JP2009088218A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2009088218A
JP2009088218A JP2007255635A JP2007255635A JP2009088218A JP 2009088218 A JP2009088218 A JP 2009088218A JP 2007255635 A JP2007255635 A JP 2007255635A JP 2007255635 A JP2007255635 A JP 2007255635A JP 2009088218 A JP2009088218 A JP 2009088218A
Authority
JP
Japan
Prior art keywords
heat
ceramic powder
semiconductor device
powder layer
metal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007255635A
Other languages
Japanese (ja)
Inventor
Takayuki Takahashi
貴幸 高橋
Masami Kimura
正美 木村
Hiroyuki Miyano
弘行 宮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2007255635A priority Critical patent/JP2009088218A/en
Publication of JP2009088218A publication Critical patent/JP2009088218A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent cracking of a ceramic substrate used in a high voltage power module exceeding 1 kV or a power module where the operating temperature of a semiconductor exceeds 100°C because heat dissipation and insulation between a semiconductor element and a heat dissipator are important characteristics in these power modules, and to provide a semiconductor device which dissipates heat efficiently while exhibiting insulation characteristics. <P>SOLUTION: The semiconductor device comprises a heat dissipation member, a metal member containing an electronic component including a semiconductor in a case and mounting the electronic component, and an electrode for conducting a current, wherein the metal member, a ceramic powder layer, and the heat dissipation member having a coarse surface portion are sequentially brought into contact with each other. A degassing layer is provided in the ceramic powder layer of the semiconductor device. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体装置に係わり、より詳しくはパワー半導体を搭載するインバータ、サイリスタ、パワーモジュールなどのパワー半導体モジュール装置及びその製造方法に関するものである。   The present invention relates to a semiconductor device, and more particularly to a power semiconductor module device such as an inverter, a thyristor, and a power module on which a power semiconductor is mounted, and a manufacturing method thereof.

パワー半導体モジュール装置(以下パワーモジュールという)は、エアコン等の各種家電機器や、エレベーター、産業機械、電車、ハイブリッド電気自動車や電気自動車等、各種インバータ制御の電力機器などに用いられ、パワーデバイスと称されている。   Power semiconductor module devices (hereinafter referred to as “power modules”) are used in various home appliances such as air conditioners, elevators, industrial machines, trains, hybrid electric vehicles, electric vehicles, and other inverter-controlled power devices, and are referred to as power devices. Has been.

従来より、比較的大容量のパワーモジュールに適用されているパワー半導体モジュールは通常絶縁樹脂が用いられた外装ケースと金属板からなる放熱体が組合された筐体をなし、この外装ケースの中に各電子部品が納められている。この放熱体は熱伝導性グリースを介して冷却放熱フィンや水冷放熱体などの冷却器上に取り付けられる。   Conventionally, power semiconductor modules applied to relatively large-capacity power modules usually have a case in which an outer case made of insulating resin and a heat sink made of a metal plate are combined. Each electronic component is housed. This heat radiating body is mounted on a cooler such as a cooling heat radiating fin or a water-cooled heat radiating body via a heat conductive grease.

外装ケースの内側において、放熱体上には表裏に金属板(箔)が形成されたセラミックス製絶縁基板が半田により接合されている。通常、裏側(放熱体側)の金属板(箔)はセラミックス製絶縁基板のほぼ全面を覆っており、表側(放熱体を半田付けしない側)は金属板(箔)により回路パターンが形成されており、セラミックス金属絶縁回路基板をなしている。前記回路パターン上には、パワー半導体素子やチップ部品等が半田付けされる。また、外装ケースに配置された、外部接続端子と前記回路パターンはボンディングワイヤによって接続されている。   Inside the outer case, a ceramic insulating substrate having a metal plate (foil) formed on the front and back is joined to the heat radiator by solder. Normally, the metal plate (foil) on the back side (heatsink side) covers almost the entire surface of the ceramic insulating substrate, and the circuit pattern is formed by the metal plate (foil) on the front side (side where the heatsink is not soldered). The ceramic metal insulation circuit board. On the circuit pattern, a power semiconductor element, a chip component and the like are soldered. Further, the external connection terminals arranged in the outer case and the circuit pattern are connected by bonding wires.

前記各電子部品を設置した上で、外装ケース内側にはシリコンゲル、エポキシ樹脂などの封止樹脂が充填されている。封止樹脂は更にエポキシ樹脂などの固型樹脂により封止され、この固型樹脂上に外装ケースと同種又は異なる材質の端子ホルダが固定されている。   After the electronic parts are installed, the inside of the outer case is filled with a sealing resin such as silicon gel or epoxy resin. The sealing resin is further sealed with a solid resin such as an epoxy resin, and a terminal holder made of the same or different material as the outer case is fixed on the solid resin.

前記構成のパワーモジュールにおいては、1kVを超える高電圧のものや、半導体の動作温度が100℃を超えるものでは、半導体素子と放熱体との間の放熱性及び絶縁性が重要な特性となっている。   In the power module having the above-described structure, heat dissipation and insulation between the semiconductor element and the heat sink are important characteristics when the power module exceeds 1 kV or when the semiconductor operating temperature exceeds 100 ° C. Yes.

このため、従来の構成においては、絶縁基板として熱伝導性と絶縁特性に優れた、アルミナや窒化アルミニウムなどの材質のセラミックス基板が用いられている。また、放熱体と冷却器との間には熱伝導性グリースを介在させて、放熱体から冷却器へ効率よく熱を逃がすようにしている。なお、放熱体と冷却器は通常ネジ止めされ固定されている。   For this reason, in the conventional configuration, a ceramic substrate made of a material such as alumina or aluminum nitride and having excellent thermal conductivity and insulating characteristics is used as the insulating substrate. Further, heat conductive grease is interposed between the radiator and the cooler so that heat is efficiently released from the radiator to the cooler. The radiator and the cooler are usually fixed with screws.

特許文献1では、前記従来の構成の電気的特性(特に絶縁性)と耐久性、信頼性を改善するために、半導体素子が配置される金属板(マウント用導電体)と放熱体との間を、シート状放熱絶縁体により接続し、且つ前記金属板の端部に接して絶縁樹脂を配置する構造を開示している。   In Patent Document 1, in order to improve the electrical characteristics (especially insulation), durability, and reliability of the conventional configuration, a metal plate (mounting conductor) between which a semiconductor element is disposed and a radiator is provided. Are connected by a sheet-like heat dissipating insulator, and an insulating resin is disposed in contact with an end of the metal plate.

前記特許文献1の構造により、前記金属板と放熱手段との接続部分の熱伝導率3W/m・K以上で、且つ、絶縁破壊強度30kV/mm以上を共に得ることができるようにしている。   With the structure of Patent Document 1, it is possible to obtain both a thermal conductivity of 3 W / m · K or more and a dielectric breakdown strength of 30 kV / mm or more at the connection portion between the metal plate and the heat dissipation means.

さらに従来の構成との対比で述べれば、従来のセラミックス絶縁基板の代わりに樹脂製のシート状放熱絶縁体を配置し、絶縁特性を確保するために、前記金属板の端部を絶縁樹脂で封止したものである。これにより、従来セラミックス絶縁基板では、熱衝撃などでセラミックス絶縁基板が割れ、絶縁破壊を起こすなどの問題を排除しているものである。 Further, in comparison with the conventional structure, a resin sheet-like heat dissipating insulator is arranged in place of the conventional ceramic insulating substrate, and the end of the metal plate is sealed with an insulating resin in order to ensure insulation characteristics. It has stopped. As a result, the conventional ceramic insulating substrate eliminates the problem that the ceramic insulating substrate breaks due to thermal shock or the like and causes dielectric breakdown.

また、特許文献2では、簡易な構造にて十分な放熱性能を確保できるパワーモジュールとして、半導体素子等が配置される金属板(配線)と放熱体(ヒートシンク)が絶縁性接着剤(絶縁性樹脂)で接着されている。これにより、電気自動車、ハイブリッドカー等、パワーモジュールの設置スペースの制約が大きい分野において友好利用でき、特に、半導体素子温度が150〜250℃程度、使用電源電圧200〜750V、最大電圧700〜1500V程度でのインバータへの利用が期待される。   In Patent Document 2, as a power module that can ensure sufficient heat dissipation performance with a simple structure, a metal plate (wiring) on which a semiconductor element or the like is disposed and a radiator (heat sink) are made of an insulating adhesive (insulating resin). ). This makes it possible to make friendly use in fields where the installation space for power modules is large, such as electric vehicles and hybrid cars. In particular, the semiconductor element temperature is about 150 to 250 ° C., the power supply voltage used is 200 to 750 V, and the maximum voltage is about 700 to 1500 V. It is expected to be used for inverters.

特開2005−210006号JP 2005-210006 特開2005−159048号JP-A-2005-159048

しかしながら、従来の技術では半導体装置をアセンブリする時や半導体装置の通電時に発生する熱や熱サイクル(ヒートサイクル)によって、セラミックス基板と金属板の熱膨張係数の差から発生する熱応力により、セラミックス基板が割れるといった信頼性が劣化するおそれがあった。また、前記熱膨張係数の差より放熱体が反り、冷却器との密着が良好でなくなり放熱性に問題が発生するおそれがあった。
また、特許文献1、2ではセラミックス基板を使用しないためにセラミックス基板が割れる心配はなくなり信頼性は得ることができるが、樹脂のシートや樹脂の接着剤を使用するために、セラミックス基板と比べて熱伝導率が10分の1以下となり十分ではなかった。
このようにセラミックス基板の割れを防ぎ、絶縁性を有しながら、さらに効率的に放熱する半導体装置が望まれていた。
However, in the conventional technology, the ceramic substrate is caused by the heat stress generated when the semiconductor device is assembled or when the semiconductor device is energized, or by the thermal stress generated from the difference in thermal expansion coefficient between the ceramic substrate and the metal plate. There was a possibility that reliability such as cracking might deteriorate. Further, the heat radiating member is warped due to the difference in thermal expansion coefficient, and the close contact with the cooler is not good, which may cause a problem in heat dissipation.
In addition, in Patent Documents 1 and 2, since the ceramic substrate is not used, there is no concern that the ceramic substrate will break, and reliability can be obtained. However, since a resin sheet or resin adhesive is used, compared with the ceramic substrate. The thermal conductivity was less than 1/10, which was not sufficient.
Thus, there has been a demand for a semiconductor device that prevents cracking of the ceramic substrate and has more insulating heat while having insulation properties.

本発明者は鋭意研究を行った結果、上記課題について下記のような発明により解決に至った。   As a result of intensive studies, the present inventor has solved the above problems by the following invention.

すなわち、第1の発明は、放熱する放熱部材と、筐体に半導体を含む電子部品を収容し、該電子部品を搭載する金属部材と、通電する電極とを備える半導体装置であって、金属部材と、セラミックス粉体層と、表面粗部を備える放熱部材とが、順次接してなることを備える、半導体装置である。第2に発明は、前記セラミック粉体層に脱気層を備えることである。第3の発明は、前記金属部材が、セラミックス粉体層に埋設される拡張部を有することである。第4の発明は、前記脱気層が鉄を主成分とする酸化鉄である。第5の発明は、前記放熱部材が、表面粗部がセラミックス粉体層と接し、放熱フィン付き放熱板、水冷放熱体である。 That is, the first invention is a semiconductor device comprising a heat radiating member for radiating heat, an electronic component including a semiconductor in a casing, a metal member for mounting the electronic component, and an electrode for energization, the metal member And a ceramic powder layer and a heat radiating member having a rough surface portion are sequentially in contact with each other. 2nd invention is providing the deaeration layer in the said ceramic powder layer. A third invention is that the metal member has an extended portion embedded in the ceramic powder layer. In a fourth invention, the deaeration layer is iron oxide containing iron as a main component. In a fifth aspect of the present invention, the heat dissipating member is a heat dissipating plate with a heat dissipating fin, a water-cooled heat dissipating member, wherein the rough surface portion is in contact with the ceramic powder layer.

さらには、前記放熱部材がアルミニウム、アルミニウム合金、銅、または銅合金であることが好ましい。前記放熱部材がアルミニウム、またはアルミニウム合金の少なくとも1種であって、表面にアルマイト処理してなる放熱部材を有してもよい。 Furthermore, the heat dissipation member is preferably aluminum, an aluminum alloy, copper, or a copper alloy. The heat radiating member may be at least one of aluminum or an aluminum alloy, and may have a heat radiating member formed on the surface by alumite treatment.

発明の半導体装置の製造は、表面粗部を有する放熱部材の上に、セラミックス粉体を堆積し、該セラミックス粉体を物理的圧力により上方より押圧し、セラミックス粉体層を形成する、該セラミックス粉体層の上に金属部材ならびに電子部品搭載の金属部材を配置し、電子部品と電極とをボンディングワイヤーを接合し、通電可能とし、上記電子部品を含み、筐体で仕切られた空間に絶縁樹脂を満たし、その絶縁樹脂の上に蓋を設置すれば良い。また、端子が直接回路金属板に半田付けされているものもある。   The manufacturing of the semiconductor device of the present invention is carried out by depositing ceramic powder on a heat radiating member having a rough surface and pressing the ceramic powder from above with physical pressure to form a ceramic powder layer. A metal member and a metal member mounted on an electronic component are placed on the powder layer, and a bonding wire is joined between the electronic component and the electrode to enable energization. The electronic component is included in the space partitioned by the casing. What is necessary is just to fill resin and to install a lid | cover on the insulating resin. Some terminals are soldered directly to the circuit metal plate.

本発明により、放熱性が顕著に向上し、ヒートサイクルによっても破損が発生せず、信頼性が大幅に向上した半導体装置を得た。 According to the present invention, a semiconductor device was obtained in which the heat dissipation was remarkably improved, the damage was not caused by the heat cycle, and the reliability was greatly improved.

本発明の一例を図1を用いて説明する。本発明はこの形態に限るものではない。
筐体である外装ケース3には、電極2、電子部品6、金属部材7、セラミックス粉体層51、脱気層52、ボンディングワイヤー8、絶縁樹脂9、蓋10が備えてなり、外装ケース3の下部には、放熱部材4が接合され配置されてある。電子部品6、電極部材7、セラミックス粉体層51、放熱部材4は、この順番にて順次接してある。
An example of the present invention will be described with reference to FIG. The present invention is not limited to this form.
The outer case 3 that is a casing includes the electrode 2, the electronic component 6, the metal member 7, the ceramic powder layer 51, the deaeration layer 52, the bonding wire 8, the insulating resin 9, and the lid 10. The heat radiating member 4 is joined and arrange | positioned at the lower part. The electronic component 6, the electrode member 7, the ceramic powder layer 51, and the heat radiating member 4 are in contact with each other in this order.

筐体として、外装ケース3は樹脂からなり、前記放熱部材4の上に略垂直な壁を4方面に持っており、樹脂系接着材で接合されている。ネジ止目によってもよい。また、樹脂の中に無機質フィラーを充填したものが好適に使用される。
前記放熱部材4に接着された前記外装ケース3により、略直方体の形状の上方が開放された空間であり、電子部品の収容可能とする空間である収容部が形成する(図示なし)。収容部には、絶縁のためのセラミックス粉体層51とセラミックス粉体層51に接している金属部材7と、該金属部材7の上に搭載された電子部品6等が収容され、該収容部から該収容部の外部に通じる電極2を有している。
As a casing, the outer case 3 is made of resin, has a substantially vertical wall on the heat radiation member 4 in four directions, and is joined with a resin adhesive. A screw stop may be used. Moreover, what filled the inorganic filler in resin is used suitably.
The exterior case 3 bonded to the heat radiating member 4 forms a space (not shown) that is a space in which the upper portion of the substantially rectangular parallelepiped shape is opened and can accommodate an electronic component (not shown). The accommodating portion accommodates the ceramic powder layer 51 for insulation, the metal member 7 in contact with the ceramic powder layer 51, the electronic component 6 mounted on the metal member 7, and the like. To the outside of the housing portion.

放熱部材4は金属からなり、金属としてはアルミニウム、アルミニウム合金、銅、または銅合金であることが好ましい。さらに、放熱部材4としては熱伝導率の高いものが要求され、150W/mK以上の熱伝導率を持つものが良い。大気等に半導体等より発生した熱を伝熱し、放熱するためである。また、前記放熱部材4が、放熱板、放熱フィン付き放熱板、水冷放熱体であることが好ましく、少なくとも外装ケースを接着する側は平面であることが好ましい。さらに、前記放熱部材4のセラミックス粉体5と接する表面に、絶縁層が形成されても良い。(図示なし)、前記放熱部材がアルミニウムまたはアルミニウム合金であって、前記絶縁層がアルミナであることが好ましい。アルミナはアルミニウムの陽極酸化により、アルマイト処理を施すことが好ましい。 The heat dissipating member 4 is made of metal, and the metal is preferably aluminum, aluminum alloy, copper, or copper alloy. Further, the heat radiating member 4 is required to have a high thermal conductivity, and preferably has a thermal conductivity of 150 W / mK or more. This is because heat generated from a semiconductor or the like is transferred to the atmosphere or the like to dissipate it. Moreover, it is preferable that the said heat radiating member 4 is a heat sink, a heat sink with a heat sink, and a water-cooled heat radiator, and it is preferable that the side which adhere | attaches an exterior case is a plane at least. Furthermore, an insulating layer may be formed on the surface of the heat radiating member 4 in contact with the ceramic powder 5. (Not shown) Preferably, the heat dissipating member is aluminum or an aluminum alloy, and the insulating layer is alumina. Alumina is preferably anodized by anodizing aluminum.

放熱部材4は、表面を粗い状態にする表面粗部を有するとさらに好ましい。表面を粗い状態にすることで、微少な凹凸が形成される。表面が粗い状態となれば表面積が増加し、放熱面積が拡大することで、熱伝導の能力が飛躍的に向上する。特に、脱気層またはセラミックス粉体層51と接する面を粗くすることで、それらの層の粉体が微少な凹凸に嵌り込むのと、粉体間の空隙を埋設し、接触面積の拡大と空隙の減小により、熱伝導の効率が飛躍的に向上し、空隙が減小するため絶縁性も向上する。放熱部材4では、脱気層またはセラミックス粉体層51と接触する面を粗い状態にすればよく、これらの層の粉体の粒径に応じた粗さを形成すればよい。粗さは、平均粗さで10μmから1mmの凹凸でも十分である。表面を粗い状態にするのは、ヤスリ研磨、ブラストなどを用いれば良い。粉体層の厚さを測定する際は、断面を10倍程度に拡大した写真により計測、または、長さを測定できる高さ測定機を用いれば良い。   It is more preferable that the heat radiating member 4 has a rough surface portion that makes the surface rough. By making the surface rough, minute irregularities are formed. If the surface becomes rough, the surface area increases and the heat dissipation area expands, thereby greatly improving the heat conduction capability. In particular, by roughening the surface in contact with the deaeration layer or the ceramic powder layer 51, the powder of those layers is fitted into minute irregularities, the gap between the powders is buried, and the contact area is expanded. By reducing the gap, the efficiency of heat conduction is dramatically improved, and the insulation is improved because the gap is reduced. In the heat radiating member 4, the surface in contact with the deaeration layer or the ceramic powder layer 51 may be roughened, and the roughness corresponding to the particle size of the powder of these layers may be formed. Roughness of 10 μm to 1 mm in average roughness is sufficient. For roughening the surface, file polishing, blasting, or the like may be used. When measuring the thickness of the powder layer, a height measuring machine that can measure or measure the length with a photograph with a cross section enlarged about 10 times may be used.

金属部材7は、アルミニウムや銅などの導電率および熱伝導率が高いものが好ましい。前記金属部材7は半導体素子などのチップ部品を搭載する回路として用いられるため、搭載個所は、板形状が好ましい。さらには、セラミックス粉体層に埋設できる拡張部71を有するとよい。セラミックス粉体層51により伝熱効率を高めためである。この拡張部71は、金属部材7の同一材料でよく、例えば、拡張部71は図3(d)、(e)、(f)のように四角、三角、ICピン状でよく、金属部材に細い金属棒を切断し、面に鉛直に立てて剣山状にしてもよい。拡張部71の先端は、セラミックス粉体層51に押し込みよる埋設の際に、荷重抵抗が少ないように鋭角であることが望ましい。拡張部71がセラミックス粉体層51に埋設されることで、熱伝導が飛躍的に向上される。また、粉体層5の形態の安定もの寄与する。なお、セラミックス粉体層51を押圧により形成するさいに、金属部材を押圧装置に介して押圧すれば、セラミックス粉体層51に金属部材7と拡張部71と同形の穴や、金属部材7の外縁と同形のくぼみが形成され、金属部材7の設置が容易になるほか、セラミックス粉体層51と金属部材7とより密接に接し、熱伝導の効率が向上する。また、金属部材7の位置が安定する他、設置も容易となる。   The metal member 7 preferably has high electrical conductivity and thermal conductivity such as aluminum and copper. Since the metal member 7 is used as a circuit for mounting a chip component such as a semiconductor element, the mounting location is preferably a plate shape. Furthermore, it is good to have the expansion part 71 which can be embed | buried under a ceramic powder layer. This is because the ceramic powder layer 51 increases the heat transfer efficiency. The extended portion 71 may be made of the same material as that of the metal member 7. For example, the extended portion 71 may have a square shape, a triangular shape, or an IC pin shape as shown in FIGS. 3 (d), (e), and (f). A thin metal rod may be cut and placed vertically on the surface to form a sword mountain. It is desirable that the tip of the extended portion 71 has an acute angle so as to reduce load resistance when embedded by being pushed into the ceramic powder layer 51. Since the extended portion 71 is embedded in the ceramic powder layer 51, the heat conduction is greatly improved. Further, it contributes to the stability of the form of the powder layer 5. When the ceramic powder layer 51 is formed by pressing, if a metal member is pressed through a pressing device, a hole having the same shape as the metal member 7 and the expanded portion 71 or the metal member 7 A recess having the same shape as the outer edge is formed to facilitate the installation of the metal member 7, and the ceramic powder layer 51 and the metal member 7 are in closer contact with each other, thereby improving the efficiency of heat conduction. Further, the position of the metal member 7 is stabilized and the installation is facilitated.

セラミックス粉体層51は、セラミックス粉体を主な成分としてなる。セラミックス粉体層は、セラミックス粉体を収容部に放熱部材4から約0.5〜5mm程度の厚さで、隙間なく充填されており、平らになるように圧力をかけてあることが好ましい。このようにしてセラミックス粉体層が形成可能である。セラミックス粉体5の平均粒径は50μm以下が好ましく、25μm以下がさらに好ましい。これらの厚さ、粒径により、金属部材7と放熱部材4間において、1kV以上の絶縁性を持たせることができる。また、厚さは1mm〜3mmがさらに好ましい。セラミックス粉体5の材質は、アルミナ、窒化アルミニウム、窒化珪素などがよいが、特に熱伝導率の高く絶縁性に優れた窒化アルミニウムが好ましい。   The ceramic powder layer 51 is mainly composed of ceramic powder. It is preferable that the ceramic powder layer is filled with ceramic powder in the accommodating portion with a thickness of about 0.5 to 5 mm from the heat radiating member 4 without a gap, and pressure is applied so as to be flat. In this way, a ceramic powder layer can be formed. The average particle size of the ceramic powder 5 is preferably 50 μm or less, and more preferably 25 μm or less. With these thicknesses and particle diameters, an insulating property of 1 kV or more can be provided between the metal member 7 and the heat dissipation member 4. The thickness is more preferably 1 mm to 3 mm. The material of the ceramic powder 5 is preferably alumina, aluminum nitride, silicon nitride or the like, but aluminum nitride having a high thermal conductivity and excellent insulation is particularly preferable.

このセラミックス粉体層51と放熱部材4との間に、脱気層を挟持すると、さらに熱伝導の効率が向上される。脱気層を形成することで、内部の空気、酸素が消費されるためセラミックス粉体層51の熱膨張を抑制でき、熱伝導の効率が向上される。
また、酸素による金属部材7の表面劣化を抑制でき、熱伝導効率の劣化を抑制できる。脱気層は、鉄を主成分とした粉体により形成することで、熱伝導の効率を劣化することはない。脱気層に用いる鉄を主成分とする粉としては、ゲーサイトを焼成した酸化鉄などが好ましい。このような酸化鉄は市販されており、市販品を用いれば良い。鉄は窒素も吸着するため、酸素のみなならず窒素も吸着し、より好ましい。なお、粒径はセラミックス粉体5より大きいことが望ましく、平均粒径 D50が50μ〜1000μmであればよい。セラミックス粉体に混入しないようにするためである。望ましくは200μm以下が良い。
When a deaeration layer is sandwiched between the ceramic powder layer 51 and the heat dissipation member 4, the efficiency of heat conduction is further improved. By forming the deaeration layer, internal air and oxygen are consumed, so that the thermal expansion of the ceramic powder layer 51 can be suppressed, and the efficiency of heat conduction is improved.
Moreover, the surface deterioration of the metal member 7 by oxygen can be suppressed, and deterioration of heat conduction efficiency can be suppressed. The deaeration layer is formed of powder containing iron as a main component, so that the efficiency of heat conduction does not deteriorate. As the powder mainly composed of iron used for the deaeration layer, iron oxide obtained by firing goethite is preferable. Such iron oxide is commercially available, and a commercially available product may be used. Since iron also adsorbs nitrogen, it adsorbs not only oxygen but also nitrogen, and is more preferable. The particle size is preferably larger than the ceramic powder 5, and the average particle size D50 may be 50 μm to 1000 μm. This is to prevent mixing with the ceramic powder. Desirably, 200 micrometers or less are good.

熱は、主に電子部品6により発生した発熱であり、この熱は、金属部材7に伝熱し、金属部材と接するセラミックス粉体層51へ、セラミックス粉体層51が接する放熱部材4へ伝熱され、外気である大気に放熱される他、水冷などによりさらなる放熱機器に伝熱される。このようにセラミックする粉体層5では、伝熱がより効率良く可能であるように伝熱する各部材には、数mmに及ぶうねりがない略平面で接していることが望ましく、接触面積が大きい方が望ましい。また、直接接していてもよい。   The heat is mainly generated by the electronic component 6, and this heat is transferred to the metal member 7, transferred to the ceramic powder layer 51 in contact with the metal member, and transferred to the heat dissipation member 4 in contact with the ceramic powder layer 51. In addition to being radiated to the atmosphere, which is the outside air, the heat is transferred to a further heat radiating device by water cooling or the like. In the ceramic powder layer 5 as described above, it is desirable that each member that conducts heat is in contact with a substantially flat surface having no undulations of several millimeters so that heat conduction is possible more efficiently. The larger one is desirable. Moreover, you may contact directly.

前記電極2は内部の収容部と外部に通じており、外部は外部電極となっている。前記電極2は前記外装ケースに取り付けられていても良く、前記金属部材7または電子部品6とボンディングワイヤによって、電気的接続がとられることが好ましい。 The electrode 2 communicates with the internal accommodating portion and the outside, and the outside is an external electrode. The electrode 2 may be attached to the exterior case, and is preferably electrically connected by the metal member 7 or the electronic component 6 and a bonding wire.

また、前記外装ケース3の収容部に、セラミックス粉5、金属部材7、電子部品6、電極2、ボンディングワイヤ8などを収容した後に絶縁樹脂9で封止され、前記収容部が蓋10で覆われていることが好ましい。なお、金属部材7とセラミックス粉体層51が密接に接するために、金属部材7を押圧しながら絶縁樹脂9を充填してもよい。押圧は、上方からガイドピンやバネを用いても良い。 In addition, the ceramic powder 5, the metal member 7, the electronic component 6, the electrode 2, the bonding wire 8, and the like are accommodated in the accommodating portion of the outer case 3 and then sealed with an insulating resin 9, and the accommodating portion is covered with the lid 10. It is preferable that Note that the insulating resin 9 may be filled while pressing the metal member 7 so that the metal member 7 and the ceramic powder layer 51 are in close contact with each other. For pressing, a guide pin or a spring may be used from above.

なお、予め電子部品等がセラミックス基板上に接合等により搭載された電子回路基板を用いるてもよい。この場合は、図1での電子部品6と、金属部部材7とを電子回路基板に置き換え、セラミックス粉体層51の上に、電子回路基板を配置すれば良い。つまり、電子回路基板、セラミックス粉体層51、脱気層52の順に積載される。放熱部材は、表面粗部を有していることが望ましい。このような構成により電子回路基板においても本発明が可能である。 An electronic circuit board in which electronic components or the like are previously mounted on a ceramic substrate by bonding or the like may be used. In this case, the electronic component 6 and the metal member 7 in FIG. 1 may be replaced with an electronic circuit board, and the electronic circuit board may be disposed on the ceramic powder layer 51. That is, the electronic circuit board, the ceramic powder layer 51, and the deaeration layer 52 are stacked in this order. It is desirable that the heat dissipation member has a rough surface portion. With such a configuration, the present invention can be applied to an electronic circuit board.

このように、電子部品等による熱を放熱する放熱部材と、筐体に半導体を含む電子部品を収容し、該電子部品に通電する金属部材と電極と、を備える半導体装置であって、該金属部材と、セラミックス粉体層と、放熱部材とが、このような順序にて順次接してなることにより、従来にはない放熱効率の高い半導体装置を得ることができ、より大電流を通電するパワートランジスターを用いた電気制御において、有効である。また、同様な半導体装置であって、該金属部材と、セラミックス基板と、セラミックス粉体層と、放熱部材とが、このような順番にて順次接してなることを備える半導体装置であれば、電子部品を搭載する際に基板が必要な、より多数か、複雑な構造を有する電子部品においても、十分放熱可能となり、より多様な優れた半導体装置を得ることが可能となる。絶縁にセラミックス粉を使用したので熱伝導率の低下も抑制し、前記熱膨張係数の差より放熱体が反ることもなく、半導体装置を外部の装置組み込んだ際にも反りによる装置の破壊や、故障を抑制できる。
Thus, a semiconductor device comprising a heat dissipating member that dissipates heat from an electronic component or the like, and an electronic component containing a semiconductor in a housing, and a metal member and an electrode that energizes the electronic component, wherein the metal By sequentially contacting the member, ceramic powder layer, and heat dissipation member in this order, an unprecedented semiconductor device with high heat dissipation efficiency can be obtained, and the power for conducting a larger current. This is effective in electrical control using a transistor. In addition, if the semiconductor device is a similar semiconductor device including the metal member, the ceramic substrate, the ceramic powder layer, and the heat radiating member in this order, the electronic device Even in an electronic component having a larger number or a complicated structure that requires a substrate when mounting the component, it is possible to sufficiently dissipate heat, and a wider variety of excellent semiconductor devices can be obtained. Since ceramic powder is used for insulation, it also suppresses the decrease in thermal conductivity, the heat radiator does not warp due to the difference in thermal expansion coefficient, and when the semiconductor device is incorporated into an external device, , Failure can be suppressed.

(実施例1)
図2(a)に示すように、まず、放熱部材4としてアルミニウム板材と、電極2が予め組みこまれた略直方体の上下が開放された筒状の樹脂外装ケース3を準備した。放熱部材4の表面には、予め平均粗さで10μm程度の凹凸粗さを研磨紙により形成してある(表面粗部41)。放熱部材4のアルミニウム板材と樹脂外装ケース3をエポキシ系の熱可塑性樹脂で接合してある。
図2(b)に示すように、放熱板と外装ケースとでできた内部の空間、すなわち電子部品などの収容部に、市販の酸化鉄粉を収容部に放熱板から0.1mmの高さになるように入れた。その後、略水平になるように押圧し、脱気層を形成した。次に、この脱気層の上にセラミックス粉5として粒径が10μm以下の窒化アルミニウム粉を準備し、収容部に放熱板から1mmの高さになるように入れた。その後に略水平になるように、押圧した。なお、押圧する際に、金属部材7を介して押圧し、セラミック粉体層に予め金属部材7の埋設部用の穴を形成させた。
金属部材7は、図3(d)の態様のように、拡張部が四角形を有し、直線辺に2個所設ける形状とした。上面から見ると所定の回路を形成してなる(図示なし)。なお、放熱部材4とセラミックス粉5上に金属部材7を置いて、これらの間の絶縁耐圧を測定したところ、1.2kV以上であった(図示なし)。
図2(c)に示すように、金属部材7を準備し、その上に半導体素子やチップ部品を予め半田で接合した。その電子部品6が接合された金属部材7を前記セラミックス粉の上に設置した。さらに、半導体チップの電極または金属部材7と、前記樹脂外装ケース3に形成された電極をアルミニウムのボンディングワイヤー8により電気的に接続した。なお、このワイヤーボンディングに用いたボンディング装置は、前記外装ケースに接触しないように、設計されている。
さらに、この上に絶縁用のエポキシ樹脂9を入れ、さらに固体樹脂を入れ外装ケースに蓋10をして、半導体装置を完成させた(図1)。
Example 1
As shown in FIG. 2 (a), first, a cylindrical resin outer case 3 was prepared in which the upper and lower sides of a substantially rectangular parallelepiped in which the aluminum plate and the electrode 2 were previously assembled were opened as the heat radiating member 4. On the surface of the heat dissipating member 4, an uneven roughness having an average roughness of about 10 μm is formed in advance by polishing paper (surface rough portion 41). The aluminum plate material of the heat dissipating member 4 and the resin outer case 3 are joined with an epoxy-based thermoplastic resin.
As shown in FIG. 2 (b), an internal space formed by the heat sink and the outer case, that is, a storage part such as an electronic component, commercially available iron oxide powder is 0.1 mm above the heat sink in the storage part. I put it to become. Then, it pressed so that it might become substantially horizontal, and the deaeration layer was formed. Next, an aluminum nitride powder having a particle size of 10 μm or less was prepared as a ceramic powder 5 on the deaerated layer, and was placed in the housing portion so as to be 1 mm from the heat sink. After that, it was pressed so as to be substantially horizontal. In addition, when pressing, it pressed through the metal member 7, and the hole for the embedding part of the metal member 7 was previously formed in the ceramic powder layer.
As shown in FIG. 3D, the metal member 7 has a shape in which the extended portion has a square shape and is provided at two locations on the straight side. When viewed from above, a predetermined circuit is formed (not shown). In addition, when the metal member 7 was put on the heat radiating member 4 and the ceramic powder 5 and the dielectric strength voltage between them was measured, it was 1.2 kV or more (not shown).
As shown in FIG.2 (c), the metal member 7 was prepared and the semiconductor element and the chip component were joined previously by soldering on it. A metal member 7 to which the electronic component 6 was bonded was placed on the ceramic powder. Furthermore, the electrode or metal member 7 of the semiconductor chip and the electrode formed on the resin outer case 3 were electrically connected by an aluminum bonding wire 8. In addition, the bonding apparatus used for this wire bonding is designed so that it may not contact the said exterior case.
Further, an insulating epoxy resin 9 was placed thereon, a solid resin was further placed, and a lid 10 was placed on the outer case to complete the semiconductor device (FIG. 1).

この半導体装置に通電し、電子部品6による発熱によって生じる半導体装置の放熱性と絶縁性について評価した。放熱性の評価には、電子部品6の温度を測定した。絶縁性の評価は、絶縁破壊が生じれば、直ちに装置から信号が断絶することから信号の有無を測定して行った。結果、温度は、95℃を超えることなく、信号を発進し、電子部品は良好な状態で作動した。反りも発生しなかった。すなわち、良好な放熱状態であり、絶縁性も維持できた。また、ヒートサイクル試験を実施した。室温+125℃ 30分間、室温 10分間、―40℃ 30分間、室温 10分間を1サイクルの条件とした。結果、1000サイクル後であっても、絶縁破壊がなかった。   The semiconductor device was energized, and the heat dissipation and insulation of the semiconductor device caused by the heat generated by the electronic component 6 were evaluated. For evaluation of heat dissipation, the temperature of the electronic component 6 was measured. The insulation was evaluated by measuring the presence or absence of a signal because the signal immediately cuts off from the device when dielectric breakdown occurs. As a result, the temperature launched a signal without exceeding 95 ° C., and the electronic components operated in good condition. There was no warping. That is, it was in a good heat dissipation state and could maintain insulation. Moreover, the heat cycle test was implemented. Room temperature + 125 ° C. for 30 minutes, room temperature for 10 minutes, −40 ° C. for 30 minutes, and room temperature for 10 minutes were defined as one cycle. As a result, there was no dielectric breakdown even after 1000 cycles.

本発明にかかる半導体装置の概略図Schematic diagram of a semiconductor device according to the present invention. 本発明の実施例1にかかる半導体装置の中間体概略図Intermediate body schematic diagram of semiconductor device according to Example 1 of the present invention 本発明の金属部材の形態の略図Schematic representation of the form of the metal member of the present invention

符号の説明Explanation of symbols

1:半導体装置
2:電極
3:外装ケース
4:放熱部材
41:放熱部材の表面粗部
51:セラミックス粉体層
52:脱気層
6:電子部品(半導体チップ等)
7:金属部材
71:拡張部
8:ボンディングワイヤー
9:絶縁樹脂
10:蓋
11:セラミックス基板
(a):実施例にかかる中間体
(b):実施例にかかる中間体
(c):実施例にかかる中間体
1: Semiconductor device 2: Electrode 3: Exterior case 4: Heat radiation member 41: Surface rough portion 51 of the heat radiation member: Ceramic powder layer 52: Deaeration layer 6: Electronic component (semiconductor chip or the like)
7: Metal member 71: Expansion part 8: Bonding wire 9: Insulating resin 10: Lid 11: Ceramic substrate (a): Intermediate according to example (b): Intermediate according to example (c): Example Such intermediates

Claims (5)

放熱する放熱部材と、筐体に半導体を含む電子部品を収容し、該電子部品を搭載する金属部材と、通電する電極とを備える半導体装置であって、金属部材と、セラミックス粉体層と、表面粗部を備える放熱部材とが、順次接してなることを備える、半導体装置。 A semiconductor device comprising a heat dissipation member that dissipates heat, an electronic component including a semiconductor in a housing, a metal member that mounts the electronic component, and an electrode that is energized, the metal member, a ceramic powder layer, A semiconductor device comprising: a heat dissipation member having a rough surface portion, which are sequentially in contact with each other. 前記セラミック粉体層に脱気層を備える、請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the ceramic powder layer includes a deaeration layer. 前記金属部材が、セラミックス粉体層に埋設される拡張部を有する請求項1乃至2に記載の半導体装置。 The semiconductor device according to claim 1, wherein the metal member has an extended portion embedded in a ceramic powder layer. 前記脱気層が鉄を主成分とする酸化鉄よりなる、請求項1乃至3に記載の半導体装置。 The semiconductor device according to claim 1, wherein the deaeration layer is made of iron oxide containing iron as a main component. 前記放熱部材が、表面粗部がセラミックス粉体層と接し、放熱フィン付き放熱板、水冷放熱体であることを特徴とする、請求項1乃至4に記載の半導体装置。 5. The semiconductor device according to claim 1, wherein the heat radiating member is a heat radiating plate with a heat radiating fin and a water-cooled heat radiating member, the surface rough portion being in contact with the ceramic powder layer.
JP2007255635A 2007-09-28 2007-09-28 Semiconductor device Pending JP2009088218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007255635A JP2009088218A (en) 2007-09-28 2007-09-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007255635A JP2009088218A (en) 2007-09-28 2007-09-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2009088218A true JP2009088218A (en) 2009-04-23

Family

ID=40661255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007255635A Pending JP2009088218A (en) 2007-09-28 2007-09-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2009088218A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011085313A1 (en) 2010-11-11 2012-05-16 Mitsubishi Electric Corporation Semiconductor device
US10098254B2 (en) 2015-09-17 2018-10-09 Fuji Electric Co., Ltd. Method of manufacturing semiconductor device
JP2021009934A (en) * 2019-07-01 2021-01-28 三井化学株式会社 Heat dissipation component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011085313A1 (en) 2010-11-11 2012-05-16 Mitsubishi Electric Corporation Semiconductor device
US8466551B2 (en) 2010-11-11 2013-06-18 Mitsubishi Electric Corporation Semiconductor device
US10098254B2 (en) 2015-09-17 2018-10-09 Fuji Electric Co., Ltd. Method of manufacturing semiconductor device
JP2021009934A (en) * 2019-07-01 2021-01-28 三井化学株式会社 Heat dissipation component

Similar Documents

Publication Publication Date Title
CN101556941B (en) Heat radiation structure of surface mounting high-power element
JP5351107B2 (en) Capacitor cooling structure and inverter device
JP5881860B2 (en) Power module
JP5446302B2 (en) Heat sink and module
JP5101971B2 (en) Semiconductor device
KR101930391B1 (en) Electronic device
US11043443B2 (en) Electric device and heat radiator
JP2009088218A (en) Semiconductor device
JP2005032912A (en) Power conversion apparatus
CN201397814Y (en) Radiating structure of chip type high-power element
JP2004087735A (en) Semiconductor device
JP2012119401A (en) Electrical equipment module having heat radiation structure
CN112038245B (en) Connection process of internal binding line of power module
JP5423005B2 (en) Electronics
JP2011192762A (en) Power module
JP2009088172A (en) Semiconductor device
JP2009277827A (en) Capacitor
JP3358694B2 (en) Metal-based multilayer circuit board
CN203708153U (en) Brushless motor controller
US20240096729A1 (en) Packaged Device, Packaged Module, and Power Conversion Device
CN220692000U (en) Power chip packaging loading board
JP2005277381A (en) Package for storing electronic component and electronic device
CN210778564U (en) Power semiconductor
JP2009188192A (en) Circuit device
CN217563958U (en) Board card equipment and multi-board card device