JP2009088277A - Electrolytic capacitor - Google Patents
Electrolytic capacitor Download PDFInfo
- Publication number
- JP2009088277A JP2009088277A JP2007256482A JP2007256482A JP2009088277A JP 2009088277 A JP2009088277 A JP 2009088277A JP 2007256482 A JP2007256482 A JP 2007256482A JP 2007256482 A JP2007256482 A JP 2007256482A JP 2009088277 A JP2009088277 A JP 2009088277A
- Authority
- JP
- Japan
- Prior art keywords
- electrolytic capacitor
- capacitor
- lead wire
- electrolytic
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
Description
本発明は、電解コンデンサに係り、特に、150℃以上の高温での使用に耐え得る電解コンデンサに関するものである。 The present invention relates to an electrolytic capacitor, and more particularly to an electrolytic capacitor that can withstand use at a high temperature of 150 ° C. or higher.
従来から用いられている電解コンデンサは、電極引き出し手段であるリード線を備えた電極箔を、セパレータを介して巻回してコンデンサ素子を形成し、駆動用電解液を含浸したコンデンサ素子を有底筒状の外装ケースに収納する。そして、この外装ケースの開口部に封口体を装着し、その後、開口部を加締め加工によって封口して、電解コンデンサが形成される(特許文献1)。 Conventionally used electrolytic capacitors have a bottomed cylinder in which a capacitor element is formed by winding an electrode foil provided with a lead wire as an electrode drawing means through a separator to form a capacitor element, and impregnating a driving electrolyte. In an outer case. And a sealing body is mounted | worn with the opening part of this exterior case, and an opening part is sealed by caulking after that, and an electrolytic capacitor is formed (patent document 1).
通常、この電解コンデンサ用封口体としては、ブチルゴムやエチレンプロピレンゴムからなる封口ゴムが用いられる。また、小型、低インピーダンス、100WV級の電解コンデンサのコンデンサ素子に含浸される電解液としては、従来より、γ−ブチロラクトンを主溶媒とし、フタル酸、マレイン酸等の三級塩を溶質とするものなどが知られている。
近年、自動車の電装品やインバータ照明に用いられる電解コンデンサの使用環境温度は150℃以上へと高温化しているが、上記のような従来の電解コンデンサの高温使用は125℃が限界であるため、従来の電解コンデンサでは、150℃以上での長時間使用には耐えることができなかった。 In recent years, the environmental temperature of electrolytic capacitors used for automobile electrical components and inverter lighting has increased to 150 ° C. or higher, but high temperature use of conventional electrolytic capacitors as described above is limited to 125 ° C., Conventional electrolytic capacitors could not withstand long-term use at 150 ° C. or higher.
このように、従来の電解コンデンサを150℃以上の高温下で長時間使用することができない原因は、従来の封口ゴムの耐熱性にあることが判明している。すなわち、150℃以上の高温下で使用すると、従来の封口ゴムは熱酸化劣化を起こして、ゴム特性が劣化し、ゴム強度の低下、気密性の低下をもたらすため、電解液が透散して、電解コンデンサの特性が低下する。さらに、電解コンデンサ内部の電解液溶媒の蒸気圧が上昇して、封口ゴムからの透過量が増大して、電解コンデンサの特性が低下する。 Thus, it has been found that the reason why the conventional electrolytic capacitor cannot be used at a high temperature of 150 ° C. or higher for a long time is the heat resistance of the conventional sealing rubber. In other words, when used at a high temperature of 150 ° C. or higher, the conventional sealing rubber undergoes thermal oxidative degradation, resulting in degradation of rubber properties, resulting in decreased rubber strength and airtightness. As a result, the characteristics of the electrolytic capacitor deteriorate. Furthermore, the vapor pressure of the electrolyte solvent inside the electrolytic capacitor increases, the amount of permeation from the sealing rubber increases, and the characteristics of the electrolytic capacitor deteriorate.
本発明は、上述したような従来技術の問題点を解消するために提案されたものであり、その目的は、150℃以上の高温長時間使用に耐えることのできる電解コンデンサを提供することにある。 The present invention has been proposed in order to solve the above-described problems of the prior art, and an object of the present invention is to provide an electrolytic capacitor that can withstand long-term use at a high temperature of 150 ° C. or higher. .
本発明者は、上記の目的を達成するため、150℃以上の高温下で長時間使用しても、封口ゴムの熱酸化劣化を防止することができる手段について鋭意検討を重ねた結果、本発明を完成するに至ったものである。すなわち、封口ゴムの表面に、ポリイミド前駆体溶液の塗布及び乾燥によって、ポリイミドからなる絶縁層を形成することにより、上記課題を解決することができることが分かった。 In order to achieve the above object, the present inventor has conducted extensive studies on means capable of preventing thermal oxidation deterioration of the sealing rubber even when used at a high temperature of 150 ° C. or higher for a long time. Has been completed. That is, it has been found that the above problem can be solved by forming an insulating layer made of polyimide on the surface of the sealing rubber by applying and drying a polyimide precursor solution.
(ポリイミド)
ポリイミド樹脂は、その高い熱的及び化学的安定性、低い誘電率、並びに優れた平坦化能を有している。封口ゴムの表面をコートするポリイミド前駆体溶液としては、ポリイミド前駆体(ポリアミド酸)を所定の溶媒に5wt%以上、好ましくは5〜50wt%、さらに好ましくは10〜25wt%溶解した溶液を用いる。この範囲を超えるとポリイミド前駆体溶液の流動性が低下するため、均一な層を形成することが困難であり、この範囲未満では本発明の効果が低下する。なお、このポリイミド前駆体溶液としては、非感光性のものと、光重合性の感光基を導入した感光性のものが挙げられる。ポリイミド前駆体溶液の溶媒としては、ケトン系溶媒が好ましく、中でも、シクロヘキサン、N−メチル−2ピロリドンが好適である。
(Polyimide)
Polyimide resins have their high thermal and chemical stability, low dielectric constant, and excellent planarization ability. As the polyimide precursor solution for coating the surface of the sealing rubber, a solution in which a polyimide precursor (polyamic acid) is dissolved in a predetermined solvent by 5 wt% or more, preferably 5 to 50 wt%, more preferably 10 to 25 wt% is used. If this range is exceeded, the fluidity of the polyimide precursor solution will be reduced, making it difficult to form a uniform layer, and if it is less than this range, the effect of the present invention will be reduced. In addition, as this polyimide precursor solution, the photosensitive thing which introduce | transduced the non-photosensitive thing and the photopolymerizable photosensitive group is mentioned. As a solvent for the polyimide precursor solution, a ketone solvent is preferable, and among them, cyclohexane and N-methyl-2pyrrolidone are preferable.
(ポリイミド層の形成方法)
電解液を含浸したコンデンサ素子を外装ケースに収納し、開口部に封口ゴムを配し、絞り加工によって封口した後、再化成を行って電解コンデンサを作成する。この電解コンデンサの封口ゴムの上面(リード線を引き出したコンデンサ本体の端面)に上記の非感光性のポリイミド前駆体溶液をディスペンサ等で滴下、塗布した後、乾燥してイミド化させてポリイミド層を形成する。なお、ポリイミド前駆体溶液をアプリケータ等で塗布しても良い。また感光性のポリイミド前駆体溶液を用いる場合は、この溶液を電解コンデンサの封口ゴムの上面にディスペンサ等で滴下、塗布した後、紫外線等の光線を照射して光重合させ、その後乾燥して感光基成分を除去することによってポリイミド層を形成する。この感光性のポリイミド前駆体溶液を用いると、乾燥時間を短くすることができ電解コンデンサへの熱ストレスを低減できるとともに、ディスペンサでの塗布時に前記紫外線照射により硬化するため、ポリイミド前駆体溶液が封口ゴムの上面より液だれすることなく好ましい。なお、乾燥温度は、50〜200℃が好ましいが、さらには、70〜150℃が好適である。また乾燥時間は、0.5〜3時間が好ましい。また、電解コンデンサの再化成工程は、前述のポリイミド層の形成前であっても、形成後であってもよい。
(Formation method of polyimide layer)
The capacitor element impregnated with the electrolytic solution is housed in an outer case, a sealing rubber is disposed in the opening, and sealing is performed by drawing, and then re-forming is performed to create an electrolytic capacitor. The non-photosensitive polyimide precursor solution is dropped and applied onto the upper surface of the sealing rubber of the electrolytic capacitor (the end surface of the capacitor body from which the lead wire is drawn) with a dispenser, and then dried and imidized to form a polyimide layer. Form. The polyimide precursor solution may be applied with an applicator or the like. When a photosensitive polyimide precursor solution is used, this solution is dropped and applied to the upper surface of the sealing capacitor sealing rubber with a dispenser or the like, and then photopolymerized by irradiating light such as ultraviolet rays, and then dried and exposed to light. A polyimide layer is formed by removing the base component. When this photosensitive polyimide precursor solution is used, the drying time can be shortened, the thermal stress on the electrolytic capacitor can be reduced, and the polyimide precursor solution is sealed when cured by the ultraviolet irradiation when applied with a dispenser. It is preferable without dripping from the upper surface of the rubber. The drying temperature is preferably 50 to 200 ° C, and more preferably 70 to 150 ° C. The drying time is preferably 0.5 to 3 hours. In addition, the electrolytic capacitor re-forming step may be performed before or after the formation of the polyimide layer.
また、リード線を引き出したコンデンサ本体の端面にリード線を貫通して引き出して設置される絶縁板が設置された表面実装型電解コンデンサのコンデンサ本体の端面に、ポリイミド層を形成することもできる。さらに、絶縁板の貫通孔と、貫通孔に挿通したリード線との間隙にポリイミド層を形成すると、リード線の折り曲げ加工時に、リード線と電極箔との接合部へのストレスが緩和されて、漏れ電流特性が向上するという効果も得られる。また、コンデンサ本体の端面のうち、外装ケースの絞り加工部と封口体との界面を覆ってポリイミド層を形成すると、熱酸化劣化により収縮した封口体と前記外装ケースの絞り加工部とに隙間が生じやすいが、この部分を覆ってポリイミド層が形成されているため、電解液の透過を抑制できる。 In addition, a polyimide layer can be formed on the end surface of the capacitor body of the surface-mount type electrolytic capacitor in which an insulating plate that is installed by penetrating the lead wire is installed on the end surface of the capacitor body from which the lead wire is drawn. Furthermore, when a polyimide layer is formed in the gap between the through hole of the insulating plate and the lead wire inserted into the through hole, the stress on the joint between the lead wire and the electrode foil is alleviated during bending of the lead wire, The effect of improving the leakage current characteristic is also obtained. In addition, when the polyimide layer is formed on the end face of the capacitor body so as to cover the interface between the drawn portion of the outer case and the sealing body, there is a gap between the sealing body contracted due to thermal oxidation deterioration and the drawn portion of the outer case. Although it is easy to occur, since the polyimide layer is formed covering this part, permeation | transmission of electrolyte solution can be suppressed.
(封口ゴム)
封口ゴムは、エチレンプロピレンターポリマー(EPDM)、イソブチレンイソプレンゴム(IIR:通称ブチルゴム)及びブタジエンスチレンゴム(SBR)などがあげられるが、電解液の透過性の優れたブチルゴムが好ましい。この弾性ゴムには、マイカやタルク(偏平状が好適)、焼成クレー、含水ケイ素、無水ケイ素、カーボンブラック等が添加されている。
(Sealing rubber)
Examples of the sealing rubber include ethylene propylene terpolymer (EPDM), isobutylene isoprene rubber (IIR: commonly called butyl rubber), and butadiene styrene rubber (SBR). Butyl rubber having excellent electrolyte permeability is preferable. Mica, talc (flat shape is preferable), calcined clay, hydrous silicon, anhydrous silicon, carbon black, and the like are added to the elastic rubber.
(電解液の溶媒)
電解液の溶媒として、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン等のスルホラン系溶媒を用いると、蒸気圧が低いので、電解液の透過量が少なく、高温特性はさらに向上する。また、γ−ブチロラクトン等のラクトン系の溶媒を副溶媒として用いると、インピーダンス特性が向上するのでより好ましい。本発明の電解コンデンサは、封口ゴムの上面に、耐熱性が高く、電解液の溶媒の透過性が低いポリイミド層を形成しているので、150℃以上の高温下で長時間使用した場合でも封口ゴムの劣化を防止することができる。その結果、電解液の透散が抑制され、電解液の溶媒のゴムからの透過量が抑制されるので、150℃以上の高温、長時間の使用に耐えることができる。
(Electrolyte solvent)
When a sulfolane solvent such as sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, etc. is used as the solvent for the electrolytic solution, the vapor pressure is low, so the permeation amount of the electrolytic solution is small and the high temperature characteristics are further improved. In addition, it is more preferable to use a lactone solvent such as γ-butyrolactone as a secondary solvent because impedance characteristics are improved. The electrolytic capacitor of the present invention has a polyimide layer having a high heat resistance and a low permeability of the electrolyte solvent on the upper surface of the sealing rubber, so that even when used at a high temperature of 150 ° C. or higher for a long time, Rubber deterioration can be prevented. As a result, the diffusion of the electrolytic solution is suppressed, and the permeation amount of the solvent of the electrolytic solution from the rubber is suppressed, so that it can withstand use at a high temperature of 150 ° C. or higher for a long time.
すなわち、封口ゴムの高温下での劣化は、表面からの熱酸化の進行によるので、ゴム表面に耐熱性の高いポリイミド層を形成すると、表面からの熱酸化が抑制されて、ゴム特性の劣化が抑制される。また、電解液の溶媒の減少が抑制されると、電解液の保持量の減少による静電容量の低下とtanδの上昇を抑制することができる。また、ポリイミドは、ゴム、金属との接着性も良好であるので、封口ゴムの上面にポリイミド層を形成した後も、このポリイミド層とゴム、ケースの絞り加工をした端面との接着性が良好であるため、封口ゴムから剥離するということがなく、信頼性にも優れている。 That is, the deterioration of the sealing rubber under high temperature is due to the progress of thermal oxidation from the surface. Therefore, when a polyimide layer having high heat resistance is formed on the rubber surface, the thermal oxidation from the surface is suppressed and the rubber characteristics are deteriorated. It is suppressed. Further, when the decrease in the solvent of the electrolytic solution is suppressed, it is possible to suppress the decrease in the capacitance and the increase in tan δ due to the decrease in the retained amount of the electrolytic solution. Also, since polyimide has good adhesion to rubber and metal, even after a polyimide layer is formed on the top surface of the sealing rubber, the adhesion between this polyimide layer and rubber and the end face of the case that has been drawn is good. Therefore, it does not peel off from the sealing rubber and is excellent in reliability.
以上述べたように、本発明によれば、150℃以上の高温長時間使用に耐えることのできる電解コンデンサを提供することができる。 As described above, according to the present invention, it is possible to provide an electrolytic capacitor that can withstand use at a high temperature of 150 ° C. or higher for a long time.
以下、本発明の効果を図面及び実施例を用いて具体的に説明する。 The effects of the present invention will be specifically described below with reference to the drawings and examples.
(実施例1)
図1に示すように、陽極箔及び陰極箔をセパレータを介して巻回したコンデンサ素子4に電解液を含浸し、このコンデンサ素子4をアルミニウムからなる外装ケース2に収納し、コンデンサ素子から導出されたリード線5を貫通させる貫通孔を備えた封口ゴム3を外装ケース2の開口部に設置するとともに、絞り加工によって封口した後、再化成を行って電解コンデンサ1を作成した。なお、電解液としては、スルホラン50wt%、γ−ブチロラクトン25wt%、1−エチル−2,3−ジメチルイミダゾリニウムフタル酸塩25wt%の混合液を用いた。この電解コンデンサ1のコンデンサ本体の端面(封口ゴムの上面、絞り加締め部6を含む)に、ポリイミド前駆体溶液として、ポリアミド酸20wt%のN−メチル−2ピロリドン溶液(非感光性)をディスペンサで滴下塗布した後、125℃で1時間乾燥し、コンデンサ本体の端面に、ポリイミド層7を形成した。封口ゴムとして、ブチルゴムを用いた。
(Example 1)
As shown in FIG. 1, a
(実施例2)
上記実施例1の封口ゴムとしてブチルゴムに代えて、EPDMを用いた。
(Example 2)
In place of butyl rubber, EPDM was used as the sealing rubber in Example 1 above.
(従来例1)
上記実施例1と同様にして電解コンデンサを作成し、コンデンサ本体の端面にポリイミド層を形成しなかった。
(Conventional example 1)
An electrolytic capacitor was prepared in the same manner as in Example 1, and no polyimide layer was formed on the end face of the capacitor body.
(従来例2)
上記実施例2と同様にして電解コンデンサを作成し、コンデンサ本体の端面にポリイミド層を形成しなかった。
(Conventional example 2)
An electrolytic capacitor was prepared in the same manner as in Example 2, and no polyimide layer was formed on the end face of the capacitor body.
[比較結果]
上記のようにして作製した実施例1及び2、従来例1及び2の電解コンデンサを、150℃に500時間、1000時間放置し、電解液の透過量並びに電気特性を測定したところ、図2に示すような結果が得られた。
[Comparison result]
The electrolytic capacitors of Examples 1 and 2 and Conventional Examples 1 and 2 produced as described above were allowed to stand at 150 ° C. for 500 hours and 1000 hours, and the amount of electrolyte permeated and the electrical characteristics were measured. The results shown were obtained.
図2から明らかなように、1000時間以降で、実施例1及び2いずれも電解液の透過量は、従来例1及び2に比べて大きく改善されている。またその他CAP、tanδ、インピーダンス特性も、従来例1及び2に対して大きく改善されており、実施例の封口ゴムの表面にポリイミド層を形成することにより、封口ゴムの表面からの熱酸化が抑制されていることが示された。また、電解コンデンサでは一般に、電解液の保持量が減少すると静電容量が低下し、tanδが上昇することが知られているが、実施例では電解液の減少が大幅に抑制されているため、電気特性の劣化を抑制することができると考えられる。 As is clear from FIG. 2, after 1000 hours, the permeation amount of the electrolytic solution in both Examples 1 and 2 is greatly improved as compared with Conventional Examples 1 and 2. In addition, CAP, tan δ, and impedance characteristics are also greatly improved compared to the conventional examples 1 and 2. By forming a polyimide layer on the surface of the sealing rubber of the example, thermal oxidation from the surface of the sealing rubber is suppressed. It was shown that. Moreover, in general, it is known that when the amount of electrolyte retained decreases in an electrolytic capacitor, the capacitance decreases and tan δ increases, but in the examples, the decrease in electrolyte is greatly suppressed. It is thought that deterioration of electrical characteristics can be suppressed.
1…電解コンデンサ
2…外装ケース
3…封口ゴム
4…コンデンサ素子
5…リード線
6…絞り加締め部
7…ポリイミド層
DESCRIPTION OF
Claims (6)
前記リード線を引き出したコンデンサ本体の端面に、ポリイミド前駆体溶液の塗布及び乾燥によって、ポリイミド層を形成したことを特徴とする電解コンデンサ。 A capacitor element formed by winding a bipolar foil with a lead wire and a separator is impregnated with an electrolytic solution, and the capacitor element is housed in an outer case, and the lead wire is passed through the through hole of the sealing body to open an opening. In an electrolytic capacitor that is sealed with a sealing body,
An electrolytic capacitor, wherein a polyimide layer is formed on an end face of a capacitor body from which the lead wire is drawn by applying and drying a polyimide precursor solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007256482A JP5045918B2 (en) | 2007-09-28 | 2007-09-28 | Electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007256482A JP5045918B2 (en) | 2007-09-28 | 2007-09-28 | Electrolytic capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009088277A true JP2009088277A (en) | 2009-04-23 |
JP5045918B2 JP5045918B2 (en) | 2012-10-10 |
Family
ID=40661300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007256482A Expired - Fee Related JP5045918B2 (en) | 2007-09-28 | 2007-09-28 | Electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5045918B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011114632A1 (en) | 2010-03-16 | 2011-09-22 | パナソニック株式会社 | Capacitor |
WO2012023257A1 (en) * | 2010-08-20 | 2012-02-23 | パナソニック株式会社 | Sealer for capacitor and aluminum electrolytic capacitor using same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000067267A1 (en) * | 1999-04-30 | 2000-11-09 | Showa Denko K.K. | Solid electrolytic capacitor and method for producing the same |
JP2004296933A (en) * | 2003-03-27 | 2004-10-21 | Nippon Chemicon Corp | Electrolytic capacitor |
-
2007
- 2007-09-28 JP JP2007256482A patent/JP5045918B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000067267A1 (en) * | 1999-04-30 | 2000-11-09 | Showa Denko K.K. | Solid electrolytic capacitor and method for producing the same |
JP2004296933A (en) * | 2003-03-27 | 2004-10-21 | Nippon Chemicon Corp | Electrolytic capacitor |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011114632A1 (en) | 2010-03-16 | 2011-09-22 | パナソニック株式会社 | Capacitor |
JP5810265B2 (en) * | 2010-03-16 | 2015-11-11 | パナソニックIpマネジメント株式会社 | Capacitors |
WO2012023257A1 (en) * | 2010-08-20 | 2012-02-23 | パナソニック株式会社 | Sealer for capacitor and aluminum electrolytic capacitor using same |
CN102483996A (en) * | 2010-08-20 | 2012-05-30 | 松下电器产业株式会社 | Sealer for capacitor and aluminum electrolytic capacitor using same |
US8432664B2 (en) | 2010-08-20 | 2013-04-30 | Panasonic Corporation | Sealing member for capacitor and aluminum electrolytic capacitor using the same |
Also Published As
Publication number | Publication date |
---|---|
JP5045918B2 (en) | 2012-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI492253B (en) | Method for manufacturing solid electrolytic capacitor | |
KR101190109B1 (en) | Electrolytic capacitor | |
TWI404096B (en) | Method for manufacturing electrolytic capacitor and electrolytic capacitor | |
KR20100062928A (en) | Method of manufacturing solid electrolytic capacitor | |
CN109074960B (en) | Electrolytic capacitor and method for manufacturing the same | |
JP6920593B2 (en) | Electrolytic capacitors and their manufacturing methods | |
US10032562B2 (en) | Electrolytic capacitor and method for manufacturing same | |
JP3119604B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP5045918B2 (en) | Electrolytic capacitor | |
WO2014132632A1 (en) | Electrolytic capacitor and manufacturing method therefor | |
JP2023144086A (en) | Aluminum polymer capacitor with improved internal conductance and enhanced breakdown voltage capability | |
JP2007235105A (en) | Electrolytic capacitor | |
JP6735510B2 (en) | Electrolytic capacitor | |
JP3806503B2 (en) | Solid electrolytic capacitor | |
JP2009212283A (en) | Electrolytic capacitor and method of manufacturing the same | |
JP2007134524A (en) | Electrolytic solution for drive of electrolytic capacitor, and electrolytic capacitor using the same | |
JP5289016B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP2004296933A (en) | Electrolytic capacitor | |
JPH07272979A (en) | Electrolytic capacitor | |
JP2000182898A (en) | Electrolytic capacitor and manufacture thereof | |
JP2004296931A (en) | Solid electrolytic capacitor and its manufacturing method | |
JP2008091358A (en) | Solid-state electrolytic capacitor, and its manufacturing process | |
JP2003264129A (en) | Solid-state electrolytic capacitor | |
JP2005183564A (en) | Solid-state electrolytic capacitor and method for manufacturing the same | |
JP2004296932A (en) | Seal for electrolytic capacitor and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100922 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20101012 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120403 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120620 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120703 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150727 Year of fee payment: 3 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |