JP2009082873A - Electrically heating type catalyst apparatus - Google Patents

Electrically heating type catalyst apparatus Download PDF

Info

Publication number
JP2009082873A
JP2009082873A JP2007258734A JP2007258734A JP2009082873A JP 2009082873 A JP2009082873 A JP 2009082873A JP 2007258734 A JP2007258734 A JP 2007258734A JP 2007258734 A JP2007258734 A JP 2007258734A JP 2009082873 A JP2009082873 A JP 2009082873A
Authority
JP
Japan
Prior art keywords
catalyst
catalyst carrier
exhaust gas
carrier
electrically heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007258734A
Other languages
Japanese (ja)
Inventor
Takashi Kawai
孝史 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007258734A priority Critical patent/JP2009082873A/en
Publication of JP2009082873A publication Critical patent/JP2009082873A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To sufficiently exhibit exhaust gas treatment function even if a catalyst carrier having NTC characteristic is used. <P>SOLUTION: The electrically heating type catalyst apparatus is an electrically heating type catalyst apparatus for heating a catalyst for exhaust gas treatment by Joule heat. A positive electrode and a negative electrode are arranged in prescribed positions of this electrically heating type catalyst apparatus and a catalyst carrier electrically connects the positive electrode and negative electrode. The catalyst carrier has NTC characteristic that the resistance is continuously decreased when the temperature is increased. Partitioning means partitions the catalyst carrier with an insulating material and at least part of partitioned electric current paths are connected in series by a conductive material to make an electric current path for electric current flowing through the catalyst carrier long as compared with that in the case no partitioning by the insulating material is done. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車の排気ガスを浄化するための通電加熱式触媒装置であって、例えば炭化ケイ素SiCのように、温度が上昇すると抵抗値が連続的に減少するNTC(Negative Temperature Coefficient:NTC)特性を有する電流経路を用いる技術に関する。   The present invention is an energization heating type catalytic device for purifying exhaust gas of an automobile, and, for example, NTC (Negative Temperature Coefficient: NTC) whose resistance value continuously decreases as the temperature rises, such as silicon carbide SiC. The present invention relates to a technique using a current path having characteristics.

一般的に、触媒装置の排気ガス浄化能力を十分に発揮させるには、当該触媒装置内部の温度を触媒活性化温度まで均一に昇温させることが好ましい。そこで、例えば、特許文献1の図1に示されているように、触媒装置を構成する通電加熱式ハニカム体の外周面上において、所望の周長の間隔をおいて設定される相対向する部位に、所定の周長の電極板を相対向させて配設したものを使用する技術が提案されている。この構成によると、相対向する電極板の一方から他方へ電流が流れる触媒担体における単位体積当たりの抵抗値がほぼ同じものとなり、ハニカム体の内部は均一に抵抗加熱されるという(特許文献1の明細書段落0014を参照)。   Generally, in order to fully exhibit the exhaust gas purification ability of the catalyst device, it is preferable to raise the temperature inside the catalyst device uniformly to the catalyst activation temperature. Therefore, for example, as shown in FIG. 1 of Patent Document 1, on the outer peripheral surface of the electrically heated honeycomb body constituting the catalyst device, opposing portions set at a desired peripheral length interval In addition, there has been proposed a technique that uses an electrode plate having a predetermined circumferential length arranged opposite to each other. According to this configuration, the resistance value per unit volume in the catalyst carrier in which current flows from one of the opposing electrode plates to the other becomes substantially the same, and the inside of the honeycomb body is heated uniformly by resistance (Patent Document 1). See paragraph 0014 of the description).

ところが、上記構成では、触媒装置の触媒担体がNTC特性を有する場合に対する配慮が十分にはなされていない。したがって、仮に当該触媒装置の触媒担体の温度分布がひとたび不均一になると、その傾向が助長されるおそれがある。具体的には、電極板への供給電流の増加に伴って触媒担体の一部の温度がひとたび上昇すると、その一部はNTC特性により抵抗値が低下するため、その一部に一層電流が流れ、局所的な温度上昇を助長するおそれがある。その結果、当該触媒装置の電流経路の温度分布および活性化状態も不均一になり、当該触媒装置が排気ガスの浄化機能を十分に発揮できないおそれがある。   However, in the above configuration, consideration is not sufficiently given to the case where the catalyst carrier of the catalyst device has NTC characteristics. Therefore, once the temperature distribution of the catalyst carrier of the catalyst device becomes non-uniform, this tendency may be promoted. Specifically, once the temperature of a part of the catalyst carrier rises as the supply current to the electrode plate increases, the resistance value of part of the catalyst carrier decreases due to the NTC characteristics, so that more current flows through that part. There is a risk of promoting a local temperature rise. As a result, the temperature distribution and activation state of the current path of the catalyst device also become non-uniform, and there is a possibility that the catalyst device cannot fully exhibit the exhaust gas purification function.

特開平5−115795号公報Japanese Patent Laid-Open No. 5-115579

本発明は、例えば上述した問題点に鑑みてなされたものであり、NTC特性を有する触媒担体を用いても、排気ガスの浄化機能を十分に発揮可能な通電加熱式触媒装置を提供することを課題とする。   The present invention has been made in view of, for example, the above-described problems, and provides an electrically heated catalyst device that can sufficiently exhibit an exhaust gas purification function even when a catalyst carrier having NTC characteristics is used. Let it be an issue.

本発明の通電加熱式触媒装置は、上記課題を解決するため、排気ガスの浄化用触媒をジュール熱によって加熱する通電加熱式触媒装置であって、当該通電加熱式触媒装置の所定位置に設置された正電極及び負電極と、前記正電極及び前記負電極を電気的に接続するとともに、温度が上昇すると抵抗値が連続的に減少するNTC特性を有する触媒担体と、前記触媒担体を絶縁部材により区画し、該区画された電流経路の少なくとも一部を導電部材により直列に接続することで、該絶縁部材により区画されていない場合に比べて前記触媒担体を流れる電流の電流経路を長くする区画手段とを備える。   In order to solve the above problems, an electrically heated catalyst device of the present invention is an electrically heated catalyst device that heats an exhaust gas purification catalyst by Joule heat, and is installed at a predetermined position of the electrically heated catalyst device. The positive electrode and the negative electrode are electrically connected to each other, and the catalyst carrier having an NTC characteristic in which the resistance value continuously decreases as the temperature rises, and the catalyst carrier by an insulating member A partition means for partitioning and connecting at least a part of the partitioned current paths in series with a conductive member to lengthen the current path of the current flowing through the catalyst carrier as compared with the case where the current is not partitioned by the insulating member With.

本発明の通電加熱式触媒装置によれば、排気ガスの浄化用触媒が、ジュール熱によって加熱される。当該通電加熱式触媒装置の所定位置には、正電極及び負電極が設置されている。例えば、排気ガスの入口側に正電極を、出口側に負電極が設置される。但し、正電極及び負電極の設置位置はその逆でもよいし、共に何れか一端でもよい。そして、正電極及び負電極は、触媒担体によって、電気的に接続されている。この触媒担体は、例えば炭化ケイ素SiCのように、温度が上昇すると抵抗値が連続的に減少するNTC特性を有する半導体である。なお、触媒担体は、通電時にジュール熱を発生させることにより、担持した触媒を加熱する。加えて、区画手段が、この触媒担体を絶縁部材により区画し、該区画された触媒担体の少なくとも一部を導電部材により直列に接続している。この結果、絶縁部材が無い場合に比べて触媒担体を流れる電流の電流経路が長くなる。   According to the electrically heated catalyst device of the present invention, the exhaust gas purifying catalyst is heated by Joule heat. A positive electrode and a negative electrode are installed at predetermined positions of the energization heating type catalyst device. For example, a positive electrode is installed on the exhaust gas inlet side, and a negative electrode is installed on the outlet side. However, the positions of the positive electrode and the negative electrode may be reversed, or may be either one end. The positive electrode and the negative electrode are electrically connected by a catalyst carrier. This catalyst carrier is a semiconductor having an NTC characteristic in which the resistance value continuously decreases as the temperature rises, such as silicon carbide SiC. The catalyst carrier heats the supported catalyst by generating Joule heat when energized. In addition, the partition means partitions this catalyst carrier with an insulating member, and at least a part of the partitioned catalyst carrier is connected in series with a conductive member. As a result, the current path of the current flowing through the catalyst carrier becomes longer than when there is no insulating member.

ここで仮に、絶縁部材により区画されていないと、上記課題として指摘したように、触媒担体の一部の温度が周囲に比べて上昇すると、NTC特性ゆえに抵抗値が他部に比べて低下して、電流が更に多く流れるようになり、温度分布の不均一さが助長されてしまうおそれがある。そうすると、触媒担体に担持された触媒の排気ガスの浄化機能を十分に発揮できないおそれがある。   Here, if it is not partitioned by the insulating member, as pointed out as the above problem, when the temperature of a part of the catalyst carrier rises compared to the surroundings, the resistance value decreases compared to other parts due to the NTC characteristics. As a result, a larger amount of current flows, which may promote non-uniform temperature distribution. As a result, the exhaust gas purification function of the catalyst supported on the catalyst carrier may not be sufficiently exhibited.

しかるに、本発明の通電加熱式触媒装置の構成によれば、上述のように、触媒担体における電流経路が、絶縁部材が無い場合に比べて長くされている。そうすると、電流が触媒担体全体を一段ときめ細かく流れ、触媒に流れる電流の密度分布の差が一段と小さくなる。仮に、触媒担体の一部の温度が他部に比べて上昇しても、該一部と他部とが電流経路として直列に接続されているため各々を流れる電流密度は同じなので、温度分布の不均一さが助長されることはない。むしろ、NTC特性のおかげで、温度が上昇する一部の抵抗値は他部に比べて低下するので、該一部で発生するジュール熱は、他部に比べて低くなる。すなわち、本構成によれば、触媒担体における温度差が解消する方向に作用するのである。   However, according to the configuration of the electrically heated catalyst device of the present invention, as described above, the current path in the catalyst carrier is made longer than in the case where there is no insulating member. Then, the current flows finely through the entire catalyst carrier, and the difference in the density distribution of the current flowing through the catalyst is further reduced. Even if the temperature of a part of the catalyst carrier rises compared to the other part, since the part and the other part are connected in series as a current path, the current density flowing through each is the same. Non-uniformity is not promoted. Rather, because of the NTC characteristics, some resistance values that increase in temperature are lower than those in other parts, so Joule heat generated in these parts is lower than in other parts. That is, according to this configuration, the temperature difference in the catalyst carrier is eliminated.

以上見てきたように、本発明の通電加熱式触媒装置によれば、NTC特性を有する電流経路を用いても、内部の触媒担体における温度分布の不均一さを解消でき、もって、触媒担体に担持された触媒の排気ガスの浄化機能を十分に発揮せしめることが可能である。   As can be seen from the above, according to the current heating type catalyst device of the present invention, the non-uniform temperature distribution in the internal catalyst carrier can be eliminated even if the current path having the NTC characteristic is used. It is possible to sufficiently exhibit the exhaust gas purification function of the supported catalyst.

本発明の通電加熱式触媒装置の一態様では、前記触媒担体は、当該通電加熱式触媒装置における排気ガスの通路でもあり、前記区画手段は、該排気ガスの通路の断面が前記絶縁部材により複数に区画され、かつ、前記絶縁部材が前記排気ガスの通路に沿って延在するように、前記触媒担体を区画する。   In one aspect of the electrically heated catalyst device of the present invention, the catalyst carrier is also an exhaust gas passage in the electrically heated catalyst device, and the partition means includes a plurality of sections of the exhaust gas passage by the insulating member. The catalyst carrier is partitioned so that the insulating member extends along the passage of the exhaust gas.

この態様によると、触媒担体は、当該通電加熱式触媒装置における排気ガスの通路でもある。例えば、触媒担体はハニカム状に形成されており、担持する触媒に排気ガスが接触するように、排気ガスの通路となる空間が設けられている。そして、区画手段は、該排気ガスの通路の断面が絶縁部材により複数に区画され、かつ、絶縁部材が排気ガスの通路に沿って延在するように、触媒担体を区画する。各区画は上記導電部材によって、少なくとも一部が直列に接続されている。例えば、直列に接続される区画は、一端で前の区画と接続され、他端で後の区画と接続される。そうすると、電流は、正電極から負電極に向けて、排気ガスの通路に沿って往復しながら、各区画を順次流れる。したがって、いずれの区画においても、触媒が同様に活性化されるので、通過する排気ガスを一様に浄化できる。   According to this aspect, the catalyst carrier is also an exhaust gas passage in the energization heating type catalyst device. For example, the catalyst carrier is formed in a honeycomb shape, and a space serving as an exhaust gas passage is provided so that the exhaust gas is in contact with the supported catalyst. The partition means partitions the catalyst carrier so that the cross section of the exhaust gas passage is partitioned into a plurality of portions by the insulating member, and the insulating member extends along the exhaust gas passage. Each section is at least partially connected in series by the conductive member. For example, the compartments connected in series are connected to the previous compartment at one end and to the rear compartment at the other end. Then, current flows sequentially through the respective sections while reciprocating along the exhaust gas passage from the positive electrode toward the negative electrode. Accordingly, the catalyst is similarly activated in any of the sections, so that the exhaust gas passing therethrough can be uniformly purified.

この態様では、前記区画手段は、前記排気ガスの通路の断面において中央寄りに位置する区画の断面積の方が外周寄りのそれと比べて大きくなるように、前記触媒担体を区画してもよい。   In this aspect, the partition means may partition the catalyst carrier such that a cross-sectional area of a section located near the center in the cross section of the exhaust gas passage is larger than that near the outer periphery.

この構成によると、排気ガスの通路(つまり触媒担体)の断面において中央寄りの方が外周寄りと比べて熱が集中しやすいところ、中央寄りに位置する区画の断面積が外周寄りのそれよりも大きくされるので、その電流密度が外周寄りに比べて下がり、発熱を抑制できる。なお、「中央寄りに位置する区画」とは、必ずしも触媒担体の中央に位置する区画である必要はなく、最外周に位置する区画よりも中央寄りに位置する区画であればよい。   According to this configuration, in the cross section of the exhaust gas passage (that is, the catalyst carrier), heat is more concentrated in the section closer to the center than in the vicinity of the outer periphery, but the sectional area of the section located near the center is larger than that near the outer periphery. Since the current density is increased, the current density is lower than that near the outer periphery, and heat generation can be suppressed. Note that the “section located near the center” does not necessarily need to be a section located at the center of the catalyst carrier, and may be a section located closer to the center than the section located at the outermost periphery.

あるいは、この態様では、前記区画手段は、排気ガスの通路の断面において中央寄りに位置する少なくとも2つの区画は並列に接続するように、前記触媒担体を区画してもよい。   Alternatively, in this aspect, the partition means may partition the catalyst support such that at least two sections located near the center in the cross section of the exhaust gas passage are connected in parallel.

この構成によると、排気ガスの通路(つまり触媒担体)の断面において中央寄りの方が外周寄りと比べて熱が集中しやすいところ、並列に接続された中央寄りに位置する少なくとも2つの区画を、断面積が広げられた一つの区画とみなすことで、上述の態様と同様に、中央寄りの発熱を抑制できる。   According to this configuration, in the cross section of the exhaust gas passage (that is, the catalyst carrier), heat is more concentrated in the section closer to the center than in the outer periphery. By considering it as one section with an expanded cross-sectional area, heat generation near the center can be suppressed as in the above-described embodiment.

あるいは、この態様では、前記触媒担体は、前記排気ガスの通路の断面において中央寄りに位置する区画の抵抗値の方が外周寄りのそれと比べて小さくなるように構成されてもよい。   Alternatively, in this aspect, the catalyst carrier may be configured such that the resistance value of the section located near the center in the cross section of the exhaust gas passage is smaller than that near the outer periphery.

この構成によると、排気ガスの通路(つまり触媒担体)の断面において中央寄りの方が外周寄りと比べて熱が集中しやすいところ、その抵抗値を外周寄りのそれと比べて下げることで、同じ電流が流れても発生するジュール熱を低下させ、もって中央寄りの発熱を抑制できる。   According to this configuration, in the cross section of the exhaust gas passage (that is, the catalyst carrier), heat is more concentrated in the section closer to the center than in the vicinity of the outer periphery. By reducing the resistance value compared with that near the outer periphery, the same current can be obtained. The Joule heat generated even when flowing through can be reduced, so that heat generation near the center can be suppressed.

本発明の作用及び他の利得は、次に説明する実施するための最良の形態から明らかにされよう。   The operation and other advantages of the present invention will become apparent from the best mode for carrying out the invention described below.

以下、発明を実施するための最良の形態として本発明の実施形態を、図面に基いて詳細に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of the invention will be described in detail with reference to the drawings as the best mode for carrying out the invention.

(1)第1実施形態
先ず図1を参照して、内燃機関40の詳細な構成について説明を加える。ここで、図1は、第1実施形態に係る内燃機関40を示す模式的な断面図である。
(1) First Embodiment First, a detailed configuration of the internal combustion engine 40 will be described with reference to FIG. Here, FIG. 1 is a schematic cross-sectional view showing the internal combustion engine 40 according to the first embodiment.

図1において、吸気管206は、シリンダ201と外気とを連通しており、内燃機関40のシリンダ201内へと空気を吸入可能に構成されている。吸気管206の管路には、吸入空気を浄化するクリーナ、吸入空気の質量流量(即ち、吸入空気量)を検出するエアフローメータ、吸入空気の温度を検出する吸気温センサ、シリンダ201内部への吸入空気量を調節するスロットルバルブ、スロットルバルブの開度を検出するスロットルポジションセンサ、及び運転者によるアクセルペダルの踏み込み量に基づいてスロットルバルブを駆動するスロットルバルブモータが備わる。更に下流には、吸入空気を貯蔵するとともに複数気筒の各々に分配するサージタンク2061、サージタンク2061における吸気管圧力を検出する圧力センサ2062、及び燃料噴射弁207が備わる。燃料噴射弁207は、燃料タンク223から供給される燃料を、制御装置30の制御に従って、吸気管206内に噴射する。噴射された燃料は、吸気管206を介して吸入された空気と混合されて混合気を形成し、該混合気がシリンダ201内での燃焼に使用される。   In FIG. 1, an intake pipe 206 communicates the cylinder 201 with the outside air, and is configured to be able to suck air into the cylinder 201 of the internal combustion engine 40. In the pipe of the intake pipe 206, a cleaner that purifies the intake air, an air flow meter that detects the mass flow rate of the intake air (that is, the intake air amount), an intake air temperature sensor that detects the temperature of the intake air, A throttle valve that adjusts the intake air amount, a throttle position sensor that detects the opening of the throttle valve, and a throttle valve motor that drives the throttle valve based on the amount of depression of the accelerator pedal by the driver are provided. Further downstream, a surge tank 2061 that stores intake air and distributes it to each of the plurality of cylinders, a pressure sensor 2062 that detects an intake pipe pressure in the surge tank 2061, and a fuel injection valve 207 are provided. The fuel injection valve 207 injects the fuel supplied from the fuel tank 223 into the intake pipe 206 according to the control of the control device 30. The injected fuel is mixed with the air sucked through the intake pipe 206 to form an air-fuel mixture, which is used for combustion in the cylinder 201.

燃料タンク223は、給油口311から給油される燃料を貯蔵している。この燃料は、内燃機関40の燃焼に使用される。ここで給油される燃料は、例えばガソリン又はアルコール、あるいはその混合燃料である。ポンプ225は、この燃料を適宜吸い上げて燃料噴射弁207へと供給する。燃料センサ224は、貯蔵されている燃料の量を検出するとともに、制御装置30へと伝達する。   The fuel tank 223 stores fuel supplied from the fuel supply port 311. This fuel is used for combustion of the internal combustion engine 40. The fuel supplied here is, for example, gasoline, alcohol, or a mixed fuel thereof. The pump 225 appropriately sucks up this fuel and supplies it to the fuel injection valve 207. The fuel sensor 224 detects the amount of stored fuel and transmits it to the control device 30.

内燃機関40は、点火プラグ202の点火により、シリンダ201内で混合気を燃焼させる。このときの爆発力に応じたピストンの往復運動は、コネクションロッドを介してクランクシャフトの回転運動に変換され、この回転運動が駆動力となる。内燃機関40の周囲には、冷却水の温度を検出する水温センサ、クランク角を定期的に検出することで内燃機関40の回転数を検出可能なクランクポジションセンサ等の各種センサが配設されている。各センサの出力は、対応する検出信号として制御装置30へと供給される。シリンダ201内部で燃焼した混合気は排気ガスとなり、吸気弁208の開閉に連動して開閉する排気弁209を通過して排気管210を介して排気される。これらの開閉タイミングは、例えば周知の可変バルブタイミング機構(Variable Valve Timing-intelligent system:VVT−i)により構成される可変動弁装置によって調整される。   The internal combustion engine 40 burns the air-fuel mixture in the cylinder 201 by ignition of the spark plug 202. The reciprocating motion of the piston according to the explosion force at this time is converted into the rotational motion of the crankshaft via the connection rod, and this rotational motion becomes the driving force. Various sensors such as a water temperature sensor that detects the temperature of the cooling water and a crank position sensor that can detect the rotation speed of the internal combustion engine 40 by periodically detecting the crank angle are disposed around the internal combustion engine 40. Yes. The output of each sensor is supplied to the control device 30 as a corresponding detection signal. The air-fuel mixture combusted inside the cylinder 201 becomes exhaust gas, passes through the exhaust valve 209 that opens and closes in conjunction with the opening and closing of the intake valve 208, and is exhausted through the exhaust pipe 210. These opening / closing timings are adjusted by, for example, a variable valve operating apparatus configured by a known variable valve timing-intelligent system (VVT-i).

制御装置30は、中央処理装置(Central Processing Unit:CPU)、制御プログラムを格納した読み出し専用メモリ(Read Only Memory:ROM)及び各種データを格納する随時書き込み読み出しメモリ(Random Access Memory:RAM)等を中心とした論理演算回路として構成されている。制御装置30は、各種センサから入力信号を受ける入力ポートと、可変バルブタイミング機構や通電加熱式触媒装置50等の各種アクチュエータに制御信号を送る出力ポートとに、バスを介して接続されている。   The control device 30 includes a central processing unit (CPU), a read only memory (ROM) that stores a control program, and an occasional write / read memory (RAM) that stores various data. It is configured as a central logic operation circuit. The control device 30 is connected via a bus to an input port that receives input signals from various sensors and an output port that sends control signals to various actuators such as the variable valve timing mechanism and the electrically heated catalyst device 50.

排気管210の管路には、空燃比センサ221、及び通電加熱式触媒装置50が備わる。   An air-fuel ratio sensor 221 and an electrically heated catalyst device 50 are provided in the pipe line of the exhaust pipe 210.

空燃比センサ221は、例えばジルコニア固体電解質などで構成されており、排気管210中の排気ガスの空燃比(A/F)を検出するとともに、検出信号を制御装置30へと供給する。この検出信号に基づいて、空燃比フィードバック補正が行われる。   The air-fuel ratio sensor 221 is made of, for example, a zirconia solid electrolyte, and detects the air-fuel ratio (A / F) of the exhaust gas in the exhaust pipe 210 and supplies a detection signal to the control device 30. Based on this detection signal, air-fuel ratio feedback correction is performed.

通電加熱式触媒装置(Electrical Heated Catalyst:EHC)50は、例えば白金やロジウムなどの貴金属を活性成分とした三元触媒であり、排気ガス中の窒素酸化物(NOx)、一酸化炭素(CO)、炭化水素(HC)などを除去する機能を有する。加えて、通電加熱式触媒装置50は、制御装置30の制御下で通電状態が制御され、通電時には加熱してその温度を最低でも触媒の活性温度(例えば350℃程度)にまで上昇させる。   An electrically heated catalyst device (EHC) 50 is a three-way catalyst having a noble metal such as platinum or rhodium as an active component, for example, nitrogen oxide (NOx), carbon monoxide (CO) in exhaust gas. And has a function of removing hydrocarbons (HC) and the like. In addition, the energization heating type catalyst device 50 is controlled in the energized state under the control of the control device 30 and is heated during energization to raise its temperature to the lowest catalyst activation temperature (for example, about 350 ° C.).

ここで、第1実施形態に係る通電加熱式触媒装置50の構造について、図2から図5を参照しながら詳述する。先ず、比較例について、その後、第1実施形態について説明する。   Here, the structure of the electrically heated catalyst device 50 according to the first embodiment will be described in detail with reference to FIGS. First, a comparative example will be described, and then the first embodiment will be described.

比較例に係る通電加熱式触媒装置50の構造が、図2および図3に示されている。ここで、図2は、比較例に係る通電加熱式触媒装置50を側面から見た場合の模式的な断面図である。図3は、比較例に係る通電加熱式触媒装置50を図2の位置Lにおいて排気ガスの入口側の正面から見た場合の模式的な断面図である。   The structure of the electrically heated catalyst device 50 according to the comparative example is shown in FIGS. Here, FIG. 2 is a schematic cross-sectional view when the electrically heated catalyst device 50 according to the comparative example is viewed from the side. FIG. 3 is a schematic cross-sectional view of the electrically heated catalyst device 50 according to the comparative example when viewed from the front side on the exhaust gas inlet side at the position L in FIG.

図2に示すように、通電加熱式触媒装置50は、通電加熱式触媒装置50の外形を形成すると共に排気管210との連結口が開放されている外殻51と、外殻51に囲われた通電触媒担体52と、通電触媒担体52に通電するための電源531、正電極532、および負電極533と、制御装置30の制御下で通電状態を切り替えるスイッチ534とを備える。ここで、通電触媒担体52は、例えば粉末状の触媒を担持するための担体であり、例えばペレット状、或いはハニカム状のように排気ガスがその内部を通過可能に構成されている。なお、図2において太い矢印に示されるように、左から右に向かって排気ガスが流れる。加えて、通電触媒担体52は、例えば炭化ケイ素SiCのようにNTC特性を有する導体あるいは半導体であり、通電時にはジュール熱によって昇温すると、それに伴い自己の抵抗値が減少する特性を有する。   As shown in FIG. 2, the electrically heated catalyst device 50 includes an outer shell 51 that forms the outer shape of the electrically heated catalyst device 50 and has an open connection port to the exhaust pipe 210, and is surrounded by the outer shell 51. The energized catalyst carrier 52, a power source 531 for energizing the energized catalyst carrier 52, a positive electrode 532, a negative electrode 533, and a switch 534 that switches an energized state under the control of the control device 30. Here, the energized catalyst carrier 52 is, for example, a carrier for supporting a powdery catalyst, and is configured to allow exhaust gas to pass through the inside thereof, for example, like a pellet or a honeycomb. In addition, as shown by the thick arrow in FIG. 2, exhaust gas flows from left to right. In addition, the current-carrying catalyst carrier 52 is a conductor or semiconductor having NTC characteristics, such as silicon carbide SiC, and has a characteristic that when its temperature is increased by Joule heat during energization, its own resistance value decreases accordingly.

比較例に係る通電加熱式触媒装置50において、図2に示すように、通電触媒担体52は一つである、言い換えれば、通電触媒担体52を区画する絶縁体がない。ここで仮に、通電触媒担体52全体を活性温度にまで加熱するために、排気ガスの入口側に正電極532を、出口側に負電極533を設置する。そうすると、図2において破線矢印で示されるように、通電時に電源531から供給される電流は、排気ガスの入口側から出口側に向かって流れる(ただし、電流の向きは逆向きであっても構わない)。   In the electrically heated catalyst device 50 according to the comparative example, as shown in FIG. 2, there is only one electrically conductive catalyst carrier 52, in other words, there is no insulator that partitions the electrically conductive catalyst carrier 52. Here, in order to heat the entire energized catalyst carrier 52 to the activation temperature, a positive electrode 532 is installed on the exhaust gas inlet side, and a negative electrode 533 is installed on the outlet side. Then, as indicated by a broken line arrow in FIG. 2, the current supplied from the power source 531 when energized flows from the inlet side to the outlet side of the exhaust gas (however, the direction of the current may be reversed). Absent).

この際、図3に示すように、通電触媒担体52の外周部は外殻51のように発熱していない部材と接するので、放熱してしまう。そうすると、通電触媒担体52の中央部の温度は、外周部の温度に比べて高くなる。そうすると、NTC特性を有する通電触媒担体52の中央部の抵抗値は、外周部の抵抗値に比べて低くなる。そうすると、電流は通電触媒担体52の外周部よりも中央部を通る。そうすると、電流は通電触媒担体52の中央部は、一層加熱されることとなり、温度分布の不均一さが助長されてしまうおそれがある。そして、結果的に、通電触媒担体52の外周部は活性化されず、外周部を通過する排気ガスを十分に浄化することができないおそれがある。なお、図3において、通電触媒担体52の濃淡は、温度分布の不均一さを模式的に示し、丸印の中にX印が含まれた記号は、手前から奥に向かって(つまり、排気ガスの入口側から出口側に向かって)電流が流れることを示す。因みに、後述の図5において、丸印の中に点が含まれた記号は、奥から手前に向かって(つまり、排気ガスの出口側から入口側に向かって)電流が流れることを示す。   At this time, as shown in FIG. 3, since the outer peripheral portion of the energized catalyst carrier 52 is in contact with a member that does not generate heat, such as the outer shell 51, heat is dissipated. If it does so, the temperature of the center part of the electricity supply catalyst support | carrier 52 will become high compared with the temperature of an outer peripheral part. If it does so, the resistance value of the center part of the electricity supply catalyst support | carrier 52 which has an NTC characteristic will become low compared with the resistance value of an outer peripheral part. Then, the current passes through the central portion rather than the outer peripheral portion of the energized catalyst carrier 52. If it does so, the center part of the electricity supply catalyst support | carrier 52 will be heated further, and there exists a possibility that the nonuniformity of temperature distribution may be promoted. As a result, the outer peripheral portion of the energized catalyst carrier 52 is not activated, and the exhaust gas passing through the outer peripheral portion may not be sufficiently purified. In FIG. 3, the density of the current-carrying catalyst carrier 52 schematically indicates non-uniformity of the temperature distribution, and a symbol including an X in a circle indicates from the front to the back (that is, exhaust gas). It shows that a current flows from the gas inlet side to the outlet side. Incidentally, in FIG. 5 described later, a symbol including a dot in a circle indicates that a current flows from the back to the front (that is, from the exhaust gas outlet side to the inlet side).

これに対して、第1実施形態に係る通電加熱式触媒装置50は、図4に示すように構成されている。ここで、図4は、第1実施形態に係る通電加熱式触媒装置50を側面から見た場合の模式的な断面図である。   On the other hand, the electrically heated catalyst device 50 according to the first embodiment is configured as shown in FIG. Here, FIG. 4 is a schematic cross-sectional view of the electrically heated catalyst device 50 according to the first embodiment as viewed from the side.

図4に示すように、第1実施形態に係る通電加熱式触媒装置50は、比較例と異なり、複数の通電触媒担体52と、これらを区画する絶縁材54と、これらのうち少なくとも一部を電気的に直列に接続する導電材55とを備える。通電触媒担体52全体を活性温度にまで加熱するために、排気ガスの出口上端に正電極532を、出口下端に負電極533を設置する。そうすると、図4において破線矢印で示されるように、通電時に電源531から供給される電流は、直列に接続された複数の通電触媒担体52を、排気ガスが流れる方向に沿って往復しながら上から下へ隈なく流れる(ただし、電流の向きは逆向きであっても構わない)。   As shown in FIG. 4, unlike the comparative example, the electrically heated catalyst device 50 according to the first embodiment includes a plurality of electrically conductive catalyst carriers 52, an insulating material 54 partitioning them, and at least a part of them. And a conductive material 55 electrically connected in series. In order to heat the entire energized catalyst carrier 52 to the activation temperature, a positive electrode 532 is installed at the upper end of the exhaust gas outlet, and a negative electrode 533 is installed at the lower end of the outlet. Then, as indicated by broken line arrows in FIG. 4, the current supplied from the power source 531 during energization from the top while reciprocating along the direction in which the exhaust gas flows through the plurality of energized catalyst carriers 52 connected in series. Flows downward (however, the current direction may be reversed).

この構成を別の視点から見た変形例を、図5を参照して説明する。ここで、図5は、第1実施形態に係る通電加熱式触媒装置50を図4の位置Lにおいて排気ガスの入口側の正面から見た場合の模式的な断面図である。   A modification in which this configuration is viewed from another viewpoint will be described with reference to FIG. Here, FIG. 5 is a schematic cross-sectional view of the electrically heated catalyst device 50 according to the first embodiment as viewed from the front side on the exhaust gas inlet side at the position L in FIG.

図5において、通電加熱式触媒装置50は、16個の通電触媒担体52から構成されており、これらは絶縁材54によって区画されている。16個の通電触媒担体52のうち少なくとも2つは電気的に直列に接続される。図5においては、16個全ての通電触媒担体52がNo.01からNo.16の順に直列に接続されている。具体的には、No.01の通電触媒担体52の一端(例えば、排気ガスの入口側)には正電極532が、No.16の通電触媒担体52の一端には負電極533が、夫々設置されている。そして、No.01の通電触媒担体52の他端(例えば、排気ガスの出口側)はNo.02の通電触媒担体52の他端と導電材55によって電気的に接続されている。No.02の通電触媒担体52の一端は、No.03の通電触媒担体52の一端と導電材55によって電気的に接続されている。同様の構成が、No.16の通電触媒担体52まで続く。それゆえ、通電時に電源531から供給される電流は、正電極532から流入し、各通電触媒担体52を、No.01からNo.16の順に、排気ガスが流れる方向に沿って往復しながら流れ、最終的に負電極533へと到る。この際、複数の通電触媒担体52を直列に接続してあるので、中央部に位置する通電触媒担体52(例えば、No.06、07、10、及び11の通電触媒担体52の各々)と、外周部に位置する通電触媒担体52(例えば、No.01、02、03、04、05、08、09、12、13、14、15、及び16の通電触媒担体52の各々)とを夫々通過する電流とは夫々等しい。   In FIG. 5, the energization heating type catalyst device 50 is composed of 16 energization catalyst carriers 52, which are partitioned by an insulating material 54. At least two of the sixteen energized catalyst carriers 52 are electrically connected in series. In FIG. 5, all 16 energized catalyst carriers 52 are No. 01 to No. They are connected in series in the order of 16. Specifically, no. A positive electrode 532 is connected to one end of the energized catalyst carrier 52 of No. 01 (for example, the exhaust gas inlet side). A negative electrode 533 is installed at one end of each of the sixteen energized catalyst carriers 52. And No. The other end of the energized catalyst carrier 52 of No. 01 (for example, the exhaust gas outlet side) is No. 02 is electrically connected to the other end of the energized catalyst carrier 52 by a conductive material 55. No. One end of the current-carrying catalyst carrier 52 of No. 02 is 03 is electrically connected to one end of a current-carrying catalyst carrier 52 by a conductive material 55. A similar configuration is shown in Continue up to 16 energized catalyst carriers 52. Therefore, the current supplied from the power source 531 during energization flows from the positive electrode 532 and each energized catalyst carrier 52 is set to No. 01 to No. In order of 16, the gas flows while reciprocating along the direction in which the exhaust gas flows, and finally reaches the negative electrode 533. At this time, since a plurality of current-carrying catalyst carriers 52 are connected in series, the current-carrying catalyst carriers 52 (for example, each of the current-carrying catalyst carriers 52 of Nos. 06, 07, 10, and 11) located in the center part, Passing through the current-carrying catalyst carrier 52 (for example, each of the current-carrying catalyst carriers 52 of Nos. 01, 02, 03, 04, 05, 08, 09, 12, 13, 14, 15, and 16) located on the outer periphery. Is equal to the current to be generated.

そして、図4および図5に示す構成によると、以下に詳述するように、仮に中央部に位置する通電触媒担体52の温度が、外周部に比べて高くなったとしても、温度分布の不均一さが緩和され、もって通電触媒担体52を均一に活性化することができる。   4 and FIG. 5, as will be described in detail below, even if the temperature of the energized catalyst carrier 52 located in the central portion is higher than that in the outer peripheral portion, the temperature distribution is not improved. The uniformity is relaxed, and thus the energized catalyst carrier 52 can be activated uniformly.

先ず、上記目的を達成するにあたり、重要なことは、区画された複数の通電触媒担体52間での温度差を極力なくすことである。通電加熱式触媒装置50において、通電触媒担体52の温度を決定する大きな要因は、ジュール熱である。通電触媒担体52で発生するジュール熱(すなわち、消費される電気エネルギー)は、通電触媒担体52を流れる電流の2乗と抵抗値との積に比例する。   First, in achieving the above-mentioned object, it is important to minimize the temperature difference between the plurality of divided energized catalyst carriers 52. In the energization heating type catalyst device 50, the major factor that determines the temperature of the energization catalyst carrier 52 is Joule heat. Joule heat (that is, consumed electric energy) generated in the energized catalyst carrier 52 is proportional to the product of the square of the current flowing through the energized catalyst carrier 52 and the resistance value.

ここで仮に、中央部に位置する通電触媒担体52の温度が、外周部に比べて高くなったとする。この場合でも、通電触媒担体52の各々を流れる電流は、上記した直列接続のおかげで差がない。通電触媒担体52の各々の抵抗値は、上記したNTC特性のおかげで、中央部に位置する通電触媒担体52の方が外周部に比べて低くなる。そうすると、中央部に位置する通電触媒担体52で発生するジュール熱は、外周部に比べて低くなる。すなわち、本構成によれば、通電触媒担体52間での当初の温度差が解消する方向に作用する。   Here, it is assumed that the temperature of the energized catalyst carrier 52 located in the central portion is higher than that of the outer peripheral portion. Even in this case, there is no difference in the current flowing through each of the energized catalyst carriers 52 thanks to the series connection described above. The resistance value of each of the energized catalyst carriers 52 is lower in the energized catalyst carrier 52 located in the center than in the outer periphery due to the NTC characteristics described above. If it does so, the Joule heat which generate | occur | produces in the electricity supply catalyst support | carrier 52 located in a center part will become low compared with an outer peripheral part. That is, according to this configuration, the initial temperature difference between the energized catalyst carriers 52 is eliminated.

したがって、本実施形態に係る通電加熱式触媒装置50によると、NTC特性を有する触媒を用いても、通電触媒担体52間の温度分布を略均一に保つことが可能となり、もって通電加熱式触媒装置50を好適に活性化することができる。   Therefore, according to the electrically heated catalyst device 50 according to the present embodiment, the temperature distribution between the electrically powered catalyst carriers 52 can be kept substantially uniform even when a catalyst having NTC characteristics is used. 50 can be suitably activated.

なお、図5では、区画数を16としたが、2以上であれば大なり小なりその恩恵を受ける。通電加熱式触媒装置50の断面積は必ずしも四角形である必要はなく、例えば、三角形や楕円形でもよい。
(2)第2実施形態
次に、第2実施形態に係る通電加熱式触媒装置50の構成について、図6を用いて説明する。ここで、図6は、第2実施形態に係る通電加熱式触媒装置50を図4の位置Lにおいて正面から見た場合の模式的な断面図である。なお、通電加熱式触媒装置50以外の内燃機関40の構成は図1に示す第1実施形態と同様でよく、同一の構成については同一の参照符号を付し、その詳細な説明を適宜省略する。
In FIG. 5, the number of sections is set to 16, but if it is 2 or more, the benefit is more or less. The cross-sectional area of the electrically heated catalyst device 50 is not necessarily rectangular, and may be, for example, a triangle or an ellipse.
(2) 2nd Embodiment Next, the structure of the electroheating catalyst apparatus 50 which concerns on 2nd Embodiment is demonstrated using FIG. Here, FIG. 6 is a schematic cross-sectional view of the electrically heated catalyst device 50 according to the second embodiment as viewed from the front at the position L in FIG. The configuration of the internal combustion engine 40 other than the electric heating catalyst device 50 may be the same as that of the first embodiment shown in FIG. 1, and the same reference numerals are given to the same configurations, and the detailed description thereof is omitted as appropriate. .

図6に示すように、第2実施形態に係る通電加熱式触媒装置50は、複数の通電触媒担体52のうち、外周部に比べて温度が上昇しやすい中央部について配慮がなされている。具体的には、中央部に位置する4個の通電触媒担体52(すなわち、図6におけるNo.06の通電触媒担体52)を、十字型の導電材56によって、排気ガスの入口側から出口側まで電気的に接続している。言い換えれば、中央部に位置する4個の通電触媒担体52は電気的に並列としている。そして、図6におけるNo.06の通電触媒担体52と、電気的に一体となった4個のNo.06の通電触媒担体52と、No.07の通電触媒担体52とが直列に接続されている。この構成によれば、No.06の通電触媒担体52、電気的に一体となった4個のNo.06の通電触媒担体52、No.07の通電触媒担体52の各々に流れる電流は等しい。一方で、電気的に一体となった4個のNo.06の通電触媒担体52の断面積は、No.06あるいはNo.07の通電触媒担体52のそれよりも広い。そうすると、電気的に一体となった4個のNo.06の通電触媒担体52の電流密度は、No.06あるいはNo.07の通電触媒担体52のそれよりも小さい。したがって、複数の通電触媒担体52のうち、外周部に比べて温度が上昇しやすい中央部(つまり、電気的に一体となった4個のNo.06の通電触媒担体52)で単位断面積あたりに発生するジュール熱が、外周部に比べて抑制される。   As shown in FIG. 6, in the energization heating type catalyst device 50 according to the second embodiment, consideration is given to the central portion of the plurality of energized catalyst carriers 52 where the temperature is likely to rise compared to the outer peripheral portion. Specifically, the four energized catalyst carriers 52 (that is, the energized catalyst carrier 52 of No. 06 in FIG. 6) located in the central portion are connected by the cross-shaped conductive material 56 from the exhaust gas inlet side to the outlet side. Electrical connection up to. In other words, the four energized catalyst carriers 52 located in the center are electrically in parallel. And No. in FIG. No. 06 and the four No. 6 electrically integrated catalyst carriers 52 are electrically integrated. No. 06 energized catalyst carrier 52, The 07 current-carrying catalyst carrier 52 is connected in series. According to this configuration, no. No. 06 energizing catalyst carrier 52 and four Nos. No. 06 energized catalyst carrier 52, No. 6; The current flowing in each of the 07 energized catalyst carriers 52 is equal. On the other hand, the four integrated No. 4 units are electrically integrated. The cross-sectional area of the energized catalyst carrier 52 of No. 06 is No. 06. 06 or No. It is wider than that of the 07 energized catalyst carrier 52. Then, four No. 4 which became electrically integrated. The current density of the current-carrying catalyst carrier 52 of No. 06 is no. 06 or No. It is smaller than that of the energized catalyst carrier 52 of 07. Accordingly, among the plurality of energized catalyst carriers 52, the central portion where the temperature is likely to rise as compared with the outer peripheral portion (that is, the four electrically conductive catalyst carriers 52 of No. 06 which are electrically integrated) per unit cross-sectional area. The Joule heat generated in is suppressed as compared with the outer peripheral portion.

以上見てきたように、本実施形態に係る通電加熱式触媒装置50によれば、外周部に比べて温度が上昇しやすい中央部の電流密度を低下させて、外周部と中央部との温度上昇のバランスを向上させることができる。
(3)第3実施形態
次に、第3実施形態に係る通電加熱式触媒装置50の構成について、図7を用いて説明する。ここで、図7は、第3実施形態に係る通電加熱式触媒装置50を図4の位置Lにおいて正面から見た場合の模式的な断面図である。なお、通電加熱式触媒装置50以外の内燃機関40の構成は図1に示す第1実施形態と同様でよく、同一の構成については同一の参照符号を付し、その詳細な説明を適宜省略する。
As described above, according to the electrically heated catalyst device 50 according to the present embodiment, the current density in the central portion where the temperature is likely to rise compared to the outer peripheral portion is reduced, and the temperature between the outer peripheral portion and the central portion is reduced. The balance of ascent can be improved.
(3) Third Embodiment Next, the configuration of an electrically heated catalyst device 50 according to a third embodiment will be described with reference to FIG. Here, FIG. 7 is a schematic cross-sectional view of the electrically heated catalyst device 50 according to the third embodiment when viewed from the front at the position L in FIG. The configuration of the internal combustion engine 40 other than the electric heating catalyst device 50 may be the same as that of the first embodiment shown in FIG. 1, and the same reference numerals are given to the same configurations, and the detailed description thereof is omitted as appropriate. .

図7に示すように、第3実施形態に係る通電加熱式触媒装置50でも、第2実施形態と同様に、複数の通電触媒担体52のうち、外周部に比べて温度が上昇しやすい中央部について配慮がなされている。ただし、第2実施形態では、中央部に位置する4個の通電触媒担体52を十字型の導電材56によって電気的に一体化したのに対し、本実施形態では当初から、中央部に位置する通電触媒担体52を外周部に比べて断面積が広いもの一つにしている点で異なる。しかし、この構成でも、第2実施形態と同様に、外周部に比べて温度が上昇しやすい中央部の電流密度を低下させるので、外周部と中央部との温度上昇のバランスを向上させることができる。
(4)第4実施形態
次に、第4実施形態に係る通電加熱式触媒装置50の構成について、図8を用いて説明する。ここで、図8は、第4実施形態に係る通電加熱式触媒装置50を図4の位置Lにおいて正面から見た場合の模式的な断面図である。なお、通電加熱式触媒装置50以外の内燃機関40の構成は図1に示す第1実施形態と同様でよく、同一の構成については同一の参照符号を付し、その詳細な説明を適宜省略する。
As shown in FIG. 7, in the electrically heated catalyst device 50 according to the third embodiment, as in the second embodiment, among the plurality of energized catalyst carriers 52, the central portion where the temperature is likely to rise compared to the outer peripheral portion. Consideration has been made. However, in the second embodiment, the four energized catalyst carriers 52 located in the central portion are electrically integrated by the cross-shaped conductive material 56, whereas in the present embodiment, they are located in the central portion from the beginning. The difference is that the current-carrying catalyst carrier 52 has one cross-sectional area larger than that of the outer peripheral portion. However, even in this configuration, as in the second embodiment, since the current density in the central portion where the temperature is likely to rise compared to the outer peripheral portion is reduced, the balance between the temperature rise in the outer peripheral portion and the central portion can be improved. it can.
(4) 4th Embodiment Next, the structure of the electrically-heating catalyst apparatus 50 which concerns on 4th Embodiment is demonstrated using FIG. Here, FIG. 8 is a schematic cross-sectional view of the electrically heated catalyst device 50 according to the fourth embodiment when viewed from the front at the position L in FIG. The configuration of the internal combustion engine 40 other than the electric heating catalyst device 50 may be the same as that of the first embodiment shown in FIG. 1, and the same reference numerals are given to the same configurations, and the detailed description thereof is omitted as appropriate. .

図8に示すように、第4実施形態に係る通電加熱式触媒装置50でも、第2実施形態と同様に、複数の通電触媒担体52のうち、外周部に比べて温度が上昇しやすい中央部について配慮がなされている。ただし、第2実施形態では、中央部に位置する4個の通電触媒担体52を十字型の導電材56によって電気的に一体化したのに対し、本実施形態では、中央部に位置する4個の通電触媒担体57の物性を外周部に位置する通電触媒担体52に比べて温度上昇し難いものにしている点で異なる。具体的には、中央部に位置する4個の通電触媒担体57の抵抗値を、外周部に位置する通電触媒担体52のそれよりも小さくする。これは、中央部に位置する4個の通電触媒担体57のセル数を、外周部に位置する通電触媒担体52のそれよりも多くすることによって、あるいは、中央部に位置する4個の通電触媒担体57の気孔率を、外周部に位置する通電触媒担体52のそれよりも小さくすることによって実現される。この構成によれば、第2実施形態と同様に、外周部に比べて温度が上昇しやすい中央部の抵抗値を低下させるので、外周部と中央部との温度上昇のバランスを向上させることができる。   As shown in FIG. 8, in the electrically heated catalyst device 50 according to the fourth embodiment, as in the second embodiment, among the plurality of energized catalyst carriers 52, the central portion where the temperature is likely to rise compared to the outer peripheral portion. Consideration has been made. However, in the second embodiment, the four current-carrying catalyst carriers 52 located in the center are electrically integrated by the cross-shaped conductive material 56, whereas in the present embodiment, the four current-carrying catalyst carriers 52 are located in the center. The difference is that the temperature of the current-carrying catalyst carrier 57 is less likely to increase than that of the current-carrying catalyst carrier 52 located on the outer periphery. Specifically, the resistance values of the four energized catalyst carriers 57 located in the central part are made smaller than those of the energized catalyst carrier 52 located in the outer peripheral part. This is because the number of cells of the four energized catalyst carriers 57 located in the central part is larger than that of the energized catalyst carrier 52 located in the outer peripheral part, or four energized catalysts located in the central part. This is realized by making the porosity of the carrier 57 smaller than that of the energized catalyst carrier 52 located on the outer peripheral portion. According to this configuration, as in the second embodiment, since the resistance value of the central portion where the temperature is likely to rise compared to the outer peripheral portion is reduced, the balance of the temperature rise between the outer peripheral portion and the central portion can be improved. it can.

なお、上記各実施形態において、通電加熱式触媒装置50は本発明に係る「通電加熱式触媒装置」の一例であり、正電極532は本発明に係る「正電極」の一例であり、負電極533は本発明に係る「負電極」の一例であり、通電触媒担体52及び通電触媒担体57は本発明に係る「触媒担体」の一例であり、絶縁材54及び導電材55,56は本発明に係る「区画手段」の一例である。   In each of the above embodiments, the electrically heated catalyst device 50 is an example of the “energized heating catalyst device” according to the present invention, the positive electrode 532 is an example of the “positive electrode” according to the present invention, and the negative electrode 533 is an example of the “negative electrode” according to the present invention, the energized catalyst carrier 52 and the energized catalyst carrier 57 are examples of the “catalyst carrier” according to the present invention, and the insulating material 54 and the conductive materials 55 and 56 are the present invention. It is an example of the "partition means" concerning.

本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨、或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う通電加熱式触媒装置も又、本発明の技術的範囲に含まれるものである。   The present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the gist or the idea of the invention that can be read from the claims and the entire specification. A catalytic device is also included in the technical scope of the present invention.

第1実施形態に係る内燃機関40を示す模式的な断面図である。1 is a schematic cross-sectional view showing an internal combustion engine 40 according to a first embodiment. 比較例に係る通電加熱式触媒装置50を側面から見た場合の模式的な断面図である。It is typical sectional drawing at the time of seeing the electric heating type catalyst device 50 concerning a comparative example from the side. 比較例に係る通電加熱式触媒装置50を図2の位置Lにおいて排気ガスの入口側の正面から見た場合の模式的な断面図である。FIG. 3 is a schematic cross-sectional view of an electrically heated catalyst device 50 according to a comparative example when viewed from the front side on the exhaust gas inlet side at a position L in FIG. 2. 第1実施形態に係る通電加熱式触媒装置50を側面から見た場合の模式的な断面図である。It is typical sectional drawing at the time of seeing the electric heating type catalyst device 50 concerning a 1st embodiment from the side. 第1実施形態に係る通電加熱式触媒装置50を図4の位置Lにおいて排気ガスの入口側の正面から見た場合の模式的な断面図である。FIG. 5 is a schematic cross-sectional view when the electrically heated catalyst device 50 according to the first embodiment is viewed from the front side on the exhaust gas inlet side at a position L in FIG. 4. 第2実施形態に係る通電加熱式触媒装置50を図4の位置Lにおいて正面から見た場合の模式的な断面図である。It is typical sectional drawing at the time of seeing the electric heating type catalyst apparatus 50 concerning 2nd Embodiment from the front in the position L of FIG. 第3実施形態に係る通電加熱式触媒装置50を図4の位置Lにおいて正面から見た場合の模式的な断面図である。It is typical sectional drawing at the time of seeing the electric heating type catalyst apparatus 50 concerning 3rd Embodiment from the front in the position L of FIG. 第4実施形態に係る通電加熱式触媒装置50を図4の位置Lにおいて正面から見た場合の模式的な断面図である。It is typical sectional drawing at the time of seeing electrically-heating type catalyst apparatus 50 concerning a 4th embodiment from the front in position L of Drawing 4.

符号の説明Explanation of symbols

30…制御装置、40…内燃機関、202…点火プラグ、223…燃料タンク、311…給油口、224…燃料センサ、206…吸気管、208…吸気弁、209…排気弁、210…排気管、221…空燃比センサ、50…通電加熱式触媒、532…正電極、533…負電極、52…通電触媒担体、54…絶縁材、55…導電材、56…導電材、57…通電触媒担体 DESCRIPTION OF SYMBOLS 30 ... Control apparatus, 40 ... Internal combustion engine, 202 ... Spark plug, 223 ... Fuel tank, 311 ... Refueling port, 224 ... Fuel sensor, 206 ... Intake pipe, 208 ... Intake valve, 209 ... Exhaust valve, 210 ... Exhaust pipe, 221 ... Air-fuel ratio sensor, 50 ... Electric heating catalyst, 532 ... Positive electrode, 533 ... Negative electrode, 52 ... Electric catalyst carrier, 54 ... Insulating material, 55 ... Conductive material, 56 ... Conductive material, 57 ... Electric catalyst carrier

Claims (5)

排気ガスの浄化用触媒をジュール熱によって加熱する通電加熱式触媒装置であって、
当該通電加熱式触媒装置の所定位置に設置された正電極及び負電極と、
前記正電極及び前記負電極を電気的に接続するとともに、温度が上昇すると抵抗値が連続的に減少するNTC特性を有する触媒担体と、
前記触媒担体を絶縁部材により区画し、該区画された電流経路の少なくとも一部を導電部材により直列に接続することで、該絶縁部材により区画されていない場合に比べて前記触媒担体を流れる電流の電流経路を長くする区画手段と
を備えることを特徴とする通電加熱式触媒装置。
An electrically heated catalyst device for heating an exhaust gas purification catalyst by Joule heat,
A positive electrode and a negative electrode installed at predetermined positions of the electric heating catalyst device;
A catalyst carrier having an NTC characteristic in which the positive electrode and the negative electrode are electrically connected and the resistance value continuously decreases as the temperature rises;
The catalyst carrier is partitioned by an insulating member, and at least a part of the partitioned current path is connected in series by a conductive member, so that the current flowing through the catalyst carrier can be compared with a case where the catalyst carrier is not partitioned by the insulating member. And a partition means for lengthening the current path.
前記触媒担体は、当該通電加熱式触媒装置における排気ガスの通路でもあり、
前記区画手段は、該排気ガスの通路の断面が前記絶縁部材により複数に区画され、かつ、前記絶縁部材が前記排気ガスの通路に沿って延在するように、前記触媒担体を区画する
ことを特徴とする請求項1に記載の通電加熱式触媒装置。
The catalyst carrier is also an exhaust gas passage in the energization heating type catalyst device,
The partition means partitions the catalyst carrier so that a cross section of the exhaust gas passage is partitioned into a plurality of sections by the insulating member, and the insulating member extends along the exhaust gas passage. The electrically heated catalyst device according to claim 1, wherein the device is an electrically heated catalyst device.
前記区画手段は、前記排気ガスの通路の断面において中央寄りに位置する区画の断面積の方が外周寄りのそれと比べて大きくなるように、前記触媒担体を区画する
ことを特徴とする請求項2に記載の通電加熱式触媒装置。
The partition means partitions the catalyst carrier so that a cross-sectional area of a section located closer to the center in the cross section of the exhaust gas passage is larger than that of a section closer to the outer periphery. The electrically heated catalyst device according to 1.
前記区画手段は、前記排気ガスの通路の断面において中央寄りに位置する少なくとも2つの区画は並列に接続するように、前記触媒担体を区画する
ことを特徴とする請求項2に記載の通電加熱式触媒装置。
3. The energization heating type according to claim 2, wherein the partitioning unit partitions the catalyst carrier so that at least two partitions located near the center in the cross section of the passage of the exhaust gas are connected in parallel. Catalytic device.
前記触媒担体は、前記排気ガスの通路の断面において中央寄りに位置する区画の抵抗値の方が外周寄りのそれと比べて小さくなるように構成されている
ことを特徴とする請求項2に記載の通電加熱式触媒装置。
The said catalyst carrier is comprised so that the resistance value of the division located near the center in the cross section of the passage of the said exhaust gas may become small compared with that near the outer periphery. Electric heating type catalytic device.
JP2007258734A 2007-10-02 2007-10-02 Electrically heating type catalyst apparatus Pending JP2009082873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007258734A JP2009082873A (en) 2007-10-02 2007-10-02 Electrically heating type catalyst apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007258734A JP2009082873A (en) 2007-10-02 2007-10-02 Electrically heating type catalyst apparatus

Publications (1)

Publication Number Publication Date
JP2009082873A true JP2009082873A (en) 2009-04-23

Family

ID=40657044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007258734A Pending JP2009082873A (en) 2007-10-02 2007-10-02 Electrically heating type catalyst apparatus

Country Status (1)

Country Link
JP (1) JP2009082873A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111176A1 (en) 2010-03-10 2011-09-15 トヨタ自動車株式会社 Vehicle and method for electrifying catalyst device
CN103068470A (en) * 2010-09-10 2013-04-24 丰田自动车株式会社 Electrically heated catalyst
CN116371402A (en) * 2023-04-19 2023-07-04 中国石油大学(北京) In-situ electrothermal catalytic reaction system based on carbon-based catalyst, and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111176A1 (en) 2010-03-10 2011-09-15 トヨタ自動車株式会社 Vehicle and method for electrifying catalyst device
US8660730B2 (en) 2010-03-10 2014-02-25 Toyota Jidosha Kabushiki Kaisha Vehicle and method for energizing catalyst device
CN103068470A (en) * 2010-09-10 2013-04-24 丰田自动车株式会社 Electrically heated catalyst
CN116371402A (en) * 2023-04-19 2023-07-04 中国石油大学(北京) In-situ electrothermal catalytic reaction system based on carbon-based catalyst, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
CN111441851B (en) Abnormality detection device for electrically heated catalyst
JP6233035B2 (en) Internal combustion engine
CN111441850B (en) Abnormality detection device for electrically heated catalyst
KR20090118824A (en) Plasma processing device
CN111441848B (en) Abnormality detection device for electrically heated catalyst
US10300435B2 (en) Ammonia generation apparatus and ammonia generation control apparatus
JPWO2012104894A1 (en) Exhaust gas heating burner device
JP6529280B2 (en) Exhaust gas temperature control device and exhaust gas temperature control device
JP2009189921A (en) Current flow control system for use in catalyst device heated by current flow
JP6553405B2 (en) Ammonia generation controller
KR101762535B1 (en) Exhaust gas treatment apparatus and exhaust gas treatment method for internal combustion engine
JP2009082873A (en) Electrically heating type catalyst apparatus
JP2012082708A (en) Exhaust gas control apparatus, and internal combustion engine
JP5206884B2 (en) Internal combustion engine
JPWO2012066606A1 (en) Exhaust gas purification device for internal combustion engine
US10077704B2 (en) Catalytic converter
JP2013185499A (en) Abnormality determination system for energization and heating type catalyst apparatus
US10920634B2 (en) Exhaust after treatment system
JP6069698B2 (en) Engine control apparatus and control method
JP2010209699A (en) Exhaust emission control device
JP6468877B2 (en) Heat storage body arranged in an exhaust pipe of an internal combustion engine, control device for the heat storage body, and control method for the heat storage body
JP5206885B2 (en) Internal combustion engine
JP6244982B2 (en) Gas reformer and reducing agent addition device
JP2007309251A (en) Exhaust emission control device for internal combustion engine
JP6957283B2 (en) Engine system