JP2004296932A - Seal for electrolytic capacitor and its manufacturing method - Google Patents

Seal for electrolytic capacitor and its manufacturing method Download PDF

Info

Publication number
JP2004296932A
JP2004296932A JP2003089340A JP2003089340A JP2004296932A JP 2004296932 A JP2004296932 A JP 2004296932A JP 2003089340 A JP2003089340 A JP 2003089340A JP 2003089340 A JP2003089340 A JP 2003089340A JP 2004296932 A JP2004296932 A JP 2004296932A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
solution
electrolytic
seal
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003089340A
Other languages
Japanese (ja)
Inventor
Kazunori Naradani
一徳 奈良谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2003089340A priority Critical patent/JP2004296932A/en
Publication of JP2004296932A publication Critical patent/JP2004296932A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seal for an electrolytic capacitor which can withstand the use at a temperature as high as 150°C for a long period of time. <P>SOLUTION: A seal rubber is immersed into a solution of 50 wt% or less containing polyimide silicon dissolved in a ketone-based solvent, pulled up, and dried at a temperature of 40-100°C for 1-2 hours for polymerization. The thus-obtained seal rubber having a PISi (polyimide silicon i) layer formed thereon is mounted onto an opening of an encapsulating case in which a capacitor element having an electrolytic solution immersed therein, and the opening is drawn to seal the opening. After the opening is sealed by the drawing, the case is reformed to obtain an electrolytic capacitor which can have a long-time durability at a temperature as high as 150°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電解コンデンサ用封口体及びその製造方法に係り、特に、150℃の高温での使用に耐え得る電解コンデンサ用封口体及びその製造方法に関するものである。
【0002】
【従来の技術】
従来から用いられている電解コンデンサは、図1に示すように構成されている。すなわち、電極引き出し手段であるリード線を備えた電極箔を、セパレータを介して巻回してコンデンサ素子1を形成し、駆動用電解液を含浸したコンデンサ素子1を有底筒状の外装ケース2に収納する。そして、この外装ケースの開口部に封口体3を装着し、その後、開口部を加締め加工によって封口して、電解コンデンサが形成される。
【0003】
通常、この電解コンデンサ用封口体としては、ブチルゴムやエチレンプロピレンゴムからなる封口ゴムが用いられる。また、小型、低インピーダンス、100WV級の電解コンデンサのコンデンサ素子に含浸される電解液としては、従来より、γ−ブチロラクトンを主溶媒とし、フタル酸、マレイン酸等の三級塩を溶質とするものなどが知られている。
【0004】
【発明が解決しようとする課題】
上記のような従来の電解コンデンサの高温使用は125℃が限界であるが、近年、自動車の電装品やインバータ照明に用いられる電解コンデンサの使用環境温度は150℃へと高温化している。そのため、従来の電解コンデンサでは、150℃での長時間使用には耐えることができなかった。
【0005】
このように、従来の電解コンデンサを150℃の高温下で長時間使用することができない原因は、従来の封口ゴムの耐熱性にあることが判明している。すなわち、150℃の高温下で使用すると、従来の封口ゴムは熱酸化劣化を起こして、ゴム特性が劣化し、ゴム強度の低下、気密性の低下をもたらすため、電解液が透散して、電解コンデンサの特性が低下する。さらに、電解コンデンサ内部の電解液溶媒の蒸気圧が上昇して、封口ゴムからの透過量が増大して、電解コンデンサの特性が低下する。
【0006】
本発明は、上述したような従来技術の問題点を解消するために提案されたものであり、その目的は、150℃の高温長時間使用に耐えることのできる電解コンデンサ用封口体及びその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者は、上記の目的を達成するため、150℃の高温下で長時間使用しても、封口ゴムの熱酸化劣化を防止することができる手段について鋭意検討を重ねた結果、本発明を完成するに至ったものである。
すなわち、封口ゴムの表面に、予めポリイミドシリコンからなる絶縁層を形成しておくことにより、上記課題を解決することができることが分かった。
【0008】
(ポリイミドシリコン)
封口ゴムの表面をコートするポリイミドシリコン溶液としては、ポリイミドシリコン(PISi)をケトン系溶媒に溶解した50wt%以下、好ましくは5〜30wt%、さらに好ましくは10〜25wt%の溶液を用いる。この範囲を超えるとポリイミドシリコン溶液の流動性が低下するため均一なコーティングができず、この範囲未満では本発明の効果が低下する。
なお、ケトン系溶媒としては、シクロヘキサン、アセトン、メチルエチルケトン等を用いることが好ましい。
【0009】
(ポリイミドシリコン層の形成方法)
封口ゴムの表面にポリイミドシリコン層(以下、PISi層という)を形成する方法としては、上記のポリイミドシリコン溶液中に封口ゴムを浸漬し、引き上げた後、40〜100℃で乾燥し、150〜200℃、1〜2時間加熱、重合する方法が好ましい。
このようにして、表面にPISi層を形成した封口ゴムを、電解液を含浸したコンデンサ素子を収納した外装ケースの開口部に取り付け、この開口部を絞り加工によって封口した後、再化成を行って電解コンデンサを作成する。
【0010】
(PISi層を形成する部位)
PISi層を形成する部位は、電解コンデンサを形成した場合にその上面となる面に形成することが必要である。より好ましくは、封口ゴムの上下面に形成することが望ましい。さらに、封口ゴムの側面、すなわち、外装ケースとの接触面にもPISi層を形成すると、この面からの熱酸化の進行も抑制でき、さらに、封口体と外装ケースとの接触面からの電解液の透散を抑制できるので、より優れた効果が得られる。
また、貫通孔の内壁部に形成すると、リード線からの熱伝達による熱酸化の進行も抑制することができるので、リード線と貫通孔の間からの電解液の透散を抑制することもできる。
【0011】
(作用・効果)
本発明の封口ゴムは、少なくともその上面に、耐熱性が高く、電解液の溶媒の透過性が低いPISi層が形成されているので、150℃の高温下で長時間使用した場合でも封口ゴムの劣化を防止することができる。その結果、電解液の透散が抑制され、電解液の溶媒のゴムからの透過量が抑制されるので、150℃の高温、長時間の使用に耐えることができる。
【0012】
すなわち、封口ゴムの高温下での劣化は、表面からの熱酸化の進行によると考えられるので、ゴム表面に耐熱性の高いPISi層を形成すると、表面からの熱酸化が抑制されて、ゴム特性の劣化が抑制される。また、電解液の溶媒の減少が抑制されると、電解液の保持量の減少による静電容量の低下とtanδの上昇を抑制することができる。
また、PISiは、ゴムとの接着性も良好であるので、PISi層が封口ゴムから剥離するということがなく、信頼性にも優れている。
【0013】
【実施例】
以下、本発明の効果を実施例を用いて具体的に説明する。
(実施例)
ブチルゴムからなる封口ゴムを、ポリイミドシリコンの20wt%シクロヘキサン溶液に浸漬し、引き上げた後、100℃で乾燥し、150℃で1時間加熱して重合させ、封口ゴムの表面にPISi層を形成した。一方、電解液を含浸したコンデンサ素子を外装ケースに収納し、開口部を上記の封口ゴムで絞り加工によって封口した後、再化成を行って電解コンデンサを作成した。なお、電解液としては、スルホラン50wt%、γ−ブチロラクトン25wt%、1−エチル−2,3−ジメチルイミダゾリニウムフタル酸塩25wt%の混合液を用いた。
なお、電解コンデンサのサイズは22φ×35Lである。
【0014】
(従来例)
PISi層を形成していない封口ゴムを用いて、上記実施例と同様にして電解コンデンサを作成した。
【0015】
[比較結果]
上記のようにして作成した実施例及び従来例の電解コンデンサを、150℃で500時間、1000時間、1500時間放置し、電解液の透過量を測定したところ、表1に示すような結果が得られた。
【表1】

Figure 2004296932
【0016】
表1から明らかなように、実施例の電解液の透過量は、いずれの場合も従来例に比べて17〜20%減となっており、封口ゴムの表面にPISi層を形成することにより、封口ゴムの表面からの熱酸化が抑制されていることが示された。また、電解コンデンサでは一般に、電解液の保持量が減少すると静電容量が低下し、tanδが上昇することが知られているが、実施例では電解液の減少が大幅に抑制されているため、電気特性の劣化を抑制することができると考えられる。
【0017】
【発明の効果】
以上述べたように、本発明によれば、150℃の高温長時間使用に耐えることのできる電解コンデンサ用封口体及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】電解コンデンサの構成を示す断面図
【符号の説明】
1…コンデンサ素子
2…外装ケース
3…封口ゴム[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sealing body for an electrolytic capacitor and a method for manufacturing the same, and more particularly, to a sealing body for an electrolytic capacitor that can withstand use at a high temperature of 150 ° C. and a method for manufacturing the same.
[0002]
[Prior art]
A conventionally used electrolytic capacitor is configured as shown in FIG. That is, an electrode foil provided with a lead wire serving as an electrode lead-out means is wound around a separator to form a capacitor element 1, and the capacitor element 1 impregnated with a driving electrolyte is placed in a bottomed cylindrical outer case 2. To store. Then, the sealing body 3 is attached to the opening of the outer case, and then the opening is sealed by caulking to form an electrolytic capacitor.
[0003]
Usually, a sealing rubber made of butyl rubber or ethylene propylene rubber is used as the sealing body for the electrolytic capacitor. In addition, as an electrolytic solution to be impregnated in a capacitor element of a small, low-impedance, 100 WV class electrolytic capacitor, conventionally, γ-butyrolactone is used as a main solvent, and a tertiary salt such as phthalic acid and maleic acid is used as a solute. Etc. are known.
[0004]
[Problems to be solved by the invention]
The above-mentioned conventional electrolytic capacitor is used at a high temperature of 125 ° C., but in recent years, the operating environment temperature of electrolytic capacitors used for electric components of automobiles and inverter lighting has been raised to 150 ° C. Therefore, conventional electrolytic capacitors cannot withstand long-time use at 150 ° C.
[0005]
Thus, it has been found that the reason why the conventional electrolytic capacitor cannot be used at a high temperature of 150 ° C. for a long time is the heat resistance of the conventional sealing rubber. That is, when used at a high temperature of 150 ° C., the conventional sealing rubber undergoes thermal oxidative deterioration, rubber characteristics are deteriorated, rubber strength is reduced, and airtightness is reduced. The characteristics of the electrolytic capacitor deteriorate. Furthermore, the vapor pressure of the electrolytic solution solvent inside the electrolytic capacitor increases, the amount of permeation from the sealing rubber increases, and the characteristics of the electrolytic capacitor deteriorate.
[0006]
SUMMARY OF THE INVENTION The present invention has been proposed to solve the above-mentioned problems of the related art, and an object of the present invention is to provide a sealing body for an electrolytic capacitor capable of withstanding a long time use at a high temperature of 150 ° C. and a method of manufacturing the same. Is to provide.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present inventor has conducted intensive studies on means capable of preventing thermal oxidative deterioration of the sealing rubber even when used at a high temperature of 150 ° C. for a long time. It has been completed.
That is, it was found that the above-mentioned problem can be solved by forming an insulating layer made of polyimide silicon on the surface of the sealing rubber in advance.
[0008]
(Polyimide silicon)
As the polyimide silicon solution for coating the surface of the sealing rubber, a solution of polyimide silicon (PISi) dissolved in a ketone solvent at 50 wt% or less, preferably 5 to 30 wt%, more preferably 10 to 25 wt% is used. If the amount exceeds this range, the fluidity of the polyimide silicon solution is reduced, so that uniform coating cannot be performed.
Note that, as the ketone solvent, it is preferable to use cyclohexane, acetone, methyl ethyl ketone, or the like.
[0009]
(Method of forming polyimide silicon layer)
As a method of forming a polyimide silicon layer (hereinafter, referred to as a PISi layer) on the surface of the sealing rubber, the sealing rubber is immersed in the above polyimide silicon solution, pulled up, dried at 40 to 100 ° C, and dried at 150 to 200 ° C. A method of heating and polymerizing at 1 ° C. for 1 to 2 hours is preferable.
In this way, the sealing rubber having the PISi layer formed on the surface is attached to the opening of the outer case containing the capacitor element impregnated with the electrolytic solution, and the opening is sealed by drawing, followed by re-formation. Create an electrolytic capacitor.
[0010]
(Part where the PISi layer is formed)
The portion where the PISi layer is to be formed needs to be formed on the upper surface of the electrolytic capacitor when it is formed. More preferably, it is desirable to form on the upper and lower surfaces of the sealing rubber. Furthermore, when a PISi layer is formed on the side surface of the sealing rubber, that is, the contact surface with the outer case, the progress of thermal oxidation from this surface can be suppressed, and the electrolytic solution from the contact surface between the sealing body and the outer case can be further prevented. Can be suppressed, and a more excellent effect can be obtained.
Further, when formed on the inner wall portion of the through hole, the progress of thermal oxidation due to heat transfer from the lead wire can be suppressed, so that the diffusion of the electrolyte from between the lead wire and the through hole can also be suppressed. .
[0011]
(Action / Effect)
The sealing rubber of the present invention has a high heat resistance on at least the upper surface thereof, and a PISi layer having a low permeability to the solvent of the electrolytic solution is formed. Deterioration can be prevented. As a result, the permeation of the electrolytic solution is suppressed, and the amount of the solvent of the electrolytic solution permeated from the rubber is suppressed, so that it can withstand a high temperature of 150 ° C. and a long time use.
[0012]
That is, the deterioration of the sealing rubber at high temperatures is considered to be due to the progress of thermal oxidation from the surface. Therefore, if a PISi layer having high heat resistance is formed on the rubber surface, the thermal oxidation from the surface is suppressed, and the rubber properties are reduced. Is suppressed. In addition, when the decrease in the solvent of the electrolytic solution is suppressed, it is possible to suppress a decrease in capacitance and an increase in tan δ due to a decrease in the amount of retained electrolytic solution.
Further, since PISi has good adhesiveness to rubber, the PISi layer does not peel off from the sealing rubber, and is excellent in reliability.
[0013]
【Example】
Hereinafter, the effects of the present invention will be specifically described using examples.
(Example)
The sealing rubber made of butyl rubber was immersed in a 20 wt% solution of polyimide silicon in cyclohexane, pulled up, dried at 100 ° C., heated at 150 ° C. for 1 hour and polymerized to form a PISi layer on the surface of the sealing rubber. On the other hand, the capacitor element impregnated with the electrolytic solution was housed in an outer case, and the opening was sealed with the above sealing rubber by drawing, followed by re-chemical formation to produce an electrolytic capacitor. In addition, a mixed solution of 50 wt% of sulfolane, 25 wt% of γ-butyrolactone, and 25 wt% of 1-ethyl-2,3-dimethylimidazolinium phthalate was used as the electrolytic solution.
The size of the electrolytic capacitor is 22φ × 35L.
[0014]
(Conventional example)
An electrolytic capacitor was prepared in the same manner as in the above example using a sealing rubber having no PISi layer formed thereon.
[0015]
[Comparison result]
The electrolytic capacitors of the examples and the conventional examples prepared as described above were allowed to stand at 150 ° C. for 500 hours, 1000 hours, and 1500 hours, and the permeation amount of the electrolytic solution was measured. The results shown in Table 1 were obtained. Was done.
[Table 1]
Figure 2004296932
[0016]
As is evident from Table 1, the permeation amount of the electrolyte solution of the examples was reduced by 17 to 20% in each case as compared with the conventional example. By forming the PISi layer on the surface of the sealing rubber, It was shown that thermal oxidation from the surface of the sealing rubber was suppressed. Also, in an electrolytic capacitor, it is generally known that the capacitance decreases and the tan δ increases when the retained amount of the electrolytic solution decreases, but in the examples, since the decrease in the electrolytic solution is greatly suppressed, It is considered that the deterioration of the electric characteristics can be suppressed.
[0017]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a sealing body for an electrolytic capacitor that can withstand long-term use at a high temperature of 150 ° C. and a method for manufacturing the same.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the configuration of an electrolytic capacitor.
1: Capacitor element 2: Outer case 3: Seal rubber

Claims (3)

電解コンデンサの封口に用いられる封口体であって、その表面にポリイミドシリコン層が形成されていることを特徴とする電解コンデンサ用封口体。What is claimed is: 1. A sealing body for an electrolytic capacitor, comprising: a polyimide silicon layer formed on a surface of the sealing body. 電解コンデンサの封口に用いられる封口体を、ポリイミドシリコン溶液中に浸漬し、引き上げた後、40〜100℃で乾燥し、150〜200℃、1〜2時間加熱、重合することを特徴とする電解コンデンサ用封口体の製造方法。The sealing body used for sealing the electrolytic capacitor is immersed in a polyimide silicon solution, pulled up, dried at 40 to 100 ° C, heated at 150 to 200 ° C for 1 to 2 hours, and polymerized by electrolytic polymerization. A method for manufacturing a sealing body for a capacitor. 前記ポリイミドシリコン溶液が、ポリイミドシリコンをケトン系溶媒に溶解した50wt%以下の溶液であることを特徴とする請求項2に記載の電解コンデンサ用封口体の製造方法。The method for producing a sealing body for an electrolytic capacitor according to claim 2, wherein the polyimide silicon solution is a solution of polyimide silicon dissolved in a ketone-based solvent at 50 wt% or less.
JP2003089340A 2003-03-27 2003-03-27 Seal for electrolytic capacitor and its manufacturing method Pending JP2004296932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089340A JP2004296932A (en) 2003-03-27 2003-03-27 Seal for electrolytic capacitor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089340A JP2004296932A (en) 2003-03-27 2003-03-27 Seal for electrolytic capacitor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004296932A true JP2004296932A (en) 2004-10-21

Family

ID=33403207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089340A Pending JP2004296932A (en) 2003-03-27 2003-03-27 Seal for electrolytic capacitor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004296932A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138981A (en) * 1994-11-10 1996-05-31 Elna Co Ltd Aluminum electrolytic capacitor and its rubber sealing body
JPH11228826A (en) * 1998-02-19 1999-08-24 Shin Etsu Chem Co Ltd Polyimidosiloxane resin solution composition and semiconductor device using the same
JP2002012666A (en) * 2000-06-29 2002-01-15 Shin Etsu Chem Co Ltd Polyimidesilicone resin, method for producing the same and composition thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138981A (en) * 1994-11-10 1996-05-31 Elna Co Ltd Aluminum electrolytic capacitor and its rubber sealing body
JPH11228826A (en) * 1998-02-19 1999-08-24 Shin Etsu Chem Co Ltd Polyimidosiloxane resin solution composition and semiconductor device using the same
JP2002012666A (en) * 2000-06-29 2002-01-15 Shin Etsu Chem Co Ltd Polyimidesilicone resin, method for producing the same and composition thereof

Similar Documents

Publication Publication Date Title
TWI492253B (en) Method for manufacturing solid electrolytic capacitor
JP4767197B2 (en) Manufacturing method of solid electrolytic capacitor
KR102104424B1 (en) Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor
JP2011193035A5 (en)
JP4442287B2 (en) Manufacturing method of solid electrolytic capacitor
JP4547730B2 (en) Electrode for electrolytic capacitor, electrolytic capacitor and manufacturing method thereof
JP2004296932A (en) Seal for electrolytic capacitor and its manufacturing method
JP6652835B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3806503B2 (en) Solid electrolytic capacitor
JP2004296933A (en) Electrolytic capacitor
JP5045918B2 (en) Electrolytic capacitor
JP2001102259A (en) Solid electrolytic capacitor and manufacturing method therefor
JP2004296931A (en) Solid electrolytic capacitor and its manufacturing method
JP2000228331A (en) Manufacture of electrolytic capacitor
JP2003297684A (en) Solid electrolytic capacitor and its producing method
JP5276566B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5419794B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2008010521A (en) Solid-state electrolytic capacitor, and its manufacturing method
JP2009010237A (en) Electrolytic capacitor, and manufacturing method thereof
JP2001250747A (en) Solid electrolytic capacitor
JP2000114113A (en) Solid electrolytic capacitor and its manufacture
JP2008270552A (en) Manufacturing method of solid-state electrolytic capacitor
JPH1174155A (en) Manufacture of solid electrolytic capacitor
JP2005322664A (en) Niobium solid electrolytic capacitor and its manufacturing method
JP2010040844A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623