JP2004296933A - Electrolytic capacitor - Google Patents
Electrolytic capacitor Download PDFInfo
- Publication number
- JP2004296933A JP2004296933A JP2003089341A JP2003089341A JP2004296933A JP 2004296933 A JP2004296933 A JP 2004296933A JP 2003089341 A JP2003089341 A JP 2003089341A JP 2003089341 A JP2003089341 A JP 2003089341A JP 2004296933 A JP2004296933 A JP 2004296933A
- Authority
- JP
- Japan
- Prior art keywords
- capacitor
- electrolytic capacitor
- electrolytic
- solution
- lead wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、電解コンデンサに係り、特に、150℃の高温での使用に耐え得る電解コンデンサに関するものである。
【0002】
【従来の技術】
従来から用いられている電解コンデンサは、例えば、図1に示すように構成されている(特許文献1)。すなわち、電極引き出し手段であるリード線を備えた電極箔を、セパレータを介して巻回してコンデンサ素子1を形成し、駆動用電解液を含浸したコンデンサ素子1を有底筒状の外装ケース2に収納する。そして、この外装ケースの開口部に封口体3を装着し、その後、開口部を加締め加工によって封口して、電解コンデンサが形成される。
【0003】
通常、この電解コンデンサ用封口体としては、ブチルゴムやエチレンプロピレンゴムからなる封口ゴムが用いられる。また、小型、低インピーダンス、100WV級の電解コンデンサのコンデンサ素子に含浸される電解液としては、従来より、γ−ブチロラクトンを主溶媒とし、フタル酸、マレイン酸等の三級塩を溶質とするものなどが知られている。
【0004】
【特許文献1】
特開平9−7901号公報
【0005】
【発明が解決しようとする課題】
近年、自動車の電装品やインバータ照明に用いられる電解コンデンサの使用環境温度は150℃へと高温化しているが、上記のような従来の電解コンデンサの高温使用は125℃が限界であるため、従来の電解コンデンサでは、150℃での長時間使用には耐えることができなかった。
【0006】
このように、従来の電解コンデンサを150℃の高温下で長時間使用することができない原因は、従来の封口ゴムの耐熱性にあることが判明している。すなわち、150℃の高温下で使用すると、従来の封口ゴムは熱酸化劣化を起こして、ゴム特性が劣化し、ゴム強度の低下、気密性の低下をもたらすため、電解液が透散して、電解コンデンサの特性が低下する。さらに、電解コンデンサ内部の電解液溶媒の蒸気圧が上昇して、封口ゴムからの透過量が増大して、電解コンデンサの特性が低下する。
【0007】
本発明は、上述したような従来技術の問題点を解消するために提案されたものであり、その目的は、150℃の高温長時間使用に耐えることのできる電解コンデンサを提供することにある。
【0008】
【課題を解決するための手段】
本発明者は、上記の目的を達成するため、150℃の高温下で長時間使用しても、封口ゴムの熱酸化劣化を防止することができる手段について鋭意検討を重ねた結果、本発明を完成するに至ったものである。
すなわち、封口ゴムの表面に、予めポリイミドシリコンからなる絶縁層を形成しておくことにより、上記課題を解決することができることが分かった。
【0009】
(ポリイミドシリコン)
封口ゴムの表面をコートするポリイミドシリコン溶液としては、ポリイミドシリコン(PISi)をケトン系溶媒に溶解した50wt%以下、好ましくは5〜30wt%、さらに好ましくは10〜25wt%の溶液を用いる。この範囲を超えるとポリイミドシリコン溶液の流動性が低下するため、均一な層を形成することが困難であり、この範囲未満では本発明の効果が低下する。
なお、ケトン系溶媒としては、シクロヘキサン、アセトン、メチルエチルケトン等を用いることが好ましい。
【0010】
(ポリイミドシリコン層の形成方法)
電解液を含浸したコンデンサ素子を外装ケースに収納し、開口部に封口ゴムを配し、絞り加工によって封口した後、再化成を行って電解コンデンサを作成する。この電解コンデンサの封口ゴムの上面(リード線を引き出したコンデンサ本体の端面)に上記のポリイミドシリコン溶液をディスペンサ等で滴下、塗布した後、40〜100℃で乾燥し、150〜200℃、1〜2時間加熱、重合する方法が好ましい。なお、ポリイミドシリコン溶液をアプリケータ等で塗布しても良い。
【0011】
また、複数のリード線を引き出したコンデンサ本体の端面に、このリード線と対応する位置に貫通部を形成した絶縁板を配設してなる表面実装型電解コンデンサの場合は、コンデンサ本体の端面と絶縁板の間隙にPISi層を形成すると、コンデンサ本体と絶縁板との接合性が高まり、その結果、封口ゴム表面の熱劣化が抑制でき、アルミケースの加締め部分と絶縁板をポリイミドシリコンによって接合できるという効果を得ることもできる。
【0012】
さらに、絶縁板の貫通孔と、貫通孔に挿通したリード線との間隙にPISi層を形成すると、リード線の折り曲げ加工時に、リード線と電極箔との接合部へのストレスが緩和されて、漏れ電流特性が向上するという効果も得られる。
【0013】
(電解液の溶媒)
電解液の溶媒として、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン等のスルホラン系溶媒を用いると、蒸気圧が低いので、電解液の透過量が少なく、高温特性はさらに向上する。また、γ−ブチロラクトン等のラクトン系の溶媒を副溶媒として用いると、インピーダンス特性が向上するのでより好ましい。
【0014】
(作用・効果)
本発明の電解コンデンサは、封口ゴムの上面に、耐熱性が高く、電解液の溶媒の透過性が低いPISi層を形成しているので、150℃の高温下で長時間使用した場合でも封口ゴムの劣化を防止することができる。その結果、電解液の透散が抑制され、電解液の溶媒のゴムからの透過量が抑制されるので、150℃の高温、長時間の使用に耐えることができる。
【0015】
すなわち、封口ゴムの高温下での劣化は、表面からの熱酸化の進行によるので、ゴム表面に耐熱性の高いPISi層を形成すると、表面からの熱酸化が抑制されて、ゴム特性の劣化が抑制される。また、電解液の溶媒の減少が抑制されると、電解液の保持量の減少による静電容量の低下とtanδの上昇を抑制することができる。
【0016】
また、PISiは、ゴム、金属との接着性も良好であるので、封口ゴムの上面にPISi層を形成した後も、このPISi層とゴム、ケースの絞り加工をした端面との接着性が良好であるため、封口ゴムから剥離するということがなく、信頼性にも優れている。
【0017】
【実施例】
以下、本発明の効果を実施例を用いて具体的に説明する。
(実施例)
電解液を含浸したコンデンサ素子を外装ケースに収納し、開口部を封口ゴムで絞り加工によって封口した後、再化成を行って電解コンデンサを作成した。なお、電解液としては、スルホラン50wt%、γ−ブチロラクトン25wt%、1−エチル−2,3−ジメチルイミダゾリニウムフタル酸塩25wt%の混合液を用いた。
この電解コンデンサの封口ゴムの上面に、ポリイミドシリコンの20wt%シクロヘキサン溶液をディスペンサで滴下、塗布した後、100℃で乾燥し、150℃で1時間加熱して重合させ、封口ゴムの上面にPISi層を形成した。なお、電解コンデンサのサイズは22φ×35Lである。
【0018】
(従来例)
上記実施例と同様にして電解コンデンサを作成し、封口ゴムの上面にPISi層を形成しなかった。
【0019】
[比較結果]
上記のようにして作製した実施例及び従来例の電解コンデンサを、150℃に500時間、1000時間、1500時間放置し、電解液の透過量を測定したところ、表1に示すような結果が得られた。
【表1】
【0020】
表1から明らかなように、1000時間以降で、実施例の電解液の透過量は従来例に比べて14〜15%減となっており、封口ゴムの表面にPISi層を形成することにより、封口ゴムの表面からの熱酸化が抑制されていることが示された。また、電解コンデンサでは一般に、電解液の保持量が減少すると静電容量が低下し、tanδが上昇することが知られているが、実施例では電解液の減少が大幅に抑制されているため、電気特性の劣化を抑制することができると考えられる。
【0021】
【発明の効果】
以上述べたように、本発明によれば、150℃の高温長時間使用に耐えることのできる電解コンデンサを提供することができる。
【図面の簡単な説明】
【図1】電解コンデンサの構成を示す断面図
【符号の説明】
1…コンデンサ素子
2…外装ケース
3…封口ゴム[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrolytic capacitor, and more particularly, to an electrolytic capacitor that can withstand use at a high temperature of 150 ° C.
[0002]
[Prior art]
BACKGROUND ART Conventionally used electrolytic capacitors are configured, for example, as shown in FIG. 1 (Patent Document 1). That is, an electrode foil provided with a lead wire serving as an electrode lead-out means is wound around a separator to form a
[0003]
Usually, a sealing rubber made of butyl rubber or ethylene propylene rubber is used as the sealing body for the electrolytic capacitor. In addition, as an electrolytic solution to be impregnated in a capacitor element of a small, low-impedance, 100 WV class electrolytic capacitor, conventionally, γ-butyrolactone is used as a main solvent, and a tertiary salt such as phthalic acid and maleic acid is used as a solute. Etc. are known.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 9-7901
[Problems to be solved by the invention]
In recent years, the operating environment temperature of electrolytic capacitors used for automotive electrical components and inverter lighting has risen to 150 ° C. However, the above-mentioned high temperature use of conventional electrolytic capacitors is limited to 125 ° C. The electrolytic capacitor of No. could not withstand long-time use at 150 ° C.
[0006]
Thus, it has been found that the reason why the conventional electrolytic capacitor cannot be used at a high temperature of 150 ° C. for a long time is the heat resistance of the conventional sealing rubber. That is, when used at a high temperature of 150 ° C., the conventional sealing rubber undergoes thermal oxidative deterioration, rubber characteristics are deteriorated, rubber strength is reduced, and airtightness is reduced. The characteristics of the electrolytic capacitor deteriorate. Furthermore, the vapor pressure of the electrolytic solution solvent inside the electrolytic capacitor increases, the amount of permeation from the sealing rubber increases, and the characteristics of the electrolytic capacitor deteriorate.
[0007]
SUMMARY OF THE INVENTION The present invention has been proposed to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide an electrolytic capacitor capable of withstanding a high temperature of 150 ° C. for a long time.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present inventor has conducted intensive studies on means capable of preventing thermal oxidative deterioration of the sealing rubber even when used at a high temperature of 150 ° C. for a long time. It has been completed.
That is, it was found that the above-mentioned problem can be solved by forming an insulating layer made of polyimide silicon on the surface of the sealing rubber in advance.
[0009]
(Polyimide silicon)
As the polyimide silicon solution for coating the surface of the sealing rubber, a solution of polyimide silicon (PISi) dissolved in a ketone solvent at 50 wt% or less, preferably 5 to 30 wt%, more preferably 10 to 25 wt% is used. If it exceeds this range, the fluidity of the polyimide silicon solution will decrease, making it difficult to form a uniform layer. If it is below this range, the effects of the present invention will decrease.
Note that, as the ketone solvent, it is preferable to use cyclohexane, acetone, methyl ethyl ketone, or the like.
[0010]
(Method of forming polyimide silicon layer)
The capacitor element impregnated with the electrolytic solution is housed in an outer case, a sealing rubber is provided in the opening, and the opening is sealed by drawing, followed by re-formation to produce an electrolytic capacitor. The above polyimide silicon solution is dropped and applied to the upper surface of the sealing rubber of the electrolytic capacitor (the end surface of the capacitor body from which the lead wire is drawn out) with a dispenser or the like, and then dried at 40 to 100 ° C, and then dried at 150 to 200 ° C. A method of heating and polymerizing for 2 hours is preferable. Note that the polyimide silicon solution may be applied by an applicator or the like.
[0011]
In addition, in the case of a surface mount type electrolytic capacitor in which an insulating plate having a through portion formed at a position corresponding to the lead wire is provided on an end face of the capacitor body from which a plurality of lead wires are drawn out, the end face of the capacitor body is When a PISi layer is formed in the gap between the insulating plates, the bondability between the capacitor body and the insulating plate is improved, and as a result, thermal deterioration of the sealing rubber surface can be suppressed, and the crimped portion of the aluminum case and the insulating plate are bonded by polyimide silicon. The effect that it can be obtained can also be obtained.
[0012]
Furthermore, when the PISi layer is formed in the gap between the through hole of the insulating plate and the lead wire inserted into the through hole, the stress applied to the joint between the lead wire and the electrode foil during bending of the lead wire is reduced, The effect of improving the leakage current characteristics is also obtained.
[0013]
(Solvent of electrolyte)
When a sulfolane-based solvent such as sulfolane, 3-methylsulfolane, or 2,4-dimethylsulfolane is used as a solvent for the electrolyte, the vapor pressure is low, so that the permeation amount of the electrolyte is small and the high-temperature characteristics are further improved. It is more preferable to use a lactone-based solvent such as γ-butyrolactone as a secondary solvent because impedance characteristics are improved.
[0014]
(Action / Effect)
Since the electrolytic capacitor of the present invention has a PISi layer having high heat resistance and low permeability of the solvent of the electrolytic solution formed on the upper surface of the sealing rubber, the sealing rubber can be used even at a high temperature of 150 ° C. for a long time. Degradation can be prevented. As a result, the permeation of the electrolytic solution is suppressed, and the amount of the solvent of the electrolytic solution permeated from the rubber is suppressed, so that it can withstand a high temperature of 150 ° C. and a long time use.
[0015]
That is, the deterioration of the sealing rubber at a high temperature is due to the progress of thermal oxidation from the surface. Therefore, if a highly heat-resistant PISi layer is formed on the rubber surface, the thermal oxidation from the surface is suppressed, and the deterioration of the rubber characteristics is reduced. Be suppressed. In addition, when the decrease in the solvent of the electrolytic solution is suppressed, it is possible to suppress a decrease in capacitance and an increase in tan δ due to a decrease in the amount of retained electrolytic solution.
[0016]
Also, since PISi has good adhesion to rubber and metal, even after forming the PISi layer on the upper surface of the sealing rubber, the adhesion between this PISi layer and the end face of the rubber and the case after drawing is good. Therefore, it does not peel off from the sealing rubber and is excellent in reliability.
[0017]
【Example】
Hereinafter, the effects of the present invention will be specifically described using examples.
(Example)
The capacitor element impregnated with the electrolytic solution was housed in an outer case, and the opening was closed by drawing with sealing rubber, followed by re-chemical formation to produce an electrolytic capacitor. In addition, a mixed solution of 50 wt% of sulfolane, 25 wt% of γ-butyrolactone, and 25 wt% of 1-ethyl-2,3-dimethylimidazolinium phthalate was used as the electrolytic solution.
A 20 wt% solution of polyimide silicon in cyclohexane is dropped and applied to the upper surface of the sealing rubber of the electrolytic capacitor with a dispenser, dried at 100 ° C., heated at 150 ° C. for 1 hour to polymerize, and a PISi layer is formed on the upper surface of the sealing rubber. Was formed. The size of the electrolytic capacitor is 22φ × 35L.
[0018]
(Conventional example)
An electrolytic capacitor was prepared in the same manner as in the above example, and no PISi layer was formed on the upper surface of the sealing rubber.
[0019]
[Comparison result]
The electrolytic capacitors of Examples and Conventional Examples produced as described above were left at 150 ° C. for 500 hours, 1000 hours, and 1500 hours, and the permeation amount of the electrolytic solution was measured. The results shown in Table 1 were obtained. Was done.
[Table 1]
[0020]
As is clear from Table 1, after 1000 hours, the permeation amount of the electrolyte solution of the example is reduced by 14 to 15% as compared with the conventional example, and by forming the PISi layer on the surface of the sealing rubber, It was shown that thermal oxidation from the surface of the sealing rubber was suppressed. Also, in an electrolytic capacitor, it is generally known that the capacitance decreases and the tan δ increases when the retained amount of the electrolytic solution decreases, but in the examples, since the decrease in the electrolytic solution is greatly suppressed, It is considered that the deterioration of the electric characteristics can be suppressed.
[0021]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an electrolytic capacitor that can withstand long-term use at a high temperature of 150 ° C.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the configuration of an electrolytic capacitor.
1: Capacitor element 2: Outer case 3: Seal rubber
Claims (3)
前記リード線を引き出したコンデンサ本体の端面に、ポリイミドシリコン層を形成したことを特徴とする電解コンデンサ。An electrolytic solution is impregnated into a capacitor element formed by winding a bipolar foil having a lead wire and a separator, the capacitor element is stored in an outer case, and the lead wire is passed through a through hole of a sealing body to form an opening. In an electrolytic capacitor sealed by a sealing body,
An electrolytic capacitor, wherein a polyimide silicon layer is formed on an end face of a capacitor body from which the lead wire is drawn.
前記コンデンサ本体の端面と絶縁板の間隙に、ポリイミドシリコン層を形成したことを特徴とする電解コンデンサ。On the end face of the capacitor body from which a plurality of lead wires are drawn, an insulating plate having a through portion formed at a position corresponding to the lead wire is disposed, and the plurality of lead wires are drawn out from the through portion and bent to be surface mounted. Type electrolytic capacitors,
An electrolytic capacitor, wherein a polyimide silicon layer is formed in a gap between an end face of the capacitor body and an insulating plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003089341A JP2004296933A (en) | 2003-03-27 | 2003-03-27 | Electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003089341A JP2004296933A (en) | 2003-03-27 | 2003-03-27 | Electrolytic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004296933A true JP2004296933A (en) | 2004-10-21 |
Family
ID=33403208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003089341A Pending JP2004296933A (en) | 2003-03-27 | 2003-03-27 | Electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004296933A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009088277A (en) * | 2007-09-28 | 2009-04-23 | Nippon Chemicon Corp | Electrolytic capacitor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02194613A (en) * | 1989-01-24 | 1990-08-01 | Nippon Chemicon Corp | Capacitor |
JPH06338438A (en) * | 1993-05-27 | 1994-12-06 | Rubycon Corp | Aluminum electrolytic capacitor |
JP2002012667A (en) * | 2000-06-29 | 2002-01-15 | Shin Etsu Chem Co Ltd | Polyimidesilicone resin, solution composition thereof, and polyimidesilicone resin coating film |
JP2002012666A (en) * | 2000-06-29 | 2002-01-15 | Shin Etsu Chem Co Ltd | Polyimidesilicone resin, method for producing the same and composition thereof |
-
2003
- 2003-03-27 JP JP2003089341A patent/JP2004296933A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02194613A (en) * | 1989-01-24 | 1990-08-01 | Nippon Chemicon Corp | Capacitor |
JPH06338438A (en) * | 1993-05-27 | 1994-12-06 | Rubycon Corp | Aluminum electrolytic capacitor |
JP2002012667A (en) * | 2000-06-29 | 2002-01-15 | Shin Etsu Chem Co Ltd | Polyimidesilicone resin, solution composition thereof, and polyimidesilicone resin coating film |
JP2002012666A (en) * | 2000-06-29 | 2002-01-15 | Shin Etsu Chem Co Ltd | Polyimidesilicone resin, method for producing the same and composition thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009088277A (en) * | 2007-09-28 | 2009-04-23 | Nippon Chemicon Corp | Electrolytic capacitor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI492253B (en) | Method for manufacturing solid electrolytic capacitor | |
JP2009111174A (en) | Method for manufacturing electrolytic capacitor and electrolytic capacitor | |
KR20100062928A (en) | Method of manufacturing solid electrolytic capacitor | |
JP7142269B2 (en) | Manufacturing method of electrolytic capacitor | |
JP6110964B2 (en) | Solid electrolytic capacitor with improved ESR stability | |
JPH11219860A (en) | Solid electrolyte capacitor using conductive polymer and manufacture thereof | |
JP2011193035A (en) | Solid electrolytic capacitor element, method for manufacturing the same, and solid electrolytic capacitor | |
JP5623214B2 (en) | Solid electrolytic capacitor | |
JP5075466B2 (en) | Electrolytic capacitor manufacturing method | |
JP6726886B2 (en) | Electrolytic capacitor and manufacturing method thereof | |
JP2004296933A (en) | Electrolytic capacitor | |
JP5045918B2 (en) | Electrolytic capacitor | |
JP6735510B2 (en) | Electrolytic capacitor | |
JP3806503B2 (en) | Solid electrolytic capacitor | |
JP2004296932A (en) | Seal for electrolytic capacitor and its manufacturing method | |
JP2001102259A (en) | Solid electrolytic capacitor and manufacturing method therefor | |
JP2004296931A (en) | Solid electrolytic capacitor and its manufacturing method | |
JP2001284181A (en) | Solid electrolytic capacitor | |
JPH07272979A (en) | Electrolytic capacitor | |
JP2000114113A (en) | Solid electrolytic capacitor and its manufacture | |
JP7495848B2 (en) | Electrolytic capacitor | |
WO2024004616A1 (en) | Electrolytic capacitor and production method therefor | |
JPH10335184A (en) | Solid electrolytic capacitor | |
JPH0446446B2 (en) | ||
JP2024004121A (en) | Solid electrolytic capacitor and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060322 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081006 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081014 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081215 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090623 |