋肉本来の滑り込みの学習の意味からも、バネの復元力で戻すことを基本とし、身長方向の水平往復運動で両方の滑りに向かって引き伸ばす。
(ル)アクチンの滑り込みの度合いによって刺激度が異なり、その滑り込みが少ない場合は、筋力強化的として、身体に対して同水平振動を加速度の機械的刺激として直接的に掛け、アクチンの滑り込みが大きい場合は反射性が強くなり、身長方向の水平振動を、静止の状態からソフトな機械的刺激として、段階的に掛けていく場合の二通りに大別する。
(ヲ)同水平振動は、初期段階では前方移動からはじめるとよく、回数をつみ重ねたあとで後方からスタートしてもよい。同水平振動(6a)は、前方(6b)とする頭部側からはじめるとよい。
(ワ)身長方向の水平振動のもどりを機械的にもどしてもよい。
Examples of horizontal vibration in the height direction
(A) FIG. 1 shows a shape in which a compression coil spring (1) is inclined in the same direction by applying a horizontal vibration (6a) in the height direction to a solid spring pedestal (4), and a pedestal surface (3a) near horizontal or horizontal. In the example in which a slightly larger compression coil spring (1) having a different height is erected and the same vibration is applied to the spring pedestal, the spring apex surface (4a) is approximated to the physiological curve (7j) on the back of the dorsal fin, The dorsal body weight is distributed according to the strength of the contact area, the load applied to each spring is evenly distributed, and the deflection decreases with a smaller load per one, which corresponds to the length of the arm. The coil apex (1c) and the pedestal surface (3a) are sufficiently separated from each other, and the coil apex (1c) does not slide so as to be in close contact with the body contact surface. A compression coil with a large elastic force by increasing the effective number of turns so as to convert it into a bending Ne (1) addressed to (claim 1 wherein to claim 3) for a certain period of time continue to the horizontal vibration.
(B) FIG. 2 is an enlarged view of a part of FIG. 1, and when the horizontal vibration acts as a lateral load on the spring and the spring tilts, the curved spring axis (4c) and the inclination of the coil apex surface (5d ) Is formed, and the diagonal pressing force of the force (5a) in the spring axis direction during vibration is stably divided into the vertical component force (5b) and the horizontal component force (5c) for each horizontal vibration, In the coil effective portion (1e), the opposite side of the horizontal vibration is compressed across the curved spring axis (4c) to become the pitch compression surface (1j), and the horizontal vibration side is pulled to be the pitch expansion surface (1k). Therefore, a compression coil spring (1) having a large elastic force by increasing the effective number of turns so as to store elastic energy as a restoring force of the spring, pull back the spring base, and continue the 180 ° direction change of the horizontal component force for a certain period of time. (Claim 1).
(C) FIG. 3 schematically shows the pressing force (5a) in which the dorsal body weight at rest is dispersed to the strength corresponding to the contact part, and the convex part in the uneven part of the physiological curve on the back of the dorsal fin Then, take enough spring height (1h), and lower the spring height (1h) in the recess, and specify the range of the spring points described in the previous section 0004 It is formed so as to have a wave shape that fits or approximates the curvature (7j) (claims 1 to 2).
(D) The horizontal vibration (6a) in the height direction is divided into two forms, and the strong spring pedestal (4) may be moved, and the back body itself may be pushed or pulled. When moving (4), the coil fixing portion (1f) moves, the horizontal component force (5c) moves 180 degrees, with the vertical component force (5b) at the center of the spring apex as a fixed point, When applying a force to the body of the dorsal fin, the coil fixing part (1f) is fixed, and the vertical component force (5b) of the contact point and the center point of the spring apex does not slide like a close contact. However, the contact point does not slip, the vertical component force (5b) stably presses the contact surface, the horizontal component force (5c) interlocks with the inclination of the compression coil spring (1), and the return of the reciprocating motion is the compression coil spring (1). It is based on returning with the restoring power of.
(E) FIG. 4 shows the component force when moving by pushing or pushing to the head side when moving the solid spring pedestal (4), starting from the front with the head side as the front (6b) The pressing force that tilts in the direction is divided into the vertical component force (5b) that faces directly above and the horizontal component force (5c) that points in the foot direction. The component force (5c) is simultaneously directed toward the foot, and the inclination of the spring and the horizontal component force (5c) are interlocked to distribute the force to each one spring.
(F) FIG. 5 shows the component force when moving backward (6c) in the foot direction, and the horizontal vibration (6a) located in the front is returned to the foot side by the restoring force of the spring. Is applied to the vertical component force (5b) and the horizontal component force (5c), and the vertical component force (5b) at the center point of the spring apex is fixed and faces directly above, and is directed horizontally toward the head side. The component force (5c) is interlocked with the horizontal vibration (6a), and the direction in which the restoring force of the spring is aligned with each part alternately changes the direction in the head side and the foot direction.
(G) FIG. 6 shows an enlarged view of the coil apex surface that is tilted, and the tilting coil apex (1c) also tilts the pressing force above the spring axis (4c) of the curve, resulting in a horizontal component force (5c) and a vertical component. Even if the coil apex is tilted, the vertical component force (5b) is always fixed at the same position for a fixed time and the horizontal component force (5c) is opposite to the horizontal vibration. The direction is changed in the direction to act to extend the contact surface (claim 1).
(H) The condition for returning the pedestal (4) that moves with the same horizontal vibration (6a) is obtained from three unique characteristics of the muscle of relief, and the first is the movement of horizontal vibration applied in the height direction. The second (6d) is the number of vibrations slightly different for each body generated when the supine body is shaken back and forth, and the third is assembled with the length of time to continue the applied vibration.
(I) The movement length (6d) of the first horizontal vibration is approximately in the range of 1 to 10 cm, but generally the maximum value is concentrated around 6.5 cm, so the maximum value is about 6.5 cm. In the case of more than that, the movement length of about 10 cm is limited to large body types, and the second is the number of times of vibration, and one round trip that returns after moving forward is about 15 to 10 seconds. Concentrate on the range of 18 times, with a little margin in the horizontal vibration and about 10-20 reciprocations per 10 seconds, the third is the length of vibration time, the horizontal vibration enters a strong agility movement, A typical example of 100m or 200m anaerobic exercise is a reference for the length of this time. Within 10 seconds per session, the maximum time is 30 seconds or less. Stop the same reciprocation for about 1 to 5 minutes every time to rest your muscles, 20 set back and forth, as the range of about 30 to 90 minutes the same horizontal vibration time in supine, continued horizontal vibration height direction with the goal of each muscle acts to expands and contracts to the maximum.
(Nu) The reciprocating motion due to the horizontal vibration (6a) is due to fatigue, etc., where the actin filaments continue to slide from both ends toward the center of myosin at the center of each sarcomere, the muscle sarcomere. Because the muscles contract permanently, the actin that slides from both sides is stressed only when the horizontal vibration in the height direction (6a) is generated, and the return of the horizontal vibration is the learning of the original sliding of the muscle. From the point of view of the above, it is based on returning by the restoring force of the spring, and is stretched toward both slips by horizontal reciprocating motion in the height direction.
(Le) When the degree of stimulation varies depending on the degree of actin sliding, and when the amount of sliding is small, the horizontal vibration is directly applied to the body as a mechanical stimulus for acceleration, and the actin sliding is large. In this case, the reflectivity becomes strong, and the horizontal vibration in the height direction is roughly divided into two cases in which the vibration is applied gradually from a stationary state as a soft mechanical stimulus.
(W) The horizontal vibration may be started from the forward movement in the initial stage, and may be started from the rear after the number of times is accumulated. The horizontal vibration (6a) may be started from the front side (6b).
(W) The return of horizontal vibration in the height direction may be returned mechanically.

水平振動用の圧縮コイルバネの実施例
(イ)図7は、同水平振動用の圧縮コイルバネ(1)を示し、同水平振動の運動量をバネの弧状の曲げに変換し、図2の曲線のバネ軸(4c)上方で傾く押圧力を、垂直分力(5b)と水平分力(5c)に分力しても座屈やへたらないバネ材料として、横弾性係数Gの大きいピアノ線又はばね用ステンレス鋼線を用い、背臥背面用のバネ要目として、弾性エネルギーを大きくするように、バネの高さ(1h)を約15〜6cmの範囲とし、バネ材料径dを約3.2〜2.0mmの範囲とし、コイル平均径(1b)を約45〜30mmの範囲とし、コイル有効部(1e)のバネ定数を約1.6〜0.7N/mmの範囲とするとよい(請求項1記載)。
(ロ)バネ材料径とバネの高さ(1h)の関係は、バネ材料径d=2.0mmでは約7cm以下の高さがよく、d=2.3mmは約10cm以下の高さがよく、d=2.6mmは約13cm以下の高さがよく、15cmの場合はd=2.9又は3.2mmとするとよい。
(ハ)大きい弾性エネルギーを蓄えられるように、バネが運動する有効部分のバネ材料長を伸ばして、有効巻数を多くし、かつコイル上部(1d)を円錐台形状又は半円球形状あるいは半楕円球形状で巻き込んで、コイル頂点(1c)で巻きピッチをゼロにして、コイル鋼線のねじれによるせん断応力を打ち消し、コイル頂点外径(1a)を約10mmにして接触点とし、コイル頂点(1c)が接触面と密着するように作用する圧縮コイルバネ(1)に形成する (請求項1記載)。
(ニ)深部筋では、皮膚接触面の機械的変形の深さが5cm以上となる場合があり、機械的変形が大きいほどバネの高さ(1h)を大きくして、かつ弾性エネルギーを蓄える圧縮コイルバネ(1)が適すことから、強い筋力に対しては、バネ要目のバネ材料径を約d=3.5mmまで範囲を広げ、バネ定数ではk≒2.3N/mm以下として、コイル平均径(1b)をD≒50mmまで広大するとよい(請求項5記載)。
(ホ)全身的に体表面をしらべる場合、筋肉層の非常に薄い部位もあり、機械的刺激の押圧速度又は加速度をゼロに近づけて、皮膚体表面の微小な機械的変形での接触面の反応をみる場合は、バネ材料径を約d=0.8mmまで小さくし、バネ定数ではk≒0.1N/mmまで小さくし、コイル平均径(1b)を約D≒20mmまで小さくして、体表面の異常な内圧に反応する圧縮コイルバネ(1)を設ける(請求項6記載)。
Example of compression coil spring for horizontal vibration
(A) FIG. 7 shows a compression coil spring (1) for the horizontal vibration, which converts the momentum of the horizontal vibration into an arc-shaped bending of the spring and tilts it above the spring axis (4c) of the curve of FIG. As a spring material that does not buckle or sag even if it is divided into a vertical component force (5b) and a horizontal component force (5c), a piano wire with a large transverse elastic modulus G or a stainless steel wire for springs is used. As a spring guide for the back surface, the height (1h) of the spring is set in the range of about 15 to 6 cm, the spring material diameter d is set in the range of about 3.2 to 2.0 mm so as to increase the elastic energy, and the coil The average diameter (1b) may be in the range of about 45 to 30 mm, and the spring constant of the coil effective portion (1e) may be in the range of about 1.6 to 0.7 N / mm (claim 1).
(B) The relationship between the spring material diameter and the spring height (1h) is good when the spring material diameter is d = 2.0 mm, which is about 7 cm or less, and when d = 2.3 mm, the height is about 10 cm or less. D = 2.6 mm has a height of about 13 cm or less, and in the case of 15 cm, d = 2.9 or 3.2 mm is preferable.
(C) In order to store large elastic energy, the length of the spring material of the effective part where the spring moves is increased, the effective number of turns is increased, and the upper part of the coil (1d) has a truncated cone shape, a semispherical shape, or a semi-elliptical shape. The coil is wound in a spherical shape, the winding pitch is made zero at the coil apex (1c), the shear stress due to the torsion of the coil steel wire is canceled, the coil apex outer diameter (1a) is set to about 10 mm as the contact point, and the coil apex (1c ) Is formed on the compression coil spring (1) acting so as to be in close contact with the contact surface (claim 1).
(D) In deep muscles, the depth of mechanical deformation of the skin contact surface may be 5 cm or more, and the greater the mechanical deformation, the larger the spring height (1h) and the compression that stores elastic energy. Since the coil spring (1) is suitable, for strong muscle strength, the spring material diameter of the spring core is expanded to about d = 3.5 mm, and the spring constant is set to k≈2.3 N / mm or less, and the coil average The diameter (1b) may be widened to D≈50 mm (claim 5).
(E) When examining the body surface throughout the body, there is also a very thin part of the muscle layer, the pressing speed or acceleration of mechanical stimulation is brought close to zero, and the contact surface of the skin body surface due to minute mechanical deformations When looking at the reaction, the spring material diameter is reduced to about d = 0.8 mm, the spring constant is reduced to k≈0.1 N / mm, and the coil average diameter (1b) is decreased to about D≈20 mm. A compression coil spring (1) that reacts to an abnormal internal pressure on the body surface is provided (claim 6).

水平振動用の角材台座の実施例
(イ)図8は、角材台座(2)の一例を示し、等身大の丈夫な角材を水平又は水平に近い台座面(3a)に形成して角材台座(2)とし、その台座面上に、コイル頂点を結ぶバネ頂点曲面(4a)が、背臥背面の生理的彎曲(7j)に合う又は近似の波形状を呈すように上記0008(イ)記載のバネ要目を適宜指定して、圧縮コイルバネ(1)を組み合わせ、体重を接触部位に相応の強さに分散するような角材台座(2)として形成する(請求項2記載)。
(ロ)立設バネの高さの差を小さくするように、頸部(7g)と後頭部(7h)の台座面(3a)を約1〜3cm嵩上げして、バネの高さに置き換えてもよい。また、腰部(7e)や大腿部(7c)においても適宜嵩上げしてよい。
(ハ)図9は、角材台座(2)を厚板(2h)に固定する一例を示し、その上面に全身背臥して、全身背臥のまま身長方向の水平振動を掛けつづけることができるように、大きい弾性エネルギーを蓄えてソフトな弾性力の大きい圧縮コイルバネ(1)を立設して、堅固なバネ台座(4)として形成する(請求項2記載)。
(ニ)堅固なバネ台座(4)のバネ頂点曲面(4a)が、背臥背面の生理的彎曲(7j)の波形状を呈すように、バネの高さ(1h)を、全体的に15〜6cmの範囲で組み合わせて配列して立設する(請求項2記載)。立設は垂直に近いほどよい。
(ホ)圧縮コイルバネ(1)の立設は、角材台座(2)に配列して固定する場合と、厚板台座板(3)上に直接配列して固定する場合の二通りにでき、角材台座(2)を配列する場合は、4列、6列、8列の例に適し(請求項2記載)、10列以上とする場合は角材台座(2)を使用しないで厚板台座板(3)が適す(請求項3記載)。
Embodiment (a) FIG. 8 shows an example of a square pedestal (2). A square pedestal (3a) is formed on a pedestal surface (3a), which is a life-size, strong square. 2), and on the pedestal surface, the spring apex curved surface (4a) connecting the coil apexes matches the physiological curve (7j) on the back of the dorsal fin or exhibits an approximate wave shape as described in the above 0008 (a) A spring core is appropriately designated, and a compression coil spring (1) is combined to form a square base (2) that distributes the body weight to an appropriate strength at the contact site (claim 2).
(B) The base surface (3a) of the neck (7g) and the back of the head (7h) is raised by about 1 to 3 cm so as to reduce the difference in height of the standing spring, and replaced with the spring height. Good. Moreover, you may raise suitably also in a waist | hip | lumbar part (7e) and a thigh part (7c).
(C) FIG. 9 shows an example of fixing the square pedestal pedestal (2) to the thick plate (2h), so that the whole body can be hung on the upper surface, and horizontal vibrations in the height direction can be continuously applied while the whole body is hung. In addition, a compression coil spring (1) having a large elastic energy and storing a large elastic force is erected to form a firm spring pedestal (4).
(D) The spring height (1h) is set to 15 as a whole so that the spring apex curved surface (4a) of the rigid spring pedestal (4) exhibits the waveform of the physiological curve (7j) on the back of the dorsal fin. They are arranged in a combination in the range of ˜6 cm and are erected (claim 2). Standing upright is better.
(E) The compression coil spring (1) can be erected in two ways: when it is arranged and fixed on the square base (2) and when it is arranged and fixed directly on the thick plate base (3). When arranging the pedestal (2), it is suitable for the example of 4, 6 and 8 rows (Claim 2). When the number of rows is 10 or more, without using the square material pedestal (2), 3) is suitable (claim 3).

第一実施例(全身4連型)(水平振動用)
(イ)図10〜図11は、4列の角材台座(2)と2本の腕用台座(2d)の合計6本で厚板(2h)上に並べる実施例を示し、内側台座(2a)を約6〜7cm幅の脊柱から外すように、コイル頂点(1c)と脊柱の間隙を肩部で約1〜1.5cmとり、腰部(7e)で約2.5〜3.5cmの間隙とし、足部が自然な広がりとなるように足側を開いて配置し、内側台座と外側台座の間隔(2f)を平均6.5cmとして、平行に設けて左右2本ずつ計4本並べ、腕用台座(2d)は腕が自然な広がりとなるように配置し、合計6本で堅固なバネ台座を形成する(請求項2記載)。
(ロ)角材台座(2)を配置する代表例として、長さが約1.55〜1.8mで角材の厚さ(3c)が4cmの場合、脊柱を挟む内側台座の間隔(2e)を頭部端で約5〜6cmとして、足〜足首部(7a)端では約14〜18cmの間隔で、下肢側を広げて配置し、腕用台座(2d)は省略してもよい場合もある。
(ハ)内側台座(2a)のバネの高さ(1h)は、台座面(3a)を水平にみて、後頭部(7h)を10〜12cm前後とし、頸部(7g)を12〜15cm前後とし、背部(7f)を約6〜8cmとし、腰部(7e)を9〜12cm前後とし、臀部(7d)を7〜10cm前後とし、大腿部(7c)を12〜13cm前後とし、ふくらはぎ部(7b)から足・足首部(7a)にかけて約9〜11cmの高さとして、全体的に、背部(7f)の低い部位では約6cm以上として上限を約15cmとし、適宜台座面(3a)を調整するとよい(請求項1記載)。
(ニ)内側台座(2a)の頸部(7g)と後頭部(7h)の部分を約2〜3cm嵩上げして、バネの高さ(1h)を後頭部(7h)で約7〜10cm、頸部(7g)で約9〜12cmと少し小さくしてもよい。
(ホ)外側台座(2b)のバネの高さ(1h)は、後頭部(7h)と頸部(7g)及び大腿部(7c)から足・足首部(7a)にかけて内側台座(2a)とほぼ同じ高さとし、背部(7f)と腰部(7e)と臀部(7d)では内側台座(2a)より約1〜2cm前後上げるとよい。
(ヘ)また、外側台座(2b)の角材の高さ(3b)を、背部(7f)と腰部(7e)と臀部(7d)にかけて、内側台座(2a)より約1〜2cm適宜に高くしてその差を補い、バネの高さ(1h)をできるだけ均一にして、バネの種類を少なくするとよい。
(ト)角材台座(2)を身長別にする場合は、体型あるいは身長ごとに約2〜10cm刻みの長さで、体型ごとに角材台座(2)を交換できるようにするとよく、また代表的な長さとして頻度の高い1.65mの角材台座(2)を直接厚板(2h)に固定してもよく、その場合は、身長約1.75mから1.5mの範囲を吸収して対応でき、また6〜7歳児でも腰部(7e)を軸として乗り、枕等(8a)を移動して併用するとよい。
(チ)各部位のバネ定数は、後頭部(7h)と背部(7f)で約0.7〜0.9N/mmとソフトにして、頸部(7g)では約0.8〜1.0N/mmの範囲がよく、腰部(7e)と臀部(7d)では約1.6N/mmまで可能で、大腿部(7c)では約0.9〜1.4N/mmがよく、ふくらはぎ部(7b)と足・足首部(7a)では約0.7〜1.2N/mmがよく、全体的に0.7〜1.6N/mmの範囲として、また有効巻数を多くして蓄えるエネルギーを大きくして適宜ソフトにするほうがよく、その後に参考値としてバネ定数を与えるとよい(請求項1記載)。
(リ)腕用の台座(2d)は、内側台座(2a)又は外側台座(2b)の、頸部(7g)から大腿部(7c)の長さにするとよく、肘を少し曲げた状態を自然体として、そのときに、手と手首の部位が大腿部(7c)の凸形に当り、前腕部は臀部(7d)の凹部に置くかたちで、肘が腰部(7e)に相当する凸部のコイル頂点(1a)の外側に位置し、上腕部が背部(7f)の凹形に当り、肩部は頸部(7g)の凸形のスロープ面に当るように、外側台座(2b)に対して少し斜め方向に固定するとよい。
First example (whole body type) (for horizontal vibration)
(A) FIGS. 10-11 shows the Example which arranges on a thick board (2h) by a total of six square material bases (2) and two arm bases (2d) of 4 rows, and shows an inner side base (2a ) Is removed from the spine having a width of about 6 to 7 cm, the gap between the coil apex (1c) and the spinal column is about 1 to 1.5 cm at the shoulder, and the gap at the waist (7e) is about 2.5 to 3.5 cm. And the foot side is opened so that the foot part naturally expands, the distance (2f) between the inner pedestal and the outer pedestal is set to 6.5 cm on average, and they are arranged in parallel and arranged in total on the left and right two, The arm pedestals (2d) are arranged so that the arms are naturally expanded, and a total of six arms form a firm spring pedestal (claim 2).
(B) As a typical example of arranging the square pedestal pedestal (2), when the length is about 1.55 to 1.8 m and the thickness of the square timber (3c) is 4 cm, the interval (2e) between the inner pedestals sandwiching the spinal column is set. In some cases, the head end is about 5 to 6 cm, the leg to ankle (7a) end is about 14 to 18 cm apart and the lower limbs are widened, and the arm base (2d) may be omitted. .
(C) The spring height (1h) of the inner pedestal (2a) is such that the pedestal surface (3a) is viewed horizontally, the back of the head (7h) is about 10-12 cm, and the neck (7g) is about 12-15 cm. The back (7f) is about 6 to 8 cm, the waist (7e) is about 9 to 12 cm, the buttocks (7d) is about 7 to 10 cm, the thigh (7c) is about 12 to 13 cm, and the calf ( 7b) to the foot / ankle part (7a) is about 9-11cm in height, and overall the lower part of the back part (7f) is about 6cm or more, the upper limit is about 15cm, and the pedestal surface (3a) is adjusted appropriately Then, it is good (claim 1).
(D) The neck (7g) and the back of the head (7h) of the inner pedestal (2a) are raised by about 2 to 3 cm, and the height of the spring (1h) is about 7 to 10 cm at the back of the head (7h). (7g) may be slightly reduced to about 9 to 12 cm.
(E) The height (1h) of the spring of the outer pedestal (2b) is the same as that of the inner pedestal (2a) from the back head (7h), the neck (7g) and the thigh (7c) to the foot / ankle (7a). The height is approximately the same, and the back (7f), waist (7e), and buttocks (7d) should be raised about 1-2 cm from the inner pedestal (2a).
(F) Further, the height (3b) of the square member of the outer pedestal (2b) is appropriately increased by about 1 to 2 cm from the inner pedestal (2a) over the back (7f), the waist (7e), and the buttocks (7d). Therefore, it is preferable to compensate for the difference, make the height (1h) of the spring as uniform as possible, and reduce the number of springs.
(G) When the square pedestal pedestal (2) is categorized by height, it is preferable that the square pedestal pedestal (2) can be exchanged for each body shape with a length of about 2 to 10 cm for each body shape or height. The square base (2) with a high frequency of 1.65m may be directly fixed to the thick plate (2h). In that case, the height range of 1.75m to 1.5m can be absorbed. Moreover, it is good also for a 6-7 year old child to ride on a waist | hip | lumbar part (7e) as an axis | shaft, and to move a pillow etc. (8a) together.
(H) The spring constant of each part is soft at about 0.7 to 0.9 N / mm at the back of the head (7 h) and back (7 f), and about 0.8 to 1.0 N / at the neck (7 g). The range of mm is good, the waist (7e) and buttocks (7d) can be up to about 1.6 N / mm, the thigh (7c) is about 0.9 to 1.4 N / mm, and the calf (7b ) And the foot / ankle (7a) is preferably about 0.7 to 1.2 N / mm, and the overall range is 0.7 to 1.6 N / mm, and the number of effective windings is increased to increase the energy stored. Then, it is better to make it soft as appropriate, and then give a spring constant as a reference value (claim 1).
(L) The arm base (2d) should be the length of the inner base (2a) or outer base (2b) from the neck (7g) to the thigh (7c), with the elbow slightly bent , With the hands and wrists touching the convex shape of the thigh (7c), the forearm is placed in the concave of the buttocks (7d), and the elbow is the convex corresponding to the waist (7e) The outer pedestal (2b) is positioned outside the coil apex (1a) of the upper part, the upper arm hits the concave shape of the back (7f), and the shoulder hits the convex slope surface of the neck (7g). It is better to fix in a slightly diagonal direction.

第二実施例(全身6連型)(水平振動用)
(イ)図12〜図13は、厚板(2h)上に、角材台座(2)を左右3本ずつ計6列並べ、その両脇に腕用台座(2d)を配置して合計8本の実施例を示し、内側台座(2a)を、脊柱から肩部で1〜1.5cm前後離して、腰部(7e)で2.5〜3.5cm前後離し、中間台座(2b)として4連型の外側台座(2b)を当て、外側に両翼台座(2c)を設け、その両脇に、腕が自然な広がりとなるように腕用の台座(2d)を配置して、合計8本で堅固なバネ台座を形成する(請求項2記載)。
(ロ)角材台座(2)を配置する代表例として、長さが約1.55〜1.8mで、角材の厚さ(3c)が4cmの場合、脊柱を挟む内側台座の間隔(2e)では、頭部(7h)端の間隔を約5〜6cmとして、足〜足首部(7a)端の間隔を約14〜18cmとし、左右ごとの角材台座の間隔(2g)を、頭部端の間隔で約5〜6cmとして、足・足首部(7a)端では角材台座(2)を密着して台座間のすき間をなくすとよく、腕用台座(2d)を省略してもよい場合がある。
(ハ)内側台座(2a)のバネの高さ(1h)の例では、上記0010の4連型(ハ)及び(ニ)の記載に準じ、中間台座(2b)は上記0010の(ホ)に準ずるとよい。
(ニ)両翼台座(2c)のコイル頂点の高さは、後頭部(7h)と頸部(7g)及び大腿部(7c)とふくらはぎ部(7b)と足・足首部(7a)では中間台座(2b)とほぼ同じく平らとし、背部(7f)と腰部(7e)と臀部(7d)では内側台座(2b)より約1.0〜1.5cm前後ずつ上げるとよい。
(ホ)また角材の高さ(3b)では、背部(7f)と腰部(7e)と臀部(7d)にかけて内側台座(2a)より順次約1.0〜1.5cmずつ適宜に高くし、コイルの高さ(1h)をできるだけ均一的にして、バネの種類を少なくすとよい。
(ヘ)角材台座(2)の長さを体型ごとに形成する場合は、上記0010の4連型(ト)の記載に準ずるとよい。
(ト)各部位のバネ定数は、上記0010の4連型(チ)の記載に準ずるとよい。
(チ)腕用の台座(2d)は、上記0010の4連型(リ)の記載に準ずるとよい。
(リ)両翼台座(2c)は、やや外側の斜め方向から押圧するとよいことから、少し両翼台座(2c)を内側に傾けて設置するとよい。
Second embodiment (whole body type) (for horizontal vibration)
(A) In FIGS. 12 to 13, a total of 8 pieces are arranged on the thick plate (2h) by arranging the square bases (2) on the left and right sides in a total of 6 rows and arranging arm bases (2d) on both sides. The inner pedestal (2a) is separated from the spinal column by about 1 to 1.5 cm at the shoulder, the waist (7e) is separated by about 2.5 to 3.5 cm, and the intermediate pedestal (2b) is arranged in quadruplicate. Place the outer pedestal (2b) of the mold, provide both wing pedestals (2c) on the outside, and place arm pedestals (2d) on both sides so that the arms naturally spread, A firm spring pedestal is formed (claim 2).
(B) As a typical example of arranging the square member pedestal (2), when the length is about 1.55 to 1.8 m and the thickness (3c) of the square member is 4 cm, the interval between the inner pedestals sandwiching the spine (2e) Then, the interval between the head (7h) ends is set to about 5 to 6 cm, the interval between the feet to the ankle (7a) ends is set to about 14 to 18 cm, and the interval (2g) between the left and right square bases is set to The interval is set to about 5 to 6 cm, and the end of the foot / ankle part (7a) may be in close contact with the square base (2) to eliminate the gap between the bases, and the arm base (2d) may be omitted. .
(C) In the example of the spring height (1h) of the inner pedestal (2a), the intermediate pedestal (2b) is the 0010 (e) according to the description of the 0010 quadruple type (c) and (d). It is better to follow
(D) The height of the coil apex of both wing pedestals (2c) is the intermediate pedestal at the occipital region (7h), neck (7g), thigh (7c), calf (7b), and foot / ankle (7a). (2b) It is good to make it almost flat, and raise the back part (7f), the waist part (7e), and the buttocks part (7d) by about 1.0 to 1.5 cm from the inner base (2b).
(E) In addition, the height of the square bar (3b) is appropriately increased by about 1.0 to 1.5 cm from the inner base (2a) to the back part (7f), the waist part (7e) and the buttocks part (7d). It is preferable to make the height (1h) as uniform as possible and to reduce the number of springs.
(F) In the case of forming the length of the square base (2) for each body shape, it is preferable to conform to the description of the 0010 quadruple type (g).
(G) The spring constant of each part may be in accordance with the description of the 0010 quadruple type (H).
(H) The arm pedestal (2d) may conform to the description of the 0010 quadruple type (re).
(L) Both wing pedestals (2c) may be pressed slightly from the oblique direction on the outside, so that both wing pedestals (2c) may be slightly tilted inward.

第三実施例(全身10連型)(水平振動用)
(イ)10連型の実施例を図14〜図16に示し、圧縮コイルバネ(1)を直接厚板台座板(3)に固定し、バネ頂点曲面(4a)を背臥背面の生理的彎曲(7j)に似せて緩やかな波形状とし、身長方向に平行に10列並びに立設し、背臥身体で腕部を乗せて身体の動きの自由度を上げるように、広くバネマット又はバネベッド型に堅固に形成する(請求項3記載)。
(ロ)同例のバネの高さ(1h)は、後頭部(7h)では約6〜8cm、頸部(7g)では約9〜10cm、背部(7f)では約6〜7cm、腰部(7e)では約8〜10cm、臀部(7d)では約6〜8cm、大腿部(7c)では約8〜10cm、ふくらはぎ部(7b)では約7〜10cm、足・足首部(7a)では約6〜8cmを目安として、バネの横方向には明確なバネ頂点曲面(4a)を設けないでゆるやかにするとよく、全体的にバネの高さ(1h)は約10cmを上限とするとよく、体格が大きい場合はバネの高さ(1h)を12cm前後に大きくしてもよい場合がある。
(ハ)バネ定数は約0.7〜1.2N/mmの範囲でソフトにするとよい。
Third embodiment (whole body type) (for horizontal vibration)
(A) A ten-line type embodiment is shown in FIGS. 14 to 16, and the compression coil spring (1) is directly fixed to the thick plate base plate (3), and the spring apex curved surface (4a) is a physiological curve on the back of the dorsal fin. (7j) with a gentle wave shape, 10 rows in parallel with the height direction, and a wide spring mat or spring bed type so that the arm part is placed on the dorsal body and the freedom of movement of the body is increased. It is formed firmly (claim 3).
(B) The height (1h) of the spring of the same example is about 6-8 cm at the back of the head (7h), about 9-10 cm at the neck (7g), about 6-7 cm at the back (7f), and waist (7e) About 8 to 10 cm, about 6 to 8 cm at the buttocks (7d), about 8 to 10 cm at the thigh (7c), about 7 to 10 cm at the calf (7b), and about 6 to 6 at the foot / ankle (7a) 8cm as a guide, it is good to loosen without providing a clear spring apex surface (4a) in the lateral direction of the spring, and the overall height (1h) of the spring should be about 10cm, and the physique is large In some cases, the height (1h) of the spring may be increased to about 12 cm.
(C) The spring constant is preferably soft in the range of about 0.7 to 1.2 N / mm.

第四実施例(伏臥背面上半身型)(水平振動用)
(イ)図17〜図18は、全身伏臥位で、上半身背面に乗せる伏臥背面用台座(9)を示し、肩部から臀部又は大腿股間節の部位に限定し、伏臥背面用台座の長さ(9c)を約80〜120cmとして、身長方向の角材のバネ立設面を伏臥背面の生理的彎曲に近似の波形状に形成し、脊柱を挟んで角材の伏臥背面用台座(9)を2列ずつ左右対称に合計4列に並べて、伏臥背面用の横固定台座(9d)で固定し、アーム等(10e)で支えて、約10〜60kgのウエイトを掛けて、安定して身長方向の水平振動(6a)ができるように、堅固に形成する(請求項4記載)。
(ロ)伏臥背面用内側台座(9a)の配置で、コイル頂点と脊柱の間隙を肩部で約1〜2.5cmとり、腰部では約4.5〜7cmとり、中心線を挟む内側台座の間隔(9e)が肩部で約8〜12cm、臀部側端を約15〜21cmとし、内側台座と外側台座の間隔(2f)を平均6.5cmとし、脊柱の幅を約6〜7cmとして、同台座全幅を、肩部で20〜25cm前後として、臀部では34〜40cm前後とし、外側のバネが身体背側面をつつむように設けるとよい。
(ハ)伏臥背面用内側台座(9a)のバネの高さ(1h)を約10〜6cmの範囲とし、伏臥背面用外側台座(9b)のバネの高さ(1h)を約12〜6cmの範囲とし、コイル平均径を約D≒30〜35mmとし、バネ材料径を約d=2.0〜2.6mmとし、バネ定数をk≒0.8〜1.2N/mmとして、約5〜7cmのバネ間隔で立設して、身長方向の水平振動(6a)が比較的安定して伝達されるように、コイル個数を約60〜80個にするとよい(請求項4記載)。
(ニ)伏臥背面用台座(9)を体壁背面に被せて接触面との密着性を上げるように、コイル上部(1d)をやや円錐台形にしてコイル頂点外径(1a)を約10mmに巻込んで形成し、かつウエイト(10f)を約15kg以上とするとよい。
(ホ)ウエイト(10f)は、通常約30〜60kgを上限として、体格がよい場合は約60kg以上を考慮してもよく、1秒当り約1〜10kgずつ加重して、一回当り約10〜30秒として、数分間の静止をおき、10回前後繰返すとよい。
(ヘ)伏臥位の身長方向の水平振動では、伏臥背面用台座(9)は臀部側が下がる傾向にあることから、少し振動時波をうつようになる場合があるが、本形態は強化段階を主体としており、その波の加速度で仕事量が大きくなって効果が上る場合があるので特に差支えなく、また、左右異なる疲労性の場合は疲労性の強い側に向かって、身長方向に対して少し角度を付けて斜めに水平振動してもよい。
(ト)同水平振動の他に、上下振動においても押すときに力を加えてバネの力で戻り、水平振動の振動回数と近似して、同じバネで可能である。
Fourth embodiment (upper back body type) (for horizontal vibration)
(A) FIGS. 17 to 18 show a prone back pedestal (9) to be placed on the back of the upper body in the prone position, limited to the region from the shoulder to the buttocks or the crotch, and the length of the prone back pedestal (9c) is about 80-120 cm, the spring standing surface of the square member in the height direction is formed in a wave shape approximate to the physiological curve of the back surface of the prone surface, and the base plate (9) for the prone surface of the square member is sandwiched across the spinal column. Line up symmetrically in four rows in total, fix it with the horizontal fixing pedestal (9d) for the back of the prone, support it with an arm etc. (10e), hang a weight of about 10-60kg, and stabilize it in the height direction It is formed firmly so that horizontal vibration (6a) can be generated (claim 4).
(B) With the arrangement of the inner pedestal (9a) for the back of the prone, the gap between the coil apex and the spinal column is about 1 to 2.5 cm at the shoulder and about 4.5 to 7 cm at the waist, The distance (9e) is about 8-12 cm at the shoulder, the buttock side end is about 15-21 cm, the distance between the inner pedestal and the outer pedestal (2f) is 6.5 cm on average, and the width of the spine is about 6-7 cm. The full width of the pedestal is about 20 to 25 cm at the shoulder, about 34 to 40 cm at the buttocks, and the outer spring is provided so as to wrap around the back of the body.
(C) The height (1h) of the spring on the inner base (9a) for the prone back is in the range of about 10 to 6 cm, and the spring height (1h) of the outer base (9b) for the prone back is about 12 to 6 cm. Range, coil average diameter is about D≈30 to 35 mm, spring material diameter is about d = 2.0 to 2.6 mm, spring constant is k≈0.8 to 1.2 N / mm, about 5 It is preferable that the number of coils be about 60 to 80 so that the horizontal vibration (6a) in the height direction is relatively stably transmitted with a spring interval of 7 cm.
(D) The upper part of the coil (1d) is slightly frustoconical so that the outer diameter of the coil apex (1a) is about 10 mm so that the base for back surface of the prone (9) is placed on the back of the body wall to improve the adhesion with the contact surface. It is good to form by winding and to make weight (10f) about 15 kg or more.
(E) The weight (10f) is usually about 30 to 60 kg as an upper limit, and may be considered to be about 60 kg or more when the physique is good. It is good to repeat for about 10 times after putting stillness for several minutes as -30 seconds.
(F) In horizontal vibration in the prone position in the prone position, the prone back pedestal (9) tends to lower the buttocks side, so there may be a slight vibration wave, but this form has a strengthening stage There is no particular problem because the work acceleration may increase due to the acceleration of the wave, and the effect may be improved. In the case of different fatigue on the left and right, slightly toward the height direction toward the side with strong fatigue You may make a horizontal vibration diagonally at an angle.
(G) In addition to the horizontal vibration, it is possible to apply a force when pressing in the vertical vibration and return with the force of the spring, and it is possible to use the same spring by approximating the number of horizontal vibrations.

第五実施例(深部用凸型台座)
(イ)図19は、アーム等(10e)に接続の深部用凸型台座(10a)を示し、凸型の台座面の直角に配列するバネ軸方向が広がり、バネの中心軸上に作用する押圧力を水平分力(5c)と垂直分力(5b)に分力し、水平分力(5c)が広がる方向を向いて筋肉を伸長するように、圧縮コイルバネ(1)を堅固に立設する。
(ロ)深部用凸型の台座の長さ(10d)を、約18cmから大きくても30cmほどとして、深層部を集中的に押圧できるようにコンパクトな台座とし、曲線半径は一般的に30cm前後で、バネ間隔(4b)が約5〜8cmの範囲で、立設バネ個数を2〜6個程度として接触面を狭めるとよく、脊柱脇用とする場合は約80cmの長さとして、バネ個数を約16個にしてもよい(請求項5記載)。
(ハ)バネ要目では、前記0008に記載の値を基本とし、接触部位ごとにバネの要目が大きく異なることから適宜指定し、強い部位では、弾性力の大きい圧縮コイルバネ(1)がよく、特に筋力が強い場合は、バネ材料径をd=3.5mmまで大きくし、バネ定数をk≒2.3N/mmまで強くして、コイル平均径(1b)を約50mmまで大きくするとよい場合があり(請求項5記載)、一方、反応が強い場合は有効巻数を多くしてソフト性を高めるとよい。
(ニ)深層部に対し、はじめは押圧速度を約0.01m/秒でゆっくりと、次第に0.3m/秒ほどを限度とする速さで押圧し、ウエイト(10f)を1秒当り約1〜10kgの割合に増して、必要に応じて指定荷重を約30〜60kgまで上げ、接触面に対して自由方向から自在に直角方向を維持し、指定荷重でコイルが密着に近づいて、皮膚接触面に深い機械的変形が形成され、密着に近いバネの高さで充分押圧できる圧縮コイルバネ(1)をロボットアーム等に固定する(請求項5記載)。また、特別強い場合は約60kg超のウエイト(10f)を想定してもよい。
(ホ)大きい指定荷重の機械的刺激と接触部位(7)の機械的変形の関係では、深部筋が柔軟性になるほど皮膚接触面(7i)の機械的変形が大きくなって、コイルの密着が可能となり、筋肉が硬性になるほど皮膚接触面(7i)の機械的変形が低下してバネが弾かれやすく、筋力の緊張等のバネを弾く現象がばねの特性に近似することから、それに対応する弾性力の圧縮コイルバネ(1)を設ける。
Fifth embodiment (convex pedestal for deep part)
(A) FIG. 19 shows a deep convex pedestal (10a) connected to an arm or the like (10e). The direction of the spring axis arranged perpendicular to the convex pedestal surface is widened and acts on the central axis of the spring. The compression coil spring (1) is firmly erected so that the pressing force is divided into the horizontal component force (5c) and the vertical component force (5b), and the muscle is stretched in the direction in which the horizontal component force (5c) spreads. To do.
(B) The length of the convex pedestal for deep part (10d) is set to about 30 cm at most from about 18 cm to a compact pedestal so that the deep layer part can be pressed intensively, and the curve radius is generally around 30 cm In the range of the spring interval (4b) of about 5 to 8 cm, the number of standing springs should be about 2 to 6, and the contact surface should be narrowed. May be about 16 (claim 5).
(C) The spring point is based on the values described in the above-mentioned 0008, and is appropriately specified because the spring point is greatly different for each contact part. In a strong part, a compression coil spring (1) having a large elastic force is often used. When the muscular strength is particularly strong, the spring material diameter should be increased to d = 3.5 mm, the spring constant should be increased to k≈2.3 N / mm, and the coil average diameter (1b) should be increased to about 50 mm. (Claim 5), on the other hand, if the reaction is strong, the number of effective windings should be increased to improve the softness.
(D) The depth layer is initially pressed slowly at a pressing speed of about 0.01 m / second and gradually at a speed of about 0.3 m / second, and the weight (10f) is about 1 per second. Increase the specified load to about 30-60kg as necessary, increase the ratio to 10kg, maintain the right angle direction freely from the free direction with respect to the contact surface, the coil approaches close contact with the specified load, skin contact A compression coil spring (1), which has a deep mechanical deformation on the surface and can be pressed sufficiently with a spring height close to contact, is fixed to a robot arm or the like (Claim 5). In addition, when it is particularly strong, a weight (10f) exceeding about 60 kg may be assumed.
(E) In the relationship between the mechanical stimulation of the large specified load and the mechanical deformation of the contact portion (7), the mechanical deformation of the skin contact surface (7i) increases as the deep muscle becomes flexible, and the coil adheres more closely. As the muscle becomes stiffer, the mechanical deformation of the skin contact surface (7i) decreases and the spring is more likely to be repelled, and the phenomenon of repelling the spring, such as muscular tension, approximates the characteristics of the spring. An elastic compression spring (1) is provided.

第六実施例(体表面用凹型台座)
(イ)図20は、アーム等に接続する体表面用凹型台座(10b)を示し、凹型台座用は主に腋下部や腹側部に代表される部位に用い、呼吸に直結して反射的で筋走行が複雑なため、接触点を広げないように、直角方向に立設するバネ軸が体表面に対して直角に近い角度で当り、コイル頂点(1c)の間隔を3〜5cm前後の範囲としてソフトな圧縮コイルバネ(1)を配置するとよい。
(ロ)台座の長さ(10d)は、側腹部の外形から一般的に約30cmの長さがよく、大きい体型の場合は35〜40cmの長さとし(請求項6記載)、バネ立設面の曲線半径は一般的に16〜18cm前後で、大きい体型の場合は20〜30cmの曲線半径を見込む。
(ハ)身体部位ごとにバネの要目が大きく異なり、胸壁部等の反応の強い部位などは、バネ材料径を1.8mm以下で下限を約0.8mmとして、コイル平均径(1b)を28mm以下で20mmまで小さくするとよい場合があり、コイル頂点(1c)の間隔を3〜4cmまで小さくするとよい場合が多く、バネの高さ(1h)を約4cmまで小さくするとするとよい場合があり、バネ定数では約0.1N/mmと弱い圧縮コイルバネ(1)で設けるとよい場合もある(請求項6記載)。
(ニ)反応の強い部位が多い体壁外側面に対する押圧速度は約0.01m/秒に近い方がよく、小さい指定加重での静止持続など、アーム等(10e)により雑振動を排除して安定させる。
Sixth embodiment (concave pedestal for body surface)
(B) FIG. 20 shows a concave pedestal for body surface (10b) connected to an arm or the like, and the concave pedestal is mainly used for a part represented by the lower part of the heel or the abdomen, and is directly connected to respiration and is reflective. Since the muscle running is complicated, the spring shaft standing in the perpendicular direction hits at an angle close to the right angle to the body surface so that the contact point is not widened, and the distance between the coil apexes (1c) is about 3 to 5 cm. A soft compression coil spring (1) may be disposed as a range.
(B) The length of the pedestal (10d) is generally about 30 cm from the outer shape of the flank, and in the case of a large body, the length is 35 to 40 cm (Claim 6), and the spring standing surface The curve radius is generally around 16 to 18 cm, and in the case of a large figure, a curve radius of 20 to 30 cm is expected.
(C) The outline of the spring differs greatly from body part to body part, and the part with strong reaction, such as the chest wall, has a spring material diameter of 1.8 mm or less and a lower limit of about 0.8 mm, and the coil average diameter (1b) is There are cases where it is better to reduce the distance between the coil apex (1c) to 3-4 cm in many cases, and it may be better to reduce the height (1h) of the spring to about 4 cm. In some cases, the spring constant is preferably about 0.1 N / mm, which is a weak compression coil spring (1).
(D) The pressing speed against the outer surface of the body wall, where there are many strong reaction sites, should be close to about 0.01 m / sec. Stabilize.

第7実施例(反力テスト用台座)
(イ)図21は、全身の体表面を対象として反射度を調べる小型の反力テスト用台座(10c)を示し、小さな反力で座屈現象が発生することも多く、前記0008(イ)に記載のバネ要目を基本とし、微小な力から大きな荷重まで範囲を広くして、ゆっくりと時間をのばしながら掛けるように、アーム等(10e)に片側固定として安定させ、座屈が生ずる「たわみ比」としての[たわみ÷バネの高さ]の比率を大きくするとよい。
(ロ)体格がよく筋力の強い場合は、バネ材料径の上限を約3.5mmとして、バネ定数の上限を約2.3N/mmとし、コイル平均径の上限を約50mmにするとよい場合がある(請求項5記載)。
(ハ)反射反応の強い部位では、バネ材料径をd=0.8mmまで小さくして、バネ定数としてはk≒0.1N/mmまで適用範囲を広げ、コイル平均径を約20mmまで小さくし、微小な内圧にも反応し得るようにバネの縦横比[自由高さ÷コイル平均径]を大きくて小さいたわみ比とし、小さいたわみ量で反応して内圧等をキャッチするように、非常にソフトな圧縮コイルバネを設けるとよい場合がある(請求項6記載)。
Seventh Example (Reaction Force Test Base)
(A) FIG. 21 shows a small reaction force test base (10c) for examining the reflectance of the whole body surface, and buckling phenomenon often occurs with a small reaction force. Based on the spring points described in (1), the arm or the like (10e) is stabilized as one side so that it can be applied with a wide range from a minute force to a large load and slowly extended, and buckling occurs. The ratio of [deflection / spring height] as the "deflection ratio" should be increased.
(B) If the physique is strong and the muscular strength is strong, the upper limit of the spring material diameter may be about 3.5 mm, the upper limit of the spring constant may be about 2.3 N / mm, and the upper limit of the coil average diameter may be about 50 mm. (Claim 5).
(C) In the part where the reflection reaction is strong, the spring material diameter is reduced to d = 0.8 mm, the applicable range is expanded to k≈0.1 N / mm as the spring constant, and the average coil diameter is reduced to about 20 mm. The spring aspect ratio [free height ÷ coil average diameter] is large and small so that it can respond to minute internal pressure, and it is extremely soft so that it can react with a small amount of deflection and catch internal pressure etc. In some cases, it may be preferable to provide a simple compression coil spring.

臀部反力テストの実施例
(イ)図22は、臀部(7d)における圧縮コイルバネの座屈(11c)を示し、接触面(12a)にほぼ直角に当てる圧縮コイルバネ(1)に押圧力をゆっくりと掛け、体内に内圧があると押し返されて、簡単に押圧軸(11a)が内圧の押し返す方向(11d)と一致せず、押圧軸のズレ(11b)が起こってバネが座屈し、その屈曲する直前の「ばねの特性」を利用して、体内の押し返す力となる「内圧」を推計する。
(ロ)圧縮コイルバネの座屈(11c)は、筋肉内の細い筒状の筋束が永続的に緊張すると、関節のスパンを結んで弓の弦のように長い筋束が弾かれやすく不安定となり、緊張が強いほど小さい外力で簡単に弾かれ、その反動で、コイル頂点(1c)の押圧力が弾かれ、また体表面に近い緊張ほど作用と反作用の軸の長さが長くなって弱い外力でも簡単にずれが起ってはじかれ、その直前のばねの特性や、皮膚面のくぼみ又は機械的変形(12g)等からその位置を推計する。
(ハ)緊張部位を推計する場合、最大筋力が既知ならベストで、未測定の場合は絶対筋力でよく、絶対筋力とされる4〜8kg/cmの強さの圧縮コイルバネ(1)を用い、ばねの特性から、弾けるときの力を引いた残りの数値が筋肉を改善するために必要となる力の分として推計するとよい。
(ニ)同図の浅層の大殿筋(12c)は、基面の骨盤(12f)からの距離が他の部位と比較して際立って大きく、深い筋肉層が作用軸を長くして、内圧がある場合は非常に小さな押圧でもバネ軸が作用軸とズレが起こり、はじかれることから、臀部の皮膚層(12b)や大殿筋(12c)に対してはバネ定数としてk≒0.5N/mm以下の柔らかいバネを要す場合があり、中間層の中殿筋(12d)ではk≒0.7〜1.4N/mmが目安で、深部の小殿筋(12e)ではk≒1.4N/mm以上が一つの目安となり、強い筋力に対してはk≒2.0N/mm以上を考慮してもよく、逆にk≒0.4N/mm以下のバネ定数を要す場合も想定できるほど範囲が広く、また絶対筋力という筋固有の性質から年齢や性別にあまり左右されない比例関係があり、このようなことからもバネ定数を広くするとよい(請求項5記載から請求項6に記載)。
(ホ)ロボットアーム等でバネの片側を固定するテストでは、1秒ごとに換算して荷重または力を増やすとよく、その増やす量は約0.1〜5kgの範囲がよく、最大で約10kg/秒を見込み(請求項5記載)、1秒当り2.0kgずつ増やす例で10秒後には約20kgというようにして、その途中で座屈の起こる前に、内圧で押し返されてコイル先端が不安定になる現象で押圧が停止して、座屈現象の起こらない強さにもどって押圧をつづけることで、内圧の解消(11e)につながり、筋肉が順次強い荷重に耐えるようになることから、ソフトで弾性エネルギーの大きいコイルバネ(1)を片側固定にするとよい。
(ヘ)同テストでは、弱い押圧力で弾かれる現象からはじめることを前提としておくとよく、各段階の座屈現象が解消するごとに、コイルが密着したまま押圧して、押圧時間をのばしてコイルバネに蓄えられたエネルギーを深部まで伝達し、そこで硬い深部筋をほぐしていくことからも、圧縮コイルバネ(1)の種類を多くするとよい。
Example of buttocks reaction force test (A) FIG. 22 shows the buckling (11c) of the compression coil spring in the buttocks (7d), and the pressing force is applied slowly to the compression coil spring (1) applied almost perpendicular to the contact surface (12a). When the internal pressure is in the body, it is pushed back, and the pressing shaft (11a) does not easily match the direction (11d) in which the inner pressure is pushed back, and the pressing shaft shifts (11b), causing the spring to buckle, Using the “spring characteristics” just before bending, the “internal pressure” that is the force to push back in the body is estimated.
(B) The buckling of the compression coil spring (11c) is unstable when the thin tubular muscle bundle in the muscle is permanently tensioned, and the long muscle bundle like a bowstring is easily tied by connecting the span of the joint. As the tension becomes stronger, it is easily repelled with a small external force, and the reaction force pushes the pressing force of the coil apex (1c), and the tension closer to the body surface increases the length of the action and reaction axes and becomes weaker. The displacement is easily repelled even by an external force, and its position is estimated from the characteristics of the spring immediately before it, the indentation of the skin surface or mechanical deformation (12 g).
(C) When estimating the tension part, if the maximum muscle strength is known, it is best, and if it is not measured, absolute muscle strength may be used, and a compression coil spring (1) having a strength of 4 to 8 kg / cm 2 is used. The remaining numerical value obtained by subtracting the force to play from the spring characteristics may be estimated as the amount of force required to improve the muscle.
(D) The shallow gluteus musculature (12c) shown in the figure has a remarkably large distance from the pelvis (12f) of the base surface compared to other parts, and the deep muscle layer has a longer action axis, If there is a spring, the spring axis is displaced from the action axis even if it is very small, and it is repelled. Therefore, for the skin layer (12b) and the gluteal muscle (12c) of the buttocks, the spring constant is k≈0.5 N / In some cases, a soft spring of less than 1 mm may be required. For the intermediate gluteus (12d) of the intermediate layer, k≈0.7 to 1.4 N / mm is a guideline, and for the deeper gluteus (12e), k≈1. 4N / mm or more is one standard, and for strong muscle strength, k≈2.0N / mm or more may be considered, and conversely, it is assumed that a spring constant of k≈0.4N / mm or less is required. The range is as wide as possible, and it is not influenced by age or gender due to the inherent property of absolute muscle strength. Examples are related, (according to claims 5 claim 6) such broadly If it a spring constant from the fact.
(E) In a test in which one side of a spring is fixed with a robot arm or the like, it is better to increase the load or force by converting every second, and the increase amount should be in the range of about 0.1 to 5 kg, and about 10 kg at the maximum. / Second is expected (Claim 5). In an example of increasing 2.0 kg per second, about 20 kg after 10 seconds, before being buckled in the middle of the coil, When the pressure stops due to the phenomenon of instability and the pressure returns to the strength at which buckling does not occur, the internal pressure is released (11e), and the muscles can endure a strong load sequentially. Therefore, the coil spring (1) that is soft and has large elastic energy may be fixed on one side.
(F) The test should be premised on starting with a phenomenon of being repelled by a weak pressing force. Each time the buckling phenomenon of each stage is resolved, the coil is pressed in close contact and the pressing time is extended. Since the energy stored in the coil spring is transmitted to the deep part and the hard deep muscles are loosened there, the number of types of the compression coil spring (1) may be increased.

組合せコイルバネの実施例
(イ)図23は、圧縮コイルバネ(1)の中心線上に引張りコイルバネ(13b)装着の組合せコイルバネ(13a)を示し、圧縮コイルバネ(1)の最上部に引張りコイルバネのフック等(13c)を同一軸上に連結し、特定部位に対して引っ張り調整(13d)により、圧縮コイルバネ頂点を下げて、押圧力を減縮する(請求項7記載)。
(ロ)組合せコイルバネ(13a)により、発生の予測できる患部周辺に対して、引張コイルバネ(13b)であらかじめ圧縮コイルバネの押圧力を解除又は減縮し、長期の皮膚の圧迫による床ずれ等を防止する対策によく、また、部分的に発生した床ずれ等の患部に対しても押圧力の解除で対応でき、また反射反応の起こらない強さで、僅かでも接触させて、接触点の空白域をつくらないようにしてもよい(請求項7記載)。
(ハ)反射反応が強い場合や特に圧迫が強い特定部位に対し、必要に応じて装着した引張コイルバネ(13b)で圧縮コイルバネ(1)をたわませて、弱い接触又は非接触で、圧縮コイルバネ頂点の押圧を解除あるいは減縮し、それ以外のコイル頂点(1c)が身体接触点に密着するようにしてすべらず、周辺バネの押圧力が、特定部位に機械的刺激として及ばないようにする (請求項7記載) 。
FIG. 23 shows a combination coil spring (13a) mounted with a tension coil spring (13b) on the center line of the compression coil spring (1), and a hook of the tension coil spring at the top of the compression coil spring (1). (13c) are connected on the same axis, and the compression coil spring apex is lowered by tension adjustment (13d) with respect to the specific portion, and the pressing force is reduced (claim 7).
(B) Measures to prevent bed slipping due to long-term skin pressure by releasing or reducing the pressing force of the compression coil spring in advance with the tension coil spring (13b) around the affected area where the occurrence can be predicted by the combination coil spring (13a) Also, it is possible to cope with the affected part such as bed slips that occur partly by releasing the pressing force, and with a strength that does not cause a reflection reaction, even a slight contact is made, and a blank area of the contact point is not created. You may make it (Claim 7).
(C) The compression coil spring (1) is bent with a tension coil spring (13b) attached as necessary to a specific part where the reflection reaction is strong or particularly strong, and the compression coil spring is weakly contacted or non-contacted. Release or reduce the apex of the apex so that the other coil apex (1c) does not slip so as to be in close contact with the body contact point, and the pressing force of the peripheral spring does not reach the specific part as a mechanical stimulus ( Claim 7).

圧縮コイルバネの適用範囲の実施例
(イ)図24〜図25に示すグラフは、コイルバネのバネ定数とバネの有効巻数の適用範囲の代表的な関係で、ばね定数の基本式[k=P/δ=Gd4/8NaD]と、バネ材料のバネ用ステンレス鋼線の横弾性係数G=68500N/mmにより、有効巻数(Na)を求めたもので、コイルバネ(1)の大きさ等については、各実施形態の特性を考慮して各実施例で個々に身体の状態や各部位ごとに求める。
(ロ)図24は、バネ材料径がd=1.8mmの適用範囲を示し、適用範囲は軽量の体型や弱い筋力等に限定され、バネ材料径dがd=1.6mm以下は、体内の内圧が高く、反射反応が強い場合や身体が弱い等の場合に適用でき、有効巻数は4以上がよく、ソフト性を第一に重視することから荷重計算からではなく、有効巻数できめてソフト性を高め、バネ定数は参考値としてあとで付すとよい。
(ハ)図25は、バネ材料径がd=2.6mmの適用範囲を示し、かなり適用範囲が広く本振動機構のバネの主体の一つとなる。
(ニ)図26は、バネ材料径がd=3.2mmの適用範囲を示し、主に、強い力や動的な場合を中心に適し、蓄えるエネルギーを大きくして、特に弾力性や耐久性を要す場合に適用する。
Examples of the application range of the compression coil spring (a) The graphs shown in FIGS. 24 to 25 are representative relationships between the spring constant of the coil spring and the application range of the effective number of turns of the spring, and the basic formula [k = P / δ = Gd 4 / 8NaD 3 ] and the transverse elastic modulus G = 68500 N / mm 2 of the spring stainless steel wire of the spring material, the effective number of turns (Na) was obtained. About the size of the coil spring (1), etc. Is determined for each body state and each part individually in each example in consideration of the characteristics of each embodiment.
(B) FIG. 24 shows an application range in which the spring material diameter is d = 1.8 mm, the application range is limited to a light body shape, weak muscle strength, and the like, and the spring material diameter d is d = 1.6 mm or less. It can be applied when the internal pressure is high, the reflex response is strong, or the body is weak, etc. The effective number of windings should be 4 or more. The softness is improved, and the spring constant should be added later as a reference value.
(C) FIG. 25 shows an application range in which the spring material diameter is d = 2.6 mm, and the application range is quite wide and becomes one of the main springs of the vibration mechanism.
(D) FIG. 26 shows the application range where the spring material diameter is d = 3.2 mm, which is suitable mainly for strong force and dynamic cases, and increases the stored energy, especially elasticity and durability. Applicable when required.

水平振動時の圧縮コイルバネの傾き 側面図Inclination of compression coil spring during horizontal vibration Side view 〃 〃 の拡大 〃〃 Expansion of 〃 〃 静止時の押圧力の相対的な等分布 〃Relative equal distribution of pressing force at rest 〃 水平振動時の分力の相対的な等分布(前方) 〃Relative equal distribution of component force during horizontal vibration (forward) 〃 〃 〃 〃 (後方) 〃後方 〃 〃 (Back) 〃 〃 〃 拡大 〃〃 〃 Enlarge 〃 圧縮コイルバネ 〃Compression coil spring 〃 角材台座 斜視図Square pedestal perspective view 堅固なバネ台座 側面図Solid spring pedestal side view 第1実施例(全身4連型) (水平振動用) 平面図First embodiment (whole body type) (for horizontal vibration) Plan view 〃 ( 〃 ) ( 〃 ) 断面図Cross section of 〃 (〃) (断面) 第2実施例(全身6連型) ( 〃 ) 平面図Second Embodiment (6 whole body type) (型) Plan view 〃 ( 〃 ) ( 〃 ) 断面図Cross section of 〃 (〃) (断面) 第3実施例(全身10連型)( 〃 ) 側面図3rd Example (whole body 10 type) (〃) Side view 〃 ( 〃 )( 〃 ) 平面図〃 ( 〃 )( 〃 ) Plan view 〃 ( 〃 )( 〃 ) 断面図〃 ()) ()) Cross section 第4実施例(伏臥背面上半身型)( 〃 )斜視図4th Example (Fushige back upper body type) (〃) perspective view 〃 ( 〃 )( 〃 )断面図〃 ()) ()) cross section 第5実施例(深部用凸型台座) 斜視図Fifth embodiment (convex pedestal for deep part) perspective view 第6実施例(体表面用凹型台座) 〃Sixth embodiment (concave pedestal for body surface) 第7実施例(反力テスト用台座) 〃Seventh Example (Reaction Force Test Base) 〃 筋肉押圧テスト例(臀部) 概要図Example of muscle pressure test (buttock) 複合コイルバネ 側面図Composite coil spring side view バネ定数と有効巻数の範囲(材料径d=1.8mm)参考図Reference diagram of spring constant and effective number of turns (material diameter d = 1.8mm) 〃 〃 ( 〃 d=2.6mm) 〃〃 〃 (d d = 2.6mm) 〃 〃 〃 ( 〃 d=3.2mm) 〃〃 〃 (d d = 3.2 mm) 〃

符号の説明Explanation of symbols

1 圧縮コイルバネ
1a コイル頂点外径
1b 〃 平均径
1c 〃 頂点
1d 〃 上部
1e 〃 有効部
1f 〃 固定部
1g 座巻部
1h バネの高さ
1i ピッチ
1j ピッチ圧縮面
1k 〃 拡大面
2 角材台座
2a 内側台座
2b 外側台座または中間台座
2c 両翼台座
2d 腕用台座
2e 脊柱を挟む内側台座の間隔
2f 内側台座と外側台座の間隔
2g 左右ごとの角材台座の間隔
2h 厚板
3 厚板台座板
3a 台座面
3b 角材の高さ
3c 角材の厚さ
4 堅固なバネ台座
4a バネ頂点曲面
4b バネ間隔
4c 曲線のバネ軸
5a 接触部位相応の強さに分散する押圧力又は振動時のバネ軸方向の力
5b 垂直分力
5c 水平分力
5d コイル頂点の傾き
6a 身長方向の水平振動
6b 前方
6c 後方
6d 水平振動の移動長
7 接触部位
7a 足・足首部
7b ふくらはぎ部
7c 大腿部
7d 臀部
7e 腰部
7f 背部
7g 頸部
7h 後頭部
7i 皮膚接触面
7j 背臥背面の生理的彎曲
8a 枕等
9 伏臥背面用台座
9a 〃 内側台座
9b 〃 外側台座
9c 〃 台座の長さ
9d 〃 横固定台座
9e 中心線を挟む内側台座の間隔
10a 深部用凸型台座
10b 体表面用凹型台座
10c 反力テスト用台座
10d 台座の長さ
10e アーム等
10f ウエイト
11a 押圧軸
11b 押圧軸のズレ
11c 圧縮コイルバネの座屈
11d 内圧の押し返す方向
11e 内圧の解消
12a 接触面
12b 皮膚層
12c 大殿筋
12d 中殿筋
12e 小臀筋
12f 骨盤
12g 皮膚面のくぼみ又は機械的変形
13a 組合せコイルバネ
13b 引張コイルバネ
13c 引張コイルバネのフック等
13d 引っ張り調整




























1 Compression coil spring
1a Coil apex outer diameter
1b 〃 Average diameter
1c 頂点 vertex 1d 上部 top
1e 〃 Effective part
1f 固定 Fixed part
1g Cigarette
1h Spring height
1i pitch
1j Pitch compression surface 1k 拡 大 Enlarged surface 2 Square base
2a Inside pedestal
2b Outer base or intermediate base
2c both wings base
2d arm base
2e Distance between inner pedestals across the spine
2f Distance between inner base and outer base
2g Square material pedestal spacing for each left and right 2h
3a Pedestal surface 3b Square bar height
3c Thickness of square material 4 Solid spring pedestal 4a Spring apex curved surface 4b Spring interval 4c Curved spring shaft 5a Pushing force distributed to the strength corresponding to the contact part or force in the direction of the spring axis during vibration 5b Vertical component force 5c Horizontal component Power
5d Tilt of coil apex 6a Horizontal vibration in height direction
6b forward
6c Rear 6d Horizontal vibration travel length 7 Contact area 7a Foot / Ankle
7b Calf
7c thigh
7d buttock
7e waist
7f back
7g neck
7h occipital region 7i skin contact surface 7j physiological curve 8a on back of dorsal fin pillow etc.
9 Pedestal 9a for back side
9b 外側 Outer pedestal 9c 〃 Pedestal length 9d 横 Horizontal fixed pedestal 9e Inner pedestal spacing 10a across the center line Convex pedestal 10b Deep surface pedestal 10c Reaction force test pedestal 10d Pedestal length 10e Arm etc. 10f Weight 11a Press shaft
11b Misalignment of pressing shaft
11c Buckling of compression coil spring
11d Internal pressure is pushed back
11e Elimination of internal pressure
12a Contact surface
12b Skin layer
12c
12d gluteus medius
12e
12f Pelvis
12g Skin surface depression or mechanical deformation 13a Combination coil spring
13b Tensile coil spring
13c Extension coil spring hook, etc.
13d Pull adjustment




























Claims (7)

堅固なバネ台座のバネに、背臥身体又は同台座に掛かる身長方向の水平振動を横荷重として受けさせ、その移動量をバネの弧状の曲げに変換し、バネの弾性力でその移動量をもどし、コイル頂点が身体接触部位相応の強さで密着するようにすべらず繰返しのできるバネとして、ピアノ線又はばね用ステンレス鋼線による円筒形の圧縮コイルバネを当て、バネ要目の値を一部指定して、バネの高さを約15〜6cmとし、バネ材料径を約3.2〜2.0mmとし、コイル平均径を約45〜30mmとし、バネ定数を約1.6〜0.7N/mmとし、コイル有効部からコイル頂点までピッチをゼロに近づけながら円錐台形状又は半円球形状や半楕円球形状で巻込んでコイル頂点径を約10mmとし、有効巻数を多くして弾性力の大きい圧縮コイルバネを形成し、台座面に上記のバネ要目を指定して、バネ間隔を約5〜7.5cmの範囲とし、コイル頂点を結ぶ曲面が背臥背面の生理的彎曲相当の波形状を呈し、背臥体重を、接触部位相応の強さに分散するように立設して、堅固なバネ台座を形成し、背臥位静止の非加速度で上方を向く押圧力を、身長方向の水平振動で水平分力と垂直分力に分力し、水平分力の180°方向転換の繰返しを一定時間つづける堅固なバネ台座で、背面の抗重力筋群が筋走行に沿って、同時に、最大に伸縮運動できるように作用することを特徴とする、しこり拘縮ポテンシャル障壁乗越え機構。   The spring of a solid spring pedestal is subjected to horizontal vibration in the height direction applied to the dorsal body or the pedestal as a lateral load, and the amount of movement is converted into an arc-shaped bending of the spring, and the amount of movement is converted by the elastic force of the spring. Return and apply a cylindrical compression coil spring with piano wire or stainless steel wire for spring as a spring that can be repeated without slipping so that the coil apex adheres with the strength corresponding to the body contact part, and part of the value of the spring point Specify the height of the spring to be about 15-6 cm, the spring material diameter is about 3.2-2.0 mm, the coil average diameter is about 45-30 mm, and the spring constant is about 1.6-0.7 N / Mm, winding from a coil effective part to the coil apex in a frustoconical shape, semicircular sphere, or semi-elliptical sphere with a coil apex diameter of about 10 mm, increasing the effective number of turns to increase the elastic force Large compression coil The above-mentioned spring points are specified on the pedestal surface, the spring interval is in the range of about 5 to 7.5 cm, and the curved surface connecting the coil vertices has a corrugated shape equivalent to the physiological curve on the back of the dorsal fin. Standing so that the weight of the dorsal fin is distributed to the strength corresponding to the contact part, forming a firm spring pedestal, pushing the upward force with the non-acceleration of the supine position stationary, horizontal vibration in the height direction This is a solid spring pedestal that splits the horizontal component force into the horizontal component force and the vertical component force, and continues to repeat the horizontal component force 180 ° direction change for a certain period of time. Lump contracture potential barrier crossing mechanism characterized by acting so that it can extend and contract. 請求項1に記載の堅固なバネ台座を、角材と厚板で構成し、等身大の角材面に、請求項1に記載のバネ要目の圧縮コイルバネを指定し、バネ間隔を約5〜7.5cmの範囲とし、コイル頂点を結ぶ曲面が背臥背面の生理的彎曲相当の波形状を呈し、背臥体重を、接触部位相応の強さに分散するように立設して、等身大の角材台座を形成し、角材台座を厚板上に身長方向に並べ、コイル頂点と脊柱の間隙を肩部で約1〜1.5cmとり、腰部では約2.5〜3.5cmの間隙をとり、4列、6列、8列に並べて堅固なバネマット又はバネベッド型台座を形成し、身体背臥で、請求項1に記載の身長方向の水平振動を掛け、コイル頂点が身体接触点に密着するようにしてすべらず、水平分力の180°方向転換の繰返しを一定時間つづける堅固なバネ台座で、背面の抗重力筋群が筋走行に沿って、同時に、最大に伸縮運動できるように作用することを特徴とする、しこり拘縮ポテンシャル障壁乗越え機構。   The solid spring pedestal according to claim 1 is composed of square bars and thick plates, and the spring coil compression spring according to claim 1 is specified on a life-size square bar surface, and the spring interval is about 5-7. .5cm, the curved surface connecting the tops of the coils has a corrugated shape equivalent to the physiological curve on the back of the dorsal fin. A square pedestal is formed, and the square pedestals are arranged in the height direction on a plank. The gap between the top of the coil and the spine is about 1 to 1.5 cm at the shoulder, and about 2.5 to 3.5 cm at the waist. A solid spring mat or spring bed type pedestal is formed in four rows, six rows, and eight rows, and the horizontal vibration in the height direction according to claim 1 is applied to the body dorsal fin so that the coil apex closely contacts the body contact point. It does not slip in this way, and it continues to repeat the 180 ° direction change of the horizontal component force for a certain time. In Ne base, along the antigravity muscles muscle traveling back, at the same time, and wherein the act to be stretching movement to a maximum lump contracture potential barrier overcoming mechanism. 請求項1に記載の堅固なバネ台座を、広い等身大の厚板台座板で構成し、その厚板台座板上に、請求項1に記載のバネ要目の圧縮コイルバネを指定して、バネ間隔を約5〜7.5cmの範囲とし、コイル頂点を結ぶ曲面が背臥背面の生理的彎曲より小さい曲率の波形状を呈し、背臥体重を、接触部位相応の強さに分散するように、身長方向に10〜12列平行の配列で立設して、堅固なバネマット又はバネベッド型台座を形成し、身体背臥で、請求項1に記載の身長方向の水平振動を掛け、コイル頂点が身体接触点に密着するようにしてすべらず、水平分力の180°方向転換の繰返しを一定時間つづける堅固なバネ台座で、背面の抗重力筋群が筋走行に沿って、同時に、最大に伸縮運動できるように作用することを特徴とする、しこり拘縮ポテンシャル障壁乗越え機構。   The rigid spring pedestal according to claim 1 is constituted by a wide life-size thick pedestal plate, and the compression coil spring of the spring point according to claim 1 is designated on the thick pedestal plate, and the spring The interval is about 5 to 7.5 cm, and the curved surface connecting the coil apexes has a wave shape with a smaller curvature than the physiological curve on the back of the dorsal fin. 2. Standing up in an array of 10 to 12 rows parallel to the height direction to form a solid spring mat or spring bed type pedestal, applying horizontal vibration in the height direction according to claim 1, It is a solid spring pedestal that does not slide in close contact with the body contact point, and repeats the 180 ° horizontal component force change for a certain period of time. Lump contracture, characterized by acting to exercise Tensharu barrier overcoming mechanism. 伏臥位の肩部から臀部の上半身背面に被せるバネ台座を、上半身用台座とし、身長方向の角材の長さを約80〜120cmとして、バネ立設面を伏臥背面の生理的彎曲に近い波形状として形成し、請求項1に記載のバネ要目を一部修正して、バネの高さ(1h)を約6〜12cmの範囲とし、コイル平均径を約D≒30〜35mmとし、バネ材料径を約d=2.0〜2.6mmとし、バネ定数をk≒0.8〜1.2N/mmとして、角材面に、バネ間隔を約5〜7cmの範囲として、バネの高さを均一的にして、コイル頂点を結ぶ曲面が伏臥背面の生理的彎曲に近似の波形状を呈し、背臥背面に均一的に接触するように立設して、主材の角材を形成し、コイル頂点と脊柱の間隙を肩部で約1〜2.5cmとり、腰部では約4.5〜7cmの間隙をとり、左右2本ずつで合計4本並べて上半身用台座を形成し、アーム等で接続して、指定荷重の上限を約30〜60kgとして、請求項1に記載の身長方向の水平振動に準じてウエイトを掛け、コイル頂点が身体接触点に密着するようにしてすべらず、水平分力の180°方向転換の繰返しを一定時間つづける上半身用台座により、背筋が同時に最大に伸縮運動できるように作用することを特徴とする、しこり拘縮ポテンシャル障壁乗越え機構。   The spring pedestal that covers the upper back of the buttocks from the prone shoulder is the upper pedestal, the length of the square in the height direction is about 80-120 cm, and the spring standing surface is a wave shape close to the physiological curvature of the back of the prone A spring material is partially modified so that the height (1h) of the spring is in the range of about 6 to 12 cm, the average coil diameter is about D≈30 to 35 mm, and the spring material The diameter is about d = 2.0 to 2.6 mm, the spring constant is k≈0.8 to 1.2 N / mm, the spring interval is about 5 to 7 cm on the square surface, and the height of the spring is Uniformly, the curved surface connecting the coil vertices has a wave shape that approximates the physiological curve on the back surface of the prone surface, and stands upright so as to uniformly contact the back surface of the dorsal fin, forming the square material of the main material, and the coil The gap between the apex and the spinal column is about 1 to 2.5 cm at the shoulder and between about 4.5 and 7 cm at the waist. The upper body pedestal is formed by arranging a total of four on both the left and right sides, and connected with an arm or the like, and the upper limit of the specified load is about 30 to 60 kg, according to the horizontal vibration in the height direction according to claim 1 The upper body pedestal that keeps the top of the coil in close contact with the body contact point and keeps rotating the 180 ° direction of the horizontal component force for a certain period of time, so that the back muscles can extend and retract at the same time. Lumping contracture potential barrier crossing mechanism, characterized by 請求項1に記載の圧縮コイルバネの要目の値を一部拡大して、バネ材料径の上限を約3.5mmとして、バネ定数の上限を約2.3N/mmとし、コイル平均径の上限を約50mmとし、台座の長さを約18〜30cm又は約80cmの範囲とし、バネ間隔を約5〜8cmの範囲として、バネ個数を約16個以下で立設して、小型のバネ台座を形成し、ウエイトの上限を約30〜60kgとする指定荷重で、コイル頂点が身体接触点に密着するように作用してすべらず、アーム等に接続の小型のバネ台座により、指定荷重を一定時間継続して、筋が最大に伸縮運動できるように作用することを特徴とする、しこり拘縮ポテンシャル障壁乗越え機構。   The value of the main point of the compression coil spring according to claim 1 is partially enlarged, the upper limit of the spring material diameter is set to about 3.5 mm, the upper limit of the spring constant is set to about 2.3 N / mm, and the upper limit of the average coil diameter is set. Is about 50 mm, the length of the pedestal is in the range of about 18-30 cm or about 80 cm, the distance between the springs is in the range of about 5-8 cm, the number of springs is about 16 or less, and a small spring pedestal is formed. The specified load with an upper limit of weight of about 30-60 kg is formed, and the specified load is applied for a certain period of time by a small spring pedestal connected to the arm etc. A lump contracture potential barrier crossing mechanism, characterized in that the muscle continues to act to allow maximum stretching motion. 請求項1に記載の圧縮コイルバネの要目の下限を一部広げ、バネの高さの下限を約4cmとし、バネ材料径の下限を約0.8mmとし、バネ定数の下限を約0.1N/mmとし、コイル平均径の下限を約20mmとして、台座の長さを約15〜50cmの範囲とし、バネ間隔を約3〜5cmの範囲として、バネ個数を約12個以下で立設して、小型のバネ台座を形成し、最小の指定荷重を0.2kg前後から掛けて、コイル頂点が身体接触点に密着するようにしてすべらず、アーム等に接続の小型のバネ台座により、指定荷重を一定時間継続して、接触面又は筋が最大に伸縮運動できるように作用することを特徴とする、しこり拘縮ポテンシャル障壁乗越え機構。   The lower limit of the essential points of the compression coil spring according to claim 1 is partially expanded, the lower limit of the spring height is about 4 cm, the lower limit of the spring material diameter is about 0.8 mm, and the lower limit of the spring constant is about 0.1 N / mm, the lower limit of the average coil diameter is about 20 mm, the length of the pedestal is in the range of about 15 to 50 cm, the spring interval is in the range of about 3 to 5 cm, and the number of springs is about 12 or less, A small spring pedestal is formed and the specified load is applied by a small spring pedestal connected to the arm etc. A lump contracture potential barrier crossing mechanism characterized by acting so that the contact surface or muscle can extend and contract at maximum for a certain period of time. 請求項1記載の堅固なバネ台座及び/又は請求項3に記載の厚板台座板に組合せコイルバネを装着し、特定部位に対して、必要に応じて装着した引張コイルバネで圧縮コイルバネをたわませ、弱い接触又は非接触として、機械的刺激の伝達を解除あるいは減縮し、他のコイル頂点が身体接触点に密着するようにしてすべらず、組合せコイルバネを装着する堅固なバネ台座により、それぞれの筋が最大に伸縮運動できるように作用することを特徴とする、しこり拘縮ポテンシャル障壁乗越え機構。   A combination coil spring is mounted on the rigid spring base according to claim 1 and / or the thick plate base plate according to claim 3, and the compression coil spring is bent with respect to a specific portion with a tension coil spring mounted as necessary. Each of the muscles can be separated by a solid spring seat with a combined coil spring that does not slip as a weak contact or non-contact, canceling or reducing the transmission of mechanical stimuli and making the other coil apex in close contact with the body contact point. Lumping contraction potential barrier crossing mechanism, which is characterized by the fact that it works so that it can expand and contract at maximum.
JP2007265067A 2007-10-11 2007-10-11 Mechanism for surmounting potential barrier of hard spot/contracture Pending JP2009089986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007265067A JP2009089986A (en) 2007-10-11 2007-10-11 Mechanism for surmounting potential barrier of hard spot/contracture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007265067A JP2009089986A (en) 2007-10-11 2007-10-11 Mechanism for surmounting potential barrier of hard spot/contracture

Publications (1)

Publication Number Publication Date
JP2009089986A true JP2009089986A (en) 2009-04-30

Family

ID=40662562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007265067A Pending JP2009089986A (en) 2007-10-11 2007-10-11 Mechanism for surmounting potential barrier of hard spot/contracture

Country Status (1)

Country Link
JP (1) JP2009089986A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116509448A (en) * 2023-07-03 2023-08-01 深圳华大智造云影医疗科技有限公司 Control method and device of ultrasonic probe, electronic equipment and storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116509448A (en) * 2023-07-03 2023-08-01 深圳华大智造云影医疗科技有限公司 Control method and device of ultrasonic probe, electronic equipment and storage medium
CN116509448B (en) * 2023-07-03 2023-12-12 深圳华大智造云影医疗科技有限公司 Control method and device of ultrasonic probe, electronic equipment and storage medium

Similar Documents

Publication Publication Date Title
US6846270B1 (en) Method and apparatus for assisting or resisting postures or movements related to the joints of humans or devices
US8337437B2 (en) System and methods for promoting health
CN101415387B (en) Training device for physical therapy
RU2768670C2 (en) Multifunctional posture correction trainer
US20170224574A1 (en) Rocking Stick, Walking, Fitness and Rehabilitation System
JP2004527338A (en) Handstand exercise device for whole body exercise
Fowler et al. A comparison of the kinetic and kinematic characteristics of plyometric drop-jump and pendulum exercises
CN108852736A (en) Firm static rehabilitation of cervical spondylosis trains storehouse
JP2009089986A (en) Mechanism for surmounting potential barrier of hard spot/contracture
KR100388130B1 (en) Hand-standing machine
RU2242207C2 (en) Exercising apparatus, in particular, for spine and method for prophylaxis and therapy of spine deformations and degenerative diseases
CN206777727U (en) A kind of physical fitness stretcher
US20210298990A1 (en) Targeted Vibration Therapy Systems and Methods
RU2725088C1 (en) Multi-vector therapeutic gymnastics
US20210031070A1 (en) Method and apparatus for extension and stretching of the spine called “a pole” simulator
US20050245363A1 (en) Device for promoting reflective neuromuscular training
Dorman Storage and release of elastic energy in the pelvis: dysfunction, diagnosis and treatment
EP0973477B1 (en) Support frame for supine persons
Brill Instant relief: Tell me where it hurts and I'll tell you what to do
JP3061720U (en) Therapeutic instrument
RU2333015C2 (en) M. g. triburt&#39;s method of recreative gymnastics
JP7193488B2 (en) Health appliances
RU39085U1 (en) DEVICE FOR MASSAGE AND TRAINING OF MUSCLES
JP2009082535A (en) Stiffness finding and flexing mechanism
WO2001062350A1 (en) Method and apparatus for assisting or resisting postures or movements related to the joints of humans or devices