JP2009086161A - Liquid crystal display, manufacturing method for liquid crystal display, and electronic equipment - Google Patents

Liquid crystal display, manufacturing method for liquid crystal display, and electronic equipment Download PDF

Info

Publication number
JP2009086161A
JP2009086161A JP2007254145A JP2007254145A JP2009086161A JP 2009086161 A JP2009086161 A JP 2009086161A JP 2007254145 A JP2007254145 A JP 2007254145A JP 2007254145 A JP2007254145 A JP 2007254145A JP 2009086161 A JP2009086161 A JP 2009086161A
Authority
JP
Japan
Prior art keywords
liquid crystal
layer
region
control electrode
retardation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007254145A
Other languages
Japanese (ja)
Other versions
JP5171189B2 (en
Inventor
Toshihiro Otake
俊裕 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007254145A priority Critical patent/JP5171189B2/en
Publication of JP2009086161A publication Critical patent/JP2009086161A/en
Application granted granted Critical
Publication of JP5171189B2 publication Critical patent/JP5171189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal display capable of preventing a phase difference from being shifted in a tapered area, and allowing a high contrast, and bright display. <P>SOLUTION: This liquid crystal display 100 is provided with: a pair of substrates 10A, 25A; a liquid crystal layer 50 held between the paired substrates; and a phase difference layer 29 provided in a liquid crystal layer side of the one substrate 25A out of the paired substrates. The tapered area TP is formed on an end face of the phase difference layer 29, and the phase difference per unit layer thickness of the phase difference layer 29 in the tapered area TP is larger than the phase difference per unit layer thickness of the phase difference layer 29 in an area (flat area FL) other than the tapered area. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、液晶パネルの内面側に位相差層を備えた位相差層内蔵型の液晶表示装置、液晶表示装置の製造方法並びに電子機器に関するものである。   The present invention relates to a retardation layer built-in type liquid crystal display device having a retardation layer on the inner surface side of a liquid crystal panel, a method for manufacturing the liquid crystal display device, and an electronic apparatus.

半透過反射型の液晶表示装置では、反射表示と透過表示とを単一の液晶層を用いて実現するために表示モード間での位相差の調整が必要である。近年、液晶パネルの内部に位相差層を設置する技術が開発されている。この技術で用いられる材料は、紫外線で重合する液晶をベースとした材料であり、配向処理を施した配向膜上にスピンコート等で塗布し、紫外線で重合を行い、配向状態を維持した状態で硬化するのが一般的な製法である(特許文献1を参照)。
特開2005−338256号公報
In a transflective liquid crystal display device, it is necessary to adjust a phase difference between display modes in order to realize reflective display and transmissive display using a single liquid crystal layer. In recent years, a technique for installing a retardation layer inside a liquid crystal panel has been developed. The material used in this technology is a material based on a liquid crystal that is polymerized by ultraviolet rays, and is applied by spin coating or the like on an alignment film that has been subjected to an alignment treatment, and is polymerized by ultraviolet rays to maintain the alignment state. Curing is a common production method (see Patent Document 1).
JP 2005-338256 A

一般に、紫外線で液晶材料を重合させる場合、露光マスクの裏面側に回り込む回折光によって位相差層の端面がテーパ状になる。テーパ領域の大きさは、回折光の入射角をθ、位相差層の膜厚をdとすると、dtanθで表される。回折光の入射角θは露光マスクのパターンのピッチが小さくなるにつれて大きくなる。そのため、サブ画素の大きさが小さくなると、位相差層のテーパ領域も大きくなる。テーパ領域の光学特性は平坦領域の光学特性と異なるため、通常はブラックマトリクス等で遮光することが多いが、テーパ領域を遮光すると、その分開口率が下がるため、精細度の高い画素の場合は輝度が低くなり、表示特性上不利となる。   In general, when the liquid crystal material is polymerized with ultraviolet rays, the end face of the retardation layer is tapered by diffracted light that wraps around the back side of the exposure mask. The size of the taper region is represented by dtan θ, where θ is the incident angle of diffracted light and d is the thickness of the retardation layer. The incident angle θ of the diffracted light increases as the exposure mask pattern pitch decreases. Therefore, when the size of the sub-pixel is reduced, the tapered region of the retardation layer is also increased. Since the optical characteristics of the tapered region are different from those of the flat region, the light is usually shielded by a black matrix or the like.However, if the tapered region is shielded from light, the aperture ratio decreases accordingly. The luminance is lowered, which is disadvantageous in display characteristics.

本発明はこのような事情に鑑みてなされたものであって、テーパ領域における位相差のずれを防止し、コントラストが高く、明るい表示が可能な液晶表示装置、液晶表示装置の製造方法並びに電子機器を提供することを目的とする。   The present invention has been made in view of such circumstances. A liquid crystal display device capable of preventing a phase difference shift in a tapered region, having a high contrast, and capable of bright display, a method for manufacturing the liquid crystal display device, and an electronic apparatus. The purpose is to provide.

上記の課題を解決するため、本発明の液晶表示装置は、一対の基板と、前記一対の基板間に挟持された液晶層と、前記一対の基板のうちの一方の基板の液晶層側に設けられた位相差層と、を備えた液晶表示装置であって、前記位相差層の端面にテーパ領域が形成され、前記テーパ領域における前記位相差層の単位層厚当たりの位相差が、前記テーパ領域以外の領域における前記位相差層の単位層厚当たりの位相差よりも大きいことを特徴とする。この構成によれば、テーパ領域とテーパ領域以外の領域(平坦領域)との間の位相のずれが小さくなる。そのため、位相差層と液晶層により形成される正味の位相差(位相差層の位相差と液晶層の位相差との和)を考えた場合、テーパ領域における位相差の大きさを平坦領域における位相差の大きさに近づけることができる。その結果、位相差層のテーパ領域で発生する光漏れ(偏光のずれ)が解消され、コントラストの高い画像表示が実現できる。   In order to solve the above problems, a liquid crystal display device of the present invention is provided on a liquid crystal layer side of a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, and one of the pair of substrates. A retardation region formed on the end surface of the retardation layer, and the retardation per unit layer thickness of the retardation layer in the tapered region is the taper region. The retardation is larger than the retardation per unit layer thickness of the retardation layer in a region other than the region. According to this configuration, the phase shift between the tapered region and the region other than the tapered region (flat region) is reduced. Therefore, when considering the net phase difference formed by the phase difference layer and the liquid crystal layer (the sum of the phase difference of the phase difference layer and the phase difference of the liquid crystal layer), the magnitude of the phase difference in the tapered region is set in the flat region. It can approach the magnitude of the phase difference. As a result, light leakage (polarization deviation) that occurs in the tapered region of the retardation layer is eliminated, and high-contrast image display can be realized.

なお、本明細書において「単位層厚当たりの位相差」とは、位相差層の層厚方向における平均的な位相差をいう。位相差の大きさが位相差層の平面領域内で分布を持つ場合には、その平面領域内の部分毎に「単位層厚当たりの位相差」が算出される。具体的には、平面領域内の特定の部分の位相差層の層厚をd、層厚方向における位相差層の複屈折の大きさをΔn(t)(複屈折の大きさは層厚方向の位置tの関数で表される)とすると、単位層厚当たりの位相差Δnavは下式(1)で表される。 In the present specification, “retardation per unit layer thickness” means an average retardation in the layer thickness direction of the retardation layer. When the magnitude of the phase difference has a distribution in the plane area of the phase difference layer, the “phase difference per unit layer thickness” is calculated for each portion in the plane area. Specifically, the layer thickness of the retardation layer in a specific portion in the plane region is d 0 , and the birefringence magnitude of the retardation layer in the layer thickness direction is Δn (t) (the birefringence magnitude is the layer thickness). (Represented by a function of the position t in the direction), the phase difference Δn av per unit layer thickness is represented by the following equation (1).

Figure 2009086161
Figure 2009086161

本発明においては、前記テーパ領域では、前記位相差層の層厚の大きい領域から前記位相差層の層厚の小さい領域にかけて前記位相差層の単位層厚当たりの位相差が連続的に変化していることが望ましい。この構成によれば、テーパ領域内での位相のばらつきが解消され、コントラストの高い画像表示が可能となる。   In the present invention, in the tapered region, the retardation per unit layer thickness of the retardation layer continuously changes from a region where the retardation layer is thick to a region where the retardation layer is thin. It is desirable that According to this configuration, variation in phase within the tapered region is eliminated, and an image display with high contrast becomes possible.

本発明においては、前記位相差層は液晶材料によって形成され、前記テーパ領域における前記液晶材料の配向状態が、前記テーパ領域以外の領域における前記液晶材料の配向状態と異なっているものとすることができる。例えば、前記テーパ領域では、前記液晶材料はホモジニアス配向しており、前記テーパ領域以外の領域では、前記液晶材料はベンド配向しているものとすることができる。   In the present invention, the retardation layer is formed of a liquid crystal material, and the alignment state of the liquid crystal material in the tapered region is different from the alignment state of the liquid crystal material in a region other than the tapered region. it can. For example, the liquid crystal material may be homogeneously aligned in the tapered region, and the liquid crystal material may be bend aligned in a region other than the tapered region.

本発明の液晶表示装置は、一対の基板と、前記一対の基板間に挟持された液晶層と、前記一対の基板のうちの一方の基板の液晶層側に設けられた位相差層と、を備えた液晶表示装置であって、前記位相差層は液晶材料によって形成され、前記位相差層の端面にテーパ領域が形成されており、前記テーパ領域における前記位相差層の単位層厚当たりの前記液晶材料の平均のチルト角が、前記テーパ領域以外の領域における前記位相差層の単位層厚当たりの前記液晶材料の平均のチルト角よりも小さいことを特徴とする。この構成によれば、テーパ領域とテーパ領域以外の領域(平坦領域)との間の位相のずれが小さくなる。そのため、位相差層と液晶層により形成される正味の位相差(位相差層の位相差と液晶層の位相差との和)を考えた場合、テーパ領域における位相差の大きさを平坦領域における位相差の大きさに近づけることができる。その結果、位相差層のテーパ領域で発生する光漏れ(偏光のずれ)が解消され、コントラストの高い画像表示が実現できる。   The liquid crystal display device of the present invention includes a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, and a retardation layer provided on the liquid crystal layer side of one of the pair of substrates. The retardation layer is formed of a liquid crystal material, a tapered region is formed on an end surface of the retardation layer, and the unit thickness of the retardation layer in the tapered region per unit layer thickness. An average tilt angle of the liquid crystal material is smaller than an average tilt angle of the liquid crystal material per unit layer thickness of the retardation layer in a region other than the tapered region. According to this configuration, the phase shift between the tapered region and the region other than the tapered region (flat region) is reduced. Therefore, when considering the net phase difference formed by the phase difference layer and the liquid crystal layer (the sum of the phase difference of the phase difference layer and the phase difference of the liquid crystal layer), the magnitude of the phase difference in the tapered region is set in the flat region. It can approach the magnitude of the phase difference. As a result, light leakage (polarization deviation) that occurs in the tapered region of the retardation layer is eliminated, and high-contrast image display can be realized.

なお、本明細書において「単位層厚当たりの液晶材料の平均のチルト角」とは、位相差層の層厚方向における液晶材料の平均的なチルト角をいう。チルト角が位相差層の平面領域内で分布を持つ場合には、その平面領域内の部分毎に「単位層厚当たりの液晶材料の平均のチルト角」が算出される。具体的には、平面領域内の特定の部分の位相差層の層厚をd、層厚方向における液晶材料のチルト角の大きさをT(t)(チルト角の大きさは層厚方向の位置tの関数で表される)とすると、単位層厚当たりの液晶材料の平均のチルト角Tavは下式(2)で表される。 In the present specification, the “average tilt angle of the liquid crystal material per unit layer thickness” refers to the average tilt angle of the liquid crystal material in the layer thickness direction of the retardation layer. When the tilt angle has a distribution in the plane region of the retardation layer, the “average tilt angle of the liquid crystal material per unit layer thickness” is calculated for each portion in the plane region. Specifically, the layer thickness of the phase difference layer in a specific portion in the plane region is d 0 , and the tilt angle of the liquid crystal material in the layer thickness direction is T (t) (the tilt angle is in the layer thickness direction). The average tilt angle T av of the liquid crystal material per unit layer thickness is expressed by the following equation (2).

Figure 2009086161
Figure 2009086161

本発明の液晶表示装置の製造方法は、一対の基板と、前記一対の基板間に挟持された液晶層と、前記一対の基板のうちの一方の基板の液晶層側に設けられた位相差層と、を備えた液晶表示装置の製造方法であって、前記位相差層の形成工程が、前記一方の基板上に第1制御電極を形成する工程と、前記一方の基板の前記第1制御電極が形成された面に、液晶材料を基板に水平に配向させる第1配向膜を形成する工程と、前記一方の基板の前記第1制御電極よりも小さい面積の第2制御電極が形成された制御基板を用意し、前記制御基板の前記第2制御電極が形成された面に、液晶材料を基板に水平に配向させる第2配向膜を形成する工程と、前記第1制御電極と前記第2制御電極とを対向させ、前記一方の基板の前記第1配向膜が形成された面と前記制御基板の前記第2配向膜が形成された面との間に、前記位相差層の形成材料である誘電異方性が正の液晶材料を配置する工程と、前記第1制御電極と前記第2制御電極との間に電圧を印加し、前記第1制御電極と前記第2制御電極との間に形成される電界によって前記液晶材料を配向させる工程と、前記第2制御電極と同じ平面形状を有する透光部を備えた露光マスクを用意し、前記露光マスクの透光部と前記制御基板の第2制御電極とを対向させ、前記制御基板側から前記露光マスクを介して紫外線を照射し前記液晶材料を硬化する工程と、を備えていることを特徴とする。   The method for manufacturing a liquid crystal display device of the present invention includes a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, and a retardation layer provided on the liquid crystal layer side of one of the pair of substrates. A method of manufacturing a liquid crystal display device comprising: a step of forming the retardation layer, the step of forming a first control electrode on the one substrate; and the first control electrode of the one substrate. A step of forming a first alignment film for horizontally aligning the liquid crystal material on the substrate, and a control in which a second control electrode having a smaller area than the first control electrode of the one substrate is formed. Preparing a substrate and forming a second alignment film on the surface of the control substrate on which the second control electrode is formed to align a liquid crystal material horizontally with the substrate; and the first control electrode and the second control The first alignment film of the one substrate was formed facing the electrode Disposing a liquid crystal material having positive dielectric anisotropy, which is a material for forming the retardation layer, between the control substrate and the surface on which the second alignment film is formed, and the first control electrode; Applying a voltage between the second control electrode and aligning the liquid crystal material by an electric field formed between the first control electrode and the second control electrode; and the same as the second control electrode An exposure mask having a light-transmitting portion having a planar shape is prepared, the light-transmitting portion of the exposure mask is opposed to the second control electrode of the control substrate, and ultraviolet rays are emitted from the control substrate side through the exposure mask. Irradiating and curing the liquid crystal material.

この方法によれば、位相差層の形成材料である液晶材料は、配向膜による配向規制力と電界による配向規制力の双方によって配向が制御される。ここで、制御基板に形成された第2制御電極は一方の基板に形成された第1制御電極よりも小さいため、第2制御電極の外周部には制御基板に対して斜めに傾斜した電気力線が発生し、第2制御電極の外周から外側に離れるに従って電界の強度が減少する。そのため、誘電異方性が正(ポジ型)の液晶材料を用いて位相差層を形成すると、第2制御電極と対向する領域では液晶材料のチルト角が大きくなり、テーパ領域の端(外周部)に行くほどチルト角は小さくなる。その結果、位相差層の層厚が小さいテーパ領域において単位層厚当たりの位相差が大きくなり、テーパ領域とテーパ領域以外の領域(平坦領域)との間の位相のずれが小さくなる。そして、位相差層と液晶層により形成される正味の位相差(位相差層の位相差と液晶層の位相差との和)を考えた場合、テーパ領域における位相差の大きさを平坦領域における位相差の大きさに近づけることができる。その結果、位相差層のテーパ領域で発生する光漏れ(偏光のずれ)が解消され、コントラストの高い画像表示が実現できる。また本発明では、位相差層を構成する液晶材料の配向が、位相差層下面部に配置した第1配向膜と位相差層上面部に配置した第2配向膜によって制御されるため、位相差層下面部の配向膜のみによって配向が制御される通常の位相差層に比べて所望の配向を実現しやすい。   According to this method, the alignment of the liquid crystal material, which is a material for forming the retardation layer, is controlled by both the alignment regulating force by the alignment film and the alignment regulating force by the electric field. Here, since the second control electrode formed on the control substrate is smaller than the first control electrode formed on one substrate, an electric force inclined obliquely with respect to the control substrate is formed on the outer periphery of the second control electrode. A line is generated, and the electric field strength decreases as the distance from the outer periphery of the second control electrode increases. Therefore, when the retardation layer is formed using a liquid crystal material having positive dielectric anisotropy (positive type), the tilt angle of the liquid crystal material increases in the region facing the second control electrode, and the end of the tapered region (outer peripheral portion) ), The tilt angle becomes smaller. As a result, the phase difference per unit layer thickness is increased in the tapered region where the thickness of the retardation layer is small, and the phase shift between the tapered region and a region other than the tapered region (flat region) is reduced. Then, when considering the net phase difference formed by the phase difference layer and the liquid crystal layer (the sum of the phase difference of the phase difference layer and the phase difference of the liquid crystal layer), the magnitude of the phase difference in the tapered region is determined in the flat region. It can approach the magnitude of the phase difference. As a result, light leakage (polarization deviation) that occurs in the tapered region of the retardation layer is eliminated, and high-contrast image display can be realized. In the present invention, since the orientation of the liquid crystal material constituting the retardation layer is controlled by the first alignment film disposed on the lower surface portion of the retardation layer and the second alignment film disposed on the upper surface portion of the retardation layer. Compared to a normal retardation layer in which the orientation is controlled only by the orientation film on the lower surface portion of the layer, a desired orientation can be easily realized.

本発明においては、前記制御基板上に第2配向膜を形成する前に、前記第2制御電極の表面に剥離層を形成する工程を含むことが望ましい。この方法によれば、制御基板を位相差層から剥離する際に位相差層が一方の基板から剥がれないようにすることができる。   In the present invention, it is desirable to include a step of forming a release layer on the surface of the second control electrode before forming the second alignment film on the control substrate. According to this method, it is possible to prevent the retardation layer from being peeled from one of the substrates when the control substrate is peeled from the retardation layer.

本発明においては、前記第2制御電極の中央部の抵抗が前記第2制御電極の外周部の抵抗よりも小さいことが望ましい。この方法によれば、第2制御電極の抵抗が電極全体で均一に形成されている場合に比べて、電界の強さが精密に制御でき、位相差層の位相の制御も容易になる。   In the present invention, it is desirable that the resistance of the central portion of the second control electrode is smaller than the resistance of the outer peripheral portion of the second control electrode. According to this method, compared with the case where the resistance of the second control electrode is formed uniformly over the entire electrode, the strength of the electric field can be precisely controlled, and the phase of the retardation layer can be easily controlled.

本発明においては、前記第1制御電極は、前記位相差層の形成後、前記液晶層を駆動させる電極として機能することが望ましい。この方法によれば、第1制御電極とは別に液晶駆動用の電極を形成する必要がなくなるため、製造工程が簡略化される。   In the present invention, it is preferable that the first control electrode functions as an electrode for driving the liquid crystal layer after the retardation layer is formed. According to this method, it is not necessary to form an electrode for driving the liquid crystal separately from the first control electrode, so that the manufacturing process is simplified.

本発明の電子機器は、前述した本発明の液晶表示装置を備えていることを特徴とする。この構成によれば、コントラストが高く、明るい表示が可能な電子機器を提供できる。   An electronic apparatus according to the present invention includes the above-described liquid crystal display device according to the present invention. According to this configuration, it is possible to provide an electronic device with high contrast and capable of bright display.

以下、図面を参照して、本発明の実施の形態について説明する。かかる実施の形態は、本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等が異なっている。   Embodiments of the present invention will be described below with reference to the drawings. This embodiment shows one aspect of the present invention, and does not limit the present invention, and can be arbitrarily changed within the scope of the technical idea of the present invention. Moreover, in the following drawings, in order to make each structure easy to understand, an actual structure and a scale, number, and the like of each structure are different.

また、以下の説明においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係を説明する。この際、水平面内における所定方向をX軸方向、水平面内においてX軸方向と直交する方向をY軸方向、X軸方向及びY軸方向のそれぞれに直交する方向(すなわち鉛直方向)をZ軸方向とする。例えば本実施形態においては、X軸方向をデータ線の延在方向、Y軸方向を走査線の延在方向、Z軸方向を観察者による液晶パネルの観察方向としている。   In the following description, an XYZ orthogonal coordinate system is set, and the positional relationship of each member will be described with reference to this XYZ orthogonal coordinate system. At this time, the predetermined direction in the horizontal plane is the X-axis direction, the direction orthogonal to the X-axis direction in the horizontal plane is the Y-axis direction, and the direction orthogonal to each of the X-axis direction and the Y-axis direction (that is, the vertical direction) is the Z-axis direction. And For example, in this embodiment, the X-axis direction is the data line extending direction, the Y-axis direction is the scanning line extending direction, and the Z-axis direction is the viewing direction of the liquid crystal panel by the observer.

[液晶表示装置の構成]
図1は本発明の一実施形態の液晶表示装置100の1画素の平面図である。液晶表示装置100は、画素スイッチング素子として薄膜トランジスタ(Thin Film Transistor;以下「TFT」という。)を備えた半透過反射型の液晶表示装置である。
[Configuration of liquid crystal display device]
FIG. 1 is a plan view of one pixel of a liquid crystal display device 100 according to an embodiment of the present invention. The liquid crystal display device 100 is a transflective liquid crystal display device including a thin film transistor (hereinafter referred to as “TFT”) as a pixel switching element.

図1に示すように、液晶表示装置100の1画素領域には、それぞれ赤、緑、青に対応した3つのサブ画素Dが設けられている。1つのサブ画素Dに対応して3原色のうち1色の着色層(カラーフィルタ)が形成され、3つのサブ画素D1〜D3で3色の着色層22R、22G、22Bを含む画素領域が形成されている。なお、着色層22R、22G、22Bは、それぞれX軸方向に延びるストライプ状に形成され、その延在方向で複数のサブ画素Dに跨って形成されるとともに、Y軸方向にて周期的に配列されている。   As shown in FIG. 1, in one pixel region of the liquid crystal display device 100, three sub-pixels D corresponding to red, green, and blue are provided. A color layer (color filter) of one of the three primary colors is formed corresponding to one subpixel D, and a pixel region including the three color layers 22R, 22G, and 22B is formed by the three subpixels D1 to D3. Has been. The colored layers 22R, 22G, and 22B are each formed in a stripe shape extending in the X-axis direction, are formed across the plurality of sub-pixels D in the extending direction, and are periodically arranged in the Y-axis direction. Has been.

サブ画素Dの平面領域には、平面視略矩形状の画素電極9が設けられている。液晶表示装置100の表示領域には、画素電極9の境界部に沿ってX軸方向に延在する複数のデータ線6aとY軸方向に延在する複数の走査線3aとが設けられている。データ線6aと走査線3aとに囲まれた各々の領域はサブ画素Dであり、データ線6aと走査線3aとの交差部近傍にはサブ画素Dを駆動するTFT素子30が設けられている。サブ画素Dは走査線3aとデータ線6aに沿ってマトリクス状に配置されており、マトリクス状に配置された複数のサブ画素Dによって、全体としての表示領域が形成されている。   In the planar area of the sub-pixel D, a pixel electrode 9 having a substantially rectangular shape in plan view is provided. In the display area of the liquid crystal display device 100, a plurality of data lines 6 a extending in the X-axis direction and a plurality of scanning lines 3 a extending in the Y-axis direction are provided along the boundary portion of the pixel electrode 9. . Each region surrounded by the data line 6a and the scanning line 3a is a sub-pixel D, and a TFT element 30 for driving the sub-pixel D is provided near the intersection of the data line 6a and the scanning line 3a. . The sub-pixels D are arranged in a matrix along the scanning lines 3a and the data lines 6a, and a plurality of sub-pixels D arranged in a matrix form a display area as a whole.

サブ画素DはX軸方向において2つの領域に分割されている。図示左側の領域は、反射表示用画素電極9rを備えた反射表示領域Rであり、図示右側の領域は、透過表示用画素電極9tを備えた透過表示領域Tである。本実施形態の場合、反射表示用画素電極9rは、アルミニウムや銀等の光反射性導電膜からなる平面視矩形状の反射電極であり、透過表示用画素電極9tは、ITO(インジウム錫酸化物)等の透光性導電膜からなる平面視矩形状の透明電極である。反射表示用画素電極9rと透過表示用画素電極9tとは、平面視でほぼ同一の形状及び大きさを有し、サブ画素領域の中央部で互いに接続されている。   The subpixel D is divided into two regions in the X-axis direction. The left area in the figure is a reflective display area R having a reflective display pixel electrode 9r, and the right area in the figure is a transmissive display area T having a transmissive display pixel electrode 9t. In this embodiment, the reflective display pixel electrode 9r is a rectangular reflective electrode made of a light-reflective conductive film such as aluminum or silver, and the transmissive display pixel electrode 9t is made of ITO (indium tin oxide). ) And the like, and a transparent electrode having a rectangular shape in plan view. The reflective display pixel electrode 9r and the transmissive display pixel electrode 9t have substantially the same shape and size in plan view, and are connected to each other at the center of the sub-pixel region.

走査線3aとデータ線6aとの交差部近傍には、反射表示用画素電極9rと走査線3a及びデータ線6aとを接続するTFT素子30が設けられている。TFT素子30は、半導体層35と、半導体層35の下層側に設けられたゲート電極部32と、半導体層35の上層側に設けられたソース電極部33及びドレイン電極部34と、を備えている。半導体層35のゲート電極部32と対向する領域にはチャネル領域が形成されており、チャネル領域の両側にソース領域とドレイン領域とが形成されている。ゲート電極部32は、走査線3aの一部をデータ線6aの延在方向(X軸方向)に延出して形成されており、その先端側で半導体層35のチャネル領域と図示略のゲート絶縁膜を介して対向している。ソース電極部33は、データ線6aの一部を走査線3aの延在方向(Y軸方向)に延出して形成されており、半導体層35のソース領域と電気的に接続されている。ドレイン電極34は、その一端側で半導体層35のドレイン領域と電気的に接続されており、他端側で反射表示用画素電極9rと電気的に接続されている。   In the vicinity of the intersection between the scanning line 3a and the data line 6a, a TFT element 30 for connecting the reflective display pixel electrode 9r to the scanning line 3a and the data line 6a is provided. The TFT element 30 includes a semiconductor layer 35, a gate electrode portion 32 provided on the lower layer side of the semiconductor layer 35, and a source electrode portion 33 and a drain electrode portion 34 provided on the upper layer side of the semiconductor layer 35. Yes. A channel region is formed in a region facing the gate electrode portion 32 of the semiconductor layer 35, and a source region and a drain region are formed on both sides of the channel region. The gate electrode portion 32 is formed by extending a part of the scanning line 3a in the extending direction (X-axis direction) of the data line 6a. Opposite through the membrane. The source electrode portion 33 is formed by extending a part of the data line 6 a in the extending direction (Y-axis direction) of the scanning line 3 a and is electrically connected to the source region of the semiconductor layer 35. The drain electrode 34 is electrically connected to the drain region of the semiconductor layer 35 on one end side, and is electrically connected to the reflective display pixel electrode 9r on the other end side.

図2は図1のA−A線に沿う断面図である。液晶表示装置100は、素子基板(第1基板)10と、素子基板10に対向配置された対向基板(第2基板)25とを備えている。素子基板10と対向基板25との間には液晶層50が挟持されている。素子基板10の外面側には偏光板19が設けられ、対向基板25の外面側には偏光板17が設けられている。さらに、偏光板19の外面側には、透過表示用の照明装置であるバックライト15が配設されている。   FIG. 2 is a cross-sectional view taken along line AA in FIG. The liquid crystal display device 100 includes an element substrate (first substrate) 10 and a counter substrate (second substrate) 25 arranged to face the element substrate 10. A liquid crystal layer 50 is sandwiched between the element substrate 10 and the counter substrate 25. A polarizing plate 19 is provided on the outer surface side of the element substrate 10, and a polarizing plate 17 is provided on the outer surface side of the counter substrate 25. Further, a backlight 15 that is an illumination device for transmissive display is disposed on the outer surface side of the polarizing plate 19.

素子基板10は、石英、ガラス等の透光性基板10Aを基体としてなる。基体10Aの内面側にはTFT素子(図2では走査線3aのみが図示されている)が形成されている。基体10AとTFT素子を覆って、アクリル樹脂等の透光性絶縁材料からなる第1絶縁膜40が形成されている。第1絶縁膜40を覆って、アクリル樹脂等の透光性絶縁材料からなる第2絶縁膜24が形成されている。第2絶縁膜24の表面には、アルミニウムや銀等の光反射性の金属膜、又はこれらの金属膜とITO等の透光性導電膜との積層膜からなる反射表示用画素電極9rと、ITO等の透光性導電膜からなる透過表示用画素電9tとが形成されている。また、第2絶縁膜24の表面には、反射表示用画素電極9rと透過表示用画素電極9tとを覆ってポリイミド等からなる図示略の配向膜が形成されている。   The element substrate 10 has a translucent substrate 10A such as quartz or glass as a base. A TFT element (only the scanning line 3a is shown in FIG. 2) is formed on the inner surface side of the base 10A. A first insulating film 40 made of a light-transmitting insulating material such as acrylic resin is formed so as to cover the base 10A and the TFT element. A second insulating film 24 made of a translucent insulating material such as acrylic resin is formed so as to cover the first insulating film 40. On the surface of the second insulating film 24, a reflective display pixel electrode 9r made of a light-reflective metal film such as aluminum or silver, or a laminated film of these metal films and a light-transmitting conductive film such as ITO, A transmissive display pixel electrode 9t made of a translucent conductive film such as ITO is formed. An alignment film (not shown) made of polyimide or the like is formed on the surface of the second insulating film 24 so as to cover the reflective display pixel electrode 9r and the transmissive display pixel electrode 9t.

第2絶縁膜24の反射表示領域Tに対応する領域には、凹凸形状24aが付与されている。反射表示用画素電極9rの表面には、凹凸形状24aに倣う凹凸面が形成されている。反射表示用画素電極9rは、外光を反射する反射表示用の散乱反射膜を兼ねており、反射表示用画素電極9rが形成された領域が反射表示領域Tであり、透過表示用画素電極9tが形成された領域が透過表示領域Tである。反射表示用画素電極9rは、凹凸形状24aによって付与された凹凸面によって光散乱性を付与され、外部からの映り込み防止、並びに視野角の拡大を実現している。一方、第2絶縁膜24において反射表示領域R以外の領域は平坦面となっている。透過表示用画素電極9tは、この平坦面上に形成されている。   The region corresponding to the reflective display region T of the second insulating film 24 is provided with an uneven shape 24a. An uneven surface following the uneven shape 24a is formed on the surface of the reflective display pixel electrode 9r. The reflective display pixel electrode 9r also serves as a scattering reflective film for reflective display that reflects external light. The region where the reflective display pixel electrode 9r is formed is the reflective display region T, and the transmissive display pixel electrode 9t. A region where is formed is a transmissive display region T. The reflective display pixel electrode 9r is provided with light scattering properties by the concavo-convex surface provided by the concavo-convex shape 24a, and prevents reflection from the outside and enlarges the viewing angle. On the other hand, the region other than the reflective display region R in the second insulating film 24 is a flat surface. The transmissive display pixel electrode 9t is formed on the flat surface.

対向基板25は、石英、ガラス等の透光性基板25Aを基体としてなる。基体25Aの内面側には、着色層22Rを含むカラーフィルタ層と、アクリル樹脂等からなるオーバーコート膜23と、ITO等の透明導電膜からなる平面ベタ状の第1制御電極39とが積層されている。第1制御電極39上には、反射表示領域Rに対応する領域に位相差層29が形成されており、位相差層29と第1制御電極39を覆ってITO等の透明導電膜からなる平面ベタ状の共通電極31が形成され、さらに共通電極31を覆ってポリイミド等からなる図示略の配向膜が形成されている。位相差層29は液晶材料により形成されており、例えば、液晶モノマーや液晶オリゴマーを基板上に塗布し、所定の配向状態で配向させた状態で重合硬化することにより作製される。   The counter substrate 25 has a translucent substrate 25A such as quartz or glass as a base. A color filter layer including a colored layer 22R, an overcoat film 23 made of an acrylic resin, etc., and a flat solid first control electrode 39 made of a transparent conductive film such as ITO are laminated on the inner surface side of the base 25A. ing. A phase difference layer 29 is formed on the first control electrode 39 in a region corresponding to the reflective display region R, and a plane made of a transparent conductive film such as ITO covering the phase difference layer 29 and the first control electrode 39. A solid common electrode 31 is formed, and an alignment film (not shown) made of polyimide or the like is formed so as to cover the common electrode 31. The phase difference layer 29 is formed of a liquid crystal material, and is prepared, for example, by applying a liquid crystal monomer or a liquid crystal oligomer on a substrate and polymerizing and curing in a state of being aligned in a predetermined alignment state.

位相差層29の端面にはテーパ領域TPが形成されている。テーパ領域TPは、基体25Aからの距離が大きくなるに従って断面積が小さくなる順テーパ形状を有する。テーパ領域TP以外の領域は、表面が平坦な平坦領域FLである。テーパ領域TPは位相差層2の外周部に形成され、テーパ領域TPの外周部の位置は反射表示領域Rの外周部の位置と一致している。   A tapered region TP is formed on the end face of the retardation layer 29. The tapered region TP has a forward tapered shape in which the cross-sectional area decreases as the distance from the base body 25A increases. The region other than the taper region TP is a flat region FL having a flat surface. The tapered region TP is formed on the outer peripheral portion of the retardation layer 2, and the position of the outer peripheral portion of the tapered region TP matches the position of the outer peripheral portion of the reflective display region R.

図3は位相差層29の端面近傍の液晶材料Lの配向状態を示す模式図である。本実施形態の場合、位相差層29を構成する液晶材料(液晶分子)Lの配向状態はテーパ領域TPと平坦領域FLとで異なっている。テーパ領域TPにおける液晶材料Lの配向はホモジニアス配向であり、平坦領域FLにおける液晶材料Lの配向はベンド配向である。これにより、テーパ領域TPにおける位相差層29の単位層厚当たりの平均のチルト角(位相差)が、平坦領域FLにおける位相差層29の単位層厚当たりの平均のチルト角(位相差)よりも小さくなっている。そして、位相差層29液晶層50との位相差の和に着目すると、テーパ領域TPにおける前記位相差の和と平坦領域FLにおける前記位相差の和は略等しくなっている。   FIG. 3 is a schematic diagram showing the alignment state of the liquid crystal material L in the vicinity of the end face of the retardation layer 29. In the present embodiment, the alignment state of the liquid crystal material (liquid crystal molecules) L constituting the retardation layer 29 is different between the tapered region TP and the flat region FL. The alignment of the liquid crystal material L in the taper region TP is homogeneous alignment, and the alignment of the liquid crystal material L in the flat region FL is bend alignment. Thereby, the average tilt angle (phase difference) per unit layer thickness of the retardation layer 29 in the tapered region TP is greater than the average tilt angle (phase difference) per unit layer thickness of the retardation layer 29 in the flat region FL. Is also getting smaller. When attention is paid to the sum of the phase differences with the phase difference layer 29 and the liquid crystal layer 50, the sum of the phase differences in the taper region TP and the sum of the phase differences in the flat region FL are substantially equal.

[液晶表示装置の製造方法]
図4は液晶表示装置100の製造方法を位相差層29の形成工程を中心に説明する断面工程図である。なお、図4では、位相差層29の形成工程に必要な構成のみを示し、それ以外の構成、例えば、基体25A上に配置されるカラーフィルタ層やオーバーコート膜の図示は省略している。
[Method for manufacturing liquid crystal display device]
FIG. 4 is a cross-sectional process diagram for explaining the manufacturing method of the liquid crystal display device 100 with a focus on the process of forming the retardation layer 29. FIG. 4 shows only the configuration necessary for the step of forming the retardation layer 29, and other configurations, for example, a color filter layer and an overcoat film disposed on the base 25A are omitted.

位相差層29の形成工程では、まず図4(a)に示すように、基体25Aの全面に平面視ベタ状の第1制御電極39を形成し、基体25Aの第1制御電極39が形成された面に、ポリイミド等からなる第1配向膜75を形成する。第1配向膜75は、位相差層の形成材料である液晶材料を基板に水平に配向させる水平配向膜である。   In the step of forming the retardation layer 29, first, as shown in FIG. 4A, the first control electrode 39 having a solid shape in plan view is formed on the entire surface of the base 25A, and the first control electrode 39 of the base 25A is formed. A first alignment film 75 made of polyimide or the like is formed on the surface. The first alignment film 75 is a horizontal alignment film that horizontally aligns a liquid crystal material, which is a material for forming a retardation layer, on a substrate.

次に図4(b)に示すように、第2制御電極61が形成された制御基板60を用意し、制御基板60の第2制御電極61が形成された面に、ポリイミド等からなる第2配向膜76を形成する。第2配向膜76は、位相差層の形成材料である液晶材料を基板に水平に配向させる水平配向膜である。第2制御電極61は、図5の平面図に示すように、基体25Aの反射表示領域Rに対応する領域に形成されている。本実施形態の場合、位相差層は複数のサブ画素D1〜D3に跨ってストライプ状に形成されるため、第2制御電極61も複数のサブ画素D1〜D3に跨ってストライプ状に形成されている。第2制御電極61の形状、大きさは、位相差層の平坦領域の形状、大きさと一致している。なお、第2制御電極61はITO等の紫外線を透過可能な透光性導電膜からなり、第2制御電極61が形成される制御基板の基体はガラス等の紫外線を透光性基板からなる。したがって、制御基板全体としても紫外線を透過可能な透光性の基板となっている。   Next, as shown in FIG. 4B, a control substrate 60 on which the second control electrode 61 is formed is prepared, and a second substrate made of polyimide or the like is formed on the surface of the control substrate 60 on which the second control electrode 61 is formed. An alignment film 76 is formed. The second alignment film 76 is a horizontal alignment film that horizontally aligns a liquid crystal material, which is a material for forming a retardation layer, on the substrate. As shown in the plan view of FIG. 5, the second control electrode 61 is formed in a region corresponding to the reflective display region R of the base body 25A. In the case of the present embodiment, the retardation layer is formed in a stripe shape across the plurality of subpixels D1 to D3, and therefore the second control electrode 61 is also formed in a stripe shape across the plurality of subpixels D1 to D3. Yes. The shape and size of the second control electrode 61 match the shape and size of the flat region of the retardation layer. The second control electrode 61 is made of a light-transmitting conductive film that can transmit ultraviolet light such as ITO, and the base of the control substrate on which the second control electrode 61 is formed is made of ultraviolet light such as glass. Therefore, the entire control substrate is a light-transmitting substrate that can transmit ultraviolet rays.

図4(b)に戻って、制御基板60上に第2配向膜76を形成したら、基体25Aの第1制御電極39と制御基板60の第2制御電極61とを対向させ、第2制御電極61を基体25A上の位相差層を形成する領域に位置決めする。そして、基体25Aの第1配向膜75が形成された面と制御基板60の第2配向膜76が形成された面との間に、位相差層の形成材料である誘電異方性が正(ポジ型)の液晶材料からなる材料層29Aを配置する。液晶材料29Aとしては、例えば、紫外線硬化型の液晶モノマー又は液晶オリゴマーが用いられる。   Returning to FIG. 4B, when the second alignment film 76 is formed on the control substrate 60, the first control electrode 39 of the base body 25 </ b> A and the second control electrode 61 of the control substrate 60 are opposed to each other, and the second control electrode is formed. 61 is positioned in the area | region which forms the phase difference layer on 25 A of base | substrates. The dielectric anisotropy that is a material for forming the retardation layer is positive between the surface of the base body 25A on which the first alignment film 75 is formed and the surface of the control substrate 60 on which the second alignment film 76 is formed ( A material layer 29A made of a positive-type liquid crystal material is disposed. As the liquid crystal material 29A, for example, an ultraviolet curable liquid crystal monomer or liquid crystal oligomer is used.

次に図4(c)に示すように、基体25Aの第1制御電極39と制御基板60の第2制御電極61との間に電圧を印加し、両電極31,61の間に形成される電界によって材料層29A中の液晶材料を配向させる。そして、制御基板60側から露光マスク70を介して紫外線UVを照射し、露光マスク70の透光部71Hに対応する領域の液晶材料を重合(硬化)する。   Next, as shown in FIG. 4C, a voltage is applied between the first control electrode 39 of the base body 25 </ b> A and the second control electrode 61 of the control substrate 60 to form the electrodes 31 and 61. The liquid crystal material in the material layer 29A is aligned by an electric field. Then, ultraviolet rays UV are irradiated from the control substrate 60 side through the exposure mask 70, and the liquid crystal material in the region corresponding to the light transmitting portion 71H of the exposure mask 70 is polymerized (cured).

ここで、露光マスク70には、遮光部71と、遮光部71が配置されない透光部71Hとが設けられている。透光部71Hの形状、大きさは、第2制御電極61の形状、大きさと一致している。露光マスク70は、透光部71Hと第2制御電極61とを位置合わせした状態で制御基板70の上部(基体25Aとは反対側)に配置される。露光マスク70の上部から紫外線UVを照射すると、露光マスク70の透光部71Hから露光マスク70の裏面側に回り込んだ紫外線UVが材料層29Aに対して斜めに入射し、断面台形状の領域を重合させる。そして、台形領域の斜辺部が位相差層のテーパ領域となる。   Here, the exposure mask 70 is provided with a light shielding portion 71 and a light transmitting portion 71H where the light shielding portion 71 is not disposed. The shape and size of the translucent part 71 </ b> H coincide with the shape and size of the second control electrode 61. The exposure mask 70 is disposed on the upper portion of the control substrate 70 (on the side opposite to the base body 25A) in a state where the light transmitting portion 71H and the second control electrode 61 are aligned. When the ultraviolet ray UV is irradiated from the upper part of the exposure mask 70, the ultraviolet ray UV that wraps around from the translucent part 71H of the exposure mask 70 to the back side of the exposure mask 70 is obliquely incident on the material layer 29A, and has a trapezoidal area. Is polymerized. The hypotenuse of the trapezoidal region becomes the tapered region of the retardation layer.

次に図4(d)に示すように、制御基板60を剥離し、有機溶剤によって材料層29Aの未硬化部を除去する。この際、第2制御電極61の表面に予め剥離層を形成しておくと、制御基板60を位相差層29から剥離する際に位相差層29が基体25Aから剥がれずにすむため望ましい。以上により、基体25Aの反射表示領域に対応する領域に、テーパ領域TPと平坦領域FLとを備えた位相差層29が形成される。   Next, as shown in FIG. 4D, the control substrate 60 is peeled off, and the uncured portion of the material layer 29A is removed with an organic solvent. At this time, it is desirable to form a release layer in advance on the surface of the second control electrode 61 because the retardation layer 29 does not peel from the base body 25A when the control substrate 60 is peeled from the retardation layer 29. As described above, the retardation layer 29 including the tapered region TP and the flat region FL is formed in the region corresponding to the reflective display region of the base 25A.

図6は、第2制御電極61と第1制御電極39との間に電圧を印加した場合の液晶材料Lの配向状態の説明図である。材料層29Aを基体25Aと制御基板60との間に挟持すると、材料層29A中の液晶材料Lは、配向膜75,76による配向規制力と、電極31,61間の電界による配向規制力によって配向が制御される。   FIG. 6 is an explanatory diagram of the alignment state of the liquid crystal material L when a voltage is applied between the second control electrode 61 and the first control electrode 39. When the material layer 29A is sandwiched between the base 25A and the control substrate 60, the liquid crystal material L in the material layer 29A is caused by the alignment regulating force by the alignment films 75 and 76 and the alignment regulating force by the electric field between the electrodes 31 and 61. Orientation is controlled.

ここで、第1制御電極39は表示領域の全面に形成されたベタ状の電極であり、第2制御電極61は反射表示領域に対応して形成されたストライプ状の電極である。そのため、第2制御電極61は第1制御電極39よりも小さい面積で形成されており、第2制御電極61の外周部には制御基板60に対して斜めに傾斜した電気力線Eが発生する。その結果、第2制御電極61の外周から外側に離れるに従って電界の影響が小さくなり、第2制御電極61と対向する領域で液晶材料Lのチルト角が大きくなり、テーパ領域TPの端(外周部)に行くほどチルト角は小さくなる。   Here, the first control electrode 39 is a solid electrode formed on the entire surface of the display area, and the second control electrode 61 is a stripe electrode formed corresponding to the reflective display area. Therefore, the second control electrode 61 is formed with an area smaller than that of the first control electrode 39, and electric lines of force E obliquely inclined with respect to the control substrate 60 are generated on the outer periphery of the second control electrode 61. . As a result, the influence of the electric field decreases as the distance from the outer periphery of the second control electrode 61 increases, the tilt angle of the liquid crystal material L increases in the region facing the second control electrode 61, and the end of the tapered region TP (the outer peripheral portion). ), The tilt angle becomes smaller.

また、材料層29Aは第1配向膜75と第2配向膜76によって挟まれているため、平坦領域FLでは、位相差層の上面(制御基板60側の面)及び下面(基体25A側の面)の液晶材料Lの配向はいずれも水平配向となり、中央部は基板に垂直な垂直配向となる。この配向はベンド配向に類似した配向であり、基板に垂直に立った中央部の液晶材料Lは光の偏光状態の変化(位相差の付与)に殆ど寄与しない。したがって、平坦領域FLの位相差の大きさは、位相差層の上面近傍と下面近傍の基板に水平に配向した部分の液晶材料Lによって決定される。   Further, since the material layer 29A is sandwiched between the first alignment film 75 and the second alignment film 76, in the flat region FL, the upper surface (surface on the control substrate 60 side) and the lower surface (surface on the base body 25A side) of the retardation layer. The alignment of the liquid crystal material L is horizontal alignment, and the central portion is vertical alignment perpendicular to the substrate. This alignment is similar to the bend alignment, and the liquid crystal material L at the center standing perpendicular to the substrate hardly contributes to a change in the polarization state of light (giving a phase difference). Therefore, the magnitude of the retardation of the flat region FL is determined by the liquid crystal material L of the portion horizontally aligned on the substrate near the upper surface and the lower surface of the retardation layer.

一方、テーパ領域TPの端部(最外周部)では、電界の影響が小さいため、液晶材料Lは配向膜75の配向規制力によって基板に水平に配向(ホモジニアス配向)する。したがって、位相の大きさは、概ね位相差層の層厚と単位層厚当たりの液晶材料Lの位相との積によって決定される。   On the other hand, since the influence of the electric field is small at the end portion (outermost peripheral portion) of the tapered region TP, the liquid crystal material L is horizontally aligned (homogeneous alignment) on the substrate by the alignment regulating force of the alignment film 75. Therefore, the magnitude of the phase is determined approximately by the product of the layer thickness of the retardation layer and the phase of the liquid crystal material L per unit layer thickness.

このことを図7を用いて詳しく説明する。一般に、紫外線で液晶材料を重合させる場合、露光マスクの裏面側に回り込む回折光によって位相差層の端面は図7(a)のようなテーパ状になる。従来の位相差層では、図7(b)のように層厚の大きい領域A(平坦領域)と層厚の小さい領域B(テーパ領域)とが同じ配向を有するため、領域Aと領域Bの層厚の差がそのまま位相差のずれとなる。すなわち、領域Aと領域Bにおける位相差をそれぞれΓa、Γbとすると、Γa>Γbとなる。   This will be described in detail with reference to FIG. In general, when the liquid crystal material is polymerized with ultraviolet rays, the end face of the retardation layer becomes tapered as shown in FIG. In the conventional retardation layer, the region A (flat region) with a large layer thickness and the region B (taper region) with a small layer thickness have the same orientation as shown in FIG. The difference in layer thickness directly becomes the phase difference. That is, if the phase differences in the regions A and B are Γa and Γb, respectively, Γa> Γb.

これに対して、本実施形態では、図7(c)のように領域Aの液晶材料Lが領域Bの液晶材料Lに比べて少し立ち上がっているため、その分位相差が小さくなり、単位層厚当たりの位相差に着目した場合、領域Aの単位層厚当たりの位相差は領域Bの単位層厚当たりの位相差よりも小さくなる。その結果、図7(b)の場合よりも領域Aと領域Bの位相差のずれが小さくなり(Γa≒Γb)、液晶層を含めた全体の位相差を考えると、領域Aと領域Bの位相差は概ね等しくなる。   On the other hand, in this embodiment, the liquid crystal material L in the region A rises slightly as compared with the liquid crystal material L in the region B as shown in FIG. When attention is paid to the phase difference per thickness, the phase difference per unit layer thickness in the region A is smaller than the phase difference per unit layer thickness in the region B. As a result, the phase difference between the region A and the region B is smaller than that in the case of FIG. 7B (Γa≈Γb), and the entire phase difference including the liquid crystal layer is considered. The phase differences are approximately equal.

図7では、領域Bをテーパ領域の中央部の位置としたが、このような事情はテーパ領域の他の部分でも同様である。例えば、テーパ領域において平坦領域(領域A)に近い部分は層厚が大きいが、電界の影響が強くなるため、領域Aと同様の配向状態となる。そのため、領域Aと領域Bとの中間の位相差が実現される。他方、平坦領域から遠い部分(テーパ領域の最外周部)では、層厚は小さいが、電界の影響が小さく、より基板に平行な配向が実現されるため、単位層厚当たりの位相差は領域Bよりも大きくなる。したがって、位相差層と液晶層の位相差の和を考えた場合、領域Bとテーパ領域の最外周部ではあまり差は生じない。   In FIG. 7, the region B is set at the central portion of the tapered region, but this situation is the same in other portions of the tapered region. For example, the portion near the flat region (region A) in the taper region has a large layer thickness, but the influence of the electric field is strong, so that the alignment state is the same as in region A. Therefore, an intermediate phase difference between the region A and the region B is realized. On the other hand, in the portion far from the flat region (the outermost peripheral portion of the tapered region), the layer thickness is small, but the influence of the electric field is small, and the orientation parallel to the substrate is realized. It becomes larger than B. Therefore, when considering the sum of the phase differences between the phase difference layer and the liquid crystal layer, there is not much difference between the region B and the outermost periphery of the tapered region.

したがって、テーパ領域では、位相差層の層厚の大きい領域(領域Aに近い領域)から位相差層の層厚の小さい領域(領域Aから遠い領域)にかけて位相差層の単位層厚当たりの位相差が連続的に変化しているが、上述した理由から、その変化の大きさは従来の位相差層よりも小さくなる。位相差層と液晶層の位相差の和を考えると、テーパ領域では液晶層の層厚が大きく、平坦領域では液晶層の層厚が小さいことから、反射表示領域の位相差は、テーパ領域と平坦領域とを含む位相差層全体で略均一となり、コントラストの高い画像表示が実現される。   Therefore, in the taper region, the area per unit layer thickness of the retardation layer from the region where the retardation layer is thick (region close to region A) to the region where the retardation layer is thin (region far from region A). Although the phase difference changes continuously, the magnitude of the change is smaller than that of the conventional phase difference layer for the reason described above. Considering the sum of the retardation of the retardation layer and the liquid crystal layer, the thickness of the liquid crystal layer is large in the tapered region, and the thickness of the liquid crystal layer is small in the flat region. The entire retardation layer including the flat region becomes substantially uniform, and an image display with high contrast is realized.

以上説明したように、本実施形態の液晶表示装置100によれば、位相差層29のテーパ領域TPとテーパ領域以外の領域(平坦領域FL)との間の位相のずれが小さくなる。そのため、位相差層29と液晶層50により形成される正味の位相差(位相差層29の位相差と液晶層50の位相差との和)を考えた場合、テーパ領域TPにおける位相差の大きさを平坦領域FLにおける位相差の大きさに近づけることができる。その結果、位相差層29のテーパ領域TPで発生する光漏れ(偏光のずれ)が解消され、コントラストの高い画像表示が実現できる。また本実施形態では、位相差層29を構成する液晶材料Lの配向が、位相差層下面部に配置した第1配向膜75と位相差層上面部に配置した第2配向膜76によって制御されるため、位相差層下面部の配向膜のみによって配向が制御される通常の位相差層に比べて所望の配向を実現しやすい。   As described above, according to the liquid crystal display device 100 of the present embodiment, the phase shift between the tapered region TP and the region other than the tapered region (flat region FL) of the retardation layer 29 is reduced. Therefore, when considering the net phase difference formed by the phase difference layer 29 and the liquid crystal layer 50 (the sum of the phase difference of the phase difference layer 29 and the phase difference of the liquid crystal layer 50), the magnitude of the phase difference in the tapered region TP is large. The height can be made close to the magnitude of the phase difference in the flat region FL. As a result, light leakage (polarization deviation) generated in the tapered region TP of the retardation layer 29 is eliminated, and an image display with high contrast can be realized. In this embodiment, the orientation of the liquid crystal material L constituting the retardation layer 29 is controlled by the first alignment film 75 disposed on the lower surface portion of the retardation layer and the second alignment film 76 disposed on the upper surface portion of the retardation layer. Therefore, it is easy to realize a desired orientation as compared with a normal retardation layer in which the orientation is controlled only by the orientation film on the lower surface portion of the retardation layer.

なお、本実施形態では、位相差層29を対向基板25の第1制御電極39上に形成したが、位相差層29は素子基板10の画素電極9上に形成しても良い。この場合、画素電極9はサブ画素毎に形成されているため、第2制御電極61もサブ画素毎に形成する。第2制御電極は、反射表示用画素電極9rと同じ大きさか、それよりも若干小さい大きさに形成することが望ましい。露光マスクの裏面側に回り込む回折光によって、第2制御電極の外側に位相差層のテーパ領域が形成されるからである。   In the present embodiment, the retardation layer 29 is formed on the first control electrode 39 of the counter substrate 25, but the retardation layer 29 may be formed on the pixel electrode 9 of the element substrate 10. In this case, since the pixel electrode 9 is formed for each sub-pixel, the second control electrode 61 is also formed for each sub-pixel. The second control electrode is preferably formed to have the same size as or slightly smaller than the reflective display pixel electrode 9r. This is because the tapered region of the retardation layer is formed outside the second control electrode by the diffracted light that wraps around the back side of the exposure mask.

また本実施形態では、位相差層29の平坦領域FLの液晶材料Lの配向状態をベンド配向としたが、平坦領域FLの液晶材料Lの配向状態はこれに限定されず、位相差層の設計要求に基づいて変更することができる。例えば、制御基板60側に形成する第2配向膜を垂直配向膜とし、平坦領域FLの液晶材料Lの配向をハイブリッド配向させることもできる。この場合も上記実施形態と同様の理由により、平坦領域FLとテーパ領域TPの位相のずれを低減することができる。   In this embodiment, the alignment state of the liquid crystal material L in the flat region FL of the retardation layer 29 is bend alignment. However, the alignment state of the liquid crystal material L in the flat region FL is not limited to this, and the retardation layer is designed. Can be changed based on request. For example, the second alignment film formed on the control substrate 60 side may be a vertical alignment film, and the alignment of the liquid crystal material L in the flat region FL may be hybrid aligned. Also in this case, the phase shift between the flat region FL and the taper region TP can be reduced for the same reason as in the above embodiment.

また本実施形態では、第1制御電極39を液晶駆動用の共通電極31と区別して形成したが、第1制御電極39を液晶駆動用の共通電極と兼用し、共通電極31を省略することもできる。すなわち、本実施形態の液晶表示装置100では、第1制御電極39は位相差層29を形成するためにのみ形成し、位相差層29を形成した後は第1制御電極39は液晶駆動用の電極として機能させない構成となっている。しかし、第1制御電極39を位相差層形成用の電極としてだけでなく共通電極としても機能させることで、共通電極31の形成工程を省略することができる。   In the present embodiment, the first control electrode 39 is formed separately from the common electrode 31 for driving the liquid crystal. However, the first control electrode 39 may also be used as the common electrode for driving the liquid crystal, and the common electrode 31 may be omitted. it can. That is, in the liquid crystal display device 100 of this embodiment, the first control electrode 39 is formed only for forming the retardation layer 29, and after the retardation layer 29 is formed, the first control electrode 39 is used for driving the liquid crystal. The structure does not function as an electrode. However, the step of forming the common electrode 31 can be omitted by causing the first control electrode 39 to function not only as an electrode for forming the retardation layer but also as a common electrode.

また本実施形態では、第2制御電極61として図5に示したストライプ状の電極を用いた。図5の第2制御電極61は、電極全体で均一な抵抗を有するものである。本発明においては、図5の第2制御電極61に代えて図8の第2制御電極65を用いることもできる。第2制御電極65は、中央部62の抵抗が外周部63の抵抗に比べて小さくなっている。抵抗の大きさは、例えば、中央部62の電極の膜厚と外周部63の電極の膜厚とを異ならせることにより制御することができる。図8の第2制御電極65によれば、図5の第2制御電極61を用いる場合に比べて電界の強さが精密に制御でき、位相差層29の位相の制御も容易になる。   In this embodiment, the striped electrode shown in FIG. 5 is used as the second control electrode 61. The second control electrode 61 in FIG. 5 has a uniform resistance throughout the electrode. In the present invention, the second control electrode 65 of FIG. 8 can be used instead of the second control electrode 61 of FIG. In the second control electrode 65, the resistance of the central portion 62 is smaller than the resistance of the outer peripheral portion 63. The magnitude of the resistance can be controlled, for example, by making the film thickness of the electrode in the central portion 62 different from the film thickness of the electrode in the outer peripheral portion 63. According to the second control electrode 65 in FIG. 8, the electric field strength can be controlled more precisely than in the case where the second control electrode 61 in FIG. 5 is used, and the phase of the retardation layer 29 can be easily controlled.

また本実施形態では、液晶表示装置100として、基板に垂直な電界(縦電界)によって液晶を駆動する縦電界方式の液晶表示装置を説明した。しかし、本発明はこのような液晶表示装置に限らず、IPS方式やFFS方式等の横電界方式の液晶表示装置に本発明を適用することもできる。この場合、対向基板側には液晶駆動用の電極は形成されない。したがって、対向基板上に形成された第1制御電極も位相差層の形成のみに使用され、液晶駆動用の電極としては機能しない。   Further, in the present embodiment, the liquid crystal display device 100 has been described as a vertical electric field type liquid crystal display device in which liquid crystal is driven by an electric field (vertical electric field) perpendicular to the substrate. However, the present invention is not limited to such a liquid crystal display device, and the present invention can also be applied to a horizontal electric field mode liquid crystal display device such as an IPS mode or an FFS mode. In this case, no electrode for driving the liquid crystal is formed on the counter substrate side. Therefore, the first control electrode formed on the counter substrate is also used only for forming the retardation layer, and does not function as an electrode for driving the liquid crystal.

[電子機器]
図9は、本発明の電子機器の一例である携帯電話1300の概略斜視図である。携帯電話1300は、本発明の液晶表示装置を小サイズの表示部1301として備え、複数の操作ボタン1302、受話口1303、及び送話口1304を備えて構成されている。上記実施形態の液晶表示装置は、携帯電話に限らず、電子ブック、パーソナルコンピュータ、ディジタルスチルカメラ、液晶テレビ、ビューファインダ型あるいはモニタ直視型のビデオテープレコーダ、カーナビゲーション装置、ページャ、電子手帳、電卓、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、タッチパネルを備えた機器等々の画像表示手段として好適に用いることができ、いずれの電子機器においても、反射表示と透過表示の双方において高輝度、高コントラストな画像表示が実現できる。
[Electronics]
FIG. 9 is a schematic perspective view of a mobile phone 1300 which is an example of the electronic apparatus of the present invention. A cellular phone 1300 includes the liquid crystal display device of the present invention as a small-sized display portion 1301, and includes a plurality of operation buttons 1302, an earpiece 1303, and a mouthpiece 1304. The liquid crystal display device of the above embodiment is not limited to a mobile phone, but is an electronic book, a personal computer, a digital still camera, a liquid crystal television, a viewfinder type or a monitor direct view type video tape recorder, a car navigation device, a pager, an electronic notebook, a calculator. , Word processors, workstations, videophones, POS terminals, devices equipped with a touch panel, etc., and can be suitably used as image display means. In any electronic device, both high-brightness and high-contrast are provided for both reflective display and transmissive display. Image display can be realized.

液晶表示装置の1画素の平面図である。It is a top view of 1 pixel of a liquid crystal display device. 同液晶表示装置の断面図である。It is sectional drawing of the liquid crystal display device. 位相差層の端面近傍の液晶材料の配向状態を示す模式図である。It is a schematic diagram which shows the orientation state of the liquid-crystal material of the end surface vicinity of a phase difference layer. 液晶表示装置の製造方法を位相差層の形成工程を中心に説明する説明図である。It is explanatory drawing explaining the manufacturing method of a liquid crystal display device centering on the formation process of retardation layer. 同製造方法で用いる制御基板の平面図である。It is a top view of the control board used with the manufacturing method. 電圧印加時の液晶材料の配向状態の説明図である。It is explanatory drawing of the orientation state of the liquid-crystal material at the time of a voltage application. 本発明の作用効果を説明する説明図である。It is explanatory drawing explaining the effect of this invention. 液晶表示装置の製造方法で用いる制御基板の他の構成例の平面図である。It is a top view of the other structural example of the control board used with the manufacturing method of a liquid crystal display device. 電子機器の一例である携帯電話の概略斜視図である。It is a schematic perspective view of the mobile telephone which is an example of an electronic device.

符号の説明Explanation of symbols

9…画素電極、10…素子基板、10A…基体(透光性基板)、25…対向基板、25A…基体(透光性基板)、29…位相差層、31…共通電極、39…第1制御電極、40…位相差層、50…液晶層、60…制御基板、61…第2制御電極、65…第2制御電極、70…露光マスク、71H…透光部、75…第1配向膜、76…第2配向膜、100…液晶表示装置、1300…携帯電話(電子機器)、L…液晶材料、FL…平坦領域、TP…テーパ領域、UV…紫外線 DESCRIPTION OF SYMBOLS 9 ... Pixel electrode, 10 ... Element substrate, 10A ... Base | substrate (translucent substrate), 25 ... Opposite substrate, 25A ... Base | substrate (translucent substrate), 29 ... Retardation layer, 31 ... Common electrode, 39 ... 1st Control electrode, 40 ... retardation layer, 50 ... liquid crystal layer, 60 ... control substrate, 61 ... second control electrode, 65 ... second control electrode, 70 ... exposure mask, 71H ... translucent part, 75 ... first alignment film 76 ... second alignment film, 100 ... liquid crystal display device, 1300 ... mobile phone (electronic device), L ... liquid crystal material, FL ... flat region, TP ... tapered region, UV ... ultraviolet light

Claims (10)

一対の基板と、前記一対の基板間に挟持された液晶層と、前記一対の基板のうちの一方の基板の液晶層側に設けられた位相差層と、を備えた液晶表示装置であって、
前記位相差層の端面にテーパ領域が形成され、前記テーパ領域における前記位相差層の単位層厚当たりの位相差が、前記テーパ領域以外の領域における前記位相差層の単位層厚当たりの位相差よりも大きいことを特徴とする液晶表示装置。
A liquid crystal display device comprising: a pair of substrates; a liquid crystal layer sandwiched between the pair of substrates; and a retardation layer provided on a liquid crystal layer side of one of the pair of substrates. ,
A tapered region is formed on the end face of the retardation layer, and the retardation per unit layer thickness of the retardation layer in the tapered region is a retardation per unit layer thickness of the retardation layer in a region other than the tapered region. A liquid crystal display device characterized by being larger.
前記テーパ領域では、前記位相差層の層厚の大きい領域から前記位相差層の層厚の小さい領域にかけて前記位相差層の単位層厚当たりの位相差が連続的に変化していることを特徴とする請求項1に記載の液晶表示装置。   In the tapered region, the retardation per unit layer thickness of the retardation layer continuously changes from a region where the retardation layer is thick to a region where the retardation layer is thin. The liquid crystal display device according to claim 1. 前記位相差層は液晶材料によって形成され、前記テーパ領域における前記液晶材料の配向状態が、前記テーパ領域以外の領域における前記液晶材料の配向状態と異なっていることを特徴とする請求項1に記載の液晶表示装置。   The phase difference layer is formed of a liquid crystal material, and the alignment state of the liquid crystal material in the tapered region is different from the alignment state of the liquid crystal material in a region other than the tapered region. Liquid crystal display device. 前記テーパ領域の端部では、前記液晶材料はホモジニアス配向しており、前記テーパ領域以外の領域では、前記液晶材料はベンド配向していることを特徴とする請求項3に記載の液晶表示装置。   4. The liquid crystal display device according to claim 3, wherein the liquid crystal material is homogeneously aligned at an end of the tapered region, and the liquid crystal material is bend aligned in a region other than the tapered region. 一対の基板と、前記一対の基板間に挟持された液晶層と、前記一対の基板のうちの一方の基板の液晶層側に設けられた位相差層と、を備えた液晶表示装置であって、
前記位相差層は液晶材料によって形成され、前記位相差層の端面にテーパ領域が形成されており、前記テーパ領域における前記位相差層の単位層厚当たりの前記液晶材料の平均のチルト角が、前記テーパ領域以外の領域における前記位相差層の単位層厚当たりの前記液晶材料の平均のチルト角よりも小さいことを特徴とする液晶表示装置。
A liquid crystal display device comprising: a pair of substrates; a liquid crystal layer sandwiched between the pair of substrates; and a retardation layer provided on a liquid crystal layer side of one of the pair of substrates. ,
The retardation layer is formed of a liquid crystal material, a tapered region is formed on an end surface of the retardation layer, and an average tilt angle of the liquid crystal material per unit layer thickness of the retardation layer in the tapered region is A liquid crystal display device, wherein an average tilt angle of the liquid crystal material per unit layer thickness of the retardation layer in a region other than the tapered region is smaller.
一対の基板と、前記一対の基板間に挟持された液晶層と、前記一対の基板のうちの一方の基板の液晶層側に設けられた位相差層と、を備えた液晶表示装置の製造方法であって、
前記位相差層の形成工程が、
前記一方の基板上に第1制御電極を形成する工程と、
前記一方の基板の前記第1制御電極が形成された面に、液晶材料を基板に水平に配向させる第1配向膜を形成する工程と、
前記一方の基板の前記第1制御電極よりも小さい面積の第2制御電極が形成された制御基板を用意し、前記制御基板の前記第2制御電極が形成された面に、液晶材料を基板に水平に配向させる第2配向膜を形成する工程と、
前記第1制御電極と前記第2制御電極とを対向させ、前記一方の基板の前記第1配向膜が形成された面と前記制御基板の前記第2配向膜が形成された面との間に、前記位相差層の形成材料である誘電異方性が正の液晶材料を配置する工程と、
前記第1制御電極と前記第2制御電極との間に電圧を印加し、前記第1制御電極と前記第2制御電極との間に形成される電界によって前記液晶材料を配向させる工程と、
前記第2制御電極と同じ平面形状を有する透光部を備えた露光マスクを用意し、前記露光マスクの透光部と前記制御基板の第2制御電極とを対向させ、前記制御基板側から前記露光マスクを介して紫外線を照射し前記液晶材料を硬化する工程と、を備えていることを特徴とする液晶表示装置の製造方法。
A method for manufacturing a liquid crystal display device, comprising: a pair of substrates; a liquid crystal layer sandwiched between the pair of substrates; and a retardation layer provided on a liquid crystal layer side of one of the pair of substrates. Because
The step of forming the retardation layer comprises
Forming a first control electrode on the one substrate;
Forming a first alignment film on the surface of the one substrate on which the first control electrode is formed to align the liquid crystal material horizontally with the substrate;
A control substrate having a second control electrode having a smaller area than the first control electrode of the one substrate is prepared, and a liquid crystal material is applied to the surface of the control substrate on which the second control electrode is formed. Forming a second alignment film to be horizontally aligned;
The first control electrode and the second control electrode are opposed to each other, and between the surface of the one substrate on which the first alignment film is formed and the surface of the control substrate on which the second alignment film is formed. Arranging a liquid crystal material having a positive dielectric anisotropy, which is a material for forming the retardation layer,
Applying a voltage between the first control electrode and the second control electrode, and orienting the liquid crystal material by an electric field formed between the first control electrode and the second control electrode;
An exposure mask having a translucent portion having the same planar shape as the second control electrode is prepared, the translucent portion of the exposure mask and the second control electrode of the control substrate are opposed, and the control substrate side And a step of curing the liquid crystal material by irradiating ultraviolet rays through an exposure mask.
前記制御基板上に第2配向膜を形成する前に、前記第2制御電極の表面に剥離層を形成する工程を含むことを特徴とする請求項6に記載の液晶表示装置の製造方法。   The method for manufacturing a liquid crystal display device according to claim 6, further comprising a step of forming a release layer on a surface of the second control electrode before forming the second alignment film on the control substrate. 前記第2制御電極の中央部の抵抗が前記第2制御電極の外周部の抵抗よりも小さいことを特徴とする請求項6に記載の液晶表示装置の製造方法。   The method of manufacturing a liquid crystal display device according to claim 6, wherein a resistance of a central portion of the second control electrode is smaller than a resistance of an outer peripheral portion of the second control electrode. 前記第1制御電極は、前記位相差層の形成後、前記液晶層を駆動させる電極として機能することを特徴とする請求項6に記載の液晶表示装置の製造方法。   The method of manufacturing a liquid crystal display device according to claim 6, wherein the first control electrode functions as an electrode for driving the liquid crystal layer after the retardation layer is formed. 請求項1〜5のいずれか1項に記載の液晶表示装置を備えていることを特徴とする電子機器。   An electronic apparatus comprising the liquid crystal display device according to claim 1.
JP2007254145A 2007-09-28 2007-09-28 Liquid crystal display device, method for manufacturing liquid crystal display device, and electronic apparatus Active JP5171189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007254145A JP5171189B2 (en) 2007-09-28 2007-09-28 Liquid crystal display device, method for manufacturing liquid crystal display device, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007254145A JP5171189B2 (en) 2007-09-28 2007-09-28 Liquid crystal display device, method for manufacturing liquid crystal display device, and electronic apparatus

Publications (2)

Publication Number Publication Date
JP2009086161A true JP2009086161A (en) 2009-04-23
JP5171189B2 JP5171189B2 (en) 2013-03-27

Family

ID=40659692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007254145A Active JP5171189B2 (en) 2007-09-28 2007-09-28 Liquid crystal display device, method for manufacturing liquid crystal display device, and electronic apparatus

Country Status (1)

Country Link
JP (1) JP5171189B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954212A (en) * 1995-08-11 1997-02-25 Sharp Corp Phase difference film and its production as well liquid crystal display element
JPH10197862A (en) * 1997-01-10 1998-07-31 Matsushita Electric Ind Co Ltd Liquid crystal display device and production of phase plate used for the same
JP2004191832A (en) * 2002-12-13 2004-07-08 Dainippon Printing Co Ltd Optical retardation element, display element provided with the same, and production method of optical retardation element
JP2005338256A (en) * 2004-05-25 2005-12-08 Hitachi Displays Ltd Liquid crystal display
JP2006292787A (en) * 2005-04-05 2006-10-26 Sharp Corp Liquid crystal display panel and device
JP2008241959A (en) * 2007-03-27 2008-10-09 Epson Imaging Devices Corp Liquid crystal display
JP2008309977A (en) * 2007-06-14 2008-12-25 Seiko Epson Corp Liquid crystal device and electronic equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954212A (en) * 1995-08-11 1997-02-25 Sharp Corp Phase difference film and its production as well liquid crystal display element
JPH10197862A (en) * 1997-01-10 1998-07-31 Matsushita Electric Ind Co Ltd Liquid crystal display device and production of phase plate used for the same
JP2004191832A (en) * 2002-12-13 2004-07-08 Dainippon Printing Co Ltd Optical retardation element, display element provided with the same, and production method of optical retardation element
JP2005338256A (en) * 2004-05-25 2005-12-08 Hitachi Displays Ltd Liquid crystal display
JP2006292787A (en) * 2005-04-05 2006-10-26 Sharp Corp Liquid crystal display panel and device
JP2008241959A (en) * 2007-03-27 2008-10-09 Epson Imaging Devices Corp Liquid crystal display
JP2008309977A (en) * 2007-06-14 2008-12-25 Seiko Epson Corp Liquid crystal device and electronic equipment

Also Published As

Publication number Publication date
JP5171189B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
US10162214B2 (en) Liquid crystal display device, optical control member, and base material for manufacturing optical control member
TW573164B (en) Reflective LCD, semi-transmitting reflective LCD and electronic device
JP2007304497A (en) Liquid crystal display device
JP2007171716A (en) Liquid crystal device, manufacturing method for liquid crystal device, and electronic apparatus
JP2008268482A (en) Liquid crystal device, manufacturing method of liquid crystal device, and electronic equipment
WO2011027602A1 (en) Liquid crystal display device
TW200528881A (en) Liquid crystal display device and electronic apparatus
JP2009276743A (en) Liquid crystal display device and electronic apparatus
JP2007133193A (en) Liquid crystal device and electronic apparatus
KR102067964B1 (en) Liquid crystal display device and manufacturing method thereof
US20140267993A1 (en) Liquid crystal device and electronic apparatus
JP2006038951A (en) Method for manufacturing color filter substrate, color filter substrate, and liquid crystal display device
JP2003302626A (en) Substrate for electrooptic panel and manufacturing method therefor, electrooptic panel and electronic equipment
JP5171189B2 (en) Liquid crystal display device, method for manufacturing liquid crystal display device, and electronic apparatus
JP2009047841A (en) Liquid crystal display
JP2008070688A (en) Liquid crystal device, and electronic apparatus
JP2008170589A (en) Liquid crystal device, manufacturing method of liquid crystal device and electronic device
JP2009294348A (en) Liquid crystal display device and electric equipment
JP2008225295A (en) Electro-optical device and electronic apparatus
JP3909565B2 (en) Liquid crystal device, electronic apparatus, and method of manufacturing liquid crystal device
JP2006215226A (en) Electrooptic device and method for manufacturing the same, method for manufacturing substrate for electrooptic device, and electronic equipment
JP2008304560A (en) Display device, and method for manufacturing substrate for display device
JP2009162928A (en) Liquid crystal display device and method for manufacturing same
JP4710935B2 (en) Electro-optical device and electronic apparatus
JP2008233137A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100526

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100728

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121225

R150 Certificate of patent or registration of utility model

Ref document number: 5171189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250