JP2009081039A - Nickel-hydrogen secondary battery - Google Patents

Nickel-hydrogen secondary battery Download PDF

Info

Publication number
JP2009081039A
JP2009081039A JP2007249198A JP2007249198A JP2009081039A JP 2009081039 A JP2009081039 A JP 2009081039A JP 2007249198 A JP2007249198 A JP 2007249198A JP 2007249198 A JP2007249198 A JP 2007249198A JP 2009081039 A JP2009081039 A JP 2009081039A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
oxide particles
nickel
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007249198A
Other languages
Japanese (ja)
Inventor
Takeshi Ito
武 伊藤
Takayuki Yano
尊之 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007249198A priority Critical patent/JP2009081039A/en
Publication of JP2009081039A publication Critical patent/JP2009081039A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nickel-hydrogen secondary battery excellent in continuous charging characteristics under high temperature, and excellent in discharge performance under very low temperature, in addition to excellent charging efficiency under high temperature. <P>SOLUTION: The nickel-hydrogen secondary battery is provided with a positive electrode (3), a negative electrode (4) and alkaline electrolyte solution in an outer package can (1). The negative electrode (4) contains negative electrode active material particles (20) containing hydrogen storage alloy, and negative electrode-use oxide particles (21) containing at least a kind of additive element selected from a group consisting of Y, Yb, Tm, Er, Gd and Lu, and carbon, the positive electrode (3) contains positive electrode active material particles (14) containing nickel hydroxide or high-order nickel hydroxide, and positive electrode-use oxide particles (15) containing at least the same kind of additive element as the one contained in the negative electrode-use oxide particles (21), with a mass concentration of carbon in the negative electrode-use oxide particles (21) larger than that in the positive electrode-use oxide particles (15). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はニッケル水素二次電池に関する。   The present invention relates to a nickel metal hydride secondary battery.

ニッケル水素二次電池は、種々の用途に用いられており、例えば、電子・電気機器や電動工具のバッテリに用いられている。
ニッケル水素二次電池は、容器内に収容された正極、負極、及びアルカリ電解液を有する。正極は、水酸化ニッケル若しくは高次水酸化ニッケルの粒子を正極活物質として含み、負極は、負極活物質としての水素を吸蔵・放出可能な水素吸蔵合金の粒子を含む。
Nickel metal hydride secondary batteries are used for various applications, for example, batteries for electronic / electrical equipment and electric tools.
A nickel metal hydride secondary battery has a positive electrode, a negative electrode, and an alkaline electrolyte housed in a container. The positive electrode includes particles of nickel hydroxide or higher-order nickel hydroxide as a positive electrode active material, and the negative electrode includes particles of a hydrogen storage alloy capable of occluding and releasing hydrogen as the negative electrode active material.

そして正極には、酸素過電圧の低下を抑制して高温下での充電効率を向上すべく、希土類酸化物の粉末を添加することが知られている(例えば特許文献1参照)。また負極には、水素吸蔵合金粒子の耐食性を高めてサイクル特性を向上すべく、希土類酸化物の粉末を添加することが知られている(例えば特許文献2参照)。
特開2001−185137号公報 特開2000−285915号公報
It is known that rare earth oxide powder is added to the positive electrode in order to suppress a decrease in oxygen overvoltage and improve charging efficiency at high temperatures (see, for example, Patent Document 1). In addition, it is known that rare earth oxide powder is added to the negative electrode in order to improve the corrosion resistance of the hydrogen storage alloy particles and improve the cycle characteristics (see, for example, Patent Document 2).
JP 2001-185137 A JP 2000-285915 A

ところで近年、環境意識の高まりから、鉛蓄電池からニッケル水素二次電池への需要のシフトが進行している。具体的には、ニッケル水素二次電池がバックアップ用途や防災関連用途にも使用されている。
バックアップ用途や防災関連用途への適用に伴い、従来のニッケル水素二次電池には、長期信頼性、とりわけ高温下での良好な連続充電特性が確保されていることのみならず、極低温下での放電性能の向上が求められている。
By the way, in recent years, a shift in demand from lead-acid batteries to nickel-metal hydride secondary batteries has progressed due to an increase in environmental awareness. Specifically, nickel metal hydride secondary batteries are also used for backup applications and disaster prevention related applications.
With application to backup and disaster prevention related applications, conventional nickel metal hydride secondary batteries not only have long-term reliability, especially good continuous charging characteristics at high temperatures, but also at extremely low temperatures. There is a need for improved discharge performance.

本発明は上述の事情に基づいてなされたもので、その目的とするところは、高温下での良好な充電効率及び高温下での良好な連続充電特性が確保されるとともに、極低温下での放電性能に優れたニッケル水素二次電池を提供することにある。   The present invention has been made based on the above-mentioned circumstances, and the object thereof is to ensure good charging efficiency at high temperatures and good continuous charging characteristics at high temperatures, and at extremely low temperatures. The object is to provide a nickel metal hydride secondary battery having excellent discharge performance.

上記の目的を達成すべく、本発明者らは種々の検討を重ね、正極及び負極に添加される酸化物粒子における炭素濃度が極低温下での放電性能に影響を与えることを見出し、本発明に想到した。
すなわち、本発明によれば、容器内に正極、負極及びアルカリ電解液を備えるニッケル水素二次電池において、前記負極は、水素吸蔵合金を含有する負極活物質粒子と、Y、Yb、Tm、Er、Gd及びLuよりなる群から選択された少なくとも1種の添加元素及び炭素を含有する負極用酸化物粒子とを含み、前記正極は、水酸化ニッケル若しくは高次水酸化ニッケルを含有する正極活物質粒子と、前記負極用酸化物粒子が含有する前記添加元素と同じ種類の添加元素を少なくとも含有する正極用酸化物粒子とを含み、前記負極用酸化物粒子における炭素の質量濃度は、前記正極用酸化物粒子における炭素の質量濃度よりも大であることを特徴とするニッケル水素二次電池が提供される(請求項1)。
In order to achieve the above object, the present inventors have made various studies and found that the carbon concentration in the oxide particles added to the positive electrode and the negative electrode affects the discharge performance at extremely low temperatures. I came up with it.
That is, according to the present invention, in a nickel metal hydride secondary battery including a positive electrode, a negative electrode, and an alkaline electrolyte in a container, the negative electrode includes negative electrode active material particles containing a hydrogen storage alloy, Y, Yb, Tm, Er. Cathode active material containing at least one additive element selected from the group consisting of Gd and Lu and oxide particles for negative electrode containing carbon, wherein the positive electrode contains nickel hydroxide or higher-order nickel hydroxide Particles and positive electrode oxide particles containing at least the same type of additive element as the negative electrode oxide particles, and the mass concentration of carbon in the negative electrode oxide particles is A nickel-metal hydride secondary battery characterized by having a mass concentration higher than that of carbon in oxide particles is provided.

好ましくは、前記正極用酸化物粒子及び負極用酸化物粒子は、前記添加元素としてYを含有する(請求項2)。   Preferably, the positive electrode oxide particles and the negative electrode oxide particles contain Y as the additional element (Claim 2).

本発明の請求項1のニッケル水素二次電池では、負極用酸化物粒子における炭素の質量濃度が、正極用酸化物粒子における炭素の質量濃度よりも大である。この結果として、このニッケル水素二次電池は、高温下での良好な充電効率及び高温下での良好な連続充電特性が確保されるとともに、極低温下での放電率において優れている。それ故、このニッケル水素二次電池は、バックアップ用途や防災関連用途に好適する。   In the nickel metal hydride secondary battery according to claim 1 of the present invention, the mass concentration of carbon in the oxide particles for negative electrode is larger than the mass concentration of carbon in the oxide particles for positive electrode. As a result, this nickel metal hydride secondary battery has excellent charge efficiency at high temperatures and good continuous charge characteristics at high temperatures, and is excellent in discharge rate at extremely low temperatures. Therefore, this nickel metal hydride secondary battery is suitable for backup applications and disaster prevention related applications.

請求項2のニッケル水素二次電池は、正極用酸化物粒子及び負極用酸化物粒子がYを含むことにより、高温下での連続充電特性及び極低温下での放電率において、一層優れている。   The nickel metal hydride secondary battery according to claim 2 is further excellent in continuous charge characteristics at a high temperature and discharge rate at a very low temperature because the oxide particles for positive electrode and the oxide particles for negative electrode contain Y. .

図1は、本発明の一実施形態に係るニッケル水素二次電池を示す。
ニッケル水素二次電池は、有底円筒形状の外装缶1を容器として備え、外装缶1の中に電極群2が収容されている。電極群2は、正極3及び負極4を、セパレータ5を介して渦巻状に巻回してなり、電極群2の最外周には、その渦巻き方向でみて負極4の外端側の部位が配置され、負極4が外装缶1の内周壁と電気的に接続されている。また、外装缶1の中には、図示しないアルカリ電解液が収容され、アルカリ電解液としては、例えば水酸化カリウム水溶液と、水酸化ナトリウム水溶液や水酸化リチウム水溶液などとを混合したものを用いることができる。
FIG. 1 shows a nickel metal hydride secondary battery according to an embodiment of the present invention.
The nickel metal hydride secondary battery includes a bottomed cylindrical outer can 1 as a container, and an electrode group 2 is accommodated in the outer can 1. The electrode group 2 is formed by winding a positive electrode 3 and a negative electrode 4 in a spiral shape with a separator 5 interposed therebetween, and a portion on the outer end side of the negative electrode 4 is disposed on the outermost periphery of the electrode group 2 when viewed in the spiral direction. The negative electrode 4 is electrically connected to the inner peripheral wall of the outer can 1. The outer can 1 contains an alkaline electrolyte (not shown). As the alkaline electrolyte, for example, a mixture of a potassium hydroxide aqueous solution and a sodium hydroxide aqueous solution or a lithium hydroxide aqueous solution is used. Can do.

外装缶1の開口内には、リング状の絶縁性ガスケット6を介して、中央にガス抜き孔7を有する円形の蓋板8が配置されている。これら絶縁性ガスケット6及び蓋板8は、かしめ加工された外装缶1の開口縁によって固定されている。電極群2の正極3と蓋板8の内面との間には、これらの間を電気的に接続する正極リード9が配置されている。一方、蓋板8の外面には、ガス抜き孔7を閉塞するようにゴム製の弁体10が配置され、更に、弁体10を囲むようにフランジ付きの円筒形状の正極端子11が取り付けられている。   A circular lid plate 8 having a gas vent hole 7 in the center is disposed in the opening of the outer can 1 via a ring-shaped insulating gasket 6. The insulating gasket 6 and the cover plate 8 are fixed by the opening edge of the caulked outer can 1. Between the positive electrode 3 of the electrode group 2 and the inner surface of the cover plate 8, a positive electrode lead 9 that electrically connects them is disposed. On the other hand, a rubber valve body 10 is disposed on the outer surface of the cover plate 8 so as to close the gas vent hole 7, and a cylindrical positive electrode terminal 11 with a flange is attached so as to surround the valve body 10. ing.

また、外装缶1の開口縁上には環状の絶縁板12が配置され、正極端子11は絶縁板12を貫通して突出している。符号13は、外装チューブに付されており、外装チューブ13は絶縁板12の周縁、外装缶1の外周面及び底壁周縁を被覆している。
電極群2中の正極3は、例えば非焼結式ニッケル電極であり、導電性の正極基板と、正極基板に保持された正極合剤とからなる。正極基板としては、例えば、ニッケルめっきが施された網状、スポンジ状、繊維状、フエルト状の金属多孔体を用いることができる。
An annular insulating plate 12 is disposed on the opening edge of the outer can 1, and the positive terminal 11 projects through the insulating plate 12. Reference numeral 13 is attached to the outer tube, and the outer tube 13 covers the periphery of the insulating plate 12, the outer peripheral surface of the outer can 1 and the periphery of the bottom wall.
The positive electrode 3 in the electrode group 2 is, for example, a non-sintered nickel electrode, and includes a conductive positive electrode substrate and a positive electrode mixture held on the positive electrode substrate. As the positive electrode substrate, for example, a net-like, sponge-like, fiber-like, or felt-like metal porous body plated with nickel can be used.

正極合剤は、図1の一方の円内に概略的に示したように、主成分としての正極活物質粒子14、正極用酸化物粒子15及び結着剤16を少なくとも含み、正極活物質粒子14及び正極用酸化物粒子15は、結着剤16によって正極基板に固定されている。
結着剤16としては、例えば、カルボキシメチルセルロース、メチルセルロース、PTFEディスパージョン、HPCディスパージョンなどを用いることができる。
As schematically shown in one circle of FIG. 1, the positive electrode mixture includes at least positive electrode active material particles 14, positive electrode oxide particles 15 and a binder 16 as main components, and positive electrode active material particles 14 and the positive electrode oxide particles 15 are fixed to the positive electrode substrate by a binder 16.
As the binder 16, for example, carboxymethylcellulose, methylcellulose, PTFE dispersion, HPC dispersion and the like can be used.

正極活物質粒子14は必須の主成分として水酸化ニッケル系化合物を含む。水酸化ニッケル系化合物としては、水酸化ニッケル、ニッケルの平均価数が2価よりも大の水酸化ニッケル(高次水酸化ニッケル)、又は水酸化ニッケルと高次水酸化ニッケルの混合物を用いることができる。また、正極活物質粒子14は、任意の添加成分として、例えば亜鉛やコバルトを含んでいてもよく、水酸化ニッケル系化合物と、亜鉛やコバルトとは、固溶体を形成していてもよい。   The positive electrode active material particles 14 contain a nickel hydroxide compound as an essential main component. As nickel hydroxide compounds, use nickel hydroxide, nickel hydroxide whose nickel average valence is higher than divalent (higher order nickel hydroxide), or a mixture of nickel hydroxide and higher order nickel hydroxide. Can do. In addition, the positive electrode active material particles 14 may contain, for example, zinc or cobalt as an optional additive component, and the nickel hydroxide compound and zinc or cobalt may form a solid solution.

なお、水酸化ニッケル系化合物は、電池反応によって変化し、電池が放電状態にあるときに水酸化ニッケル又は高次水酸化ニッケルの状態となる。
正極活物質粒子14の表面の少なくとも一部若しくは全部は、好ましくは、被覆層17で覆われ、被覆層17は、コバルト化合物を主成分としている。そして、コバルト化合物は、乱れた結晶構造を有し且つコバルトの平均価数が2価以上であるのが好ましい。
The nickel hydroxide-based compound changes depending on the battery reaction, and becomes nickel hydroxide or higher-order nickel hydroxide when the battery is in a discharged state.
At least a part or all of the surface of the positive electrode active material particles 14 is preferably covered with a coating layer 17, and the coating layer 17 is mainly composed of a cobalt compound. The cobalt compound preferably has a disordered crystal structure and the average valence of cobalt is 2 or more.

上述した正極3は、例えば、正極活物質粒子14の粉末、正極用酸化物粒子15の粉末、結着剤16、及び純水を混練して正極用スラリを調製し、この正極用スラリが塗着・充填されたスラリ付きの正極基板を、スラリの乾燥を経てから圧延・裁断することにより作製可能である。
電極群2中の負極4は(水素吸蔵合金電極)は、導電性の負極基板と、負極基板に保持された負極合剤とからなり、負極基板としては、例えば、パンチングメタルを用いることができる。
In the positive electrode 3 described above, for example, a positive electrode slurry is prepared by kneading the powder of the positive electrode active material particles 14, the powder of the oxide particles 15 for the positive electrode, the binder 16, and pure water. It is possible to produce a positive electrode substrate with a slurry that has been deposited and filled by rolling and cutting the slurry after drying the slurry.
The negative electrode 4 (hydrogen storage alloy electrode) in the electrode group 2 is composed of a conductive negative electrode substrate and a negative electrode mixture held on the negative electrode substrate. As the negative electrode substrate, for example, punching metal can be used. .

負極合剤は、図1の他方の円内に概略的に示したように、水素吸蔵合金粒子20、負極用酸化物粒子21及び結着剤22を少なくとも含み、必要に応じて導電剤を更に含む。なお、水素吸蔵合金は負極活物質である水素を吸蔵・放出可能であるため、本明細書では、水素吸蔵合金粒子20のことを負極活物質粒子ともいう。
水素吸蔵合金粒子20としては、例えば、結晶構造がAB型のものや、AB型とAB型とを合わせたような超格子型のものを用いることができる。結着剤22としては、例えば、カルボキシメチルセルロース、メチルセルロース、PTFEディスパージョン、HPC、ポリアクリル酸ナトリウムなどを単独若しくは混合して用いることができる。また、導電剤としては、例えばカーボン粉末などを用いることができる。
As schematically shown in the other circle of FIG. 1, the negative electrode mixture includes at least hydrogen storage alloy particles 20, negative electrode oxide particles 21, and a binder 22, and a conductive agent as necessary. Including. Since the hydrogen storage alloy can store and release hydrogen, which is a negative electrode active material, in this specification, the hydrogen storage alloy particles 20 are also referred to as negative electrode active material particles.
As the hydrogen storage alloy particles 20, for example, it can be the crystal structure used or intended type 5 AB, those superlattice as a combination of the 5 type and AB 2 type AB. As the binder 22, for example, carboxymethyl cellulose, methyl cellulose, PTFE dispersion, HPC, sodium polyacrylate and the like can be used alone or in combination. In addition, as the conductive agent, for example, carbon powder can be used.

上述した負極4は、水素吸蔵合金粒子20の粉末、負極用酸化物粒子21の粉末、結着剤22、純水、及び必要に応じて配合される導電剤から成る負極用スラリを調整し、負極スラリが塗着された負極基板を、乾燥を経てから圧延・裁断して作製することができる。
ここで、負極4の負極用酸化物粒子21は、Y(イットリウム)、Yb(イッテルビウム)、Tm(ツリウム)、Er(エルビウム)、Gd(ガドリニウム)及びLu(ルテチウム)よりなる群から選択された少なくとも1種の添加元素を主成分として含むとともに、炭素を不純物として含有する酸化物である。例えば、負極用酸化物粒子21における炭素の質量濃度は、0.05wt.%超0.4wt.%以下の範囲にある。
The negative electrode 4 described above adjusts a slurry for negative electrode comprising a powder of hydrogen storage alloy particles 20, a powder of oxide particles 21 for negative electrode, a binder 22, pure water, and a conductive agent blended as necessary. The negative electrode substrate coated with the negative electrode slurry can be produced by rolling and cutting after drying.
Here, the negative electrode oxide particles 21 of the negative electrode 4 were selected from the group consisting of Y (yttrium), Yb (ytterbium), Tm (thulium), Er (erbium), Gd (gadolinium), and Lu (lutetium). An oxide containing at least one additive element as a main component and carbon as an impurity. For example, the mass concentration of carbon in the oxide particles 21 for negative electrode is in the range of more than 0.05 wt.% And not more than 0.4 wt.%.

一方、正極3の正極用酸化物粒子15は、負極用酸化物粒子21に含まれる添加元素と同一種類の添加元素を主成分として少なくとも含む酸化物である。すなわち、正極用酸化物粒子15も、Y(イットリウム)、Yb(イッテルビウム)、Tm(ツリウム)、Er(エルビウム)、Gd(ガドリニウム)及びLu(ルテチウム)よりなる群から選択された少なくとも1種の添加元素を含むが、正極用酸化物粒子15及び負極用酸化物粒子21は、同一種類の添加元素を含む。好ましくは、正極用酸化物粒子15及び負極用酸化物粒子21は、添加元素としてYを含む。   On the other hand, the positive electrode oxide particles 15 of the positive electrode 3 are oxides containing at least an additive element of the same type as the additive element contained in the negative electrode oxide particles 21 as a main component. That is, the positive electrode oxide particles 15 are also at least one selected from the group consisting of Y (yttrium), Yb (ytterbium), Tm (thulium), Er (erbium), Gd (gadolinium), and Lu (lutetium). Although the additive element is included, the positive electrode oxide particle 15 and the negative electrode oxide particle 21 include the same type of additive element. Preferably, the positive electrode oxide particles 15 and the negative electrode oxide particles 21 contain Y as an additive element.

そして、正極用酸化物粒子15は、添加元素の他に不純物として炭素を含有していてもよいが、負極用酸化物粒子21における炭素の質量濃度が、平均して、正極用酸化物粒子15における炭素の質量濃度よりも大きくなるよう、正極用酸化物粒子15における炭素の質量濃度は制限される。例えば、正極用酸化物粒子15における炭素の質量濃度は、0.05wt.%以上0.4wt.%未満の範囲にある。   The positive electrode oxide particles 15 may contain carbon as an impurity in addition to the additive element, but the average mass of carbon in the negative electrode oxide particles 21 is The mass concentration of carbon in the positive electrode oxide particles 15 is limited to be larger than the mass concentration of carbon in. For example, the mass concentration of carbon in the positive electrode oxide particles 15 is in the range of 0.05 wt.% Or more and less than 0.4 wt.

正極用酸化物粒子15及び負極用酸化物粒子21における炭素の質量濃度は、例えば、反応中間体である希土類−有機酸化合物を焼成し希土類酸化物を得る際に、任意の温度、任意の時間焼成することで調整することができる。正極用酸化物粒子15及び負極用酸化物粒子21における炭素の質量濃度は、湿式分析によって確認することができる。
なお、正極用酸化物粒子15及び負極用酸化物粒子21の平均粒径は、例えば1μm〜5μmの範囲にある。また、正極3に含まれる正極用酸化物粒子15の量は、100質量部の正極活物質粒子14に対し、例えば、0.1質量部〜2.0質量部の範囲にある。一方、負極4に含まれる負極用酸化物粒子21の量は、100質量部の負極活物質粒子20に対し、例えば、0.1質量部〜2.0質量部の範囲にある。
The mass concentration of carbon in the positive electrode oxide particles 15 and the negative electrode oxide particles 21 is, for example, arbitrary temperature and arbitrary time when a rare earth-organic acid compound as a reaction intermediate is fired to obtain a rare earth oxide. It can be adjusted by firing. The mass concentration of carbon in the positive electrode oxide particles 15 and the negative electrode oxide particles 21 can be confirmed by wet analysis.
The average particle diameter of the positive electrode oxide particles 15 and the negative electrode oxide particles 21 is, for example, in the range of 1 μm to 5 μm. The amount of the positive electrode oxide particles 15 contained in the positive electrode 3 is, for example, in the range of 0.1 parts by mass to 2.0 parts by mass with respect to 100 parts by mass of the positive electrode active material particles 14. On the other hand, the amount of the negative electrode oxide particles 21 contained in the negative electrode 4 is, for example, in the range of 0.1 parts by mass to 2.0 parts by mass with respect to 100 parts by mass of the negative electrode active material particles 20.

上述したニッケル水素二次電池では、負極用酸化物粒子21における炭素の質量濃度が、正極用酸化物粒子15における炭素の質量濃度よりも大である。この結果として、このニッケル水素二次電池は、高温下での良好な充電効率及び高温下での良好な連続充電特性が確保されるとともに、極低温下での放電性能において優れている。
特に、正極用酸化物粒子15及び負極用酸化物粒子21が添加元素としてYを含むニッケル水素二次電池は、高温下での連続充電特性及び極低温下での放電率において、一層優れている。
In the nickel hydride secondary battery described above, the mass concentration of carbon in the anode oxide particles 21 is larger than the mass concentration of carbon in the anode oxide particles 15. As a result, this nickel metal hydride secondary battery has excellent charge efficiency at high temperatures and good continuous charge characteristics at high temperatures, and is excellent in discharge performance at extremely low temperatures.
In particular, the nickel metal hydride secondary battery in which the positive electrode oxide particles 15 and the negative electrode oxide particles 21 contain Y as an additive element is more excellent in continuous charge characteristics at high temperatures and discharge rates at extremely low temperatures. .

1.酸化物粒子の作製
Y、Yb、Tm、Er、Gd及びLuの有機酸化合物を原材料として、任意の温度で任意の時間、それら有機酸化合物を焼成することにより、Y、Yb、Tm、Er、Gd及びLuの酸化物をそれぞれ生成した。得られた酸化物は、Y、Yb、Tm、Er、Gd及びLuをそれぞれ主成分として含有するとともに、不純物としての炭素を含有する。酸化物における炭素の質量濃度は、焼成温度、焼成時間を調整することにより、0.4、0.2又は0.05wt.%に調整した。
1. Production of Oxide Particles Using organic acid compounds of Y, Yb, Tm, Er, Gd, and Lu as raw materials, by firing these organic acid compounds at an arbitrary temperature for an arbitrary time, Y, Yb, Tm, Er, Gd and Lu oxides were produced, respectively. The obtained oxide contains Y 2 O 3 , Yb 2 O 3 , Tm 2 O 3 , Er 2 O 3 , Gd 2 O 3 and Lu 2 O 3 as main components, and contains carbon as an impurity. contains. The mass concentration of carbon in the oxide was adjusted to 0.4, 0.2, or 0.05 wt.% By adjusting the firing temperature and firing time.

2.正極の作製
生成した酸化物粒子と、結晶構造が乱され且つコバルトの平均価数が2価以上のコバルト化合物の被覆層が表面に形成された水酸化ニッケルの正極活物質粒子と、結着剤としてのPTFEディスパージョンと、純水とを、正極活物質粒子中の水酸化ニッケル100質量部に対し酸化物粒子1質量部、PTFEディスパージョン(比重1.5、固形分60質量%)1質量部(固形分換算)、純水30質量部の割合にて混練し、正極用スラリを調製した。正極基板としてのニッケル多孔体(多孔度95、平均孔径300μm)に、得られた正極スラリを所定の充填量にて充填したものを、正極スラリの乾燥後、所定厚みに圧延してから所定寸法に切断し、非焼結式正極を作製した。
2. Production of positive electrode Oxide particles produced, positive electrode active material particles of nickel hydroxide having a disordered crystal structure and a coating layer of a cobalt compound having an average cobalt valence of 2 or more, and a binder, and a binder PTFE dispersion and pure water as 1 part by weight of oxide particles, 100 parts by weight of nickel hydroxide in the positive electrode active material particles, 1 part by weight of PTFE dispersion (specific gravity 1.5, solid content 60% by weight) Solid content) and kneaded at a ratio of 30 parts by mass of pure water to prepare a positive electrode slurry. A nickel porous body (porosity 95, average pore diameter 300 μm) as a positive electrode substrate filled with the obtained positive electrode slurry with a predetermined filling amount, dried to a predetermined thickness after drying the positive electrode slurry, and then with predetermined dimensions A non-sintered positive electrode was produced.

3.負極の作製
生成した酸化物粒子と、水素吸蔵合金粒子と、結着剤としてのポリアクリル酸ナトリウム、カルボキシメチルセルロース及びPTFEディスパージョンと、純水とを、水素吸蔵合金粒子100質量部に対し、酸化物粒子1質量部、ポリアクリル酸ナトリウム0.5質量部、カルボキシメチルセルロース0.12質量部、PTFEディスバージョン(比重1.5、固形分60質量%)1.0質量部(固形分換算)、カーボンブラック1.0質量部、及び、純水30質量部の割合にて混練して負極用スラリを調製した。調製した負極用スラリを塗着したパンチングメタルを、負極用スラリの乾燥を経てからロール圧延・裁断して、負極を作製した。
3. Production of negative electrode Oxidized oxide particles, hydrogen storage alloy particles, sodium polyacrylate, carboxymethylcellulose and PTFE dispersion as binder, and pure water were oxidized to 100 parts by mass of hydrogen storage alloy particles. 1 part by weight of particles, 0.5 part by weight of sodium polyacrylate, 0.12 part by weight of carboxymethyl cellulose, 1.0 part by weight of PTFE disperse (specific gravity 1.5, solid content 60% by weight), 1.0 part by weight of carbon black, and A slurry for negative electrode was prepared by kneading at a ratio of 30 parts by mass of pure water. The punched metal coated with the prepared negative electrode slurry was roll-rolled and cut after the negative electrode slurry was dried to prepare a negative electrode.

4.ニッケル水素二次電池の組立て
得られた正極と負極とを、ポリアミド系不織布からなるセパレータを介して渦巻状に巻回し、電極群を作製した。得られた電極群を外装缶内に収納して所定の取付工程を行った後、外装缶内に水酸化カリウム水溶液を主成分とする8Nのアルカリ電解液を注液した。そして、外装缶の開口を蓋板等を用いて封口し、公称容量が1200mAhでAAサイズの密閉円筒形ニッケル水素二次電池を組み立てた。
4). Assembling of the nickel metal hydride secondary battery The obtained positive electrode and negative electrode were spirally wound through a separator made of a polyamide non-woven fabric to produce an electrode group. The obtained electrode group was housed in an outer can and subjected to a predetermined attachment process, and then an 8N alkaline electrolyte mainly composed of an aqueous potassium hydroxide solution was injected into the outer can. Then, the opening of the outer can was sealed with a cover plate or the like, and an AA-sized sealed cylindrical nickel-metal hydride secondary battery with a nominal capacity of 1200 mAh was assembled.

このとき正極に用いる酸化物粒子(正極用酸化物粒子)と負極に用いる酸化物粒子(負極用酸化物粒子)を変更することによって、実施例1〜8及び比較例1〜18のニッケル水素二次電池を組み立てた。実施例1〜8及び比較例1〜18における正極用酸化物粒子及び負極用酸化物粒子の種類及びそれらにおける炭素濃度は、表1に示した通りである。また、表1には、正極用酸化物粒子における炭素濃度をAとし、負極用酸化物粒子における炭素濃度をBとしたときに、後者に対する前者の比A/Bを炭素の質量濃度比として示した。   At this time, by changing the oxide particles used for the positive electrode (positive oxide particles for positive electrode) and the oxide particles used for the negative electrode (oxide particles for negative electrode), the nickel hydrogen hydrides of Examples 1 to 8 and Comparative Examples 1 to 18 were used. The next battery was assembled. The types of the positive electrode oxide particles and the negative electrode oxide particles in Examples 1 to 8 and Comparative Examples 1 to 18 and the carbon concentration thereof are as shown in Table 1. Table 1 also shows the former ratio A / B as the carbon mass concentration ratio, where A is the carbon concentration in the positive electrode oxide particles and B is the carbon concentration in the negative electrode oxide particles. It was.

なお、比較例12では、正極及び負極に酸化物粒子を使用しなかった。そして、比較例13〜18では、正極及び負極のうち一方のみに酸化物粒子を使用した。
5.電池の特性評価
作製された実施例1〜8及び比較例1〜18の各ニッケル水素二次電池について以下の評価を行った。
In Comparative Example 12, oxide particles were not used for the positive electrode and the negative electrode. In Comparative Examples 13 to 18, oxide particles were used for only one of the positive electrode and the negative electrode.
5). Battery characteristic evaluation The following evaluation was performed about each produced nickel hydride secondary battery of Examples 1-8 and Comparative Examples 1-18.

(1)高温充電試験
各電池に、25℃の周囲温度にて、120mA(0.1It)の充電電流で16時間の充電を行った後、同じく25℃の周囲温度にて、1200mA(1It)の放電電流で放電終止電圧が1.0Vになるまで放電させ、このときの放電容量を測定した。それから、60℃の周囲温度にて、120mA(0.1It)の充電電流で16時間の充電を行った後、25℃の周囲温度にて、1200mA(1It)の放電電流で放電終止電圧が1.0Vになるまで放電させ、このときの放電容量を測定した。先の放電容量に対する後の放電容量の比率を、60℃充電効率として表1に示す。
(1) High-temperature charging test Each battery was charged at 120mA (0.1It) at an ambient temperature of 25 ℃ for 16 hours and then 1200mA (1It) at an ambient temperature of 25 ℃. A discharge current was discharged until the final discharge voltage reached 1.0 V, and the discharge capacity at this time was measured. Then, after charging for 16 hours at a charging current of 120mA (0.1It) at an ambient temperature of 60 ° C, the end-of-discharge voltage is 1.0V at a discharging current of 1200mA (1It) at an ambient temperature of 25 ° C. It was made to discharge until it became, and the discharge capacity at this time was measured. The ratio of the subsequent discharge capacity to the previous discharge capacity is shown in Table 1 as 60 ° C. charging efficiency.

(2)低温放電試験
各電池に、25℃の周囲温度にて、120mA(0.1It)の充電電流で16時間の充電を行った後、同じく25℃の周囲温度にて、1200mA(1It)の放電電流で放電終止電圧が1.0Vになるまで放電させ、このときの放電容量を測定した。それから、25℃の周囲温度にて、120mA(0.1It)の充電電流で16時間の充電を行った後、-30℃の周囲温度にて、1200mA(1It)の放電電流で放電終止電圧が1.0Vになるまで放電させ、このときの放電容量を測定した。先の放電容量に対する後の放電容量の比率を、-30℃放電率として表1に示す。
(2) Low temperature discharge test Each battery was charged at 120mA (0.1It) at an ambient temperature of 25 ℃ for 16 hours and then 1200mA (1It) at an ambient temperature of 25 ℃. A discharge current was discharged until the final discharge voltage reached 1.0 V, and the discharge capacity at this time was measured. Then, after charging for 16 hours at a charging current of 120mA (0.1It) at an ambient temperature of 25 ° C, the discharge end voltage is 1.0 at a discharging current of 1200mA (1It) at an ambient temperature of -30 ° C. The battery was discharged until V, and the discharge capacity at this time was measured. The ratio of the subsequent discharge capacity to the previous discharge capacity is shown in Table 1 as a -30 ° C discharge rate.

(3)連続充電耐久特性試験(JIS C 8705 JT)
各電池に、55℃の周囲温度にて、40mA(0.033It)の充電電流で28日間の充電を行った後、直ちに同じく55℃の周囲温度にて、1200mA(1It)の放電電流で放電終止電圧が1.1Vになるまで放電させる充放電サイクルを10サイクル行い、1サイクル目と10サイクル目に放電容量を測定した。表1に、1サイクル目及び10サイクル目の放電容量ととともに、1サイクル目の放電容量をXとし、10サイクル目の放電容量をYとしたときに、前者に対する後者の比Y/Xを容量維持率として示す。また、公称容量(1200mAh)に対する10サイクル目の放電容量Yの比も、公称容量比として表1に示す。
(3) Continuous charge durability characteristic test (JIS C 8705 JT)
Each battery was charged for 28 days at 55 ° C ambient temperature with 40mA (0.033It) charge current, then immediately discharged at 1200mA (1It) discharge current at 55 ° C ambient temperature. Ten charge / discharge cycles were performed until the voltage reached 1.1 V, and the discharge capacity was measured in the first and tenth cycles. In Table 1, when the discharge capacity of the first cycle is X and the discharge capacity of the 10th cycle is Y, together with the discharge capacity of the first cycle and the 10th cycle, the ratio Y / X of the latter to the former is the capacity. Shown as maintenance rate. The ratio of the discharge capacity Y at the 10th cycle to the nominal capacity (1200 mAh) is also shown in Table 1 as the nominal capacity ratio.

Figure 2009081039
Figure 2009081039

(4)試験結果
表1から次のことが明らかである。
(i)正極に正極用酸化物粒子を使用した実施例1〜8及び比較例1〜11、16〜18では、正極に正極用酸化物粒子を使用しなかった比較例12〜15に比べて、60℃充電効率が高かった。これより、実施例1〜8では、高温下での良好な充電効率が確保されていることがわかる。
(4) Test results From Table 1, the following is clear.
(I) In Examples 1 to 8 and Comparative Examples 1 to 11 and 16 to 18 in which the positive electrode oxide particles were used for the positive electrode, compared with Comparative Examples 12 to 15 in which the positive electrode oxide particles were not used for the positive electrode. The charging efficiency at 60 ℃ was high. From this, in Examples 1-8, it turns out that the favorable charging efficiency under high temperature is ensured.

(ii)炭素の質量濃度比A/Bが1よりも小の実施例1〜8は、比較例1〜8ほどではないものの、正極用酸化物粒子及び負極用酸化物粒子のうち一方又は両方を使用しなかった比較例12〜18と比較して、公称容量比において優れている。これより、実施例1〜8では、高温下での良好な連続充電特性が確保されていることがわかる。
(iii)炭素の質量濃度比A/Bが1よりも小の実施例1〜8では、炭素の質量濃度比A/Bが1以上の比較例1〜11に比べて、-30℃放電率が高い。これより、負極用酸化物粒子における炭素の質量濃度が正極用酸化物粒子における炭素の質量濃度よりも大であることによって、極低温下での放電性能が向上することがわかる。
(Ii) Examples 1 to 8 in which the mass concentration ratio A / B of carbon is less than 1 are not as large as those in Comparative Examples 1 to 8, but one or both of the positive electrode oxide particles and the negative electrode oxide particles. Compared with Comparative Examples 12 to 18 in which no is used, the nominal capacity ratio is excellent. From this, in Examples 1-8, it turns out that the favorable continuous charge characteristic under high temperature is ensured.
(Iii) In Examples 1 to 8 in which the mass concentration ratio A / B of carbon is smaller than 1, compared to Comparative Examples 1 to 11 in which the mass concentration ratio A / B of carbon is 1 or more, the discharge rate is −30 ° C. Is expensive. From this, it can be seen that the discharge performance at extremely low temperatures is improved when the mass concentration of carbon in the oxide particles for negative electrode is larger than the mass concentration of carbon in the oxide particles for positive electrode.

(iv)特に、正極用酸化物粒子及び負極用酸化物粒子の主成分がYである実施例1、7及び8では、他の実施例2〜6に比べて、容量維持率が高い。この点からも、正極用酸化物粒子及び負極用酸化物粒子が添加元素としてYを含むのが好ましいことがわかる。
本発明は上述した一実施形態及び実施例に限定されることはなく、種々変形が可能であり、例えば、電池は角形電池であってもよく、電池の機械的な構造は格別限定されることはない。
(Iv) In particular, in Examples 1, 7 and 8 in which the main component of the positive electrode oxide particles and the negative electrode oxide particles is Y 2 O 3 , the capacity retention ratio is higher than those of other Examples 2 to 6. high. Also from this point, it is understood that the positive electrode oxide particles and the negative electrode oxide particles preferably contain Y as an additive element.
The present invention is not limited to the above-described embodiment and examples, and various modifications are possible. For example, the battery may be a rectangular battery, and the mechanical structure of the battery is particularly limited. There is no.

本発明の一実施形態に係るニッケル水素二次電池を示す部分切欠斜視図であり、図中円内は正極及び負極のそれぞれ一部を拡大して概略的に示した断面図である。1 is a partially cutaway perspective view showing a nickel metal hydride secondary battery according to an embodiment of the present invention, and the inside of the circle is a cross-sectional view schematically showing an enlarged part of each of a positive electrode and a negative electrode.

符号の説明Explanation of symbols

1 外装缶(容器)
2 電極群
3 正極
4 負極
5 セパレータ
14 正極活物質粒子
15 正極用酸化物粒子
20 負極活物質粒子
21 負極用酸化物粒子
1 Exterior can (container)
2 Electrode group 3 Positive electrode 4 Negative electrode 5 Separator
14 Cathode active material particles
15 Oxide particles for positive electrode
20 Negative electrode active material particles
21 Negative electrode oxide particles

Claims (2)

容器内に正極、負極及びアルカリ電解液を備えるニッケル水素二次電池において、
前記負極は、
水素吸蔵合金を含有する負極活物質粒子と、
Y、Yb、Tm、Er、Gd及びLuよりなる群から選択された少なくとも1種の添加元素及び炭素を含有する負極用酸化物粒子とを含み、
前記正極は、
水酸化ニッケル若しくは高次水酸化ニッケルを含有する正極活物質粒子と、
前記負極用酸化物粒子が含有する前記添加元素と同じ種類の添加元素を少なくとも含有する正極用酸化物粒子とを含み、
前記負極用酸化物粒子における炭素の質量濃度は、前記正極用酸化物粒子における炭素の質量濃度よりも大である
ことを特徴とするニッケル水素二次電池。
In a nickel metal hydride secondary battery comprising a positive electrode, a negative electrode and an alkaline electrolyte in a container,
The negative electrode is
Negative electrode active material particles containing a hydrogen storage alloy;
Including at least one additive element selected from the group consisting of Y, Yb, Tm, Er, Gd, and Lu, and oxide particles for negative electrode containing carbon.
The positive electrode is
Positive electrode active material particles containing nickel hydroxide or higher order nickel hydroxide;
Including positive electrode oxide particles containing at least the same type of additive elements as the additive elements contained in the negative electrode oxide particles,
The nickel hydride secondary battery, wherein a mass concentration of carbon in the oxide particles for negative electrode is larger than a mass concentration of carbon in the oxide particles for positive electrode.
前記正極用酸化物粒子及び負極用酸化物粒子は、前記添加元素としてYを含有することを特徴とする請求項1に記載のニッケル水素二次電池。   The nickel-hydrogen secondary battery according to claim 1, wherein the positive electrode oxide particles and the negative electrode oxide particles contain Y as the additive element.
JP2007249198A 2007-09-26 2007-09-26 Nickel-hydrogen secondary battery Pending JP2009081039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007249198A JP2009081039A (en) 2007-09-26 2007-09-26 Nickel-hydrogen secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007249198A JP2009081039A (en) 2007-09-26 2007-09-26 Nickel-hydrogen secondary battery

Publications (1)

Publication Number Publication Date
JP2009081039A true JP2009081039A (en) 2009-04-16

Family

ID=40655632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007249198A Pending JP2009081039A (en) 2007-09-26 2007-09-26 Nickel-hydrogen secondary battery

Country Status (1)

Country Link
JP (1) JP2009081039A (en)

Similar Documents

Publication Publication Date Title
JP4873947B2 (en) Hydrogen storage alloy and alkaline secondary battery using the hydrogen storage alloy
JP4566025B2 (en) Alkaline storage battery
US20130323578A1 (en) Alkaline rechargeable battery
JP2009206004A (en) Anode for alkaline storage battery and alkaline storage battery
US9306215B2 (en) Nickel-metal hydride secondary cell and negative electrode therefor
JP2012134110A (en) Negative electrode for alkaline secondary battery, and alkaline secondary battery comprising the negative electrode
CN106463786B (en) Nickel-hydrogen secondary battery
JP6730055B2 (en) Negative electrode for alkaline secondary battery, alkaline secondary battery including the negative electrode, and method for producing the negative electrode
JP2007250250A (en) Nickel hydrogen storage battery
JP6057369B2 (en) Nickel metal hydride secondary battery
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP6996960B2 (en) Nickel metal hydride rechargeable battery
JP2009176708A (en) Alkaline storage battery
JP2005032573A (en) Hydrogen storage alloy powder for sealed alkaline storage battery and sealed alkaline storage battery using it
JP2009081039A (en) Nickel-hydrogen secondary battery
JP2009081038A (en) Nickel-hydrogen secondary battery
JP2001313069A (en) Nickel hydrogen storage battery
JP4121438B2 (en) Negative electrode for nickel-metal hydride secondary battery and sealed nickel-metal hydride secondary battery using the same
JP6049048B2 (en) Nickel metal hydride secondary battery
JP7128069B2 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery provided with this positive electrode
JP2004139909A (en) Sealed nickel-zinc primary battery
JP5116249B2 (en) Positive electrode for alkaline storage battery
JP2006236692A (en) Nickel hydrogen storage battery
JP2010003551A (en) Nickel metal hydride secondary battery
JP2000030702A (en) Nickel-hydrogen secondary battery