JP2009010237A - Electrolytic capacitor, and manufacturing method thereof - Google Patents

Electrolytic capacitor, and manufacturing method thereof Download PDF

Info

Publication number
JP2009010237A
JP2009010237A JP2007171310A JP2007171310A JP2009010237A JP 2009010237 A JP2009010237 A JP 2009010237A JP 2007171310 A JP2007171310 A JP 2007171310A JP 2007171310 A JP2007171310 A JP 2007171310A JP 2009010237 A JP2009010237 A JP 2009010237A
Authority
JP
Japan
Prior art keywords
base plate
insulating member
electrolytic capacitor
hole
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007171310A
Other languages
Japanese (ja)
Other versions
JP4900598B2 (en
Inventor
Takayuki Matsumoto
貴行 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga Sanyo Industry Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Saga Sanyo Industry Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga Sanyo Industry Co Ltd, Sanyo Electric Co Ltd filed Critical Saga Sanyo Industry Co Ltd
Priority to JP2007171310A priority Critical patent/JP4900598B2/en
Publication of JP2009010237A publication Critical patent/JP2009010237A/en
Application granted granted Critical
Publication of JP4900598B2 publication Critical patent/JP4900598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic capacitor that is excellent in thermal resistance and capable of preventing the deterioration of the sealing property of a sealing member, and to provide a manufacturing method thereof. <P>SOLUTION: The electrolytic capacitor is provided with: a capacitor element 1 having separator paper interposed between an anode foil with a dielectric film formed and a cathode foil opposed thereto to be wound and being impregnated with an electrolyte; a bottomed cylindrical case 9 storing this capacitor element 1; and a sealing member for sealing the opening end part of this case 9. The sealing member is formed having a metal base plate 10 having a through hole and an insulating member 11 inserted into this through hole. The peripheral portion of the base plate 10 is wound up and tightened together with the opening end part of the case 9. Due to this, a force is applied from the peripheral portion to the through hole in the base plate 10. Thereby, the insulating member 11 inserted into the through hole is tightened, and the sealing property is improved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電解コンデンサおよびその製造方法に関し、特に陽極箔とこれに対向する陰極箔とをセパレータを介して巻回したコンデンサ素子内に電解質を含浸した電解コンデンサおよびその製造方法に関する。   The present invention relates to an electrolytic capacitor and a method for manufacturing the same, and more particularly to an electrolytic capacitor in which an electrolyte is impregnated in a capacitor element in which an anode foil and a cathode foil facing the electrolytic foil are wound through a separator, and a method for manufacturing the same.

図9は従来の電解コンデンサの断面正面図であり、図10は従来の電解コンデンサを構成するコンデンサ素子の分解斜視図である(たとえば特許文献1参照)。   FIG. 9 is a sectional front view of a conventional electrolytic capacitor, and FIG. 10 is an exploded perspective view of a capacitor element constituting the conventional electrolytic capacitor (see, for example, Patent Document 1).

コンデンサ素子101は、図10に示すように、リードタブ端子106を介して陽極リード線7が取り付けられた陽極箔102と、別のリードタブ端子106を介して陰極リード線8が取り付けられた陰極箔103とを、セパレータ紙104を介して円筒状に巻回し、外周の巻止めテープ105により巻き止めることにより形成される。そして、こうしたコンデンサ素子101内に電解質を形成させ、図9に示すように、有底筒状のアルミニウム製のケース109に収納して、ケース109の開口端部を封口部材である封止用ゴム130で封止することによって従来の電解コンデンサが作製される。なお、封止用ゴム130には、陽極リード107および陰極リード108にそれぞれ接続されたリードタブ端子106を引き出すための貫通孔130aが形成されている。また、封止用ゴム130は、ケース109の開口端部に横絞り加工とカール加工を施すことにより固定されている。
特開平8−153654号公報
As shown in FIG. 10, the capacitor element 101 includes an anode foil 102 to which the anode lead wire 7 is attached via a lead tab terminal 106 and a cathode foil 103 to which a cathode lead wire 8 is attached via another lead tab terminal 106. Are wound in a cylindrical shape via a separator paper 104, and are wound by a winding tape 105 on the outer periphery. Then, an electrolyte is formed in such a capacitor element 101 and accommodated in a bottomed cylindrical aluminum case 109 as shown in FIG. 9, and the opening end of the case 109 is a sealing rubber as a sealing member. By sealing at 130, a conventional electrolytic capacitor is produced. The sealing rubber 130 is formed with a through hole 130a for drawing out the lead tab terminal 106 connected to the anode lead 107 and the cathode lead 108, respectively. Further, the sealing rubber 130 is fixed by subjecting the opening end of the case 109 to lateral drawing and curling.
JP-A-8-153654

一般に電解コンデンサの信頼性劣化の抑制にはその封止状態の維持が重要である。しかしながら、上記構成の従来の電解コンデンサでは、高温環境下で放置した場合、封口部材である封止用ゴム130が収縮して、封止用ゴム130とリードタブ端子106との界面や、封止用ゴム130とケース109との界面に隙間ができて外部から水分などがコンデンサ素子101の内部に浸入したりすることがある。また、封止用ゴム130自体が裂化して、その裂け目を介して水分などが透過し、コンデンサ素子101の内部に水分などが浸入することがある。このように封止用ゴム130の封止性が損なわれコンデンサ素子101の内部に水分などが浸入すると、電解質が劣化し、静電容量の減少などの電気特性の低下を招くことになり、電解コンデンサの信頼性が劣化する。   In general, it is important to maintain the sealed state in order to suppress the deterioration of the reliability of the electrolytic capacitor. However, in the conventional electrolytic capacitor having the above configuration, when left in a high temperature environment, the sealing rubber 130 as the sealing member contracts, and the interface between the sealing rubber 130 and the lead tab terminal 106 or the sealing A gap may be formed at the interface between the rubber 130 and the case 109, and moisture or the like may enter the capacitor element 101 from the outside. In addition, the sealing rubber 130 itself may be torn, moisture and the like may pass through the tear, and moisture and the like may enter the capacitor element 101. As described above, when the sealing property of the sealing rubber 130 is impaired and moisture or the like enters the capacitor element 101, the electrolyte is deteriorated, leading to a decrease in electrical characteristics such as a decrease in capacitance. Capacitor reliability deteriorates.

本発明はこうした課題に鑑みてなされたものであり、その目的は、耐熱性に優れ、封口部材の封止性の劣化を抑制することが可能な電解コンデンサおよびその製造方法を提供することにある。   This invention is made | formed in view of such a subject, The objective is to provide the electrolytic capacitor which is excellent in heat resistance, and can suppress the deterioration of the sealing performance of a sealing member, and its manufacturing method. .

上記目的を達成するために、本発明に係る電解コンデンサは、リードタブ端子を介して金属製のリード線と接続されているコンデンサ素子を収納する金属製のケースの開口端部に封口部材を装着して封止する電解コンデンサにおいて、封口部材は、少なくとも2つの貫通孔を有するベース板を有し、該貫通孔には、リードタブ端子が挿入されており、ベース板の周縁部はケースの開口端部と共にケースに対して外側に巻き締め加工されていることを特徴とする。   In order to achieve the above object, an electrolytic capacitor according to the present invention has a sealing member attached to an opening end portion of a metal case that houses a capacitor element connected to a metal lead wire via a lead tab terminal. In the electrolytic capacitor to be sealed, the sealing member has a base plate having at least two through holes, a lead tab terminal is inserted into the through hole, and the peripheral edge of the base plate is the opening end of the case In addition, it is characterized in that it is wound outwardly with respect to the case.

上記封口部材は、さらに2つの貫通孔を有する絶縁部材を有し、リードタブ端子は、該絶縁部材の貫通孔に挿入されていてもよい。   The sealing member may further include an insulating member having two through holes, and the lead tab terminal may be inserted into the through hole of the insulating member.

本発明に係る別の電解コンデンサは、リードタブ端子を介して金属製のリード線と接続
されているコンデンサ素子を収納する金属製のケースの開口端部に封口部材を装着して封止する電解コンデンサにおいて、封口部材は、少なくとも2つの貫通孔を有するベース板と、2つの貫通孔を有する絶縁部材を有し、ベース板の貫通孔には、絶縁部材が挿入され、該絶縁部材の貫通孔には、リードタブ端子が接続され、絶縁部材とベース板の接触部周辺にくぼみ部が形成されていることを特徴とする。
Another electrolytic capacitor according to the present invention is an electrolytic capacitor in which a sealing member is mounted and sealed at an opening end of a metal case that houses a capacitor element connected to a metal lead wire via a lead tab terminal. The sealing member includes a base plate having at least two through holes and an insulating member having two through holes. An insulating member is inserted into the through hole of the base plate, and the through hole of the insulating member is inserted into the through hole of the insulating member. Is characterized in that a lead tab terminal is connected and a recess is formed around the contact portion between the insulating member and the base plate.

上記ベース板の周縁部は、ケースの開口端部と共にケースに対して外側に巻き締め加工されていることが好ましい。また、上記絶縁部材は弾性体であってもよい。   The peripheral edge of the base plate is preferably wound outwardly with respect to the case together with the opening end of the case. The insulating member may be an elastic body.

本発明の電解コンデンサの製造方法は、リードタブ端子を介して金属製のリード線と接続されているコンデンサ素子を金属製のケースに収納する収納工程と、リードタブ端子を、封口部材に備えられた貫通孔に挿入する挿入工程と、封口部材を用いてコンデンサ素子を封止する封止工程とを備える電解コンデンサの製造方法において、封口部材として、ベース板を有し、挿入工程は、リードタブ端子をベース板の貫通孔に挿入するベース板挿入工程を有し、封止工程は、ベース板の周縁部とケースの開口端部とを該ケースの外側方向に巻き締め加工する巻き締め工程を有することを特徴とする。   The electrolytic capacitor manufacturing method of the present invention includes a storage step of storing a capacitor element connected to a metal lead wire through a lead tab terminal in a metal case, and a lead tab terminal provided in the sealing member. In an electrolytic capacitor manufacturing method including an insertion step of inserting into a hole and a sealing step of sealing a capacitor element using a sealing member, the electrolytic capacitor includes a base plate as a sealing member, and the insertion step is based on a lead tab terminal. A base plate insertion step for inserting into the through hole of the plate, and the sealing step includes a winding step for winding the peripheral edge portion of the base plate and the opening end portion of the case in the outer direction of the case. Features.

上記封口部材は、さらに絶縁部材を有し、ベース板挿入工程の前に、リードタブ端子を絶縁部材の貫通孔に挿入する絶縁部材挿入工程を有していてもよい。   The sealing member may further include an insulating member, and may include an insulating member inserting step of inserting the lead tab terminal into the through hole of the insulating member before the base plate inserting step.

本発明によれば、耐熱性に優れ、封口部材の封止性の劣化を抑制することが可能な電解コンデンサおよびその製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, it is excellent in heat resistance and the electrolytic capacitor which can suppress the deterioration of the sealing performance of a sealing member, and its manufacturing method are provided.

以下、本発明を具現化した実施形態について図面に基づいて説明する。なお、この実施の形態によって本発明が限定されるものではない。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of the invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(第1実施形態)
図1は本発明の第1実施形態に係る封口部材を備えた電解コンデンサの構成を示す概略断面図であり、図2は同電解コンデンサを構成するコンデンサ素子の分解斜視図である。図3は封口部材を構成するベース板の概略平面図であり、図4は封口部材を構成する絶縁部材の概略斜視図である。なお、図1〜図4におけるすべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(First embodiment)
FIG. 1 is a schematic cross-sectional view showing a configuration of an electrolytic capacitor including a sealing member according to a first embodiment of the present invention, and FIG. 2 is an exploded perspective view of a capacitor element constituting the electrolytic capacitor. FIG. 3 is a schematic plan view of a base plate constituting the sealing member, and FIG. 4 is a schematic perspective view of an insulating member constituting the sealing member. In all the drawings in FIGS. 1 to 4, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

第1実施形態の電解コンデンサでは、コンデンサ素子1として、図2に示すように、誘電体皮膜(図示せず)を形成した陽極箔2とこれに対向する陰極箔3とをセパレータ紙4を介して巻回したものを採用している。陽極箔2にはリードタブ端子6を介して陽極リード線7が引き出され、陰極箔3には別のリードタブ端子6を介して陰極リード線8が引き出されている。そして、図1に示すように、こうしたコンデンサ素子1内に電解質を形成し、このコンデンサ素子1を有底筒状の金属製のケース9に収納し、このケース9の開口端部に封口部材を装着している。   In the electrolytic capacitor of the first embodiment, as a capacitor element 1, as shown in FIG. 2, an anode foil 2 on which a dielectric film (not shown) is formed and a cathode foil 3 facing the anode foil 2 are interposed via separator paper 4. The one wound is used. An anode lead wire 7 is drawn out from the anode foil 2 via a lead tab terminal 6, and a cathode lead wire 8 is drawn out from the cathode foil 3 via another lead tab terminal 6. Then, as shown in FIG. 1, an electrolyte is formed in the capacitor element 1, the capacitor element 1 is stored in a bottomed cylindrical metal case 9, and a sealing member is attached to the opening end of the case 9. Wearing.

封口部材は、貫通孔10aを有する金属製のベース板10と、この貫通孔10aに挿入された絶縁部材11と、を有して構成されている。そして、この封口部材には、貫通孔10a内の絶縁部材11を貫通して金属製のリードタブ端子6が設けられている。ベース板10の周縁部はケース9の開口端部と共に該ケース9の外側方向に巻き締めされている。また、絶縁部材11には、ベース板10により締め付けられて、ベース板10との接触部に沿って側壁がくぼんだ領域11cが形成されている。   The sealing member includes a metal base plate 10 having a through hole 10a and an insulating member 11 inserted into the through hole 10a. The sealing member is provided with a metal lead tab terminal 6 penetrating the insulating member 11 in the through hole 10a. The peripheral edge of the base plate 10 is wound around the opening end of the case 9 in the outward direction of the case 9. Further, the insulating member 11 is formed with a region 11 c that is tightened by the base plate 10 and has a recessed side wall along a contact portion with the base plate 10.

具体的な電解コンデンサの構成は以下の通りである。   The specific structure of the electrolytic capacitor is as follows.

陽極箔2には、アルミニウム、タンタル、ニオブなどの弁作用を有する金属からなる箔
が採用され、箔表面の粗面化のためのエッチング処理および箔表面への誘電体皮膜形成のための化成処理が施されている。そして、陽極箔2の上縁に金属製のリードタブ端子6を介して陽極リード線7が接続されている。
The anode foil 2 is made of a foil made of a metal having a valve action such as aluminum, tantalum, or niobium, and is subjected to an etching process for roughening the foil surface and a chemical conversion process for forming a dielectric film on the foil surface. Is given. An anode lead wire 7 is connected to the upper edge of the anode foil 2 via a metal lead tab terminal 6.

陰極箔3としては、陽極箔2と同じ弁作用を有する金属からなる箔が採用される。そして、陰極箔3には、金属製のリードタブ端子6を介して陰極リード線8が接続されている。   As the cathode foil 3, a foil made of a metal having the same valve action as the anode foil 2 is employed. A cathode lead wire 8 is connected to the cathode foil 3 via a metal lead tab terminal 6.

コンデンサ素子1は、陽極箔2と、これに対向する陰極箔3とを絶縁体などからなるセパレータ紙4を介して円筒状に巻回し、外周の巻止めテープ5により巻き止めることにより構成される。   The capacitor element 1 is configured by winding an anode foil 2 and a cathode foil 3 opposite to the anode foil 2 in a cylindrical shape via a separator paper 4 made of an insulator and the like, and winding it with an outer winding tape 5. .

電解質としては、無機酸、有機酸またはこれらの塩を含む電解液や、固体電解質を用いることができる。固体電解質は、具体的には二酸化マンガンや、TCNQ(7,7,8,8−テトラシアノキノジメタン)錯塩、導電性高分子などがあるが、導電性が良好な導電性高分子、特にチオフェンまたはその誘導体からなる導電性高分子であることが望ましい。上記から選ばれる電解質を含浸、塗布などの周知の方法でコンデンサ素子1内に形成させる。   As the electrolyte, an electrolytic solution containing an inorganic acid, an organic acid or a salt thereof, or a solid electrolyte can be used. Specific examples of the solid electrolyte include manganese dioxide, TCNQ (7,7,8,8-tetracyanoquinodimethane) complex salt, conductive polymer, and the like. A conductive polymer composed of thiophene or a derivative thereof is desirable. An electrolyte selected from the above is formed in the capacitor element 1 by a known method such as impregnation or coating.

金属製のケース9には、通常、成形加工が容易なアルミニウム板などで有底筒状に形成されたアルミニウム製のケースが採用される。前記ケース9内にコンデンサ素子1を収納固定し、封口部材をこのケース9の開口端部に装着して封止している。なお、金属製のケース9として、アルミニウム以外に、ステンレス、銅、鉄、真鍮などの金属からなるケースを採用してもよいし、あるいはこれらの合金からなるケースを採用してもよい。   The metal case 9 is usually an aluminum case formed in a bottomed cylindrical shape with an aluminum plate or the like that is easy to form. The capacitor element 1 is housed and fixed in the case 9, and a sealing member is attached to the opening end of the case 9 and sealed. In addition, as the metal case 9, a case made of metal such as stainless steel, copper, iron, brass or the like other than aluminum may be adopted, or a case made of these alloys may be adopted.

ベース板10の材料は、特に限定されるものではないが、加工のしやすさの面から、ケース9と同じアルミニウム製のベース板であることが好ましい。ベース板10が絶縁材料からなる場合、絶縁部材11は必ずとも必要としないが、後に述べるように封止性の向上のためには、備えられていることが好ましい。   The material of the base plate 10 is not particularly limited, but is preferably the same aluminum base plate as the case 9 in terms of ease of processing. In the case where the base plate 10 is made of an insulating material, the insulating member 11 is not necessarily required, but is preferably provided for improving the sealing performance as described later.

ベース板10には、貫通孔10aが所定の位置に、且つ、所定の間隔で形成されている。また、図3に示すように、ベース板10の内面側(コンデンサ素子1側)となる面には、それぞれの貫通孔10aにつながる凹部10bが形成されていることが好ましい。こうした凹部10bは、各貫通孔10aを中心にして十文字状に配置され、詳細は製造方法の項目で説明するが、製造過程で変形して潰れた状態となっている。該凹部10bの形状は、ここでは十文字形にしたが、その形状は、下記に述べる巻き締め時にベース板10の周縁から中心方向に向かって均等に力が加わるように設けられていること、及び2つの貫通孔10a間の距離が実質的に変わらないことを前提として、種々の応用が可能である。たとえば、凹部10bとして、図8(A)のような貫通孔10aとベース板10の周縁を直線で結ぶような凹みの形状だけでなく、図8(B)並びに(C)のような曲線状や同心円状の凹みを含む形状としてもよい。   In the base plate 10, through holes 10a are formed at predetermined positions and at predetermined intervals. Moreover, as shown in FIG. 3, it is preferable that the surface used as the inner surface side (capacitor element 1 side) of the base board 10 is formed with the recessed part 10b connected to each through-hole 10a. These recesses 10b are arranged in a cross shape around each through hole 10a, and the details will be described in the item of the manufacturing method, but are deformed and crushed in the manufacturing process. The shape of the recess 10b is a cross shape here, but the shape is provided so that a force is applied evenly from the periphery of the base plate 10 toward the center during the tightening described below, and Various applications are possible on the premise that the distance between the two through holes 10a is not substantially changed. For example, as the concave portion 10b, not only a concave shape that connects the through hole 10a and the periphery of the base plate 10 with a straight line as shown in FIG. 8A, but also a curved shape as shown in FIGS. 8B and 8C. Alternatively, the shape may include a concentric recess.

また、ベース板10の貫通孔10aの数は、2つ以上であればよく、その数および径については特に限定されない。たとえば、リードタブ端子6を挿入する2つの貫通孔10aの他に幾つかの貫通孔10aを設け、該貫通孔10aにポッチを形成し、座板を設けなくても自立する形状をしていてもよい。   Moreover, the number of the through-holes 10a of the base plate 10 should just be two or more, and the number and diameter are not specifically limited. For example, in addition to the two through holes 10a into which the lead tab terminals 6 are inserted, some through holes 10a are provided, a potch is formed in the through hole 10a, and a self-standing shape is provided without a seat plate. Good.

こうしたベース板10の周縁部はケース9の開口端部と共に巻き締めされ、図1に示すような巻き締め部12を構成し、ケース9の開口端部を封止している。絶縁部材11を備えている場合、貫通孔10aの径の縮小に伴い、図1に示すように前記絶縁部材11はく
ぼんだ領域11cを形成する。これにより、絶縁部材11がない時に比べ、コンデンサ素子1の封止性が向上する。また、この巻き締めの際には、ケース9の開口部が内径方向に狭くなるようにケース9の開口端部近傍に対して横絞りが施され、巻き締めによる貫通孔10aの径の縮小を増強している。なお、ベース板10の凹部10bは、外面側に形成してもよく、あるいは内面側と外面側の両方に形成してもよい。
The peripheral edge portion of the base plate 10 is tightened together with the opening end portion of the case 9 to form a winding tightening portion 12 as shown in FIG. 1, and the opening end portion of the case 9 is sealed. When the insulating member 11 is provided, as the diameter of the through hole 10a is reduced, the insulating member 11 forms a recessed region 11c as shown in FIG. Thereby, the sealing performance of the capacitor element 1 is improved as compared with the case without the insulating member 11. Further, at the time of this tightening, a lateral restriction is applied to the vicinity of the opening end of the case 9 so that the opening of the case 9 becomes narrow in the inner diameter direction, and the diameter of the through hole 10a is reduced by the tightening. It is strengthening. The recess 10b of the base plate 10 may be formed on the outer surface side, or may be formed on both the inner surface side and the outer surface side.

絶縁部材11には、弾性体、なかでも耐熱性や密封性の比較的高い材料である、シリコンゴム(SR)、フッ素ゴム(FR)、エチレンプロピレンゴム(EPT)、ハイパイロンゴム(CSM)、ブチルゴム(IIR)、イソプレンゴム(IR)などの絶縁ゴムが用いられる。絶縁部材11は、図4に示すように、ベース板10の貫通孔10aに対応する位置(2箇所)に所定の突出部(リードタブ端子6を挿入するための貫通孔11aを有する突出部)11bが設けられた状態に成形されている。そして、こうした絶縁部材11の各貫通孔11aにはリードタブ端子6が挿入され、この絶縁部材11の突出部11bは内面側(コンデンサ素子1側)からベース板10の貫通孔10aに挿入されている。また、図1に示すように、絶縁部材11には、ベース板10により締め付けられて、ベース板10との接触部に沿って側壁が環状にくぼんだ領域11cが形成されている。また、ベース板10に取り付けられた絶縁部材11はベース板10の内面側(コンデンサ素子1側)になる面全体を被覆して設置されている。   The insulating member 11 includes an elastic body, in particular, silicon rubber (SR), fluorine rubber (FR), ethylene propylene rubber (EPT), high pylon rubber (CSM), which are materials having relatively high heat resistance and sealing properties. Insulating rubbers such as butyl rubber (IIR) and isoprene rubber (IR) are used. As shown in FIG. 4, the insulating member 11 has a predetermined protruding portion (a protruding portion having a through hole 11a for inserting the lead tab terminal 6) 11b at a position (two locations) corresponding to the through hole 10a of the base plate 10. Is formed in a state provided. The lead tab terminal 6 is inserted into each through hole 11a of the insulating member 11, and the protruding portion 11b of the insulating member 11 is inserted into the through hole 10a of the base plate 10 from the inner surface side (capacitor element 1 side). . As shown in FIG. 1, the insulating member 11 is formed with a region 11 c that is tightened by the base plate 10 and has a side wall that is recessed in an annular shape along the contact portion with the base plate 10. The insulating member 11 attached to the base plate 10 is installed so as to cover the entire surface that becomes the inner surface side (capacitor element 1 side) of the base plate 10.

なお、コンデンサ素子1は本発明の「コンデンサ素子」、リードタブ端子6は本発明の「リードタブ端子」、陽極リード線7および陰極リード線8は本発明の「金属製のリード線」、ケース9は本発明の「ケース」、封口部材は本発明の「封口部材」、ベース板10は本発明の「ベース板」、貫通孔10aは本発明の「ベース板の貫通孔」、絶縁部材11は本発明の「絶縁部材」、貫通孔11aは本発明の「絶縁部材の貫通孔」、及びくぼんだ領域11cは本発明の「くぼみ部」の一例である。   The capacitor element 1 is a “capacitor element” of the present invention, the lead tab terminal 6 is a “lead tab terminal” of the present invention, the anode lead wire 7 and the cathode lead wire 8 are “metal lead wires” of the present invention, and the case 9 is The “case” of the present invention, the sealing member is the “sealing member” of the present invention, the base plate 10 is the “base plate” of the present invention, the through hole 10 a is the “through hole of the base plate” of the present invention, and the insulating member 11 is the main plate. The “insulating member” of the invention, the through hole 11a is an example of the “through hole of the insulating member” of the present invention, and the recessed region 11c is an example of the “recessed portion” of the present invention.

(製造方法)
次に、図1に示す本発明の第1実施形態に係る電解コンデンサの製造方法について説明する。
(Production method)
Next, a method for manufacturing the electrolytic capacitor according to the first embodiment of the present invention shown in FIG. 1 will be described.

(工程1)粗面化のためのエッチング処理および誘電体皮膜形成のための化成処理を施した弁作用金属からなる箔を陽極箔2とし、この陽極箔2に対向する陰極箔3とをセパレータ紙4を介して円筒状に巻き取ったコンデンサ素子1を形成する(素子形成工程:ステップ1)。陽極箔2および陰極箔3にはそれぞれリードタブ端子6を介して陽極リード線7および陰極リード線8を取り付けている。なお、コンデンサ素子1には、陽極箔2の端面に誘電体皮膜を形成するとともに、陽極箔2の巻回時に剥離した誘電体皮膜を再形成するために、切り口化成と熱処理を施し、陽極箔2の誘電体皮膜を強化している。   (Step 1) A foil made of a valve metal that has been subjected to an etching process for roughening and a chemical conversion process for forming a dielectric film is used as an anode foil 2, and a cathode foil 3 facing the anode foil 2 is used as a separator. Capacitor element 1 wound into a cylindrical shape via paper 4 is formed (element forming step: step 1). Anode lead wire 7 and cathode lead wire 8 are attached to anode foil 2 and cathode foil 3 via lead tab terminals 6, respectively. The capacitor element 1 is subjected to cut formation and heat treatment in order to form a dielectric film on the end face of the anode foil 2 and to re-form the dielectric film peeled off when the anode foil 2 is wound. 2 is strengthened.

(工程2)導電性高分子となる単量体と酸化剤を混合した化学重合液を用意する。そして、コンデンサ素子1をこの化学重合液に浸漬した後、熱処理を施すことによりコンデンサ素子1の内部に導電性高分子層を電解質として形成する(素子形成工程:ステップ2)。   (Step 2) A chemical polymerization liquid in which a monomer that becomes a conductive polymer and an oxidizing agent are mixed is prepared. And after immersing the capacitor | condenser element 1 in this chemical polymerization liquid, a conductive polymer layer is formed as an electrolyte inside the capacitor | condenser element 1 by heat-processing (element formation process: step 2).

(工程3)貫通孔10aを有するアルミニウム製のベース板10を用意する。この貫通孔10aには、図5に示すように、ベース板10の内面側(コンデンサ素子1側)となる面にそれぞれの貫通孔10aにつながる凹部10bを形成している。こうした凹部10bは各貫通孔10aを中心にして十文字状に配置している。次に、先の図4に示したように、ベース板10の貫通孔10aに対応する位置に所定の突出部(リードタブ端子6を挿入するための貫通孔11aを有する突出部)11bが設けられた絶縁部材11を用意する。そして、この絶縁部材11の貫通孔11aに対してコンデンサ素子1側となる面の方向か
らリードタブ端子6を挿入する(封止工程の絶縁部材挿入工程)。その後、リードタブ端子6が挿入された絶縁部材11の突出部11bをベース板10の貫通孔10aに挿入する(封止工程のベース板挿入工程)。このようにして、コンデンサ素子1に本発明の封口部材を取り付ける。
(Step 3) An aluminum base plate 10 having a through hole 10a is prepared. In the through hole 10a, as shown in FIG. 5, a concave portion 10b connected to each through hole 10a is formed on the surface which is the inner surface side (capacitor element 1 side) of the base plate 10. These recesses 10b are arranged in a cross shape around each through hole 10a. Next, as shown in FIG. 4, a predetermined protrusion (protrusion having a through hole 11a for inserting the lead tab terminal 6) 11b is provided at a position corresponding to the through hole 10a of the base plate 10. Insulating member 11 is prepared. And the lead tab terminal 6 is inserted from the direction of the surface which becomes the capacitor | condenser element 1 side with respect to the through-hole 11a of this insulating member 11 (insulating member insertion process of a sealing process). Thereafter, the protruding portion 11b of the insulating member 11 into which the lead tab terminal 6 is inserted is inserted into the through hole 10a of the base plate 10 (base plate insertion step of the sealing step). In this way, the sealing member of the present invention is attached to the capacitor element 1.

(工程4)有底筒状に形成されたアルミニウム製のケース9を用意する。そして、このケース9内にコンデンサ素子1を収納し固定する(収納工程)。   (Step 4) An aluminum case 9 formed in a bottomed cylindrical shape is prepared. Then, the capacitor element 1 is housed and fixed in the case 9 (housing process).

(工程5)ケース9の開口端部にベース板10を配置し、ケース9の開口部が内径方向に狭くなるようにケース9の開口端部近傍に対して横絞りしながら、ベース板10の周縁部とケース9の開口端部とを巻き締めする(封止工程の巻き締め工程)。これにより巻き締め部12が形成される。この際、横絞りと巻き締め時の物理的応力により金属製のベース板10が収縮し、凹部10bが変形して潰れるため、ベース板10は図5に示した状態から図3に示した状態に変化する。これに伴い、ベース板10の貫通孔10aの径が縮小し、この貫通孔10aに挿入された絶縁部材11が締め付けられることになる。この締め付けにより絶縁部材11にはベース板10との接触部に沿って側壁が環状にくぼんだ領域11cが形成される。このようにして、封口部材によりコンデンサ素子1をケース9内に封止する。   (Step 5) The base plate 10 is disposed at the opening end of the case 9, and the base plate 10 is placed in a lateral direction with respect to the vicinity of the opening end of the case 9 so that the opening of the case 9 narrows in the inner diameter direction. The peripheral edge portion and the opening end portion of the case 9 are tightened (the tightening step of the sealing step). Thereby, the tightening part 12 is formed. At this time, the metal base plate 10 contracts due to physical stress during horizontal drawing and tightening, and the recess 10b is deformed and crushed. Therefore, the base plate 10 is in the state shown in FIG. 3 from the state shown in FIG. To change. Accordingly, the diameter of the through hole 10a of the base plate 10 is reduced, and the insulating member 11 inserted into the through hole 10a is tightened. By this tightening, the insulating member 11 is formed with a region 11c in which the side wall is annularly recessed along the contact portion with the base plate 10. In this way, the capacitor element 1 is sealed in the case 9 by the sealing member.

以上の工程を経て、第1実施形態に係る封口部材を備えた電解コンデンサが製造される。   Through the above steps, an electrolytic capacitor including the sealing member according to the first embodiment is manufactured.

(第2実施形態)
図6は本発明の第2実施形態に係る封口部材を備えた電解コンデンサの構成を示す概略断面図である。図7は封口部材を構成する絶縁部材の概略斜視図である。第1実施形態と異なる箇所は、封口部材を構成する絶縁部材21をベース板10の貫通孔10aに対応してそれぞれ設けたことである。それ以外については第1実施形態と同様である。
(Second Embodiment)
FIG. 6 is a schematic cross-sectional view showing a configuration of an electrolytic capacitor including a sealing member according to a second embodiment of the present invention. FIG. 7 is a schematic perspective view of an insulating member constituting the sealing member. The difference from the first embodiment is that the insulating members 21 constituting the sealing member are provided corresponding to the through holes 10a of the base plate 10, respectively. The rest is the same as in the first embodiment.

第2実施形態の電解コンデンサでは、図6に示すように、封口部材は、2箇所に貫通孔10aを有する金属製のベース板10と、貫通孔10aごとに対応して挿入された絶縁部材21と、貫通孔10aごとに絶縁部材21を介して挿入された金属製のリードタブ端子6と、を有して構成されている。そして、ベース板10の周縁部はケース9の開口端部と巻き締めされて巻き締め部12が形成され、各絶縁部材21には、ベース板10により締め付けられて、ベース板10との接触部に沿って側壁が環状にくぼんだ領域21cが形成されている。   In the electrolytic capacitor according to the second embodiment, as shown in FIG. 6, the sealing member includes a metal base plate 10 having through holes 10a at two locations, and an insulating member 21 inserted corresponding to each through hole 10a. And a metal lead tab terminal 6 inserted through the insulating member 21 for each through-hole 10a. Then, the peripheral edge of the base plate 10 is wound around the opening end of the case 9 to form a tightened portion 12, and each insulating member 21 is tightened by the base plate 10 to be in contact with the base plate 10. A region 21c in which the side wall is recessed in an annular shape is formed.

具体的には、絶縁部材21は先の絶縁部材11と同様の絶縁ゴムが採用される。絶縁部材21は、図7に示すように、ベース板10の貫通孔10aに挿入される突出部(リードタブ端子6を挿入するための貫通孔21aを有する突出部)21bが設けられた状態に成形されている。そして、それぞれの絶縁部材21の貫通孔21aにはリードタブ端子6が挿入され、こうした絶縁部材21の突出部21bはコンデンサ素子1側からベース板10の貫通孔10aに挿入されている。また、各絶縁部材21には、ベース板10により締め付けられて、ベース板10との接触部に沿って側壁が環状にくぼんだ領域21cが形成されている。また、第2実施形態では、絶縁部材21はベース板10のコンデンサ素子1側を部分的に被覆して形成されている。なお、絶縁部材21は本発明の「絶縁部材」、貫通孔21aは本発明の「絶縁部材の貫通孔」、及びくぼんだ領域21cは本発明の「くぼみ部」の一例である。   Specifically, the insulating member 21 is made of the same insulating rubber as that of the previous insulating member 11. As shown in FIG. 7, the insulating member 21 is formed in a state in which a protruding portion (a protruding portion having a through hole 21 a for inserting the lead tab terminal 6) 21 b inserted into the through hole 10 a of the base plate 10 is provided. Has been. The lead tab terminal 6 is inserted into the through hole 21a of each insulating member 21, and the protruding portion 21b of the insulating member 21 is inserted into the through hole 10a of the base plate 10 from the capacitor element 1 side. In addition, each insulating member 21 is formed with a region 21 c that is tightened by the base plate 10 and has a side wall that is recessed in an annular shape along a contact portion with the base plate 10. In the second embodiment, the insulating member 21 is formed by partially covering the capacitor element 1 side of the base plate 10. The insulating member 21 is an example of the “insulating member” of the present invention, the through hole 21a is an example of the “through hole of the insulating member” of the present invention, and the recessed region 21c is an example of the “recessed portion” of the present invention.

また、こうした第2実施形態に係る封口部材を備えた電解コンデンサは、封口部材を構成する絶縁部材21を採用することにより、第1実施形態と同様の製造方法(工程1〜工程5)を経て容易に製造することができる。   Moreover, the electrolytic capacitor provided with such a sealing member according to the second embodiment employs the insulating member 21 that constitutes the sealing member, and thus undergoes the same manufacturing method (step 1 to step 5) as that of the first embodiment. It can be manufactured easily.

以下の実施例では、上述の実施形態に対応した電解コンデンサを作製し、特性評価を行った。また、比較例では、従来の封口部材を備える電解コンデンサを作製し、特性評価を行った。   In the following examples, an electrolytic capacitor corresponding to the above-described embodiment was produced, and the characteristics were evaluated. Moreover, in the comparative example, the electrolytic capacitor provided with the conventional sealing member was produced, and the characteristic evaluation was performed.

(実施例1)
実施例1では、第1実施形態に対応した電解コンデンサとして、上述の各工程(工程1〜工程5)を経て電解コンデンサAを作製した。
Example 1
In Example 1, as an electrolytic capacitor corresponding to the first embodiment, an electrolytic capacitor A was produced through the above-described steps (Step 1 to Step 5).

(工程1A)粗面化のためのエッチング処理および誘電体皮膜形成のための化成処理(印加電圧5V)を施したアルミニウム箔を陽極箔2とし、この陽極箔2に対向する陰極箔3とをセパレータ紙4を介して円筒状に巻き取ってコンデンサ素子1を形成する。陽極箔2および陰極箔3にはそれぞれリードタブ端子6を介して陽極リード線7および陰極リード線8が取り付けている。その後、コンデンサ素子1には切り口化成処理と260℃の熱処理を施す。   (Step 1A) An aluminum foil subjected to an etching process for roughening and a chemical conversion process (applied voltage 5 V) for forming a dielectric film is used as an anode foil 2, and a cathode foil 3 facing the anode foil 2 is used. The capacitor element 1 is formed by winding it in a cylindrical shape via the separator paper 4. Anode lead wire 7 and cathode lead wire 8 are attached to anode foil 2 and cathode foil 3 via lead tab terminals 6, respectively. Thereafter, the capacitor element 1 is subjected to a cut formation process and a heat treatment at 260 ° C.

(工程2A)3,4−エチレンジオキシチオフェンの単量体と酸化剤としてのp−トルエンスルホン酸第ニ鉄ブチルアルコールとを適量ずつ混合した化学重合液を用意する。そして、コンデンサ素子1をこの化学重合液に浸漬した後、100℃よりやや高めの温度で熱処理することにより、コンデンサ素子1の両極電極箔間に3,4−エチレンジオキシチオフェンからなる導電性高分子層を電解質として形成する。   (Step 2A) A chemical polymerization solution is prepared by mixing a suitable amount of 3,4-ethylenedioxythiophene monomer and p-toluenesulfonic acid ferric butyl alcohol as an oxidizing agent. And after immersing the capacitor | condenser element 1 in this chemical polymerization liquid, it heat-processes at a temperature slightly higher than 100 degreeC, and the electroconductivity high which consists of 3, 4- ethylene dioxythiophene between the bipolar electrode foils of the capacitor | condenser element 1 is carried out. A molecular layer is formed as an electrolyte.

(工程3A)先の工程3で示したベース板として、肉厚が約200μm厚であり、純度99.0%のアルミニウム製のベース板10を用意する。ここで、ベース板10には、所定の2箇所に貫通孔10aを形成するとともに、ベース板10の内面側(コンデンサ素子1側)となる面にそれぞれの貫通孔10aにつながる凹部(幅:数百μmの、深さ:板厚の半分〜2/3程度)10bを十文字状に形成している。さらに、ベース板10の貫通孔10aに対応する位置に所定の突出部(リードタブ端子6を挿入するための貫通孔11aを有する突出部)11bが設けられたブチルゴムからなる絶縁部材11を用意する。そして、この絶縁部材11の突出部11bを内面側(コンデンサ素子1側)となる面の方向からベース板10の貫通孔10aに挿入する。その後、同じ方向から絶縁部材11の貫通孔11aに対してリードタブ端子6を挿入する。これにより、コンデンサ素子1に本発明の封口部材を取り付ける。   (Step 3A) An aluminum base plate 10 having a thickness of about 200 μm and a purity of 99.0% is prepared as the base plate shown in the previous step 3. Here, in the base plate 10, through holes 10 a are formed at two predetermined locations, and a recess (width: several) connected to each through hole 10 a on the inner surface side (capacitor element 1 side) of the base plate 10. 10b is formed in a cross-shaped shape (depth: approximately half to 2/3 of the plate thickness). Furthermore, an insulating member 11 made of butyl rubber is provided, which is provided with a predetermined protrusion (protrusion having a through hole 11a for inserting the lead tab terminal 6) 11b at a position corresponding to the through hole 10a of the base plate 10. And the protrusion part 11b of this insulation member 11 is inserted in the through-hole 10a of the base board 10 from the direction of the surface used as an inner surface side (capacitor element 1 side). Thereafter, the lead tab terminal 6 is inserted into the through hole 11a of the insulating member 11 from the same direction. Thereby, the sealing member of the present invention is attached to the capacitor element 1.

(工程4A)先の工程4で説明した有底筒状のケースとして、肉厚が約300μm厚であり、純度99.0%のアルミニウム製のケース9を用意する。そして、このケース9内にコンデンサ素子1を収納し固定する。   (Step 4A) As the bottomed cylindrical case described in the previous step 4, a case 9 made of aluminum having a thickness of about 300 μm and a purity of 99.0% is prepared. The capacitor element 1 is housed and fixed in the case 9.

(工程5A)ケース9の開口端部にベース板10を配置し、ケース9の開口部が内径方向に狭くなるようにケース9の開口端部近傍に対して横絞りしながら、ベース板10の周縁部とケース9の開口端部とを二重巻き締めする。これにより、巻き締め部12を形成するとともに、ベース板10との接触部に沿って絶縁部材11の側壁がくぼんだ領域11cを形成する。このようにして、本発明の封口部材によりコンデンサ素子1をケース9内に封止する。   (Step 5A) The base plate 10 is arranged at the opening end of the case 9, and the base plate 10 is moved while being laterally narrowed near the opening end of the case 9 so that the opening of the case 9 is narrowed in the inner diameter direction. The peripheral edge and the open end of the case 9 are double-tightened. Thus, the tightening portion 12 is formed, and the region 11 c in which the side wall of the insulating member 11 is recessed along the contact portion with the base plate 10 is formed. In this way, the capacitor element 1 is sealed in the case 9 by the sealing member of the present invention.

以上のようにして、実施例1における電解コンデンサAが作製される。   As described above, the electrolytic capacitor A in Example 1 is manufactured.

(実施例2)
実施例2では、第2実施形態に対応した電解コンデンサとして、工程3Aにおける一体的な絶縁部材11に代えて、貫通孔10aに対して個別の絶縁部材21を採用した点を除いて実施例1と同じ条件および方法で電解コンデンサBを作製した。
(Example 2)
In Example 2, as an electrolytic capacitor corresponding to the second embodiment, Example 1 except that an individual insulating member 21 is employed for the through hole 10a instead of the integral insulating member 11 in the step 3A. An electrolytic capacitor B was produced under the same conditions and method as in Example 1.

(比較例)
比較例では、封口部材として、図8に示した従来の封止用ゴム130を採用し、ケース9の開口部端に横絞り加工とカール加工を施すことにより封止固定した点を除いて実施例1と同じ条件および方法で電解コンデンサXを作製した。
(Comparative example)
In the comparative example, the conventional sealing rubber 130 shown in FIG. 8 was adopted as the sealing member, and the sealing was carried out except that the opening end of the case 9 was sealed and fixed by performing lateral drawing and curling. An electrolytic capacitor X was produced under the same conditions and method as in Example 1.

(評価)
各電解コンデンサについて静電容量(C)および等価直列抵抗(ESR)を評価した。静電容量は各電解コンデンサに対して120Hzの交流定格電圧を印加して測定し、等価直列抵抗は各電解コンデンサに対して100kHzの交流定格電圧を印加して測定した。また、各評価は、初期状態(高温負荷試験前)と、高温負荷試験として電解コンデンサを150℃に保持した恒温槽中で3000時間経過した後に行った。
(Evaluation)
Each electrolytic capacitor was evaluated for capacitance (C) and equivalent series resistance (ESR). The capacitance was measured by applying an AC rated voltage of 120 Hz to each electrolytic capacitor, and the equivalent series resistance was measured by applying an AC rated voltage of 100 kHz to each electrolytic capacitor. Each evaluation was performed after 3000 hours had passed in an initial state (before the high temperature load test) and in a thermostatic bath in which the electrolytic capacitor was held at 150 ° C. as a high temperature load test.

表1に静電容量および等価直列抵抗の評価結果を示す。なお、各特性値は試料数各30個についての平均である。   Table 1 shows the evaluation results of capacitance and equivalent series resistance. Each characteristic value is an average of 30 samples.

静電容量変化率および等価直列抵抗変化率は、高温負荷試験前後での各特性値を用いて、以下の式(1)および式(2)により算出される。   The capacitance change rate and the equivalent series resistance change rate are calculated by the following formulas (1) and (2) using respective characteristic values before and after the high temperature load test.

静電容量変化率(%)=(高温負荷試験前後での静電容量差ΔC/高温負荷試験前の静電容量C)×100 ・・・(1)
等価直列抵抗変化率(倍)=(高温負荷試験後の等価直列抵抗/高温負荷試験前の等価直列抵抗) ・・・(2)
Capacitance change rate (%) = (capacitance difference ΔC before and after high temperature load test / capacitance C before high temperature load test) × 100 (1)
Equivalent series resistance change rate (times) = (Equivalent series resistance after high-temperature load test / Equivalent series resistance before high-temperature load test) (2)

Figure 2009010237
Figure 2009010237

表1に示すように、実施例1(電解コンデンサA)および実施例2(電解コンデンサB)においては、従来例(電解コンデンサX)に比べて、高温負荷試験による静電容量や等価直列抵抗の変化(劣化)が小さく抑制されている。これは、本発明の封口構造により電解コンデンサの封止性の劣化が防止され、コンデンサ素子内部への水分などの浸入を阻止できているためと推察される。   As shown in Table 1, in Example 1 (Electrolytic Capacitor A) and Example 2 (Electrolytic Capacitor B), compared to the conventional example (Electrolytic Capacitor X), the capacitance and equivalent series resistance of the high temperature load test are higher. Change (deterioration) is suppressed to a small level. This is presumably because the sealing structure of the present invention prevents deterioration of the sealing performance of the electrolytic capacitor and prevents moisture and the like from entering the capacitor element.

また、実施例1(電解コンデンサA)においては、実施例2(電解コンデンサB)に比べて、高温負荷試験による静電容量の劣化がさらに小さく抑制されている。これは、封口部材におけるベース板のコンデンサ素子側になる面全体を絶縁部材で被覆したことで、高温負荷試験時の熱負荷によるベース板の変形が生じにくくなり、ベース板と絶縁部材との間での密着性の劣化が抑制されたためと推察される。   Further, in Example 1 (Electrolytic Capacitor A), compared with Example 2 (Electrolytic Capacitor B), the deterioration of the capacitance due to the high temperature load test is further suppressed. This is because the entire surface of the sealing member on the capacitor element side of the base plate is covered with an insulating member, which makes it difficult for the base plate to deform due to a thermal load during a high temperature load test, and between the base plate and the insulating member. This is presumed to be because the deterioration of the adhesiveness in the case was suppressed.

上述の実施形態の電解コンデンサおよびその製造方法によれば、以下の効果を得ることができる。   According to the electrolytic capacitor and the manufacturing method of the above-described embodiment, the following effects can be obtained.

(1)本実施形態に係る電解コンデンサの封口構造によれば、従来の絶縁部材(封止用ゴム)のみによる封口構造に比べ、封口部材に占める絶縁部材の割合が減少するので、絶縁部材の変質劣化や収縮に起因する大気中からの水分などの透過や、絶縁部材とケースとの接触部からの水分などの浸入が低減され、電解コンデンサの封止性の劣化を抑制することができる。   (1) According to the sealing structure of the electrolytic capacitor according to the present embodiment, the proportion of the insulating member in the sealing member is reduced as compared with the conventional sealing structure using only the insulating member (sealing rubber). Permeation of moisture and the like from the atmosphere due to deterioration and shrinkage and penetration of moisture and the like from the contact portion between the insulating member and the case are reduced, and deterioration of the sealing performance of the electrolytic capacitor can be suppressed.

(2)ベース板10により締め付けられ、ベース板10との接触部に沿って形成されたくぼんだ領域11c(くぼんだ領域21c)により、ベース板10と絶縁部材11(絶縁部材21)との間での位置ずれが生じにくくなり、ベース板10と絶縁部材11(絶縁部材21)との間の密着性が向上する。このため、封口部材の封止性が改善され、熱負荷による電解コンデンサの信頼性劣化を抑制することができる。   (2) Between the base plate 10 and the insulating member 11 (insulating member 21) by the recessed region 11 c (the recessed region 21 c) that is tightened by the base plate 10 and formed along the contact portion with the base plate 10. This makes it difficult to cause a positional shift at the base plate 10 and improves the adhesion between the base plate 10 and the insulating member 11 (insulating member 21). For this reason, the sealing performance of the sealing member is improved, and the deterioration of the reliability of the electrolytic capacitor due to the thermal load can be suppressed.

(3)封口部材の金属製のベース板10とケース9との接合を巻き締め構造(巻き締め部12)としたことで、従来の絶縁部材(封止用ゴム)のみによる封口構造に比べ、絶縁部材11(絶縁部材21)とケース9との接触部からの水分などの浸入が低減され、電解コンデンサの封止性の劣化を抑制することができる。   (3) By joining the metal base plate 10 of the sealing member and the case 9 with a tightening structure (winding portion 12), compared to a conventional sealing structure with only an insulating member (sealing rubber), Intrusion of moisture or the like from the contact portion between the insulating member 11 (insulating member 21) and the case 9 is reduced, and deterioration of the sealing performance of the electrolytic capacitor can be suppressed.

(4)本実施形態に係る電解コンデンサでは、熱負荷によりコンデンサ素子1に含浸させた電解液に起因してガスが発生して内圧が上昇することがあるため、本実施形態の封口構造による封止性劣化の抑制効果をさらに効果的に享受することができる。   (4) In the electrolytic capacitor according to the present embodiment, gas may be generated due to the electrolytic solution impregnated in the capacitor element 1 due to a thermal load and the internal pressure may increase. The effect of suppressing the stoppage deterioration can be enjoyed more effectively.

(5)封口部材におけるベース板10のコンデンサ素子1側となる面を絶縁部材11(絶縁部材21)でさらに被覆したことで、熱負荷によりコンデンサ素子1から発生するガスにより内圧が高まり、その内圧によりベース板10の貫通孔10aから絶縁部材11(絶縁部材21)が外側に飛び出すことが抑制される。この結果、電解コンデンサの耐熱信頼性を向上させることができる。   (5) By further covering the surface on the capacitor element 1 side of the base plate 10 of the sealing member with the insulating member 11 (insulating member 21), the internal pressure is increased by the gas generated from the capacitor element 1 due to the thermal load, and the internal pressure As a result, the insulating member 11 (insulating member 21) is prevented from jumping out of the through hole 10a of the base plate 10. As a result, the heat resistance reliability of the electrolytic capacitor can be improved.

(6)第1実施形態(たとえば、実施例1)のように、封口部材におけるベース板10のコンデンサ素子1側になる面全体を絶縁部材11で被覆したことで、封口部材の強度が高まり、熱負荷が加わる場合にコンデンサ素子1から発生するガスにより内圧が高まりベース板10が変形することが抑止される。また、使用環境下での断続的な熱負荷によってベース板10が膨張・収縮を繰り返すことも抑制される。このため、ベース板10と絶縁部材11との間での密着性の低下が抑制され、電解コンデンサの封止性劣化をさらに抑制することができる。   (6) As in the first embodiment (for example, Example 1), by covering the entire surface of the sealing member on the capacitor element 1 side of the base plate 10 with the insulating member 11, the strength of the sealing member is increased. When a thermal load is applied, the gas generated from the capacitor element 1 prevents the internal pressure from increasing and the base plate 10 from being deformed. Moreover, it is also suppressed that the base plate 10 repeats expansion and contraction due to intermittent heat load in the use environment. For this reason, the fall of the adhesiveness between the base board 10 and the insulating member 11 is suppressed, and the sealing performance deterioration of an electrolytic capacitor can further be suppressed.

(7)本実施形態の製造方法によれば、上記(1)〜(6)に記載のような好適な電解コンデンサを製造することができる。   (7) According to the manufacturing method of this embodiment, a suitable electrolytic capacitor as described in the above (1) to (6) can be manufactured.

(8)本実施形態の製造方法によれば、ベース板10の周縁部とケース9の開口端部とを巻き締めすることにより貫通孔10aの径を縮小させて封止するようにしたことで、ベース板10により貫通孔10aに挿入された絶縁部材11(絶縁部材21)が締め付けられ、ベース板10と絶縁部材11(絶縁部材21)との間や、絶縁部材11(絶縁部材21)とリードタブ端子6との間の密着性を向上させることができる。このため、封口部材の封止性劣化が抑制された電解コンデンサを提供することができる。   (8) According to the manufacturing method of the present embodiment, the periphery of the base plate 10 and the open end of the case 9 are tightened to reduce the diameter of the through-hole 10a and seal it. The insulating member 11 (insulating member 21) inserted into the through hole 10a by the base plate 10 is tightened, and between the base plate 10 and the insulating member 11 (insulating member 21) or between the insulating member 11 (insulating member 21) and Adhesion between the lead tab terminals 6 can be improved. For this reason, the electrolytic capacitor by which the sealing performance deterioration of the sealing member was suppressed can be provided.

(9)ベース板10の周縁部とケース9の開口端部とを巻き締めにより封止したことで、従来の絶縁部材(封止用ゴム)のみを用いて封止する場合に比べて、少なくともケース9と封口部材との間の密着性が向上し、封止性劣化がさらに抑制された電解コンデンサを製造することができる。   (9) Since the peripheral edge portion of the base plate 10 and the opening end portion of the case 9 are sealed by tightening, at least as compared with the case of sealing using only a conventional insulating member (sealing rubber). It is possible to manufacture an electrolytic capacitor in which the adhesion between the case 9 and the sealing member is improved and the sealing property deterioration is further suppressed.

(10)ベース板10の周縁部とケース9の開口端部とを巻き締めにより封止したこと
で、従来の溶接法を用いて封止する場合に比べて、接合材料の組み合わせを考慮する必要がなくなり、封止性劣化が抑制された電解コンデンサを低コストで製造することができる。
(10) Since the peripheral edge of the base plate 10 and the opening end of the case 9 are sealed by tightening, it is necessary to consider the combination of bonding materials compared to the case of sealing using a conventional welding method. Therefore, it is possible to manufacture an electrolytic capacitor in which the sealing property deterioration is suppressed at a low cost.

(11)本実施形態の電解コンデンサでは、熱負荷によりコンデンサ素子1に含浸させた電解質に起因してガスが発生して内圧が上昇することがあるため、本製造方法によれば、封止性劣化の抑制効果をより効果的に享受することができる電解コンデンサを製造することができる。   (11) In the electrolytic capacitor of the present embodiment, gas may be generated due to the electrolyte impregnated in the capacitor element 1 by a thermal load and the internal pressure may increase. An electrolytic capacitor that can more effectively enjoy the effect of suppressing deterioration can be manufactured.

(12)本実施形態の製造方法によれば、ベース板10の凹部10bを変形させつつ行う巻き締め時の物理的応力により、ベース板10の凹部10bとつながる貫通孔10aの径が縮小するので、ベース板10によりこの貫通孔10aに挿入された絶縁部材11(絶縁部材21)が締め付けられる。この結果、ベース板10と絶縁部材11(絶縁部材21)との間や、絶縁部材11(絶縁部材21)とリードタブ端子6との間の密着性が向上するので、封口部材の封止性劣化が抑制された電解コンデンサを提供することができる。   (12) According to the manufacturing method of the present embodiment, the diameter of the through hole 10a connected to the recess 10b of the base plate 10 is reduced due to physical stress at the time of winding performed while deforming the recess 10b of the base plate 10. The insulating member 11 (insulating member 21) inserted into the through hole 10a is tightened by the base plate 10. As a result, the adhesion between the base plate 10 and the insulating member 11 (insulating member 21) and between the insulating member 11 (insulating member 21) and the lead tab terminal 6 is improved, so that the sealing performance of the sealing member is deteriorated. It is possible to provide an electrolytic capacitor in which is suppressed.

(13)ベース板10に貫通孔10aにつながる凹部10bを設けたことで、巻き締めの際に貫通孔10aの縮小をより制御よく行うことができる。このため、封止性劣化が抑制された電解コンデンサを安定して製造することができる。   (13) By providing the base plate 10 with the recess 10b connected to the through hole 10a, the through hole 10a can be reduced with higher control when tightening. For this reason, the electrolytic capacitor in which the sealing property deterioration is suppressed can be stably manufactured.

(14)横絞りを行いつつ巻き締めて巻き締め構造(巻き締め部12)を形成したことで、横絞りと巻き締め時の物理的応力により金属製のベース板10がさらに確実に収縮させることができる。この結果、上記(7)〜(13)の効果をより確実に享受することができ、封口部材の封止性劣化が抑制された電解コンデンサを安定して製造することができる。   (14) The metal base plate 10 is more reliably contracted by the horizontal drawing and the physical stress at the time of winding by forming the winding structure (winding portion 12) by tightening while performing the horizontal drawing. Can do. As a result, the effects (7) to (13) can be enjoyed more reliably, and the electrolytic capacitor in which the sealing member deterioration of the sealing member is suppressed can be stably manufactured.

なお、本発明は、上記した実施形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施形態も本発明の範囲に含まれうるものである。   The present invention is not limited to the above-described embodiment, and various modifications such as design changes can be added based on the knowledge of those skilled in the art, and the embodiment to which such a modification is added. Can also be included in the scope of the present invention.

上記第1実施形態では、封口部材におけるベース板のコンデンサ素子側になる面全体を絶縁部材で被覆した例を示したが、本発明はこれに限らない。たとえば、絶縁部材をさらにケースに接するように設け、絶縁部材が接するケースの側面に横絞りを施して絶縁部材を固定するようにしてもよい。このようにすることで、絶縁部材によりその分封止性が向上するので、電解コンデンサ全体の封止性が向上した状態で、熱負荷による電解コンデンサの封止性劣化を抑制することができる。   In the said 1st Embodiment, although the example which coat | covered the whole surface which becomes the capacitor | condenser element side of the base plate in a sealing member with the insulating member was shown, this invention is not limited to this. For example, an insulating member may be further provided in contact with the case, and the insulating member may be fixed by applying a lateral diaphragm to the side surface of the case in contact with the insulating member. By doing in this way, since the sealing performance is improved by the insulating member, deterioration of the sealing performance of the electrolytic capacitor due to a thermal load can be suppressed while the sealing performance of the entire electrolytic capacitor is improved.

上記実施形態では、絶縁部材として突出部を有する絶縁ゴムを採用した例を示したが、本発明はこれに限らない。たとえば、チューブのような円筒状の絶縁ゴムを採用してもよい。この場合、上記(5)および(6)以外の効果を享受することができる。   In the said embodiment, although the example which employ | adopted the insulating rubber which has a protrusion part as an insulating member was shown, this invention is not limited to this. For example, a cylindrical insulating rubber such as a tube may be employed. In this case, effects other than the above (5) and (6) can be enjoyed.

上記実施形態では、必要に応じて、封口部材による封止後に、電解コンデンサの上部にプラスチック製の座板を取り付け、陽極リード線および陰極リード線を電極端子としてプレス加工・折り曲げを施してもよい。こうした場合にも上記効果を享受することができる。   In the above embodiment, if necessary, after sealing with a sealing member, a plastic seat plate may be attached to the top of the electrolytic capacitor, and press working and bending may be performed using the anode lead wire and the cathode lead wire as electrode terminals. . Even in such a case, the above-mentioned effect can be enjoyed.

上記実施形態では、ベース板に設ける凹部を、各貫通孔を中心にして十文字状に配置した例を示したが、本発明はこれに限らない。十文字状に設けた凹部は貫通孔を全体的に縮小させるには単純で効果的であるが、図8に示したように、凹部は横絞りおよび巻き締めの際に貫通孔を縮小させるように配置されていればよい。   In the said embodiment, although the recessed part provided in a base board showed the example arrange | positioned in cross shape centering on each through-hole, this invention is not limited to this. The concave portion provided in a cross shape is simple and effective for reducing the overall size of the through hole. However, as shown in FIG. 8, the concave portion is configured to reduce the through hole during lateral drawing and tightening. It only has to be arranged.

本発明の第1実施形態に係る電解コンデンサの構成を示す概略断面図。1 is a schematic cross-sectional view showing a configuration of an electrolytic capacitor according to a first embodiment of the present invention. 本発明の第1実施形態に係る電解コンデンサを構成するコンデンサ素子の分解斜視図。The exploded perspective view of the capacitor element which constitutes the electrolytic capacitor concerning a 1st embodiment of the present invention. 第1実施形態の封口部材を構成するベース板の概略平面図。The schematic plan view of the base board which comprises the sealing member of 1st Embodiment. 第1実施形態の封口部材を構成する絶縁部材の概略斜視図。The schematic perspective view of the insulating member which comprises the sealing member of 1st Embodiment. 第1実施形態の封口部材を構成するベース板の製造過程における概略平面図。The schematic plan view in the manufacture process of the base board which comprises the sealing member of 1st Embodiment. 本発明の第2実施形態に係る電解コンデンサの構成を示す概略断面図。The schematic sectional drawing which shows the structure of the electrolytic capacitor which concerns on 2nd Embodiment of this invention. 第1実施形態の封口部材を構成する絶縁部材の概略斜視図。The schematic perspective view of the insulating member which comprises the sealing member of 1st Embodiment. (A)〜(C)本発明のベース板の凹部の形状例を示す図。(A)-(C) The figure which shows the example of a shape of the recessed part of the base board of this invention. 従来の電解コンデンサの構成を示す概略断面図。The schematic sectional drawing which shows the structure of the conventional electrolytic capacitor. 従来の電解コンデンサを構成するコンデンサ素子の分解斜視図。The disassembled perspective view of the capacitor | condenser element which comprises the conventional electrolytic capacitor.

符号の説明Explanation of symbols

1 コンデンサ素子、2 陽極箔、3 陰極箔、4 セパレータ紙、5 巻止めテープ、6 リードタブ端子、7 陽極リード線、8 陰極リード線、9 ケース、10 ベース板、10a 貫通孔、10b 凹部、11絶縁部材、11a 貫通孔、11b 突出部、11c くぼんだ領域、12 巻き締め部。   DESCRIPTION OF SYMBOLS 1 Capacitor element, 2 Anode foil, 3 Cathode foil, 4 Separator paper, 5 Winding tape, 6 Lead tab terminal, 7 Anode lead wire, 8 Cathode lead wire, 9 Case, 10 Base plate, 10a Through hole, 10b Recessed part, 11 Insulating member, 11a through-hole, 11b protruding portion, 11c recessed area, 12 tightening portion.

Claims (8)

リードタブ端子を介して金属製のリード線と接続されているコンデンサ素子を収納する金属製のケースの開口端部に封口部材を装着して封止する電解コンデンサにおいて、
前記封口部材は、少なくとも2つの貫通孔を有するベース板を有し、
該貫通孔には、前記リードタブ端子が挿入されており、
前記ベース板の周縁部は前記ケースの開口端部と共に前記ケースに対して外側に巻き締め加工されていることを特徴とする電解コンデンサ。
In an electrolytic capacitor that attaches and seals a sealing member to an opening end of a metal case that houses a capacitor element connected to a metal lead wire via a lead tab terminal,
The sealing member has a base plate having at least two through holes,
The lead tab terminal is inserted into the through hole,
The electrolytic capacitor according to claim 1, wherein a peripheral edge portion of the base plate is wound outwardly with respect to the case together with an opening end portion of the case.
前記封口部材としてさらに2つの貫通孔を有する絶縁部材を有し、前記リードタブ端子は、該絶縁部材の前記貫通孔に挿入されていることを特徴とする請求項1に記載の電解コンデンサ。   The electrolytic capacitor according to claim 1, further comprising an insulating member having two through holes as the sealing member, wherein the lead tab terminal is inserted into the through hole of the insulating member. リードタブ端子を介して金属製のリード線と接続されているコンデンサ素子を収納する金属製のケースの開口端部に封口部材を装着して封止する電解コンデンサにおいて、
前記封口部材は、少なくとも2つの貫通孔を有するベース板と、2つの貫通孔を有する絶縁部材を有し、
前記ベース板の貫通孔には、前記絶縁部材が挿入され、該絶縁部材の貫通孔には、前記リードタブ端子が挿入され、
前記絶縁部材と前記ベース板の接触部周辺にくぼみ部が形成されていることを特徴とする電解コンデンサ。
In an electrolytic capacitor that attaches and seals a sealing member to an opening end of a metal case that houses a capacitor element connected to a metal lead wire via a lead tab terminal,
The sealing member has a base plate having at least two through holes and an insulating member having two through holes,
The insulating member is inserted into the through hole of the base plate, the lead tab terminal is inserted into the through hole of the insulating member,
An electrolytic capacitor, wherein a recessed portion is formed around a contact portion between the insulating member and the base plate.
前記ベース板の周縁部は、前記ケースの開口端部と共に前記ケースに対して外側に巻き締め加工されていることを特徴とする請求項3に記載の電解コンデンサ。   The electrolytic capacitor according to claim 3, wherein the peripheral edge portion of the base plate is wound outwardly with respect to the case together with the opening end portion of the case. 前記絶縁部材は弾性体であることを特徴とする請求項1乃至4のいずれかに記載の電解コンデンサ。   The electrolytic capacitor according to claim 1, wherein the insulating member is an elastic body. 前記ベース板には、凹部が設けられていることを特徴とする請求項1乃至5のいずれかに記載の電解コンデンサ。   The electrolytic capacitor according to claim 1, wherein the base plate is provided with a recess. リードタブ端子を介して金属製のリード線と接続されているコンデンサ素子を金属製のケースに収納する収納工程と、前記リードタブ端子を、封口部材に備えられた貫通孔に挿入する挿入工程と、前記封口部材を用いてコンデンサ素子を封止する封止工程とを備える電解コンデンサの製造方法において、
前記封口部材として、ベース板を有し、
前記挿入工程は、前記リードタブ端子を前記ベース板の貫通孔に挿入するベース板挿入工程を有し、
前記封止工程は、前記ベース板の周縁部と前記ケースの開口端部とを該ケースの外側方向に巻き締め加工する巻き締め工程を有することを特徴とする電解コンデンサの製造方法。
A storage step of storing a capacitor element connected to a metal lead wire via a lead tab terminal in a metal case, an insertion step of inserting the lead tab terminal into a through hole provided in a sealing member, In a method for producing an electrolytic capacitor comprising a sealing step of sealing a capacitor element using a sealing member,
As the sealing member, it has a base plate,
The insertion step includes a base plate insertion step of inserting the lead tab terminal into the through hole of the base plate,
The method of manufacturing an electrolytic capacitor according to claim 1, wherein the sealing step includes a winding step of winding a peripheral portion of the base plate and an opening end portion of the case in an outer direction of the case.
前記封口部材として、さらに絶縁部材を有し、
前記ベース板挿入工程の前に、前記リードタブ端子を前記絶縁部材の貫通孔に挿入する絶縁部材挿入工程を有していることを特徴とする請求項7に記載の電解コンデンサの製造方法。
As the sealing member, further having an insulating member,
The method for manufacturing an electrolytic capacitor according to claim 7, further comprising an insulating member inserting step of inserting the lead tab terminal into the through hole of the insulating member before the base plate inserting step.
JP2007171310A 2007-06-29 2007-06-29 Electrolytic capacitor and manufacturing method thereof Active JP4900598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007171310A JP4900598B2 (en) 2007-06-29 2007-06-29 Electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007171310A JP4900598B2 (en) 2007-06-29 2007-06-29 Electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009010237A true JP2009010237A (en) 2009-01-15
JP4900598B2 JP4900598B2 (en) 2012-03-21

Family

ID=40325018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007171310A Active JP4900598B2 (en) 2007-06-29 2007-06-29 Electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4900598B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199854A (en) * 2013-03-29 2014-10-23 日本ケミコン株式会社 Electrolytic capacitor
WO2020027114A1 (en) * 2018-08-01 2020-02-06 ショット日本株式会社 Airtight terminal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125817A (en) * 1982-01-22 1983-07-27 日本電信電話株式会社 Sheathing container for aluminum electrolytic condenser
JPH01104718A (en) * 1987-10-19 1989-04-21 Nippon Steel Corp Manufacture of bar stock or wire rod for cold forging
JPH048424A (en) * 1990-04-26 1992-01-13 Mitsubishi Electric Corp Electrochemical machine and electrochemical machining device
JPH0430410A (en) * 1990-05-25 1992-02-03 Elna Co Ltd Electrolytic capacitor's sealing material, electrolytic capacitor and manufacture thereof
JPH0786100A (en) * 1993-06-30 1995-03-31 Nichicon Corp Electrolytic capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125817A (en) * 1982-01-22 1983-07-27 日本電信電話株式会社 Sheathing container for aluminum electrolytic condenser
JPH01104718A (en) * 1987-10-19 1989-04-21 Nippon Steel Corp Manufacture of bar stock or wire rod for cold forging
JPH048424A (en) * 1990-04-26 1992-01-13 Mitsubishi Electric Corp Electrochemical machine and electrochemical machining device
JPH0430410A (en) * 1990-05-25 1992-02-03 Elna Co Ltd Electrolytic capacitor's sealing material, electrolytic capacitor and manufacture thereof
JPH0786100A (en) * 1993-06-30 1995-03-31 Nichicon Corp Electrolytic capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199854A (en) * 2013-03-29 2014-10-23 日本ケミコン株式会社 Electrolytic capacitor
WO2020027114A1 (en) * 2018-08-01 2020-02-06 ショット日本株式会社 Airtight terminal
JP2020021827A (en) * 2018-08-01 2020-02-06 ショット日本株式会社 Airtight terminal
US12046424B2 (en) 2018-08-01 2024-07-23 Schott Japan Corporation Airtight terminal

Also Published As

Publication number Publication date
JP4900598B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP5619969B2 (en) Manufacturing method of solid electrolytic capacitor
JP5137604B2 (en) Electrolytic capacitor and manufacturing method thereof
US6215651B1 (en) Solid electrolyte capacitor using conductive polymer
JP5073947B2 (en) Winding capacitor and method of manufacturing the same
WO2003077268A1 (en) Solid electrolytic capacitor
JP2012043960A (en) Electrolytic capacitor manufacturing method and electrolytic capacitor
JP5328870B2 (en) Electrolytic capacitor
JP4900598B2 (en) Electrolytic capacitor and manufacturing method thereof
JP5075466B2 (en) Electrolytic capacitor manufacturing method
JP2008130859A (en) Electrolytic capacitor
JP5235599B2 (en) Electrolytic capacitor and electrolytic capacitor manufacturing method
JP2003272963A (en) Solid electrolytic capacitor and its manufacturing method
JP4683176B2 (en) Manufacturing method of solid electrolytic capacitor
JPH11204377A (en) Solid-state electrolytic capacitor
JP2005064352A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2009212117A (en) Capacitor case, capacitor including the same, and manufacturing method of capacitor case
JP5164325B2 (en) Manufacturing method of solid electrolytic capacitor
JP2010129939A (en) Method of manufacturing solid-state electrolytic capacitor
JP2012004481A (en) Electrolytic capacitor
JP2008066518A (en) Electrolytic capacitor, and manufacturing method therefor
JP3851128B2 (en) Electrolytic capacitor
JP2008205405A (en) Method for manufacturing solid electrolytic capacitor
JP2001284190A (en) Solid electrolytic capacitor
JP5054573B2 (en) Solid electrolytic capacitor
JP4383226B2 (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R151 Written notification of patent or utility model registration

Ref document number: 4900598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250