JP2009084652A - Oxidation treatment method and oxidation treatment liquid for metal - Google Patents

Oxidation treatment method and oxidation treatment liquid for metal Download PDF

Info

Publication number
JP2009084652A
JP2009084652A JP2007257430A JP2007257430A JP2009084652A JP 2009084652 A JP2009084652 A JP 2009084652A JP 2007257430 A JP2007257430 A JP 2007257430A JP 2007257430 A JP2007257430 A JP 2007257430A JP 2009084652 A JP2009084652 A JP 2009084652A
Authority
JP
Japan
Prior art keywords
oxidation treatment
copper
treatment liquid
copper foil
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007257430A
Other languages
Japanese (ja)
Inventor
Shuichi Hatakeyama
修一 畠山
Masaki Morita
正樹 森田
Eiitsu Shinada
詠逸 品田
Shigeharu Ariga
茂晴 有家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007257430A priority Critical patent/JP2009084652A/en
Publication of JP2009084652A publication Critical patent/JP2009084652A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxidation treatment method of a metal (copper or copper alloy) which is free from treatment unevenness or is satisfactory by clarifying the component to impede the oxidation treatment of copper or copper alloy if the component coexists in an oxidation treatment liquid, and controlling the concentration of the impediment component which is of a problem in the oxidation treatment liquid down to a problem-less level or below, and an oxidation treatment liquid. <P>SOLUTION: In the oxidation treatment liquid of the metal including an oxidizing agent and a basic substance, the metal is the copper or copper alloy, and a silicic acid component concentration is ≤200 ppm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、酸化処理ムラを発生させない金属(銅または銅合金)の酸化処理方法および酸化処理液に関する。   The present invention relates to a metal (copper or copper alloy) oxidation treatment method and an oxidation treatment liquid that do not cause oxidation treatment unevenness.

多層プリント配線板は、一般に内層用配線板と絶縁層となるプリプレグを交互に重ね合わせ、積層プレスして製造される。このとき、内層銅配線とプリプレグとの十分な密着を得るために、酸化処理液を用いて銅や銅合金の表面に微細な酸化銅の凹凸形状を形成する方法やさらに還元処理液を用いてこの酸化銅を金属銅に還元する方法が通常行われている。また、特に半導体搭載用パッケージ基板では、銅配線とソルダレジストの密着性を強固にする目的から、内層銅のみならず、最外層の銅表面も酸化処理液等による粗化が適用されている。   A multilayer printed wiring board is generally manufactured by alternately laminating inner layer wiring boards and prepregs serving as insulating layers and laminating them. At this time, in order to obtain sufficient adhesion between the inner layer copper wiring and the prepreg, an oxidation treatment solution is used to form a fine copper oxide uneven shape on the surface of copper or copper alloy, or a reduction treatment solution is used. A method of reducing this copper oxide to metallic copper is usually performed. In particular, in a package substrate for mounting a semiconductor, roughening with an oxidation treatment liquid or the like is applied not only to the inner layer copper but also to the outermost layer copper surface for the purpose of strengthening the adhesion between the copper wiring and the solder resist.

この銅配線の酸化処理の品質は、プリプレグやソルダレジスト等の樹脂材料と銅箔との密着性に大きく影響し、酸化処理ムラが発生した場合には多層プリント配線板や半導体搭載用パッケージ基板の耐熱性等の信頼性低下を招くことになる。従来、このような処理ムラが発生した場合には、前工程の研磨や酸洗からやり直しすることが行われていた。しかしながら、一連の工程を繰り返して行う場合には効率が悪い上に、一旦形成した酸化銅膜を除去してしまうため、銅箔は薄くなり、導体厚みがばらついて好ましくない。   The quality of this copper wiring oxidation process greatly affects the adhesion between the resin material such as prepreg and solder resist and the copper foil, and if uneven oxidation occurs, the quality of multilayer printed wiring boards and semiconductor mounting package substrates This leads to a decrease in reliability such as heat resistance. Conventionally, in the case where such processing unevenness occurs, it has been performed to redo from polishing and pickling in the previous step. However, when the series of steps are repeated, the efficiency is low and the copper oxide film once formed is removed, so that the copper foil becomes thin and the conductor thickness varies, which is not preferable.

このため、これまでも酸化処理ムラを抑制し、均一な銅の表面処理を提供する各種方法が提案されてきた(例えば特許文献1および2参照)。特許文献1は酸化処理液の構成成分である過硫酸カリウムと水酸化ナトリウムを処理した銅箔の表面積に応じてその消費量相当分を補給するものであり、また特許文献2は酸化処理液への浸漬に先立ち、銅上の微量汚れを水酸化アルカリの脱脂液を用いて除去するものである。しかし、いずれも処理ムラを誘発する酸化処理液中の阻害成分について言及しているものは見当たらない。   For this reason, various methods have been proposed that suppress uneven oxidation treatment and provide uniform copper surface treatment (see, for example, Patent Documents 1 and 2). Patent Document 1 replenishes the amount corresponding to the amount of consumption according to the surface area of the copper foil treated with potassium persulfate and sodium hydroxide, which are constituents of the oxidation treatment liquid, and Patent Document 2 discloses the oxidation treatment liquid. Prior to dipping, a small amount of dirt on copper is removed using a degreasing solution of alkali hydroxide. However, none mentions an inhibitory component in the oxidation treatment solution that induces treatment unevenness.

特開平1−294871号公報Japanese Patent Laid-Open No. 1-294771 特開平4−165697号公報JP-A-4-165597

本発明の目的は、酸化処理液中に共存すると銅または銅合金の酸化処理を阻害する成分を明確にし、酸化処理液中で問題となる阻害成分の濃度を問題ないレベル以下に制御することによって、処理ムラのない良好な金属(銅または銅合金)の酸化処理方法および酸化処理液を提供することである。   The object of the present invention is to clarify the components that inhibit the oxidation treatment of copper or a copper alloy when coexisting in the oxidation treatment solution, and to control the concentration of the inhibitory components that are problematic in the oxidation treatment solution to a level that does not cause a problem. An object of the present invention is to provide a good metal (copper or copper alloy) oxidation treatment method and oxidation treatment liquid without treatment unevenness.

本発明者らは上記課題を解決するために酸化処理方法および酸化処理液について鋭意検討した結果、酸化処理液中におけるケイ酸成分は阻害成分となり、このケイ酸成分濃度が増加し、一定レベル以上の濃度に達すると処理ムラが発生し易くなること、またケイ酸成分濃度が極端に高い場合には全く酸化処理が起こらないほど顕著に影響を受けることを見出し、本発明を完成するに至った。
かくして本発明は、以下の関する。
(1)酸化剤および塩基性物質を含む、金属の酸化処理液において、金属が銅または銅合金であり、ケイ酸成分濃度が200ppm以下である金属の酸化処理液。
(2)酸化剤として、亜塩素酸塩または過硫酸塩を含み、塩基性物質として、水酸化アルカリを含む上記(1)に記載の金属の酸化処理液。
(3)上記(1)または(2)に記載の金属の酸化処理液を使用した、金属の酸化処理方法。
As a result of intensive studies on the oxidation treatment method and the oxidation treatment liquid in order to solve the above-mentioned problems, the silicic acid component in the oxidation treatment liquid becomes an inhibitory component, and the concentration of the silicic acid component increases, and exceeds a certain level. It has been found that processing unevenness is likely to occur when the concentration reaches a concentration of 1, and that when the concentration of the silicic acid component is extremely high, it is significantly affected so that no oxidation treatment occurs at all, and the present invention has been completed. .
Thus, the present invention relates to the following.
(1) A metal oxidation treatment solution containing an oxidizing agent and a basic substance, wherein the metal is copper or a copper alloy and the silicic acid component concentration is 200 ppm or less.
(2) The metal oxidation treatment solution according to (1) above, which contains chlorite or persulfate as an oxidant and contains alkali hydroxide as a basic substance.
(3) A metal oxidation treatment method using the metal oxidation treatment liquid according to (1) or (2) above.

本発明の酸化処理方法および酸化処理液は、ケイ酸成分濃度を問題ないレベル以下で使用するものであり、銅または銅合金の酸化処理において処理ムラを発生することなく、均一な表面処理を提供できる。   The oxidation treatment method and oxidation treatment liquid of the present invention are used at a level where the silicic acid component concentration does not cause a problem, and provide a uniform surface treatment without causing uneven treatment in the oxidation treatment of copper or copper alloy. it can.

本発明の酸化処理液は、酸化剤および塩基性物質を含むものであり、必要に応じて緩衝剤を含んでも良い。酸化剤には、亜塩素酸塩、過硫酸塩等を用いることができる。亜塩素酸塩としては、亜塩素酸ナトリウムが、過硫酸塩としては、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等が使用でき、その濃度は30〜120g/lが好適である。水酸化アルカリには、水酸化ナトリウム、水酸化カリウム等が使用でき、その濃度は5〜40g/lが好適である。   The oxidation treatment liquid of the present invention contains an oxidizing agent and a basic substance, and may contain a buffer as necessary. As the oxidizing agent, chlorite, persulfate or the like can be used. Sodium chlorite can be used as the chlorite, and sodium persulfate, potassium persulfate, ammonium persulfate and the like can be used as the persulfate, and the concentration is preferably 30 to 120 g / l. As the alkali hydroxide, sodium hydroxide, potassium hydroxide and the like can be used, and the concentration is preferably 5 to 40 g / l.

緩衝剤には、リン酸三ナトリウム等のリン酸塩が使用でき、その濃度は3〜20g/lが好適である。酸化処理液の液温は、50〜95℃が好適であり、銅または銅合金を含む被処理物を1〜5分間酸化処理液に接触すれば良い。被処理物を酸化処理液に接触させるには、所定の温度に加温した酸化処理液に被処理物を浸漬するか、スプレーマシン等を用いて酸化処理液を被処理物に吹き付けても良い。   As the buffering agent, a phosphate such as trisodium phosphate can be used, and its concentration is preferably 3 to 20 g / l. 50-95 degreeC is suitable for the liquid temperature of an oxidation treatment liquid, and the to-be-processed object containing copper or a copper alloy should just contact an oxidation treatment liquid for 1 to 5 minutes. In order to bring the treatment object into contact with the oxidation treatment liquid, the treatment object may be immersed in the oxidation treatment liquid heated to a predetermined temperature, or the oxidation treatment liquid may be sprayed onto the treatment object using a spray machine or the like. .

酸化処理の阻害成分となるケイ酸成分は特にその構造を限定するものではなく、JIS−K0101−44に記載の分析方法で検出される「イオン状シリカ(イオン状ケイ酸)」および「溶存およびコロイド状シリカ」をいう。酸化処理液中のケイ酸成分の分析には、上記JIS−K0101−44に記載のモリブデン黄吸光光度法やモリブデン青吸光光度法を用いることができるほか、ICP発光分析等の他の分析手法を使用することも可能である。酸化処理液中のケイ酸成分の濃度は、200ppmより大きいと処理ムラが発生し易くなるため、ケイ酸成分の濃度は200ppm以下であり、特に30ppm以下であれば好適である。   The structure of the silicic acid component which is an inhibitory component of the oxidation treatment is not particularly limited, and “ionic silica (ionic silicic acid)” and “dissolved and detected” detected by the analysis method described in JIS-K0101-44. “Colloidal silica”. For the analysis of the silicate component in the oxidation treatment solution, the molybdenum yellow absorptiometry and the molybdenum blue absorptiometry described in JIS-K0101-44 can be used, and other analysis methods such as ICP emission analysis can be used. It is also possible to use it. If the concentration of the silicic acid component in the oxidation treatment liquid is greater than 200 ppm, uneven treatment tends to occur. Therefore, the concentration of the silicic acid component is 200 ppm or less, and particularly preferably 30 ppm or less.

酸化処理液へのケイ酸成分の混入経路も特に限定するものではない。たとえば、酸化処理液の建浴時、あるいは必要成分の補給時にその構成成分である酸化剤、水酸化アルカリ、錯化剤、水に含まれる不純物としてのケイ酸成分はその対象となる。また、酸化処理に用いる処理槽やスプレーマシン等の設備や治具に使用されるセラミック、ガラス等の材料も対象となる。酸化処理液はアルカリ性のため、これらの材料から溶出した場合、酸化処理液中に混入する。あるいは、被処理物からの混入も起こり得る。特に銅張り積層板等のプリント配線板用材料は基材としてガラスクロスや充填材としてシリカを用いている場合が多く、アルカリ性の酸化処理液に溶出した場合、酸化処理液に混入することになる。   There is no particular limitation on the route of mixing the silicic acid component into the oxidation treatment liquid. For example, an oxidizing agent, an alkali hydroxide, a complexing agent, and a silicic acid component as an impurity contained in water, which are constituents of the oxidizing treatment liquid during bathing or supply of necessary components, are targeted. In addition, materials such as ceramics and glass used for equipment and jigs such as treatment tanks and spray machines used for oxidation treatment are also targeted. Since the oxidation treatment liquid is alkaline, when it is eluted from these materials, it is mixed in the oxidation treatment liquid. Alternatively, contamination from the workpiece may occur. In particular, printed wiring board materials such as copper-clad laminates often use glass cloth as a base material or silica as a filler, and when eluted in an alkaline oxidation treatment solution, it is mixed into the oxidation treatment solution. .

以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
古河サーキットフォイル株式会社製のプリント配線板向け片面処理銅箔(厚さ35μm)を用意し、前処理として銅箔を物理的に研磨した後、シップレイジャパン製の脱脂液であるニュートラルクリーンに5分間浸漬し、流水洗し、さらに10%の硫酸水溶液に2分間浸漬し、流水洗した。この銅箔に次の条件で酸化処理を行った。
(酸化処理液の組成及び条件)
NaClO:80g/l、NaOH:15g/l、NaPO・12HO:10g/l、純水:1リットルになる量
液温度=85℃
銅箔浸漬時間=120秒
酸化処理槽の材質=ガラス製
酸化処理液の加温時間(液温が85℃に達してから銅箔を浸漬するまでの時間)=30分間
酸化処理した銅箔を流水で洗浄した後、80℃で30分間乾燥した。
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these.
Example 1
After preparing a single-sided copper foil (thickness 35 μm) for printed wiring boards made by Furukawa Circuit Foil Co., Ltd., after physically polishing the copper foil as a pretreatment, 5 The sample was immersed for 1 minute, washed with running water, and further immersed in a 10% sulfuric acid aqueous solution for 2 minutes and washed with running water. This copper foil was oxidized under the following conditions.
(Composition and conditions of oxidation treatment liquid)
NaClO 2 : 80 g / l, NaOH: 15 g / l, Na 3 PO 4 · 12H 2 O: 10 g / l, pure water: 1 liter Amount of liquid temperature = 85 ° C.
Copper foil immersion time = 120 seconds Material of oxidation treatment tank = Warming time of glass oxidation treatment liquid (time from the time the liquid temperature reaches 85 ° C. until the copper foil is immersed) = 30 minutes of copper foil oxidized After washing with running water, it was dried at 80 ° C. for 30 minutes.

(実施例2)
実施例1で用いた銅箔を実施例1と同じ条件で前処理した後、次の条件で酸化処理を行った。
酸化処理液の組成=実施例1に同じ
液温度=実施例1に同じ
銅箔浸漬時間=実施例1に同じ
酸化処理槽の材質=ポリテトラフルオロエチレン製
酸化処理液の加温時間(液温が85℃に達してから銅箔を浸漬するまでの時間)=10時間
酸化処理後は実施例1と同じ条件で水洗、乾燥した。
(Example 2)
The copper foil used in Example 1 was pretreated under the same conditions as in Example 1, and then oxidized under the following conditions.
Composition of oxidation treatment liquid = same liquid temperature as in example 1 = same copper foil immersion time as in example 1 = same oxidation treatment material as in example 1 = warming time of polytetrafluoroethylene oxidation treatment liquid (liquid temperature) Time until the copper foil is immersed after the temperature reaches 85 ° C.) = 10 hours After the oxidation treatment, it was washed with water and dried under the same conditions as in Example 1.

(比較例1)
実施例1で用いた銅箔を実施例1と同じ条件で前処理した後、次の条件で酸化処理を行った。
酸化処理液の組成=実施例1に同じ
液温度=実施例1に同じ
銅箔浸漬時間=実施例1に同じ
酸化処理槽の材質=実施例1に同じ
酸化処理液の加温時間(液温が85℃に達してから銅箔を浸漬するまでの時間)=5時間
酸化処理後は実施例1と同じ条件で水洗、乾燥した。
(Comparative Example 1)
The copper foil used in Example 1 was pretreated under the same conditions as in Example 1, and then oxidized under the following conditions.
Composition of oxidation treatment liquid = same liquid temperature as in example 1 = same copper foil immersion time as in example 1 = same oxidation treatment material as in example 1 = heating time of same oxidation treatment as in example 1 (liquid temperature Time until the copper foil is immersed after the temperature reaches 85 ° C.) = 5 hours After the oxidation treatment, it was washed with water and dried under the same conditions as in Example 1.

(比較例2)
実施例1で用いた銅箔を実施例1と同じ条件で前処理した後、次の条件で酸化処理を行った。
酸化処理液の組成=実施例1に同じ
液温度=実施例1に同じ
銅箔浸漬時間=実施例1に同じ
酸化処理槽の材質=実施例1に同じ
酸化処理液の加温時間(液温が85℃に達してから銅箔を浸漬するまでの時間)=10時間
酸化処理後は実施例1と同じ条件で水洗、乾燥した。
(Comparative Example 2)
The copper foil used in Example 1 was pretreated under the same conditions as in Example 1, and then oxidized under the following conditions.
Composition of oxidation treatment liquid = same liquid temperature as in example 1 = same copper foil immersion time as in example 1 = same oxidation treatment material as in example 1 = heating time of same oxidation treatment as in example 1 (liquid temperature Time until the copper foil is immersed after the temperature reaches 85 ° C.) = 10 hours After the oxidation treatment, it was washed with water and dried under the same conditions as in Example 1.

(比較例3)
実施例1で用いた銅箔を実施例と同じ条件で前処理した後、次の条件で酸化処理を行った。
酸化処理液の組成=NaClO:80g/l、NaOH:15g/l、NaPO・12HO:10g/l、NaSiO:1g/l、純水:1リットルになる量
液温度=実施例1に同じ
銅箔浸漬時間=実施例1に同じ
酸化処理槽の材質=ポリテトラフルオロエチレン製
酸化処理液の加温時間(液温が85℃に達してから銅箔を浸漬するまでの時間)=10時間
酸化処理後は実施例1と同じ条件で水洗、乾燥した。
(Comparative Example 3)
The copper foil used in Example 1 was pretreated under the same conditions as in the Examples, and then oxidized under the following conditions.
Composition of oxidation treatment solution = NaClO 2 : 80 g / l, NaOH: 15 g / l, Na 3 PO 4 · 12H 2 O: 10 g / l, Na 2 SiO 3 : 1 g / l, pure water: 1 liter Temperature = same copper foil immersion time as in Example 1 = same oxidation treatment tank material as in Example 1 = warming time of polytetrafluoroethylene oxidation treatment solution (copper foil is immersed after the liquid temperature reaches 85 ° C.) Time) = 10 hours After the oxidation treatment, it was washed with water and dried under the same conditions as in Example 1.

(比較例4)
実施例1で用いた銅箔を実施例1と同じ条件で前処理した後、次の条件で酸化処理を行った。
酸化処理液の組成=NaClO:80g/l、NaOH:15g/l、NaPO・12HO:10g/l、NaSiO:2g/l、純水:1リットルになる量
液温度=実施例1に同じ
銅箔浸漬時間=実施例1に同じ
酸化処理槽の材質=ポリテトラフルオロエチレン製
酸化処理液の加温時間(液温が85℃に達してから銅箔を浸漬するまでの時間)=10時間
酸化処理後は実施例1と同じ条件で水洗、乾燥した。
(Comparative Example 4)
The copper foil used in Example 1 was pretreated under the same conditions as in Example 1, and then oxidized under the following conditions.
Composition of oxidation treatment liquid = NaClO 2 : 80 g / l, NaOH: 15 g / l, Na 3 PO 4 .12H 2 O: 10 g / l, Na 2 SiO 3 : 2 g / l, pure water: 1 liter Temperature = same copper foil immersion time as in Example 1 = same oxidation treatment tank material as in Example 1 = warming time of polytetrafluoroethylene oxidation treatment solution (copper foil is immersed after the liquid temperature reaches 85 ° C.) Time) = 10 hours After the oxidation treatment, it was washed and dried under the same conditions as in Example 1.

以上の実施例および比較例により酸化処理された銅箔の光沢面について、その外観を観察して処理ムラの有無や程度を調べた。さらに、この酸化処理した銅箔を日立化成工業株式会社製ガラスクロス入りエポキシプリプレグと加熱・加圧積層して、銅張り積層板を作製し、常態における銅箔の引き剥がし強度(銅箔の引き剥がし幅:10mm、引き剥がしスピード:50mm/分)とはんだ耐熱性(288℃、2分)を測定した。また、実施例および比較例で用いた酸化処理液中に含まれるケイ酸成分の濃度を定量した。分析方法はJIS−K0101−44に従い、モリブデン黄吸光光度法およびモリブデン青吸光光度法によって行った。結果を表1に示す。   About the glossy surface of the copper foil oxidized by the above Examples and Comparative Examples, the appearance was observed to examine the presence or absence and degree of processing unevenness. Furthermore, this oxidized copper foil was heated and pressure laminated with a glass cloth epoxy prepreg made by Hitachi Chemical Co., Ltd. to produce a copper-clad laminate, and the copper foil peel strength in the normal state (copper foil pulling) Stripping width: 10 mm, peeling speed: 50 mm / min) and solder heat resistance (288 ° C., 2 min) were measured. Moreover, the concentration of the silicic acid component contained in the oxidation treatment solution used in the examples and comparative examples was quantified. The analysis method was performed by molybdenum yellow absorptiometry and molybdenum blue absorptiometry according to JIS-K0101-44. The results are shown in Table 1.

Figure 2009084652

なお、表中の記号は次を意味する。
処理ムラ・・・・○:均一な処理でムラ無、△:一部にムラ有、×:ムラかなり発生、
−:酸化処理が十分起こらないため、評価不可
はんだ耐熱性・・○:異常無、△:小さな膨れ発生、×:大きな膨れ発生
Figure 2009084652

In addition, the symbol in a table | surface means the following.
Unevenness of processing ... ○: Uniform treatment with no unevenness, △: Some unevenness, ×: Unevenness occurs considerably,
-: Oxidation does not occur sufficiently, so evaluation is not possible Solder heat resistance ··: No abnormality, △: Small blisters, ×: Large blisters

表1から明らかなように、酸化処理液中のケイ酸成分濃度を200ppm以下することにより、処理ムラのない均一な外観の銅箔が得られ、またこの銅箔を用いれば銅箔の引き剥がし強度やはんだ耐熱性に優れることがわかった。   As is clear from Table 1, by making the concentration of the silicic acid component in the oxidation treatment solution 200 ppm or less, a copper foil having a uniform appearance without treatment unevenness can be obtained. If this copper foil is used, the copper foil is peeled off. It was found to be excellent in strength and solder heat resistance.

本発明の銅または銅合金の酸化処理方法および酸化処理液は、プリント配線板や半導体搭載用パッケージ基板等の電子部品において、プリプレグやソルダレジスト等の樹脂材料と銅箔との密着性を高め、その信頼性を高めることができる。また、酸化処理のやり直しによる処理効率の低下も防ぐことも可能である。   The copper or copper alloy oxidation treatment method and oxidation treatment liquid of the present invention enhance the adhesion between the copper foil and a resin material such as a prepreg or solder resist in an electronic component such as a printed wiring board or a package substrate for mounting a semiconductor. The reliability can be improved. In addition, it is possible to prevent a reduction in processing efficiency due to the redoing of the oxidation treatment.

Claims (3)

酸化剤および塩基性物質を含む、金属の酸化処理液において、金属が銅または銅合金であり、ケイ酸成分濃度が200ppm以下である金属の酸化処理液。   A metal oxidation treatment solution comprising an oxidant and a basic substance, wherein the metal is copper or a copper alloy and the silicate component concentration is 200 ppm or less. 酸化剤として、亜塩素酸塩または過硫酸塩を含み、塩基性物質として、水酸化アルカリを含む請求項1に記載の金属の酸化処理液。   The metal oxidation treatment solution according to claim 1, comprising chlorite or persulfate as the oxidizing agent, and alkali hydroxide as the basic substance. 請求項1または2に記載の金属の酸化処理液を使用した、金属の酸化処理方法。   A metal oxidation treatment method using the metal oxidation treatment liquid according to claim 1.
JP2007257430A 2007-10-01 2007-10-01 Oxidation treatment method and oxidation treatment liquid for metal Pending JP2009084652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007257430A JP2009084652A (en) 2007-10-01 2007-10-01 Oxidation treatment method and oxidation treatment liquid for metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007257430A JP2009084652A (en) 2007-10-01 2007-10-01 Oxidation treatment method and oxidation treatment liquid for metal

Publications (1)

Publication Number Publication Date
JP2009084652A true JP2009084652A (en) 2009-04-23

Family

ID=40658456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007257430A Pending JP2009084652A (en) 2007-10-01 2007-10-01 Oxidation treatment method and oxidation treatment liquid for metal

Country Status (1)

Country Link
JP (1) JP2009084652A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205871A (en) * 2013-04-11 2014-10-30 日本ニュークローム株式会社 Method of treating surface of copper-based metal to color blue

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294871A (en) * 1988-05-23 1989-11-28 Matsushita Electric Works Ltd Method for controlling copper foil blackening solution
JP2000332409A (en) * 1999-05-25 2000-11-30 Hitachi Chem Co Ltd Oxidation method and apparatus for use in the method
JP2002060967A (en) * 2000-08-23 2002-02-28 Mec Kk Surface treating method for copper or copper alloy
JP2002069661A (en) * 2000-08-30 2002-03-08 Nikko Materials Co Ltd Surface treatment method for copper
JP2002115078A (en) * 2000-10-11 2002-04-19 Hitachi Chem Co Ltd Surface treatment method for copper

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294871A (en) * 1988-05-23 1989-11-28 Matsushita Electric Works Ltd Method for controlling copper foil blackening solution
JP2000332409A (en) * 1999-05-25 2000-11-30 Hitachi Chem Co Ltd Oxidation method and apparatus for use in the method
JP2002060967A (en) * 2000-08-23 2002-02-28 Mec Kk Surface treating method for copper or copper alloy
JP2002069661A (en) * 2000-08-30 2002-03-08 Nikko Materials Co Ltd Surface treatment method for copper
JP2002115078A (en) * 2000-10-11 2002-04-19 Hitachi Chem Co Ltd Surface treatment method for copper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205871A (en) * 2013-04-11 2014-10-30 日本ニュークローム株式会社 Method of treating surface of copper-based metal to color blue

Similar Documents

Publication Publication Date Title
US5800859A (en) Copper coating of printed circuit boards
JP5184699B2 (en) Composition for imparting acid resistance to metal surface and method for improving acid resistance of metal surface
JP2002047583A (en) Microetching agent for copper or copper alloy and microetching method using the same
WO2010050266A1 (en) Method for surface treatment of copper and copper
JP2000282265A (en) Microetching agent for copper or copper alloy and surface treating method using the same
JP4881916B2 (en) Surface roughening agent
TWI707984B (en) Surface treatment agent for copper and copper alloy surfaces and method for treating copper or copper alloy surfaces
JP2010109308A (en) Electroconductive layer, laminate using the same, and manufacturing processes of them
KR20190039093A (en) A pretreatment liquid for electroless plating used simultaneously with a reduction treatment, and a method for manufacturing a printed wiring board
TWI396774B (en) A substrate manufacturing method and a copper surface treatment agent used therefor
EP1179973B2 (en) Composition for circuit board manufacture
JP2009059777A (en) Roughening treatment device
JP4264679B2 (en) Method for manufacturing printed wiring board
TW201906997A (en) Cleaning solution for cleaning metal surfaces
JPH0897559A (en) Method and solution for treating copper foil of circuit board for inner layer of multilayer printed wiring board
JP5522617B2 (en) Adhesive layer forming liquid and adhesive layer forming method
JP2009084652A (en) Oxidation treatment method and oxidation treatment liquid for metal
JP2010013516A (en) Adhesive layer-forming liquid
KR101590081B1 (en) A surface treatment method for pcb inner layer
WO2008005094A2 (en) Process for increasing the adhesion of a metal surface to a polymer
JP2002057457A (en) Manufacturing method of multilayered printed-wiring board
JP2004218021A (en) Surface treatment agent for microetching copper and copper alloy, and roughening treatment method for surface of copper and copper alloy
JP2004259937A (en) Method for manufacturing multilayer printed wiring board, and the board obtained from the method
JP2011080131A (en) Metal surface treatment method and method for manufacturing wiring board
KR20110099639A (en) Pretreating agent for electroplating, pretreatment method for electroplating, and electroplating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100927

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

A977 Report on retrieval

Effective date: 20120530

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120607

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20130117

Free format text: JAPANESE INTERMEDIATE CODE: A02