JP2009079815A - Heat source side unit, air-conditioner, and air conditioning system - Google Patents

Heat source side unit, air-conditioner, and air conditioning system Download PDF

Info

Publication number
JP2009079815A
JP2009079815A JP2007248504A JP2007248504A JP2009079815A JP 2009079815 A JP2009079815 A JP 2009079815A JP 2007248504 A JP2007248504 A JP 2007248504A JP 2007248504 A JP2007248504 A JP 2007248504A JP 2009079815 A JP2009079815 A JP 2009079815A
Authority
JP
Japan
Prior art keywords
refrigerant
heat source
source side
compressor
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007248504A
Other languages
Japanese (ja)
Inventor
Shigeru Murayama
茂 村山
Kazunobu Okawa
和伸 大川
Yukihiro Ide
幸佑 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007248504A priority Critical patent/JP2009079815A/en
Publication of JP2009079815A publication Critical patent/JP2009079815A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air-conditioner wherein heat exchange is made between water and coolant while avoiding an excessive reduction of a coolant condensing temperature during cooling operation. <P>SOLUTION: The plurality of air-conditioners 10 each comprise an outdoor unit 4 having a compressor 41 for compressing the coolant, and outdoor heat exchangers 51, 52 for making heat exchange between circulating water supplied from a cooling tower 2 and the coolant. The outdoor unit 4 includes a bypass pipe 60 for bypassing both ends of the outdoor heat exchangers 51, 52. A microcomputer 50A controls all or part of the coolant to flow in the bypass pipe 60 instead of the outdoor heat exchangers 51, 52 when there is a small difference between coolant pressure on the discharge side of the compressor 41 and that on the suction side thereof during cooling operation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、空気調和装置の熱源側ユニット、空気調和装置、および、この空気調和装置を含む空気調和システムに関する。   The present invention relates to a heat source side unit of an air conditioner, an air conditioner, and an air conditioner system including the air conditioner.

従来、空気調和装置の冷房運転時に冷媒凝縮温度が過度に低下することにより、圧縮機の液圧縮を招くおそれが指摘されている。そこで、熱源側ユニットにおいて、冷媒凝縮温度の低下を回避する方策が提案されており、例えば、外気と冷媒とを熱交換させる空冷式の熱源側ユニットにおいて、冷媒凝縮温度の低下を検出して空冷用の送風機の速度を低下させる方法が提案されている(例えば、特許文献1参照)。
特開平05−256528号公報
Conventionally, it has been pointed out that the refrigerant condensing temperature may be excessively lowered during the cooling operation of the air conditioner, thereby causing liquid compression of the compressor. Therefore, a measure for avoiding a decrease in the refrigerant condensing temperature in the heat source side unit has been proposed. For example, in an air-cooled heat source side unit that exchanges heat between the outside air and the refrigerant, a decrease in the refrigerant condensing temperature is detected and air cooling is performed. A method for reducing the speed of a blower has been proposed (see, for example, Patent Document 1).
JP 05-256528 A

特許文献1に開示された方法は、外気と冷媒とを熱交換させる空冷式熱交換器を備えた空気調和装置においてのみ適用可能であり、例えば熱源および冷熱源として水を用い、この水と冷媒とを熱交換させる空気調和装置など、別種の熱源と冷媒とを熱交換させる構成には適用できなかった。
そこで本発明は、水と冷媒とを熱交換させる空気調和装置等において、冷房運転時に、冷媒凝縮温度の過度の低下を回避することを目的とする。
The method disclosed in Patent Document 1 can be applied only in an air conditioner including an air-cooled heat exchanger that exchanges heat between outside air and refrigerant. For example, water is used as a heat source and a cold heat source, and the water and the refrigerant are used. It cannot be applied to a configuration in which heat is exchanged between another type of heat source and a refrigerant, such as an air conditioner that exchanges heat with the refrigerant.
Accordingly, an object of the present invention is to avoid an excessive decrease in the refrigerant condensing temperature during cooling operation in an air conditioner or the like that exchanges heat between water and the refrigerant.

上記課題を解決するため、本発明は、冷媒を圧縮する圧縮機と、外部から供給される水と前記冷媒とを熱交換させる熱源側熱交換器とを備えた空気調和装置の熱源側ユニットにおいて、前記前記熱源側熱交換器をバイパスするバイパス管を設け、冷房運転時に前記圧縮機の吐出側と吸込側との冷媒圧力の差が小さい場合に、前記圧縮機から吐出された冷媒の一部または全部を、前記熱源側熱交換器に流さず前記バイパス管に流すよう制御を行う制御部を備えたこと、を特徴とする。
この構成によれば、外部から供給される水と冷媒とを熱交換させる熱源側熱交換器と、この熱源側熱交換器をバイパスするバイパス管とを備え、冷房運転時に圧縮機の吐出側と吸込側との冷媒圧力の差が小さい場合に、冷媒の一部または全部をバイパス管に流す。これにより、外部から供給される水の温度が低すぎることが原因で冷媒凝縮温度が過度に低下し、圧縮機の吐出側と吸込側との冷媒圧力の差が小さくなった場合に、バイパス管を介して圧縮機から吐出されたホットガスが流される。これにより、それ以上の冷媒凝縮温度の低下を回避するとともに、冷媒凝縮温度を速やかに好適な温度に回復させることができ、外部から熱源側熱交換器に供給される水の温度が低くても、安定した冷房運転を実現できる。
In order to solve the above problems, the present invention provides a heat source side unit of an air conditioner including a compressor that compresses a refrigerant, and a heat source side heat exchanger that exchanges heat between water supplied from the outside and the refrigerant. A bypass pipe for bypassing the heat source side heat exchanger is provided, and a part of the refrigerant discharged from the compressor when a difference in refrigerant pressure between the discharge side and the suction side of the compressor is small during cooling operation Or the control part which controls so that all may be flowed to the said bypass pipe, without flowing to the said heat source side heat exchanger is provided, It is characterized by the above-mentioned.
According to this configuration, the heat source side heat exchanger that exchanges heat between the water supplied from the outside and the refrigerant and the bypass pipe that bypasses the heat source side heat exchanger are provided, and the discharge side of the compressor during the cooling operation When the difference in refrigerant pressure from the suction side is small, part or all of the refrigerant is allowed to flow through the bypass pipe. As a result, when the refrigerant condensing temperature is excessively lowered due to the temperature of water supplied from the outside being too low, and the difference in refrigerant pressure between the discharge side and the suction side of the compressor becomes small, the bypass pipe The hot gas discharged from the compressor is passed through. As a result, it is possible to avoid further decrease in the refrigerant condensing temperature and to quickly recover the refrigerant condensing temperature to a suitable temperature, even if the temperature of the water supplied from the outside to the heat source side heat exchanger is low. Stable cooling operation can be realized.

上記構成において、前記制御部は、前記圧縮機の吐出側につながる冷媒管路の冷媒圧力と、前記圧縮機の吸込側につながる冷媒管路における冷媒圧力との差が、予め設定された圧力差を下回った場合に、前記圧縮機から吐出された冷媒の一部または全部を、前記熱源側熱交換器に流さず前記バイパス管に流すよう制御を行うようにしてもよい。
この場合、圧縮機の吐出側につながる冷媒管路の冷媒圧力と、圧縮機の吸込側につながる冷媒管路における冷媒圧力との差が、予め設定された圧力差を下回った場合に、圧縮機から吐出された冷媒の一部または全部を熱源側熱交換器に流さずバイパス管に流すので、冷媒凝縮温度が過度に低下する傾向にある事態に速やかに対応して、それ以上の冷媒凝縮温度の低下を回避するとともに、冷媒凝縮温度を速やかに好適な温度に回復させることができる。
In the above-described configuration, the control unit is configured such that a difference between a refrigerant pressure in the refrigerant line connected to the discharge side of the compressor and a refrigerant pressure in the refrigerant line connected to the suction side of the compressor is a preset pressure difference. If the temperature of the refrigerant is lower than the value, a part or all of the refrigerant discharged from the compressor may be controlled to flow through the bypass pipe without flowing through the heat source side heat exchanger.
In this case, when the difference between the refrigerant pressure in the refrigerant line connected to the discharge side of the compressor and the refrigerant pressure in the refrigerant line connected to the suction side of the compressor falls below a preset pressure difference, the compressor Since part or all of the refrigerant discharged from the refrigerant flows through the bypass pipe instead of flowing through the heat source side heat exchanger, the refrigerant condensation temperature can be quickly coped with when the refrigerant condensation temperature tends to decrease excessively. The refrigerant condensing temperature can be quickly recovered to a suitable temperature.

また、上記構成において、前記熱源側熱交換器と前記バイパス管とに冷媒を分配する弁を備え、前記制御部は、冷房運転時に前記圧縮機の吐出側と吸込側との冷媒圧力の差に基づいて、前記弁により前記熱源側熱交換器と前記バイパス管とに冷媒を分配する比率を設定する制御を行うものとしてもよい。
この場合、制御部は、熱源側熱交換器とバイパス管とに冷媒を分配する弁を制御することで、この弁により冷媒を分配する比率を設定するので、冷媒の流れをきめ細かく調整することで、熱源水の温度が低すぎることによる影響を回復させて安定した冷房運転を実現できる。
Further, in the above configuration, a valve that distributes the refrigerant to the heat source side heat exchanger and the bypass pipe is provided, and the control unit adjusts a difference in refrigerant pressure between the discharge side and the suction side of the compressor during cooling operation. Based on this, it is possible to perform control for setting a ratio of distributing the refrigerant to the heat source side heat exchanger and the bypass pipe by the valve.
In this case, the control unit controls the valve that distributes the refrigerant to the heat source side heat exchanger and the bypass pipe, thereby setting the ratio of distributing the refrigerant by this valve, so that the flow of the refrigerant can be finely adjusted. The stable cooling operation can be realized by recovering the influence caused by the temperature of the heat source water being too low.

また、上記課題を解決するため、本発明の空気調和装置は、冷媒を圧縮する圧縮機と、外部から供給される水と前記冷媒とを熱交換させる熱源側熱交換器とを備えた熱源側ユニットを含んで構成される空気調和装置において、前記熱源側ユニットに、前記前記熱源側熱交換器をバイパスするバイパス管を設け、さらに、冷房運転時に前記圧縮機の吐出側と吸込側との冷媒圧力の差が小さい場合に、前記圧縮機から吐出された冷媒の一部または全部を、前記熱源側熱交換器に流さず前記バイパス管に流すよう制御を行う制御部を備えたこと、を特徴とする。
この構成によれば、外部から供給される水と冷媒とを熱交換させる熱源側熱交換器と、この熱源側熱交換器をバイパスするバイパス管とを備えた熱源側ユニットが、冷房運転時に圧縮機の吐出側と吸込側との冷媒圧力の差が小さい場合に、冷媒の一部または全部をバイパス管に流すので、外部から供給される水の温度が低すぎることが原因で冷媒凝縮温度が過度に低下し、圧縮機の吐出側と吸込側との冷媒圧力の差が小さくなった場合に、バイパス管を介して圧縮機から吐出されたホットガスが流される。これにより、それ以上の冷媒凝縮温度の低下を回避するとともに、冷媒凝縮温度を速やかに好適な温度に回復させることができ、外部から熱源側熱交換器に供給される水の温度が低くても、安定した冷房運転を実現できる。
Moreover, in order to solve the said subject, the air conditioning apparatus of this invention is a heat source side provided with the compressor which compresses a refrigerant | coolant, and the heat source side heat exchanger which heat-exchanges the water supplied from the outside and the said refrigerant | coolant. In the air conditioner configured to include a unit, the heat source side unit is provided with a bypass pipe that bypasses the heat source side heat exchanger, and further, refrigerant between the discharge side and the suction side of the compressor during cooling operation A control unit is provided that performs control so that a part or all of the refrigerant discharged from the compressor flows through the bypass pipe without flowing through the heat source side heat exchanger when the pressure difference is small. And
According to this configuration, the heat source side unit including the heat source side heat exchanger that exchanges heat between the water supplied from the outside and the refrigerant and the bypass pipe that bypasses the heat source side heat exchanger is compressed during the cooling operation. When the refrigerant pressure difference between the discharge side and suction side of the machine is small, part or all of the refrigerant flows through the bypass pipe, so the refrigerant condensing temperature is reduced because the temperature of water supplied from outside is too low. When the pressure decreases excessively and the difference in refrigerant pressure between the discharge side and the suction side of the compressor becomes small, hot gas discharged from the compressor is flowed through the bypass pipe. As a result, it is possible to avoid further decrease in the refrigerant condensing temperature and to quickly recover the refrigerant condensing temperature to a suitable temperature, even if the temperature of the water supplied from the outside to the heat source side heat exchanger is low. Stable cooling operation can be realized.

また、上記課題を解決するため、本発明の空気調和システムは、熱源水を供給する熱源水供給部に、冷媒を圧縮する圧縮機および前記熱源水と前記冷媒とを熱交換させる熱源側熱交換器を備えた熱源側ユニットを含む複数の空気調和装置を接続して構成され、前記空気調和装置の前記熱源側ユニットに、前記前記熱源側熱交換器をバイパスするバイパス管を設け、冷房運転時に前記圧縮機の吐出側と吸込側との冷媒圧力の差が小さい場合に、前記圧縮機から吐出された冷媒の一部または全部を、前記熱源側熱交換器に流さず前記バイパス管に流すよう制御を行う制御部を備えたこと、を特徴とする。
この構成によれば、熱源水供給部から供給される熱源水と冷媒とを熱交換させる熱源側熱交換器と、この熱源側熱交換器をバイパスするバイパス管とを備えた熱源側ユニットが、空気調和装置の冷房運転時に、圧縮機の吐出側と吸込側との冷媒圧力の差が小さい場合に冷媒の一部または全部をバイパス管に流す。これにより、熱源水の温度が低すぎることが原因で冷媒凝縮温度が過度に低下し、圧縮機の吐出側と吸込側との冷媒圧力の差が小さくなった場合に、バイパス管を介して圧縮機から吐出されたホットガスが流れる。これにより、熱源側ユニットの動作を制御することで、それ以上の冷媒凝縮温度の低下を回避するとともに、冷媒凝縮温度を速やかに好適な温度に回復させることができる。このため、熱源水供給部が熱源水の供給状態を変化させなくても、冷房運転を行う空気調和装置が自身の動作を制御することで、安定した冷房運転を実現できる。従って、例えば寒冷期に複数の空気調和装置が暖房運転を実行し、一部の空気調和装置のみが冷房運転を実行する場合等に、暖房運転を行っている空気調和装置の動作や熱源水供給部の動作に影響を及ぼすことなく、冷房運転を行う空気調和装置が冷媒凝縮温度の過度の低下を回避し、安定して冷房運転を行える。
Moreover, in order to solve the said subject, the air conditioning system of this invention is the heat source side heat exchange which makes the heat source water supply part which supplies heat source water heat-exchange the compressor which compresses a refrigerant | coolant, and the said heat source water and the said refrigerant | coolant. A plurality of air conditioners including a heat source side unit provided with a heater are connected, and the heat source side unit of the air conditioner is provided with a bypass pipe that bypasses the heat source side heat exchanger, during cooling operation When a difference in refrigerant pressure between the discharge side and the suction side of the compressor is small, a part or all of the refrigerant discharged from the compressor is allowed to flow to the bypass pipe without flowing to the heat source side heat exchanger. A control unit for performing control is provided.
According to this configuration, the heat source side unit including the heat source side heat exchanger that exchanges heat between the heat source water supplied from the heat source water supply unit and the refrigerant, and the bypass pipe that bypasses the heat source side heat exchanger, During the cooling operation of the air conditioner, when the refrigerant pressure difference between the discharge side and the suction side of the compressor is small, part or all of the refrigerant is passed through the bypass pipe. As a result, when the refrigerant condensing temperature is excessively lowered due to the temperature of the heat source water being too low, and the difference in refrigerant pressure between the discharge side and the suction side of the compressor becomes small, compression is performed via the bypass pipe. Hot gas discharged from the machine flows. Thereby, by controlling the operation of the heat source side unit, it is possible to avoid a further decrease in the refrigerant condensing temperature and quickly recover the refrigerant condensing temperature to a suitable temperature. For this reason, even if the heat source water supply unit does not change the supply state of the heat source water, a stable cooling operation can be realized by controlling the operation of the air conditioner that performs the cooling operation. Therefore, for example, when a plurality of air conditioners perform a heating operation in the cold season and only some of the air conditioners perform a cooling operation, the operation of the air conditioner performing the heating operation or the supply of heat source water Without affecting the operation of the unit, the air conditioner that performs the cooling operation avoids an excessive decrease in the refrigerant condensing temperature and can stably perform the cooling operation.

本発明によれば、冷房運転時に冷媒凝縮温度が過度に低下した場合に、それ以上の冷媒凝縮温度の低下を回避するとともに、冷媒凝縮温度を速やかに好適な温度に回復させることができ、安定した冷房運転を実現できる。   According to the present invention, when the refrigerant condensing temperature is excessively lowered during the cooling operation, the refrigerant condensing temperature can be prevented from further lowering, and the refrigerant condensing temperature can be quickly recovered to a suitable temperature. Cooling operation can be realized.

図1は、本発明を適用した空気調和システム1の設置状態の例を示す図である。
空気調和システム1は、例えば図1に示すように、建物200の各所に設置された複数の空気調和装置を接続して構成される。空気調和システム1は、例えば建物200の屋上等に設置された1台または少数の冷却塔2を含む。この冷却塔2は、循環水供給管20を介して、例えば建物のフロア毎に設置された複数の空気調和装置の室外機4に対し、熱源水としての循環水を供給する。循環水供給管20を介して空気調和装置10に供給される循環水は、各々の室外機4において熱源として用いられる。
この構成では、各室外機4が空気を熱源として用いる室外機のような送風ファンを備えておらず、熱交換された温風や冷風を吹き出さない。このため、図1に示すように建物が密接した場所に多数の室外機4を配設しても、温風や冷風を吹き出すことで周囲の気温に影響を与える問題や、排気音に関する問題がない。また、室外機4の設置場所において排気のショートカット等の問題を生じないため、狭いベランダ(バルコニー)等においても問題なく室外機4を設置できる。
FIG. 1 is a diagram showing an example of an installation state of an air conditioning system 1 to which the present invention is applied.
For example, as shown in FIG. 1, the air conditioning system 1 is configured by connecting a plurality of air conditioning apparatuses installed in various places of a building 200. The air conditioning system 1 includes one or a small number of cooling towers 2 installed on the roof of a building 200, for example. The cooling tower 2 supplies circulating water as heat source water to the outdoor units 4 of a plurality of air conditioners installed on each floor of a building, for example, via a circulating water supply pipe 20. Circulating water supplied to the air conditioner 10 via the circulating water supply pipe 20 is used as a heat source in each outdoor unit 4.
In this configuration, each outdoor unit 4 does not include a blower fan such as an outdoor unit that uses air as a heat source, and does not blow out hot or cold air that has undergone heat exchange. For this reason, even if a large number of outdoor units 4 are arranged in close contact with the building as shown in FIG. 1, there are problems that affect the surrounding air temperature by blowing out hot air and cold air, and problems related to exhaust sound. Absent. In addition, since problems such as exhaust shortcuts do not occur at the place where the outdoor unit 4 is installed, the outdoor unit 4 can be installed without problems even in a narrow veranda (balcony).

図2は、空気調和システム1の構成を示す図である。
この図2に示すように、空気調和システム1は、冷却塔2が循環水を供給する循環水供給管20に、複数台(図2の例では4台)の空気調和装置10を接続した構成となっている。各々の空気調和装置10は、被調和室の空気調和を行う利用側ユニットとしての室内機7と、ベランダ等に設置される熱源側ユニットとしての室外機4とを備えている。室外機4と室内機7との間には、冷媒を循環させるための冷媒配管11、12、および、各種制御情報等を送受信するための通信線13が配設されている。
FIG. 2 is a diagram illustrating a configuration of the air conditioning system 1.
As shown in FIG. 2, the air conditioning system 1 has a configuration in which a plurality of air conditioning apparatuses 10 (four in the example of FIG. 2) are connected to a circulating water supply pipe 20 through which a cooling tower 2 supplies circulating water. It has become. Each air conditioner 10 includes an indoor unit 7 as a use side unit that performs air conditioning in a room to be conditioned, and an outdoor unit 4 as a heat source side unit installed on a veranda or the like. Between the outdoor unit 4 and the indoor unit 7, refrigerant pipes 11 and 12 for circulating the refrigerant and a communication line 13 for transmitting and receiving various control information and the like are arranged.

室外機4は、後述するようにガスエンジン42(図3)を用いて圧縮機41(図3)を駆動するエンジン駆動型の室外機である。このため、室外機4には、建物のガス配管設備(図示略)からガスエンジン42に燃料のガスを供給するガス供給管14が接続されている。また、室外機4は、電力供給ライン15を介して、室外機4が備える弁等を駆動するための電力の供給を受ける構成となっている。さらに、室外機4には、室内機7や室外機4が備える熱交換器で生じたドレン水を排水するためのドレン水排出管16が接続されている。   The outdoor unit 4 is an engine-driven outdoor unit that drives a compressor 41 (FIG. 3) using a gas engine 42 (FIG. 3) as will be described later. For this reason, the outdoor unit 4 is connected to a gas supply pipe 14 for supplying fuel gas to a gas engine 42 from a building gas piping facility (not shown). Further, the outdoor unit 4 is configured to receive power supply for driving a valve and the like provided in the outdoor unit 4 through the power supply line 15. Furthermore, the outdoor unit 4 is connected to a drain water discharge pipe 16 for draining drain water generated in the heat exchangers provided in the indoor unit 7 and the outdoor unit 4.

冷却塔2から延びる循環水供給管20は、冷却塔2から空気調和装置10へ循環水を送るための循環水送り管20Aと、空気調和装置10から冷却塔2へ循環水を戻す循環水戻り管20Bとにより構成される。各々の空気調和装置10は、循環水送り管20Aおよび循環水戻り管20Bに並列に接続されており、循環水送り管20Aから各空気調和装置10に延びる管には、それぞれ開閉弁23が配設され、各空気調和装置10から循環水戻り管20Bにつながる管にはそれぞれ開閉弁24が配設されている。これら開閉弁23、24は、例えば空気調和装置10のメンテナンス時に循環水の流出を防ぐために閉鎖される等の場合を除き、通常は開かれている。   The circulating water supply pipe 20 extending from the cooling tower 2 includes a circulating water feed pipe 20A for sending the circulating water from the cooling tower 2 to the air conditioner 10, and a circulating water return for returning the circulating water from the air conditioner 10 to the cooling tower 2. It is comprised by the pipe | tube 20B. Each air conditioner 10 is connected in parallel to the circulating water feed pipe 20A and the circulating water return pipe 20B, and an open / close valve 23 is arranged on each pipe extending from the circulating water feed pipe 20A to each air conditioner 10. An open / close valve 24 is provided on each pipe connected from each air conditioner 10 to the circulating water return pipe 20B. These on-off valves 23 and 24 are normally opened except when closed to prevent the outflow of circulating water during maintenance of the air conditioner 10, for example.

冷却塔2は、循環水供給管20に連通するコイル(図示略)に水を散布することによって、コイル内を流れる循環水を冷却する冷却塔である。ここで、冷却塔2は密閉式の冷却塔であり、循環水供給管20および循環水供給管20に連通するコイルは密閉された管路を構成し、コイルに散布される水は循環水とは別の散布水である。このため、循環水供給管20を介して空気調和装置10に供給される循環水には異物等が混入しない。また、冷却塔2には、寒冷時に循環水供給管20を循環する循環水を加熱・加温するための凍結防止ヒータ27が配設されている。
そして、冷却塔2から各々の空気調和装置10へ循環水を送る循環水送り管20Aには、冷却塔2において冷却された循環水を送出するポンプ21と、冷却塔2から送出される循環水の流動状態を検出するフローセンサ22とが配設されている。さらに、循環水送り管20Aには余分の循環水を貯留する循環水タンク26が配設されており、この循環水タンク26によって循環水供給管20内の循環水の量が適切な量に保たれる。
The cooling tower 2 is a cooling tower that cools the circulating water flowing in the coil by spraying water to a coil (not shown) communicating with the circulating water supply pipe 20. Here, the cooling tower 2 is a hermetic cooling tower, and the circulating water supply pipe 20 and the coil communicating with the circulating water supply pipe 20 constitute a sealed pipe, and the water sprayed on the coil is the circulating water and Is another spray water. For this reason, a foreign material etc. do not mix in the circulating water supplied to the air conditioning apparatus 10 via the circulating water supply pipe 20. FIG. Further, the cooling tower 2 is provided with an antifreezing heater 27 for heating and heating the circulating water circulating through the circulating water supply pipe 20 when it is cold.
A circulating water feed pipe 20A for sending the circulating water from the cooling tower 2 to each air conditioner 10 includes a pump 21 for sending the circulating water cooled in the cooling tower 2 and the circulating water sent from the cooling tower 2. And a flow sensor 22 for detecting the flow state of the gas. Furthermore, the circulating water feed pipe 20A is provided with a circulating water tank 26 for storing extra circulating water. The circulating water tank 26 keeps the circulating water in the circulating water supply pipe 20 at an appropriate amount. Be drunk.

冷却塔2および各々の空気調和装置10は、制御装置用通信線81を介して制御装置8に接続されている。制御装置8は、空気調和システム1において循環水に係る全体的な動作を制御する装置であり、ポンプ21に信号線83を介して接続され、フローセンサ22には信号線84を介して接続される。また、循環水送り管20Aには循環水の温度を検出する循環水温センサ25が配設され、この循環水温センサ25が検出した温度を示す信号が、信号線85を介して制御装置8に出力される。   The cooling tower 2 and each air conditioner 10 are connected to the control device 8 via a control device communication line 81. The control device 8 is a device that controls the overall operation of the circulating water in the air conditioning system 1, and is connected to the pump 21 via a signal line 83 and connected to the flow sensor 22 via a signal line 84. The The circulating water feed pipe 20A is provided with a circulating water temperature sensor 25 for detecting the temperature of the circulating water, and a signal indicating the temperature detected by the circulating water temperature sensor 25 is output to the control device 8 via the signal line 85. Is done.

制御装置8は、各々の空気調和装置10および冷却塔2との間で各種信号を送受信し、例えば、いずれかの空気調和装置10から後述する冷却塔運転信号を受信した場合に、この信号に応答して冷却塔2およびポンプ21を動作させる。ここで、既に冷却塔2およびポンプ21が稼働中である場合は、そのまま稼働させる。そして制御装置8は、循環水が供給されていることを示すポンプインターロック信号を空気調和装置10へ送信する。ポンプインターロック信号は、冷却塔2およびポンプ21が稼働中で、かつ、フローセンサ22により循環水の流れが検出された場合に、制御装置8が生成して出力する。   The control device 8 transmits and receives various signals between each air conditioner 10 and the cooling tower 2. For example, when receiving a cooling tower operation signal described later from any one of the air conditioners 10, In response, the cooling tower 2 and the pump 21 are operated. Here, when the cooling tower 2 and the pump 21 are already operating, they are operated as they are. And the control apparatus 8 transmits the pump interlock signal which shows that circulating water is supplied to the air conditioning apparatus 10. FIG. The pump interlock signal is generated and output by the control device 8 when the cooling tower 2 and the pump 21 are in operation and the flow sensor 22 detects the flow of circulating water.

また、制御装置8は、循環水温センサ25が検出した温度が予め設定された温度より低い場合には、ポンプ21を動作させ、冷却塔2における散布水の散布を停止させ、冷却塔2内の凍結防止ヒータ27を動作させて、循環水の凍結を防止する。ここで、循環水温センサ25の検出値が設定された温度より低いままである場合、制御装置8は、空気調和装置10に対して強制インターロック信号を送出し、各々の空気調和装置10に対してエンジンを動作させるよう要求することも可能である。   In addition, when the temperature detected by the circulating water temperature sensor 25 is lower than the preset temperature, the control device 8 operates the pump 21 to stop the spraying of the sprayed water in the cooling tower 2, and The freeze prevention heater 27 is operated to prevent the circulating water from freezing. Here, when the detected value of the circulating water temperature sensor 25 remains lower than the set temperature, the control device 8 sends a compulsory interlock signal to the air conditioner 10 to each air conditioner 10. It is also possible to request that the engine be operated.

図3は、空気調和装置10の構成を示す図である。この図3には、参考のため、冷却塔2を図示する。また、図3の冷媒流通経路における実線は冷房時の冷媒の流れを示し、破線は暖房時の冷媒の流れを示す。
室外機4は、冷媒を圧縮する圧縮機41と、圧縮機41を駆動するガスエンジン42とを備え、ガスエンジン42と圧縮機41とはクラッチ43を介して連結されている。
圧縮機41の吸込管および吐出管は四方弁50に連結され、四方弁50には、冷媒配管12を介して室内機7が備える室内熱交換器71の一端が接続されている。また、室内熱交換器71の他端は、冷媒配管11を介して、レシーバタンク53に接続され、レシーバタンク53は、熱源側熱交換器としての室外熱交換器51、52の一端に接続され、室外熱交換器51、52の他端は四方弁50に接続される。
FIG. 3 is a diagram illustrating a configuration of the air conditioning apparatus 10. FIG. 3 shows the cooling tower 2 for reference. Further, the solid line in the refrigerant flow path of FIG. 3 indicates the flow of the refrigerant during cooling, and the broken line indicates the flow of the refrigerant during heating.
The outdoor unit 4 includes a compressor 41 that compresses the refrigerant and a gas engine 42 that drives the compressor 41, and the gas engine 42 and the compressor 41 are connected via a clutch 43.
The suction pipe and the discharge pipe of the compressor 41 are connected to a four-way valve 50, and one end of an indoor heat exchanger 71 included in the indoor unit 7 is connected to the four-way valve 50 through a refrigerant pipe 12. The other end of the indoor heat exchanger 71 is connected to the receiver tank 53 via the refrigerant pipe 11, and the receiver tank 53 is connected to one end of the outdoor heat exchangers 51 and 52 as heat source side heat exchangers. The other ends of the outdoor heat exchangers 51 and 52 are connected to the four-way valve 50.

室外熱交換器51、52の両端につながる冷媒管には、室外熱交換器51、52をバイパスするバイパス管60が設けられている。バイパス管60の一端は、レシーバタンク53と室外熱交換器51とをつなぐ冷媒管上の分岐部60Aに接続され、バイパス管60の他端は、室外熱交換器52と四方弁50とをつなぐ冷媒管上の分岐部60Bに接続される。バイパス管60には弁61が配設され、分岐部60Aと室外熱交換器51との間には弁62が配設されている。このため、弁61と弁62の開度を調整することで、バイパス管60へ流れる冷媒の量と室外熱交換器51、52へ流れる冷媒の量とを調整できる。この冷媒の量の調整では、冷媒の流量の比が0:100〜100:0の範囲、すなわち、冷媒の全量をバイパス管60に流す状態と、全量を室外熱交換器51、52に流す状態との間で、任意に調整できる。   A refrigerant pipe connected to both ends of the outdoor heat exchangers 51 and 52 is provided with a bypass pipe 60 that bypasses the outdoor heat exchangers 51 and 52. One end of the bypass pipe 60 is connected to a branch portion 60A on the refrigerant pipe that connects the receiver tank 53 and the outdoor heat exchanger 51, and the other end of the bypass pipe 60 connects the outdoor heat exchanger 52 and the four-way valve 50. Connected to the branch 60B on the refrigerant pipe. A valve 61 is disposed in the bypass pipe 60, and a valve 62 is disposed between the branch portion 60 </ b> A and the outdoor heat exchanger 51. For this reason, the amount of refrigerant flowing to the bypass pipe 60 and the amount of refrigerant flowing to the outdoor heat exchangers 51 and 52 can be adjusted by adjusting the opening degree of the valves 61 and 62. In the adjustment of the amount of the refrigerant, the ratio of the flow rate of the refrigerant is in the range of 0: 100 to 100: 0, that is, the state in which the entire amount of the refrigerant flows to the bypass pipe 60 and the state in which the entire amount flows to the outdoor heat exchangers 51 and 52. And can be adjusted arbitrarily.

室外熱交換器51、52は直列に接続された2個の熱交換器であり、レシーバタンク53から室外熱交換器51に流入した冷媒は室外熱交換器52を通って四方弁50に流れ、室外熱交換器52に流入した冷媒は室外熱交換器51を通ってレシーバタンク53に流れる。室外熱交換器51、52は循環水供給管63に並列に接続されており、循環水供給管63から供給される循環水と、冷媒との熱交換を行わせる水熱交換器であって、例えばプレート式熱交換器として構成される。   The outdoor heat exchangers 51 and 52 are two heat exchangers connected in series, and the refrigerant flowing into the outdoor heat exchanger 51 from the receiver tank 53 flows through the outdoor heat exchanger 52 to the four-way valve 50, The refrigerant flowing into the outdoor heat exchanger 52 flows into the receiver tank 53 through the outdoor heat exchanger 51. The outdoor heat exchangers 51 and 52 are connected to the circulating water supply pipe 63 in parallel, and are water heat exchangers that perform heat exchange between the circulating water supplied from the circulating water supply pipe 63 and the refrigerant. For example, it is configured as a plate heat exchanger.

詳細には、冷却塔2から延びる循環水送り管20Aに接続された循環水供給管63は、室外熱交換器51に循環水を流す循環水回路と、室外熱交換器52に循環水を流す循環水回路とに分岐され、これら2個の室外熱交換器51、52には同水温の循環水が供給される。これに対し、冷媒回路において室外熱交換器51、52は直列に接続されており、冷媒は室外熱交換器51、52を順に流れる。このため、冷媒は室外熱交換器51、52の各々において十分な熱または冷熱を有する循環水と熱交換される。室外熱交換器51、52を通った循環水は合流して循環水供給管64を流れ、循環水戻り管20Bから冷却塔2に戻される。
循環水供給管63、64の各々には、循環水の温度を検出する水温センサ68、69が配設されており、循環水送り管20Aから供給される循環水の温度と、循環水戻り管20Bに戻される循環水の温度とを検出可能である。
Specifically, the circulating water supply pipe 63 connected to the circulating water feed pipe 20 </ b> A extending from the cooling tower 2 has a circulating water circuit for flowing the circulating water to the outdoor heat exchanger 51 and the circulating water to the outdoor heat exchanger 52. Branching to the circulating water circuit, the circulating water having the same water temperature is supplied to the two outdoor heat exchangers 51 and 52. On the other hand, the outdoor heat exchangers 51 and 52 are connected in series in the refrigerant circuit, and the refrigerant flows through the outdoor heat exchangers 51 and 52 in order. For this reason, the refrigerant is heat-exchanged with circulating water having sufficient heat or cold in each of the outdoor heat exchangers 51 and 52. The circulating water that has passed through the outdoor heat exchangers 51 and 52 merges, flows through the circulating water supply pipe 64, and returns to the cooling tower 2 from the circulating water return pipe 20B.
Each of the circulating water supply pipes 63 and 64 is provided with water temperature sensors 68 and 69 for detecting the temperature of the circulating water, and the temperature of the circulating water supplied from the circulating water feed pipe 20A and the circulating water return pipe. The temperature of the circulating water returned to 20B can be detected.

レシーバタンク53と分岐部60Aとの間には、冷媒を減圧する膨張弁56が配設され、四方弁50と室外熱交換器51の吸込管との間には、ガス冷媒と液冷媒とを分離して液バックを防止するアキュムレータ54が接続されている。
そして、空気調和装置10の冷房運転時には、図3中に実線で示すように、圧縮機41から吐出された冷媒は四方弁50を介して室外熱交換器52に流れ、室外熱交換器51、52が凝縮器として機能することで、液冷媒となって膨張弁56を通り、冷媒配管11を介して室内熱交換器71に流れる。ここで、室内熱交換器71は蒸発器として機能し、室内熱交換器71において気化した冷媒は冷媒配管12を通って室外機4に戻り、四方弁50からアキュムレータ54を経て圧縮機41に吸い込まれる。
An expansion valve 56 for reducing the pressure of the refrigerant is disposed between the receiver tank 53 and the branch portion 60A, and a gas refrigerant and a liquid refrigerant are provided between the four-way valve 50 and the suction pipe of the outdoor heat exchanger 51. An accumulator 54 that separates and prevents liquid back is connected.
During the cooling operation of the air conditioner 10, the refrigerant discharged from the compressor 41 flows to the outdoor heat exchanger 52 via the four-way valve 50, as indicated by a solid line in FIG. 52 functions as a condenser, becomes a liquid refrigerant, passes through the expansion valve 56, and flows to the indoor heat exchanger 71 through the refrigerant pipe 11. Here, the indoor heat exchanger 71 functions as an evaporator, and the refrigerant evaporated in the indoor heat exchanger 71 returns to the outdoor unit 4 through the refrigerant pipe 12 and is sucked into the compressor 41 from the four-way valve 50 through the accumulator 54. It is.

一方、空気調和装置10の暖房運転時には、図3中に破線で示すように、圧縮機41から吐出された冷媒は四方弁50を介して冷媒配管12から室内熱交換器71へ流れて、室内熱交換器71で凝縮され、冷媒配管11を通って室外機4に戻る。室外機4に戻った冷媒は膨張弁56により減圧されて、室外熱交換器51、52に流れ、室外熱交換器51、52が蒸発器として機能することでガス冷媒となって、四方弁50からアキュムレータ54を経て圧縮機41に吸い込まれる。
圧縮機41の吐出管と吸込管には、それぞれ圧力センサ41A、41Bが配設されている。圧力センサ41Aは空気調和装置10の冷媒回路における高圧側の冷媒圧力を検出し、圧力センサ41Bは低圧側の冷媒圧力を検出する。これら圧力センサ41A、41Bが検出した圧力の検出値は、後述する電装ユニット40のマイコン40Aにより取得される。
On the other hand, during the heating operation of the air conditioner 10, the refrigerant discharged from the compressor 41 flows from the refrigerant pipe 12 to the indoor heat exchanger 71 via the four-way valve 50, as indicated by a broken line in FIG. It is condensed in the heat exchanger 71 and returns to the outdoor unit 4 through the refrigerant pipe 11. The refrigerant returned to the outdoor unit 4 is decompressed by the expansion valve 56 and flows to the outdoor heat exchangers 51 and 52. The outdoor heat exchangers 51 and 52 function as an evaporator to become a gas refrigerant, and the four-way valve 50 To the compressor 41 through the accumulator 54.
Pressure sensors 41 </ b> A and 41 </ b> B are disposed on the discharge pipe and the suction pipe of the compressor 41, respectively. The pressure sensor 41A detects the high-pressure side refrigerant pressure in the refrigerant circuit of the air conditioner 10, and the pressure sensor 41B detects the low-pressure side refrigerant pressure. The detected pressure values detected by the pressure sensors 41A and 41B are acquired by the microcomputer 40A of the electrical unit 40 described later.

また、室外機4は、ガスエンジン42をエンジン冷却水により冷却するエンジン冷却水回路44を備えている。エンジン冷却水回路44には、エンジン冷却水をガスエンジン42に送出する冷却水ポンプ45と、循環水供給管64を流れる循環水とエンジン冷却水とを熱交換させるラジエータ48と、エンジン冷却水と冷媒とを熱交換させる補助熱交換器49と、エンジン冷却水をラジエータ48、補助熱交換器49に分配する比例三方弁46、47とを備えている。
また、エンジン冷却水回路44には、エンジン冷却水の温度を検出する冷却水温度センサ(図示略)が設けられている。
The outdoor unit 4 includes an engine coolant circuit 44 that cools the gas engine 42 with engine coolant. The engine coolant circuit 44 includes a coolant pump 45 that sends engine coolant to the gas engine 42, a radiator 48 that exchanges heat between the circulating water flowing through the circulating water supply pipe 64 and the engine cooling water, and engine cooling water. An auxiliary heat exchanger 49 that exchanges heat with the refrigerant, and a proportional three-way valve 46 and 47 that distributes engine cooling water to the radiator 48 and the auxiliary heat exchanger 49 are provided.
The engine coolant circuit 44 is provided with a coolant temperature sensor (not shown) that detects the temperature of the engine coolant.

ラジエータ48は、循環水供給管64を流れる循環水によりエンジン冷却水を放熱させる熱交換器である。ラジエータ48は室外熱交換器51、52の下流側に位置し、室外熱交換器51、52で熱交換された後の循環水が供給される。これは、例えば冷房運転時には室外熱交換器51、52に低温の循環水を流す方が高い冷房能力を発揮できる点、ガスエンジン42を経たエンジン冷却水は室外熱交換器51、52を通った後の循環水に比べて十分に高温であるため、室外熱交換器51、52で温度が上昇した循環水を用いてもラジエータ48でエンジン冷却水を確実に放熱させることができる点等の観点から、合理的かつ有用な構成である。
なお、図3には、循環水供給管64から分岐した管により、循環水の一部がラジエータ48に流れる構成を示しているが、循環水の全部がラジエータ48を流れる構成としてもよく、ラジエータ48を流れる循環水の量はラジエータ48のサイズや要求される放熱能力等に応じて適宜決定すればよい。
The radiator 48 is a heat exchanger that radiates engine cooling water by circulating water flowing through the circulating water supply pipe 64. The radiator 48 is located on the downstream side of the outdoor heat exchangers 51 and 52, and is supplied with circulating water after heat exchange is performed in the outdoor heat exchangers 51 and 52. This is because, for example, when cooling operation, flowing low-temperature circulating water to the outdoor heat exchangers 51 and 52 can exhibit higher cooling capacity, and engine cooling water that has passed through the gas engine 42 has passed through the outdoor heat exchangers 51 and 52. Since the temperature is sufficiently higher than the circulating water after, the radiator 48 can reliably radiate the engine cooling water even if the circulating water whose temperature has been increased by the outdoor heat exchangers 51 and 52 is used. Therefore, it is a rational and useful configuration.
3 shows a configuration in which a part of the circulating water flows to the radiator 48 by a pipe branched from the circulating water supply pipe 64. However, a configuration in which the entire circulating water flows through the radiator 48 may be used. What is necessary is just to determine suitably the quantity of the circulating water which flows through 48 according to the size of the radiator 48, the required heat dissipation capability, etc. FIG.

補助熱交換器49は、冷媒回路において圧縮機41の吸込管に戻る冷媒に、エンジン冷却水の熱を与える熱交換器である。補助熱交換器49は、室外熱交換器51、52と同様に冷媒と水とを熱交換させる水熱交換器であり、例えばプレート式熱交換器として構成される。   The auxiliary heat exchanger 49 is a heat exchanger that gives heat of the engine cooling water to the refrigerant that returns to the suction pipe of the compressor 41 in the refrigerant circuit. The auxiliary heat exchanger 49 is a water heat exchanger that exchanges heat between the refrigerant and water, like the outdoor heat exchangers 51 and 52, and is configured as, for example, a plate heat exchanger.

エンジン冷却水回路44には、ガスエンジン42から出たエンジン冷却水を、補助熱交換器49を通るよう循環させる管路と、ラジエータ48を通るように循環させる管路と、冷却水ポンプ45に戻す管路とが設けられており、これらの管路へのエンジン冷却水の循環量を制御すべく、2つの比例三方弁46、47が配設されている。比例三方弁46、47は、一方から流入するエンジン冷却水を他の2方向に分配する弁であり、その分配比は0:100〜100:0の範囲で変更可能である。   In the engine coolant circuit 44, the engine coolant discharged from the gas engine 42 is circulated through the auxiliary heat exchanger 49, the conduit circulated through the radiator 48, and the coolant pump 45. Returning pipe lines are provided, and two proportional three-way valves 46 and 47 are provided to control the circulation amount of the engine cooling water to these pipe lines. The proportional three-way valves 46 and 47 are valves that distribute the engine coolant flowing in from one side in the other two directions, and the distribution ratio can be changed in the range of 0: 100 to 100: 0.

比例三方弁47は、ガスエンジン42を出たエンジン冷却水を、冷却水ポンプ45に戻す管路と、ラジエータ48または補助熱交換器49へ流す管路とに分配する。例えば、ガスエンジン42の始動直後は、通常、エンジン冷却水が非常に低温である。エンジン冷却水の温度が低いとガスエンジン42のエンジンオイルの粘度が高くなってしまうため、エンジン冷却水が低温の場合は、速やかにエンジン冷却水の温度をガスエンジン42の排熱によって上昇させる必要がある。このような場合、比例三方弁47によって、ガスエンジン42から出たエンジン冷却水の全量または大部分が冷却水ポンプ45に戻る管路に分配される。これにより、エンジン冷却水はガスエンジン42と冷却水ポンプ45との間のみを循環するので、エンジン冷却水はガスエンジン42の排熱ですぐに温められる。そして、エンジン冷却水の温度が所定の温度以上になると、比例三方弁47により、エンジン冷却水がラジエータ48および補助熱交換器49へ流れる管路にも分配される。   The proportional three-way valve 47 distributes the engine cooling water that has exited the gas engine 42 into a pipe line that returns to the cooling water pump 45 and a pipe line that flows to the radiator 48 or the auxiliary heat exchanger 49. For example, immediately after the gas engine 42 is started, the engine cooling water is usually very low in temperature. If the engine cooling water temperature is low, the viscosity of the engine oil of the gas engine 42 becomes high. Therefore, when the engine cooling water is at a low temperature, the temperature of the engine cooling water needs to be quickly raised by the exhaust heat of the gas engine 42. There is. In such a case, the proportional three-way valve 47 distributes the whole or most of the engine cooling water discharged from the gas engine 42 to a pipe line that returns to the cooling water pump 45. As a result, the engine coolant circulates only between the gas engine 42 and the coolant pump 45, so that the engine coolant is immediately warmed by the exhaust heat of the gas engine 42. When the temperature of the engine cooling water becomes equal to or higher than a predetermined temperature, the proportional three-way valve 47 distributes the engine cooling water to the pipes that flow to the radiator 48 and the auxiliary heat exchanger 49.

比例三方弁46は、比例三方弁47により分配されたエンジン冷却水を、ラジエータ48に向かう管路と補助熱交換器49に向かう管路とに分配する。例えば空気調和装置10が冷房運転中である場合、補助熱交換器49において冷媒に熱を与える必要はないので、比例三方弁46は、比例三方弁47から送出されたエンジン冷却水の全部をラジエータ48に分配する。また、比例三方弁46は、空気調和装置10の暖房運転時に冷媒に熱を与えるため、暖房負荷や冷媒の高圧側と低圧側との圧力差、循環水供給管63を流れる循環水の温度等に基づいて、必要量のエンジン冷却水を補助熱交換器49に分配する。   The proportional three-way valve 46 distributes the engine cooling water distributed by the proportional three-way valve 47 into a pipe line going to the radiator 48 and a pipe line going to the auxiliary heat exchanger 49. For example, when the air-conditioning apparatus 10 is in the cooling operation, it is not necessary to apply heat to the refrigerant in the auxiliary heat exchanger 49, and therefore the proportional three-way valve 46 is configured to supply all of the engine cooling water sent from the proportional three-way valve 47 to the radiator. 48. Further, the proportional three-way valve 46 gives heat to the refrigerant during the heating operation of the air conditioner 10, so that the heating load, the pressure difference between the high pressure side and the low pressure side of the refrigerant, the temperature of the circulating water flowing through the circulating water supply pipe 63, etc. The required amount of engine coolant is distributed to the auxiliary heat exchanger 49 based on the above.

また、図3に示すように、エンジン冷却水回路44は、ラジエータ48と補助熱交換器49とがともに比例三方弁46に接続され、並列にエンジン冷却水が流される構成となっている。ラジエータ48と補助熱交換器49は、いずれもエンジン冷却水の熱を放熱させる作用があるので、図3のように並列にエンジン冷却水を流す構成として、どちらにも高温のエンジン冷却水を流すことが合理的かつ有用である。   As shown in FIG. 3, the engine coolant circuit 44 is configured such that the radiator 48 and the auxiliary heat exchanger 49 are both connected to the proportional three-way valve 46 and the engine coolant flows in parallel. Since both the radiator 48 and the auxiliary heat exchanger 49 have the effect of dissipating the heat of the engine cooling water, the configuration in which the engine cooling water flows in parallel as shown in FIG. It is reasonable and useful.

室外機4には、空気調和装置10の各部に電力を供給する電源回路や、空気調和装置10の各部を制御するマイコン40Aを備えた制御回路等を内蔵した、電装ユニット40が設けられている。マイコン40Aは、空気調和装置10の各部を制御するとともに、制御装置用通信線81を介して制御装置8(図2)との間で各種信号を送受信する制御部として機能する。   The outdoor unit 4 is provided with an electrical unit 40 that incorporates a power supply circuit that supplies power to each part of the air conditioner 10, a control circuit that includes a microcomputer 40A that controls each part of the air conditioner 10, and the like. . The microcomputer 40A controls each part of the air conditioning apparatus 10 and functions as a control part that transmits and receives various signals to and from the control apparatus 8 (FIG. 2) via the control apparatus communication line 81.

マイコン40Aは、水温センサ68、69により検出される循環水の温度や、冷却水温度センサ(図示略)により検出されるエンジン冷却水の温度、圧力センサ41A、41Bによって検出される高圧側の冷媒圧力と低圧側の冷媒圧力、室内機7における被調和室内の気温、室内熱交換器71の温度等の値を取得する。そして、マイコン40Aは、取得した値に基づいて、室外機4が備えるガスエンジン42の始動/停止による圧縮機41の運転制御、クラッチ43の切断/連結制御、四方弁50の切換制御、膨張弁56、弁61、62の開閉および開度制御、冷却水ポンプ45の運転/停止制御、比例三方弁46、47による分配制御等を実行する。   The microcomputer 40A is configured such that the circulating water temperature detected by the water temperature sensors 68 and 69, the engine cooling water temperature detected by the cooling water temperature sensor (not shown), and the high-pressure side refrigerant detected by the pressure sensors 41A and 41B. Values such as the pressure and the refrigerant pressure on the low pressure side, the temperature in the conditioned room in the indoor unit 7, the temperature of the indoor heat exchanger 71, and the like are acquired. Then, based on the acquired value, the microcomputer 40A controls the operation of the compressor 41 by starting / stopping the gas engine 42 included in the outdoor unit 4, the disconnection / connection control of the clutch 43, the switching control of the four-way valve 50, the expansion valve. 56, opening / closing and opening control of the valves 61, 62, operation / stop control of the cooling water pump 45, distribution control by the proportional three-way valves 46, 47, and the like.

また、マイコン40Aは、室内機7が備えるリモコン装置70により冷房運転または暖房運転の開始や停止が指示されると、リモコン装置70の操作により設定された目標温度等の設定値と、上述した各種センサ等から取得した値に基づいて、空気調和装置10の運転状態を制御する。
そして、マイコン40Aは、圧縮機41を駆動させる場合(サーモオン)、制御装置用通信線81を介して冷却塔運転信号を制御装置8へ送信し、この冷却塔運転信号に応答して制御装置8から送信されたポンプインターロック信号を受信すると、ガスエンジン42を始動させるとともにクラッチ43を連結して、圧縮機41を動作させる。
When the microcomputer 40A is instructed to start or stop the cooling operation or the heating operation by the remote control device 70 provided in the indoor unit 7, the microcomputer 40A sets the set values such as the target temperature set by the operation of the remote control device 70 and the above-described various types. Based on the value acquired from a sensor etc., the driving | running state of the air conditioning apparatus 10 is controlled.
Then, when driving the compressor 41 (thermo-on), the microcomputer 40A transmits a cooling tower operation signal to the control device 8 via the control device communication line 81, and responds to this cooling tower operation signal to the control device 8 When the pump interlock signal transmitted from is received, the gas engine 42 is started and the clutch 43 is connected to operate the compressor 41.

以上のように構成される空気調和装置10において、冷房運転を行う場合、マイコン40Aの制御により、上述したように圧縮機41により圧縮された冷媒が四方弁50を経て凝縮器としての室外熱交換器51、52に流れて凝縮され、膨張弁56によって減圧されて、冷媒配管11を経て室内熱交換器71に送られる。室内熱交換器71は蒸発器として機能し、冷媒を蒸発させることで室内機7が設置された被調和室を冷房する。そして、室内熱交換器71で蒸発した冷媒は冷媒配管12を通って室外機4に戻り、四方弁50を経て圧縮機41の吸込管に達する。
ここで、冷却塔2から供給される循環水の温度が低いと、室外熱交換器51、52における冷媒凝縮温度が適正な範囲を超えて低くなる。このため、室内熱交換器71において冷媒が十分に蒸発しない可能性が生じ、好ましくない。
In the air-conditioning apparatus 10 configured as described above, when performing a cooling operation, the refrigerant compressed by the compressor 41 as described above passes through the four-way valve 50 under the control of the microcomputer 40A and performs outdoor heat exchange as a condenser. The refrigerant flows into the vessels 51 and 52, is condensed, decompressed by the expansion valve 56, and sent to the indoor heat exchanger 71 through the refrigerant pipe 11. The indoor heat exchanger 71 functions as an evaporator, and cools the conditioned room in which the indoor unit 7 is installed by evaporating the refrigerant. The refrigerant evaporated in the indoor heat exchanger 71 returns to the outdoor unit 4 through the refrigerant pipe 12 and reaches the suction pipe of the compressor 41 through the four-way valve 50.
Here, when the temperature of the circulating water supplied from the cooling tower 2 is low, the refrigerant condensing temperature in the outdoor heat exchangers 51 and 52 becomes lower than an appropriate range. For this reason, there is a possibility that the refrigerant is not sufficiently evaporated in the indoor heat exchanger 71, which is not preferable.

そこでマイコン40Aは、圧力センサ41Aにより検出された高圧側の冷媒圧力と、圧力センサ41Bにより検出された低圧側の冷媒圧力とを取得して、高圧側と低圧側との圧力差を求める。冷媒回路における冷媒凝縮温度の低下は、高圧側と低圧側との圧力差の縮小を招く。換言すれば、高圧側と低圧側との圧力差が縮小した場合、その原因は、循環水が低温であるために冷媒凝縮温度の低下を招いたことである。そこで、マイコン40Aは、高圧側と低圧側との圧力差が予め設定された圧力差を下回った場合に、弁61、62の開度を調整して、圧縮機41から吐出された冷媒の一部または全部を、室外熱交換器51、52に流さずにバイパス管60に通す。ここで、設定された圧力差は、空気調和装置10の出荷時や設置時等に設定され、マイコン40Aが記憶している。
これにより、冷媒の少なくとも一部が室外熱交換器51、52で低温の循環水と熱交換しないまま膨張弁56に達するので、膨張弁56から71へ流れる冷媒の温度を良好な範囲に保つことができる。
以上の制御によって、暖房運転時に循環水が所定の温度よりも低温になった場合に、冷媒凝縮温度の過度の低下を防止し、安定した冷房運転を実現できる。
Therefore, the microcomputer 40A acquires the high-pressure side refrigerant pressure detected by the pressure sensor 41A and the low-pressure side refrigerant pressure detected by the pressure sensor 41B, and obtains a pressure difference between the high-pressure side and the low-pressure side. A decrease in the refrigerant condensing temperature in the refrigerant circuit causes a reduction in the pressure difference between the high pressure side and the low pressure side. In other words, when the pressure difference between the high-pressure side and the low-pressure side is reduced, the cause is that the circulating water has a low temperature, which causes a decrease in the refrigerant condensing temperature. Therefore, the microcomputer 40A adjusts the openings of the valves 61 and 62 when the pressure difference between the high-pressure side and the low-pressure side falls below a preset pressure difference, and sets the refrigerant discharged from the compressor 41. Part or all is passed through the bypass pipe 60 without flowing through the outdoor heat exchangers 51 and 52. Here, the set pressure difference is set at the time of shipment or installation of the air conditioner 10, and is stored in the microcomputer 40A.
Thereby, at least a part of the refrigerant reaches the expansion valve 56 without exchanging heat with the low-temperature circulating water in the outdoor heat exchangers 51 and 52, so that the temperature of the refrigerant flowing from the expansion valve 56 to 71 is kept in a favorable range. Can do.
By the above control, when the circulating water becomes lower than a predetermined temperature during the heating operation, an excessive decrease in the refrigerant condensing temperature can be prevented, and a stable cooling operation can be realized.

図4は、上述した空気調和装置10の動作を示すフローチャートであり、特に、冷房運転時にサーモオンとなった場合の動作を示す。
冷房運転の開始時、または冷房運転中に、サーモオンとなった場合、マイコン40Aは、制御装置用通信線81を介して冷却塔運転信号を制御装置8へ送信する(ステップS11)。ここで、マイコン40Aは制御装置8からのポンプインターロック信号を受信するまで待機し(ステップS12)、ポンプインターロック信号を受信すると(ステップS12:Yes)、ガスエンジン42を始動させるとともにクラッチ43を連結状態にする(ステップS13)。これにより、圧縮機41が動作を開始する。
FIG. 4 is a flowchart showing the operation of the air conditioning apparatus 10 described above, and particularly shows the operation when the thermo-ON is performed during the cooling operation.
When the cooling operation is started or when the thermostat is turned on, the microcomputer 40A transmits a cooling tower operation signal to the control device 8 via the control device communication line 81 (step S11). Here, the microcomputer 40A waits until it receives the pump interlock signal from the control device 8 (step S12). When the microcomputer 40A receives the pump interlock signal (step S12: Yes), it starts the gas engine 42 and activates the clutch 43. The connected state is set (step S13). Thereby, the compressor 41 starts operation.

続いてマイコン40Aは、圧力センサ41A、41Bの各々によって検出された冷媒圧力の検出値を取得し(ステップS14)、圧力センサ41Aが検出した高圧側の冷媒圧力と、圧力センサ41Bが検出した低圧側の冷媒圧力との圧力差を求め、この圧力差に基づいてバイパス管60への冷媒の流量を調整する(ステップS15)。ここで、マイコン40Aは、圧力差に基づいて弁61、62を比例弁として機能させて、バイパス管60と室外熱交換器51、52とに流す冷媒の比率を細かく調整する。
具体的には、マイコン40Aは、高圧側と低圧側との圧力差が0.5〜0.6MPa(メガパスカル)未満である場合には、バイパス管60に流す冷媒の比率を0より大きくし、例えば50%以上、或いは100%とする。
なお、マイコン40Aは、圧力センサ41A、41Bの検出値に加え、水温センサ68の検出値や、エンジン冷却水の温度等をも加味して、バイパス管60への冷媒の流量を調整してもよい。
Subsequently, the microcomputer 40A acquires the detected value of the refrigerant pressure detected by each of the pressure sensors 41A and 41B (step S14), and the high pressure side refrigerant pressure detected by the pressure sensor 41A and the low pressure detected by the pressure sensor 41B. The pressure difference with the refrigerant pressure on the side is obtained, and the flow rate of the refrigerant to the bypass pipe 60 is adjusted based on this pressure difference (step S15). Here, the microcomputer 40A causes the valves 61 and 62 to function as a proportional valve based on the pressure difference, and finely adjusts the ratio of the refrigerant flowing through the bypass pipe 60 and the outdoor heat exchangers 51 and 52.
Specifically, when the pressure difference between the high pressure side and the low pressure side is less than 0.5 to 0.6 MPa (megapascal), the microcomputer 40A sets the ratio of the refrigerant flowing through the bypass pipe 60 to be greater than zero. For example, 50% or more, or 100%.
The microcomputer 40A adjusts the flow rate of the refrigerant to the bypass pipe 60 in consideration of the detection value of the water temperature sensor 68, the temperature of the engine cooling water, etc. in addition to the detection values of the pressure sensors 41A and 41B. Good.

その後、マイコン40Aは、サーモオフに切り換えるか否かを判別し(ステップS16)、サーモオンの状態を継続する場合は(ステップS16:No)、ステップS11に戻る。また、例えば被調和室の気温が設定温度に達した場合等、サーモオフに切り換える場合(ステップS16:Yes)、マイコン40Aはガスエンジン42を停止させ(ステップS17)、さらにガスエンジン42の停止に伴って室外機4が有する各種の弁を、初期状態や待機状態にする制御を行い(ステップS18)、動作を終了する。   Thereafter, the microcomputer 40A determines whether or not to switch to thermo-off (step S16). If the thermo-on state is continued (step S16: No), the process returns to step S11. In addition, for example, when switching to thermo-off (eg, when the temperature of the conditioned room reaches a set temperature) (step S16: Yes), the microcomputer 40A stops the gas engine 42 (step S17), and further with the stop of the gas engine 42 The various valves of the outdoor unit 4 are controlled to be in an initial state or a standby state (step S18), and the operation ends.

以上のように、本発明を適用した実施形態に係る空気調和システム1によれば、冷却塔2から循環水を複数の空気調和装置10に供給し、空気調和装置10が、冷却塔2から供給される循環水と冷媒とを熱交換させる室外熱交換器51、52を備えている。そして、冷房運転時に循環水が低温である場合など、空気調和装置10の冷媒配管における高圧側と低圧側との冷媒圧力の差が、予め設定された値を下回った場合に、マイコン40Aの制御によって、冷媒を、室外熱交換器51、52を通さずにバイパス管60を通して膨張弁56から室内熱交換器71に流す。これにより、冷媒凝縮温度の過度の低下を防止するとともに、既に低下した冷媒の温度を好適な温度に回復させ、室内熱交換器71において冷媒を十分に蒸発させることができ、安定した冷房運転を実現できる。   As described above, according to the air conditioning system 1 according to the embodiment to which the present invention is applied, the circulating water is supplied from the cooling tower 2 to the plurality of air conditioning apparatuses 10, and the air conditioning apparatus 10 is supplied from the cooling tower 2. Outdoor heat exchangers 51 and 52 for exchanging heat between the circulating water and the refrigerant are provided. Then, when the difference in refrigerant pressure between the high pressure side and the low pressure side in the refrigerant piping of the air conditioner 10 falls below a preset value, such as when the circulating water is at a low temperature during the cooling operation, the control of the microcomputer 40A Thus, the refrigerant flows from the expansion valve 56 to the indoor heat exchanger 71 through the bypass pipe 60 without passing through the outdoor heat exchangers 51 and 52. As a result, an excessive decrease in the refrigerant condensing temperature can be prevented, the already lowered refrigerant temperature can be recovered to a suitable temperature, the refrigerant can be sufficiently evaporated in the indoor heat exchanger 71, and a stable cooling operation can be performed. realizable.

また、冷却塔2による循環水の供給状態を変化させなくても、冷房運転を行う空気調和装置10が自身の動作を制御することで、安定した冷房運転を実現できる。従って、例えば、寒冷期に、冷却塔2に接続された複数の空気調和装置10の複数または大部分が暖房運転を実行し、一部の空気調和装置10のみが冷房運転を行う状態でも、暖房運転を行っている空気調和装置10や冷却塔2の動作に影響を及ぼすことなく、冷房運転を行う空気調和装置10が冷媒凝縮温度の過度の低下を回避し、安定して冷房運転を行える。   Moreover, even if it does not change the supply state of the circulating water by the cooling tower 2, the air conditioning apparatus 10 which performs cooling operation controls its own operation | movement, and can implement | achieve stable cooling operation. Therefore, for example, even in a state where a plurality or most of the plurality of air conditioners 10 connected to the cooling tower 2 perform a heating operation and only some of the air conditioners 10 perform a cooling operation in the cold season, Without affecting the operation of the air conditioner 10 or the cooling tower 2 that is operating, the air conditioner 10 that performs the cooling operation can avoid an excessive decrease in the refrigerant condensing temperature and can perform the cooling operation stably.

さらに、マイコン40Aは、圧力センサ41Aが検出した吐出側の冷媒圧力と、圧力センサ41Bが検出した吸込側の冷媒圧力との差が、予め設定された圧力差を下回った場合に、圧縮機41から吐出された冷媒の一部または全部を、室外熱交換器51、52に流さずバイパス管60に流すよう制御を行う。これにより、冷媒凝縮温度が過度に低下する傾向にある事態に速やかに対応して、それ以上の冷媒凝縮温度の低下を回避するとともに、冷媒凝縮温度を速やかに好適な温度に回復させることができる。   Furthermore, when the difference between the refrigerant pressure on the discharge side detected by the pressure sensor 41A and the refrigerant pressure on the suction side detected by the pressure sensor 41B falls below a preset pressure difference, the microcomputer 40A compresses the compressor 41. Control is performed so that a part or all of the refrigerant discharged from the refrigerant flows through the bypass pipe 60 without flowing through the outdoor heat exchangers 51 and 52. Accordingly, it is possible to quickly cope with a situation where the refrigerant condensing temperature tends to be excessively lowered, to avoid further reduction of the refrigerant condensing temperature, and to quickly recover the refrigerant condensing temperature to a suitable temperature. .

さらに、マイコン40Aは、圧力センサ41Aが検出した吐出側の冷媒圧力と、圧力センサ41Bが検出した吸込側の冷媒圧力との差に基づいて、弁61、62を制御して室外熱交換器51、52とバイパス管60とに冷媒を分配する比率を設定するので、冷媒の流れをきめ細かく調整することで、循環水の温度が低すぎることによる影響を回復させて安定した冷房運転を実現できる。   Furthermore, the microcomputer 40A controls the valves 61 and 62 to control the outdoor heat exchanger 51 based on the difference between the refrigerant pressure on the discharge side detected by the pressure sensor 41A and the refrigerant pressure on the suction side detected by the pressure sensor 41B. , 52 and the bypass pipe 60 are set with a ratio of distributing the refrigerant. By finely adjusting the flow of the refrigerant, the influence of the circulating water temperature being too low can be recovered and a stable cooling operation can be realized.

なお、上記実施形態においては、弁61、62がいずれも開度調整可能な弁であって、これら2つの弁が一体になって比例弁として機能する構成としたが、本発明はこれに限定されるものではなく、例えば、膨張弁56を経て圧縮機41の吸込管に戻る冷媒を、室外熱交換器51、52とバイパス管60のいずれか一方にのみ選択的に流す構成としてもよい。この場合、室外熱交換器51、52における循環水の凍結を防止できる構成を保ちながら低コスト化できる。   In the above embodiment, the valves 61 and 62 are both valves whose opening degree can be adjusted, and these two valves are integrated to function as a proportional valve. However, the present invention is not limited to this. For example, the refrigerant returning to the suction pipe of the compressor 41 via the expansion valve 56 may be selectively flowed only to one of the outdoor heat exchangers 51 and 52 and the bypass pipe 60. In this case, the cost can be reduced while maintaining a configuration that can prevent freezing of the circulating water in the outdoor heat exchangers 51 and 52.

また、マイコン40Aは、圧力センサ41A、41Bが各々検出した冷媒圧力の差に基づいてバイパス管60に流す冷媒の量を調整するものとして説明したが(図3のステップS15)、本発明はこれに限定されるものではなく、例えば、室内熱交換器71における冷媒の温度そのものを測定し、この測定した室内熱交換器71の温度を加味して調整を行ってもよい。
さらに、上記実施形態において、空気調和装置10の室内機7としては、壁掛け型、天井埋込型、天井吊下型の各種の空気調和装置を適用可能である。循環水供給管20を介して1台の冷却塔2に接続される空気調和装置10の数についても任意であり、その他、空気調和装置10や空気調和システム1の細部構成については、本発明の趣旨を逸脱しない範囲で任意に変更可能である。
The microcomputer 40A has been described as adjusting the amount of refrigerant flowing through the bypass pipe 60 based on the difference in refrigerant pressure detected by the pressure sensors 41A and 41B (step S15 in FIG. 3). For example, the temperature of the refrigerant in the indoor heat exchanger 71 itself may be measured, and adjustment may be performed in consideration of the measured temperature of the indoor heat exchanger 71.
Furthermore, in the said embodiment, as the indoor unit 7 of the air conditioning apparatus 10, various types of air conditioning apparatuses of a wall hanging type, a ceiling embedded type, and a ceiling suspended type are applicable. The number of air conditioners 10 connected to one cooling tower 2 via the circulating water supply pipe 20 is also arbitrary, and other detailed configurations of the air conditioner 10 and the air conditioner system 1 are described in the present invention. Any change can be made without departing from the spirit of the invention.

本発明の実施形態に係る空気調和システムの設置状態の例を示す図である。It is a figure which shows the example of the installation state of the air conditioning system which concerns on embodiment of this invention. 空気調和システムの概要構成を示す図である。It is a figure which shows schematic structure of an air conditioning system. 空気調和装置の構成を示す図である。It is a figure which shows the structure of an air conditioning apparatus. 空気調和装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of an air conditioning apparatus.

符号の説明Explanation of symbols

1 空気調和システム
2 冷却塔
4 室外機(熱源側ユニット)
7 室内機
8 制御装置
10 空気調和装置
11、12 冷媒配管
13 通信線
20 循環水供給管
21 ポンプ
22 フローセンサ
25 循環水温センサ
27 凍結防止ヒータ
40 電装ユニット
40A マイコン(制御部)
41 圧縮機
41A、41B 圧力センサ
42 ガスエンジン
43 クラッチ
44 エンジン冷却水回路
45 冷却水ポンプ
46、47 比例三方弁
48 ラジエータ
49 補助熱交換器
50 四方弁
51、52 室外熱交換器(熱源側熱交換器)
53 レシーバタンク
54 アキュムレータ
56 膨張弁
60 バイパス管
61、62 弁
63、64 循環水供給管
68、69 水温センサ
70 リモコン装置
71 室内熱交換器
81 制御装置用通信線
82、83、84、85 信号線
1 Air conditioning system 2 Cooling tower 4 Outdoor unit (heat source side unit)
DESCRIPTION OF SYMBOLS 7 Indoor unit 8 Control apparatus 10 Air conditioning apparatus 11, 12 Refrigerant piping 13 Communication line 20 Circulating water supply pipe 21 Pump 22 Flow sensor 25 Circulating water temperature sensor 27 Antifreeze heater 40 Electrical unit 40A Microcomputer (control part)
41 Compressor 41A, 41B Pressure sensor 42 Gas engine 43 Clutch 44 Engine cooling water circuit 45 Cooling water pump 46, 47 Proportional three-way valve 48 Radiator 49 Auxiliary heat exchanger 50 Four-way valve 51, 52 Outdoor heat exchanger (heat source side heat exchange) vessel)
53 Receiver tank 54 Accumulator 56 Expansion valve 60 Bypass pipe 61, 62 Valve 63, 64 Circulating water supply pipe 68, 69 Water temperature sensor 70 Remote control device 71 Indoor heat exchanger 81 Controller communication line 82, 83, 84, 85 Signal line

Claims (5)

冷媒を圧縮する圧縮機と、外部から供給される水と前記冷媒とを熱交換させる熱源側熱交換器とを備えた空気調和装置の熱源側ユニットにおいて、
前記前記熱源側熱交換器をバイパスするバイパス管を設け、
冷房運転時に前記圧縮機の吐出側と吸込側との冷媒圧力の差が小さい場合に、前記圧縮機から吐出された冷媒の一部または全部を、前記熱源側熱交換器に流さず前記バイパス管に流すよう制御を行う制御部を備えたこと、
を特徴とする熱源側ユニット。
In the heat source side unit of the air conditioner, comprising: a compressor that compresses the refrigerant; and a heat source side heat exchanger that exchanges heat between the externally supplied water and the refrigerant.
Providing a bypass pipe for bypassing the heat source side heat exchanger;
When the refrigerant pressure difference between the discharge side and the suction side of the compressor is small during the cooling operation, a part or all of the refrigerant discharged from the compressor does not flow to the heat source side heat exchanger and the bypass pipe Equipped with a control unit that controls to flow through
A heat source side unit characterized by
前記制御部は、前記圧縮機の吐出側につながる冷媒管路の冷媒圧力と、前記圧縮機の吸込側につながる冷媒管路における冷媒圧力との差が、予め設定された圧力差を下回った場合に、前記圧縮機から吐出された冷媒の一部または全部を、前記熱源側熱交換器に流さず前記バイパス管に流すよう制御を行うこと、
を特徴とする請求項1記載の熱源側ユニット。
When the difference between the refrigerant pressure in the refrigerant line connected to the discharge side of the compressor and the refrigerant pressure in the refrigerant line connected to the suction side of the compressor is less than a preset pressure difference, the control unit In addition, control is performed so that part or all of the refrigerant discharged from the compressor flows through the bypass pipe without flowing through the heat source side heat exchanger,
The heat source unit according to claim 1.
前記熱源側熱交換器と前記バイパス管とに冷媒を分配する弁を備え、
前記制御部は、冷房運転時に前記圧縮機の吐出側と吸込側との冷媒圧力の差に基づいて、前記弁により前記熱源側熱交換器と前記バイパス管とに冷媒を分配する比率を設定する制御を行うこと、
を特徴とする請求項1または2記載の熱源側ユニット。
A valve for distributing refrigerant to the heat source side heat exchanger and the bypass pipe;
The control unit sets a ratio of distributing the refrigerant to the heat source side heat exchanger and the bypass pipe by the valve based on a difference in refrigerant pressure between the discharge side and the suction side of the compressor during the cooling operation. Doing control,
The heat source side unit according to claim 1 or 2.
冷媒を圧縮する圧縮機と、外部から供給される水と前記冷媒とを熱交換させる熱源側熱交換器とを備えた熱源側ユニットを含んで構成される空気調和装置において、
前記熱源側ユニットに、前記前記熱源側熱交換器をバイパスするバイパス管を設け、さらに、冷房運転時に前記圧縮機の吐出側と吸込側との冷媒圧力の差が小さい場合に、前記圧縮機から吐出された冷媒の一部または全部を、前記熱源側熱交換器に流さず前記バイパス管に流すよう制御を行う制御部を備えたこと、
を特徴とする空気調和装置。
In an air conditioner including a heat source side unit including a compressor that compresses a refrigerant, and a heat source side heat exchanger that exchanges heat between water supplied from the outside and the refrigerant,
The heat source side unit is provided with a bypass pipe that bypasses the heat source side heat exchanger, and when the difference in refrigerant pressure between the discharge side and the suction side of the compressor is small during cooling operation, A control unit that performs control so that a part or all of the discharged refrigerant flows through the bypass pipe without flowing through the heat source side heat exchanger;
An air conditioner characterized by.
熱源水を供給する熱源水供給部に、冷媒を圧縮する圧縮機および前記熱源水と前記冷媒とを熱交換させる熱源側熱交換器を備えた熱源側ユニットを含む複数の空気調和装置を接続して構成され、
前記空気調和装置の前記熱源側ユニットに、
前記前記熱源側熱交換器をバイパスするバイパス管を設け、
冷房運転時に前記圧縮機の吐出側と吸込側との冷媒圧力の差が小さい場合に、前記圧縮機から吐出された冷媒の一部または全部を、前記熱源側熱交換器に流さず前記バイパス管に流すよう制御を行う制御部を備えたこと、
を特徴とする空気調和システム。
A plurality of air conditioners including a heat source side unit including a compressor that compresses refrigerant and a heat source side heat exchanger that exchanges heat between the heat source water and the refrigerant are connected to a heat source water supply unit that supplies heat source water. Configured
In the heat source side unit of the air conditioner,
Providing a bypass pipe for bypassing the heat source side heat exchanger;
When the refrigerant pressure difference between the discharge side and the suction side of the compressor is small during the cooling operation, a part or all of the refrigerant discharged from the compressor does not flow to the heat source side heat exchanger and the bypass pipe Equipped with a control unit that controls to flow through
Air conditioning system characterized by
JP2007248504A 2007-09-26 2007-09-26 Heat source side unit, air-conditioner, and air conditioning system Pending JP2009079815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007248504A JP2009079815A (en) 2007-09-26 2007-09-26 Heat source side unit, air-conditioner, and air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007248504A JP2009079815A (en) 2007-09-26 2007-09-26 Heat source side unit, air-conditioner, and air conditioning system

Publications (1)

Publication Number Publication Date
JP2009079815A true JP2009079815A (en) 2009-04-16

Family

ID=40654696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007248504A Pending JP2009079815A (en) 2007-09-26 2007-09-26 Heat source side unit, air-conditioner, and air conditioning system

Country Status (1)

Country Link
JP (1) JP2009079815A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423060A (en) * 1987-07-20 1989-01-25 Nippon Telegraph & Telephone Air-conditioning machine and control thereof
JPH0252955A (en) * 1988-08-17 1990-02-22 Nippon Telegr & Teleph Corp <Ntt> Cooling device and control method thereof
JPH0423967U (en) * 1990-06-22 1992-02-26
JPH05256528A (en) * 1992-03-12 1993-10-05 Fujitsu General Ltd Control device for air-conditioner
JPH06193982A (en) * 1992-10-27 1994-07-15 Sanyo Electric Co Ltd Air conditioner
JPH07280362A (en) * 1994-04-01 1995-10-27 Nippondenso Co Ltd Refrigerating cycle
JPH07305903A (en) * 1994-05-10 1995-11-21 Hitachi Ltd Controller for freezer
JPH1123111A (en) * 1997-06-27 1999-01-26 Hoshizaki Electric Co Ltd Freezing system and water cooling freezing apparatus for same system
JP2006258342A (en) * 2005-03-16 2006-09-28 Sanyo Electric Co Ltd Air conditioning system
JP2006284035A (en) * 2005-03-31 2006-10-19 Mitsubishi Heavy Ind Ltd Air conditioner and its control method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423060A (en) * 1987-07-20 1989-01-25 Nippon Telegraph & Telephone Air-conditioning machine and control thereof
JPH0252955A (en) * 1988-08-17 1990-02-22 Nippon Telegr & Teleph Corp <Ntt> Cooling device and control method thereof
JPH0423967U (en) * 1990-06-22 1992-02-26
JPH05256528A (en) * 1992-03-12 1993-10-05 Fujitsu General Ltd Control device for air-conditioner
JPH06193982A (en) * 1992-10-27 1994-07-15 Sanyo Electric Co Ltd Air conditioner
JPH07280362A (en) * 1994-04-01 1995-10-27 Nippondenso Co Ltd Refrigerating cycle
JPH07305903A (en) * 1994-05-10 1995-11-21 Hitachi Ltd Controller for freezer
JPH1123111A (en) * 1997-06-27 1999-01-26 Hoshizaki Electric Co Ltd Freezing system and water cooling freezing apparatus for same system
JP2006258342A (en) * 2005-03-16 2006-09-28 Sanyo Electric Co Ltd Air conditioning system
JP2006284035A (en) * 2005-03-31 2006-10-19 Mitsubishi Heavy Ind Ltd Air conditioner and its control method

Similar Documents

Publication Publication Date Title
JP2009079813A (en) Heat source-side unit, air conditioning device and air conditioning system
US11761686B2 (en) Methods and systems for controlling integrated air conditioning systems
CN110325804B (en) System and method for controlling a refrigeration system
US9322562B2 (en) Air-conditioning apparatus
AU2007218821B2 (en) Air conditioner and heat source unit
JP5774128B2 (en) Air conditioner
US20120297812A1 (en) Air-conditioning apparatus
US9829224B2 (en) Air-conditioning apparatus
US20150369498A1 (en) Air-conditioning apparatus
WO2008032558A1 (en) Refrigeration device
WO2012098581A1 (en) Air conditioner
JP2022543000A (en) refrigerant system
JP2018132217A (en) Air conditioning equipment
JP2008309383A (en) Electricity/gas-type mixed air conditioning control system
JP2017156003A (en) Air conditioner
US20120060532A1 (en) Heating dedicated air conditioner
JP4229881B2 (en) Heat pump system
JP4844601B2 (en) Refrigeration equipment
JP4546067B2 (en) Air conditioner
JP2004353903A (en) Air conditioner
JP2018132218A (en) Air conditioning device
JP2009079815A (en) Heat source side unit, air-conditioner, and air conditioning system
JP4186492B2 (en) Air conditioner
JP5091608B2 (en) Heat source side unit, air conditioner, and air conditioner system
JP2004278814A (en) Freezing device and its controlling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120411

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108