JP2009076401A - Superconductive cable - Google Patents

Superconductive cable Download PDF

Info

Publication number
JP2009076401A
JP2009076401A JP2007246218A JP2007246218A JP2009076401A JP 2009076401 A JP2009076401 A JP 2009076401A JP 2007246218 A JP2007246218 A JP 2007246218A JP 2007246218 A JP2007246218 A JP 2007246218A JP 2009076401 A JP2009076401 A JP 2009076401A
Authority
JP
Japan
Prior art keywords
superconducting
layer
cable
wire
superconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007246218A
Other languages
Japanese (ja)
Other versions
JP4978397B2 (en
Inventor
Masayuki Hirose
正幸 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007246218A priority Critical patent/JP4978397B2/en
Publication of JP2009076401A publication Critical patent/JP2009076401A/en
Application granted granted Critical
Publication of JP4978397B2 publication Critical patent/JP4978397B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multicore package type superconductive cable capable of using superconductive wire materials with different mechanical strength characteristics for suitable uses. <P>SOLUTION: In the multicore package type superconductive cable wherein a plurality of cable cores 9 for forming a superconductive shield layer 4 are twisted on an outer side of a superconductive conductor layer 2 via an insulated layer 3, the superconductive shield layer 4 is formed by winding the superconductive wire material 21 with superior bending rigidity identified by an EI value in a spiral shape, and the superconductive wire material 21 used for the superconductive shield layer 4 is formed by covering a bismuth oxide superconductor with a metal stabilizer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、超電導層の座屈の発生を抑制できるようにした超電導ケーブルに関する。   The present invention relates to a superconducting cable that can suppress the occurrence of buckling of a superconducting layer.

超電導線材として、Bi-Sr-Ca-Cu-Oテープ線材に代表されるBi系超電導テープ線材が実用化されつつある。Bi系超電導テープ線材は、例えばBi2223相からなる複数本の超電導フィラメントを銀などの安定化材中に埋設した構造のテープ線材である。このBi系超電導テープ線材は、曲げ剛性に優れているため、圧縮応力に対する耐力が優れ座屈しにくいが、引張力に対する強度が、後述するRE(希土類)系超電導薄膜よりもやや弱い。このようなBi系超電導テープ線材を用いた3心一括型の超電導ケーブルは、例えば図3に示すように構成される。即ち、同図にて、中心から順に、フォーマ1、Bi系超電導テープ線材からなる超電導導体層2、絶縁層3、Bi系超電導テープ線材からなる超電導シールド層4が形成され、これらでケーブルコア9が構成される。そして、3本のケーブルコア9が互いに撚り合わされて内管6と外管7とで形成される二重断熱管によって被覆され、内管6内に冷媒流通路5が形成される。また、外管7は防食層8によって覆われ、内管6と外管7の間は真空引きされて真空層とされる。   Bi-based superconducting tape wires represented by Bi-Sr-Ca-Cu-O tape wires are being put into practical use as superconducting wires. The Bi-based superconducting tape wire is a tape wire having a structure in which, for example, a plurality of superconducting filaments made of Bi2223 phase are embedded in a stabilizing material such as silver. Since this Bi-based superconducting tape wire is excellent in bending rigidity, it has excellent resistance to compressive stress and is difficult to buckle, but its strength against tensile force is slightly weaker than an RE (rare earth) -based superconducting thin film described later. A three-core superconducting cable using such a Bi-based superconducting tape wire is configured, for example, as shown in FIG. That is, in the figure, in order from the center, a former 1, a superconducting conductor layer 2 made of a Bi-based superconducting tape wire, an insulating layer 3, and a superconducting shield layer 4 made of a Bi-based superconducting tape wire are formed. Is configured. The three cable cores 9 are twisted together and covered with a double heat insulating pipe formed by the inner pipe 6 and the outer pipe 7, and the refrigerant flow passage 5 is formed in the inner pipe 6. Further, the outer tube 7 is covered with the anticorrosion layer 8, and the space between the inner tube 6 and the outer tube 7 is evacuated to form a vacuum layer.

超電導ケーブルの構成についてより詳しく説明すると、まず、例えば図4に示すように、Bi系超電導テープ線材21の断面は、Bi系酸化物超電導体からなる多数本の超電導フィラメント21bを銀材等からなる金属シース(金属安定化材)21aで覆ってテープ状に形成される。このBi系超電導テープ線材21により、例えば図5に示すようなケーブルコア9が形成される。即ち、ケーブルコア9は、中心から順に、Cuなどの常電導材料からなる素線を撚り合せた撚り線又は中空パイプ等で構成されるフォーマ1と、Bi系超電導テープ線材21からなる超電導導体層2と、クラフト紙やクラフト紙とポリオレフィンフィルムをラミネートした複合紙等からなる絶縁層3と、Bi系超電導テープ線材21からなる超電導シールド層4と、常電導金属層25と、保護層26とが形成される。このようなケーブルコア9は、例えば図6に示すように、引張力を作用させた状態下で3本が強制的に撚り合わされて、その外周に内管6と外管7で形成される二重断熱管が被嵌され、図3に示すような3心一括型の超電導ケーブルが形成される。   The configuration of the superconducting cable will be described in more detail. First, as shown in FIG. 4, for example, the cross section of the Bi-based superconducting tape wire 21 is composed of a number of superconducting filaments 21b made of Bi-based oxide superconductor made of silver or the like. It is covered with a metal sheath (metal stabilizing material) 21a and formed in a tape shape. For example, a cable core 9 as shown in FIG. 5 is formed by the Bi-based superconducting tape wire 21. That is, the cable core 9 includes, in order from the center, a former 1 composed of a stranded wire or a hollow pipe formed by twisting strands made of a normal conducting material such as Cu, and a superconducting conductor layer composed of a Bi-based superconducting tape wire 21. 2, an insulating layer 3 made of kraft paper or a composite paper laminated with kraft paper and a polyolefin film, a superconducting shield layer 4 made of a Bi-based superconducting tape wire 21, a normal conducting metal layer 25, and a protective layer 26. It is formed. For example, as shown in FIG. 6, three such cable cores 9 are forcibly twisted together in a state where a tensile force is applied, and are formed by an inner tube 6 and an outer tube 7 on the outer periphery thereof. A heavy heat insulating tube is fitted to form a three-core batch type superconducting cable as shown in FIG.

一方、次世代超電導線材として、RE系超電導薄膜線材の開発が進められている(例えば特許文献1)。例えば図7に示すように、このRE系超電導薄膜線材11は、テープ状の金属基板12上に順次中間層13、超電導薄膜14、保護層15を積層してなるテープ線材である。具体例としては、例えば金属基板12としてハステロイ(登録商標)、中間層13としてYSZ、超電導薄膜14としてY系123構造(YBa2Cu3Oy)薄膜、保護層15として銀が用いられている。通常、これら中間層13や超電導薄膜14はレーザ蒸着などにより金属基板12の片面のみに形成される。このようなRE系超電導薄膜線材11は、厚みを薄く形成することができ、金属基板12の存在によって引張力に対しては比較的に優れた強度を有しているが、金属基板12や保護層15を薄くすると、曲げ剛性が低いため座屈しやすいという難点がある。このようなRE系超電導薄膜線材11を用いて3心一括型の超電導ケーブルを形成する場合にもBi系超電導テープ線材21の場合と同様に構成される。
特開2001-31418号公報
On the other hand, as a next-generation superconducting wire, development of a RE-based superconducting thin film wire is underway (for example, Patent Document 1). For example, as shown in FIG. 7, the RE-based superconducting thin film wire 11 is a tape wire formed by sequentially laminating an intermediate layer 13, a superconducting thin film 14, and a protective layer 15 on a tape-like metal substrate 12. As a specific example, for example, Hastelloy (registered trademark) is used as the metal substrate 12, YSZ is used as the intermediate layer 13, a Y-based 123 structure (YBa 2 Cu 3 Oy) thin film is used as the superconducting thin film 14, and silver is used as the protective layer 15. Usually, the intermediate layer 13 and the superconducting thin film 14 are formed only on one side of the metal substrate 12 by laser vapor deposition or the like. Such an RE-based superconducting thin film wire 11 can be formed thin and has a relatively excellent strength against tensile force due to the presence of the metal substrate 12, but the metal substrate 12 and the protection If the layer 15 is made thin, the bending rigidity is low, so that there is a problem that it is easy to buckle. When such a RE superconducting thin film wire 11 is used to form a three-core superconducting cable, the configuration is the same as that of the Bi superconducting tape wire 21.
JP 2001-31418

ところで、上述のような3心一括型の超電導ケーブルの製作段階では、3本のケーブルコア9に引張力を作用させつつ強制的に互いに撚り合わせる作業が行われる。その際に、特に、コア同士の接触点では、外側の超電導シールド層4において、コア同士が互いに局部的に強制的に曲げられるため、座屈等の損傷が発生しやすくなるという問題があった。つまり、3本のケーブルコア9に引張力を作用させて互いに撚り合わせる際には、各ケーブルコア9の外側が引っ張られるのに対して、内側が局部的に屈曲して弛みが生じる。このような弛みが発生したコア同士が弛んだ部分で圧縮状態となり、線材がそれに耐えきれなくなると折れ曲がる現象が発生する。これを座屈という。   By the way, in the manufacturing stage of the above-described three-core collective superconducting cable, an operation of forcibly twisting the three cable cores 9 while applying a tensile force is performed. At that time, particularly at the contact point between the cores, in the outer superconducting shield layer 4, the cores are locally forced to bend each other, so that there is a problem that damage such as buckling is likely to occur. . That is, when a tension force is applied to the three cable cores 9 to twist them together, the outer sides of the cable cores 9 are pulled, whereas the inner sides are locally bent and loosened. When the cores in which such slack occurs are compressed, the core is compressed, and the wire is bent when it cannot withstand it. This is called buckling.

このような座屈は、ケーブル製作後の取り扱い段階においても発生する。例えばケーブルをドラムに巻回する際やケーブルを現地で布設する際等に、超電導ケーブルが曲げられると、ケーブル内の超電導層にも強制的な曲げ力が作用する。その曲げ力によって、超電導層の径が大きいほど、その外側部分に大きな引張力が作用し、内側部分には大きな圧縮力が作用する。このような大きな引張力と圧縮力が超電導層に作用すると歪みが大となり座屈が発生しやすくなる。このような歪みεは、例えば超電導ケーブルの曲げ半径をR、超電導層の径をDとすれば、ε∝D/Rとして表すことができる。つまり、超電導ケーブルを同程度に曲げた場合には、超電導層の径Dが大きい程、歪みεが大きくなり座屈が発生しやすくなる。このようなケーブルの曲げにより発生する座屈の問題は、上述のような3心一括型等の多心一括型の超電導ケーブルに限られることなく、単心型の超電導ケーブルにおいても発生する。尚、複数の超電導層を有する単心型の超電導ケーブルでは、外側の超電導層に座屈が発生しやすくなる。   Such buckling also occurs in the handling stage after cable manufacture. For example, when a superconducting cable is bent when the cable is wound around a drum or when the cable is laid on site, a forced bending force acts on the superconducting layer in the cable. Due to the bending force, the larger the diameter of the superconducting layer, the greater the tensile force acts on the outer part and the greater the compressive force acts on the inner part. When such a large tensile force and compressive force act on the superconducting layer, the strain becomes large and buckling tends to occur. Such strain ε can be expressed as ε∝D / R, where R is the bending radius of the superconducting cable and D is the diameter of the superconducting layer. That is, when the superconducting cable is bent to the same extent, the larger the diameter D of the superconducting layer, the larger the strain ε and the more likely buckling occurs. Such a problem of buckling caused by bending of the cable is not limited to a multi-core batch type superconducting cable such as the above-described three-core batch type, but also occurs in a single-core type superconducting cable. In a single-core superconducting cable having a plurality of superconducting layers, buckling tends to occur in the outer superconducting layer.

しかるに、超電導ケーブルの構成を検討する段階で、許容伸びに優れて線材の厚さを薄く形成できるというRE系超電導薄膜線材の特徴や曲げ剛性が優れているというBi系超電導テープ線材や、交流損失を低減させる目的で線材寸法を細く薄くしたBi系超電導テープ線材等が選択できるように超電導線材の開発が進められた。しかし、それらを超電導ケーブルの超電導層に取り込む際に、各線材の特徴をそれぞれ充分に活用させることができるような超電導線材の適材適所の選択がなされていなかった。そのため、上述のような座屈がしばしば発生し、その対策が求められていた。   However, at the stage of studying the structure of the superconducting cable, the characteristics of the RE-based superconducting thin film wire that has excellent allowable elongation and the thickness of the wire can be reduced, and the Bi-based superconducting tape wire that has excellent bending rigidity and AC loss Development of superconducting wire has been promoted so that Bi-based superconducting tape wire and the like whose wire dimensions are thinned and thinned can be selected for the purpose of reducing the above. However, when taking them into the superconducting layer of the superconducting cable, the appropriate material for the superconducting wire has not been selected so that the characteristics of each wire can be fully utilized. For this reason, the buckling as described above often occurs, and countermeasures have been demanded.

本発明は、このような事情に鑑みてなされ、超電導層の座屈の発生を抑制できるようにした超電導ケーブルを提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a superconducting cable that can suppress the occurrence of buckling of a superconducting layer.

本発明の超電導ケーブルは、超電導線材で形成される超電導層を複数層備えた超電導ケーブルであって、
超電導線材のヤング率をE、断面二次モーメントをIとした場合、外側に形成される外側超電導層は、内側に形成される内側超電導層を構成する超電導線材よりもEI値の大きな超電導線材を備えていることを特徴とする。
The superconducting cable of the present invention is a superconducting cable comprising a plurality of superconducting layers formed of a superconducting wire,
When the Young's modulus of the superconducting wire is E and the secondary moment of inertia is I, the outer superconducting layer formed on the outside is a superconducting wire having a larger EI value than the superconducting wire constituting the inner superconducting layer formed on the inside. It is characterized by having.

超電導層が複数層形成される場合には、外側超電導層の方が、内側超電導層よりも、ケーブルの曲げによる歪みが大きくなるため、外側超電導層を形成する超電導線材のEI値を内側超電導層を形成する超電導線材よりも大に設定することによって、超電導ケーブルの製作段階や取り扱い時等に発生するケーブルが曲げに対して必要な座屈耐力を確保できる設計が可能になる。   When a plurality of superconducting layers are formed, the outer superconducting layer is more strained by bending the cable than the inner superconducting layer, so the EI value of the superconducting wire forming the outer superconducting layer is set to the inner superconducting layer. By setting it to be larger than the superconducting wire that forms the cable, it becomes possible to design the cable generated at the stage of superconducting cable production or handling so as to ensure the buckling strength necessary for bending.

前記超電導層の径に略比例して該超電導層を構成する超電導線材のEI値が選択されるようにしてもよい。超電導ケーブルをドラムに巻回する際や現地で敷設する際等に、ケーブルが曲げられると、超電導層の径が大きいほど、曲げの外側部分にはより大きな引張力が作用し内側部分には大きな圧縮力が作用するため、歪みが大きくなり座屈が発生しやすくなる。このような歪みεは、例えば超電導ケーブルの曲げ半径をR、超電導層の径をDとすれば、ε∝D/Rとして表すことができる。つまり、超電導ケーブルを同程度に曲げた場合には、超電導層の径Dが大きい程、歪みεが大きくなる。従って、このような歪みに耐えることができるように、径の大きい超電導層では、EI値を大に設定するのが好ましい。このような対応により、超電導ケーブルの取り扱い時等におけるケーブルの曲げに対して超電導層が座屈しにくくなる。   The EI value of the superconducting wire constituting the superconducting layer may be selected approximately in proportion to the diameter of the superconducting layer. If the cable is bent when the superconducting cable is wound around a drum or laid on site, the larger the diameter of the superconducting layer, the greater the tensile force acts on the outer part of the bend and the larger the inner part. Since compressive force acts, distortion becomes large and buckling tends to occur. Such strain ε can be expressed as ε∝D / R, where R is the bending radius of the superconducting cable and D is the diameter of the superconducting layer. That is, when the superconducting cable is bent to the same extent, the larger the diameter D of the superconducting layer, the larger the strain ε. Therefore, it is preferable to set the EI value to a large value in a superconducting layer having a large diameter so as to withstand such strain. Such a measure makes it difficult for the superconducting layer to buckle against bending of the cable when handling the superconducting cable.

前記超電導ケーブルは3心一括型であってもよい。例えば交流用の3心一括型の超電導ケーブルでは、内側の超電導導体層の外側に超電導シールド層が形成されるが、この場合、超電導ケーブルが曲げられると、超電導シールド層の歪みが超電導導体層よりも大きくなる。そのため、径の大きい超電導シールド層を形成する超電導線材のEI値を、その径に応じて、超電導導体層を形成する超電導線材よりも大きな適切な値に設定することによって、曲げに対する充分な座屈耐力を確保することができる。また、その製作段階で3本のケーブルコアに引張力を作用させつつ強制的に互いに撚り合わせる作業において、特に、外側の超電導シールド層のコア同士が互いに局部的に強制的に曲げられるため、座屈等の損傷が発生しやすくなるが、径の大きい超電導シールド層には、EI値の大きな超電導線材を充当しているため、このような座屈が発生しにくくなる。   The superconducting cable may be a 3-core batch type. For example, in an AC three-core superconducting cable, a superconducting shield layer is formed on the outer side of the inner superconducting conductor layer. In this case, if the superconducting cable is bent, the distortion of the superconducting shield layer is greater than that of the superconducting conductor layer. Also grows. Therefore, by setting the EI value of the superconducting wire forming the superconducting shield layer having a large diameter to an appropriate value larger than that of the superconducting wire forming the superconducting conductor layer according to the diameter, sufficient buckling against bending is achieved. Yield strength can be secured. In addition, in the process of forcing the three cable cores to be twisted together while applying the tensile force to the three cable cores, the cores of the outer superconducting shield layer are locally forced to bend each other. Although damage such as bending is likely to occur, since the superconducting shield layer having a large diameter is filled with a superconducting wire having a large EI value, such buckling is unlikely to occur.

前記外側超電導層に用いられる超電導線材は、ビスマス系酸化物超電導体を金属安定化材で覆って形成されるようにしてもよい。ビスマス系酸化物超電導体を金属安定化材で覆って形成されるBi系超電導テープ線材は、比較的に曲げ剛性に優れ、EI値が比較的に高いため、外側超電導層に適用した場合、ケーブルコア同士を撚り合わせる際にも座屈等の損傷の発生を回避することができる。また、超電導ケーブルが曲げられた際にも、座屈が発生しにくくなる。 The superconducting wire used for the outer superconducting layer may be formed by covering a bismuth-based oxide superconductor with a metal stabilizing material. Bi-based superconducting tape wire formed by covering a bismuth-based oxide superconductor with a metal stabilizer has a relatively high bending rigidity and a relatively high EI value. Even when the cores are twisted together, the occurrence of damage such as buckling can be avoided. Also, buckling is less likely to occur when the superconducting cable is bent.

前記外側超電導層に用いられる超電導線材は、金属基板の少なくとも片面側にRE系超電導薄膜が形成されるものであってもよい。RE系超電導薄膜の場合、金属基板を厚くすること等によって、曲げ剛性を向上させることができるため、所要のEI値を確保できる場合には、RE系超電導薄膜を外側超電導層に好適に使用することができる。このようなRE系超電導薄膜としては、Ho系超電導体またはY系超電導体を主体とするものが挙げられる。   The superconducting wire used for the outer superconducting layer may be one in which a RE superconducting thin film is formed on at least one side of a metal substrate. In the case of the RE-based superconducting thin film, the bending rigidity can be improved by increasing the thickness of the metal substrate. Therefore, when the required EI value can be secured, the RE-based superconducting thin film is preferably used for the outer superconducting layer. be able to. Examples of such RE-based superconducting thin films include those mainly composed of a Ho-based superconductor or a Y-based superconductor.

本発明の超電導ケーブルは、外側超電導層が、内側超電導層を形成する超電導線材よりも大きなEI値を有する超電導薄膜線材を備えるので、超電導ケーブルの製作段階や取り扱い時等に発生するケーブルが曲げられても、超電導層が座屈しにくくなる。   In the superconducting cable of the present invention, the outer superconducting layer includes a superconducting thin film wire having an EI value larger than that of the superconducting wire forming the inner superconducting layer, so that the cable generated at the time of manufacturing or handling the superconducting cable is bent. However, the superconducting layer is less likely to buckle.

以下に、本発明の実施の形態に係る超電導ケーブルについて説明する。図1は、3心一括型の超電導ケーブルの断面構成を示し、図2はケーブルコアの構成を示す。まず、図1に示すように、この超電導ケーブルは、3本のケーブルコア9が互いに撚り合わされて、内管6と外管7で形成される二重断熱管内に収納されている。そして、その内管6内に液体窒素等の冷却媒体を流通させる冷媒流通路5が形成され、外管7は保護層8によって覆われ、内管6と外管7の間は真空引きされて真空層とされる。このような構成により、超電導ケーブルが運転可能な超電導状態に保持される。   The superconducting cable according to the embodiment of the present invention will be described below. FIG. 1 shows a cross-sectional configuration of a three-core batch type superconducting cable, and FIG. 2 shows a configuration of a cable core. First, as shown in FIG. 1, this superconducting cable is housed in a double heat insulating tube formed by an inner tube 6 and an outer tube 7 in which three cable cores 9 are twisted together. Then, a refrigerant flow passage 5 through which a cooling medium such as liquid nitrogen flows is formed in the inner tube 6, the outer tube 7 is covered with a protective layer 8, and the space between the inner tube 6 and the outer tube 7 is evacuated. A vacuum layer is formed. With such a configuration, the superconducting cable is maintained in an operable superconducting state.

そのケーブルコア9は、例えば図2に示すように構成される。即ち、ケーブルコア9は、中心から順に、フォーマ1と、層間絶縁24と、超電導導体層(本発明の内側超電導層)2と、絶縁層3と、超電導シールド層(本発明の外側超電導層)4と、常電導金属層25と、保護層26とで構成される。フォーマ1は、Cuなどの常電導材料からなる素線を撚り合せた撚り線又は中空パイプ等で形成され、超電導導体層2は、超電導薄膜線材11(図7参照)で形成され、絶縁層3は、クラフト紙やクラフト紙とポリオレフィンフィルムをラミネートした複合紙等により形成され、超電導シールド層4は、Bi系超電導テープ線材21(図4参照)で形成される。   The cable core 9 is configured as shown in FIG. 2, for example. That is, the cable core 9 includes, in order from the center, the former 1, the interlayer insulation 24, the superconducting conductor layer (inner superconducting layer of the present invention) 2, the insulating layer 3, and the superconducting shield layer (outer superconducting layer of the present invention). 4, a normal conducting metal layer 25, and a protective layer 26. The former 1 is formed of a stranded wire formed by twisting strands made of a normal conducting material such as Cu or a hollow pipe, and the superconducting conductor layer 2 is formed of a superconducting thin film wire 11 (see FIG. 7). Is formed of kraft paper or composite paper laminated with kraft paper and polyolefin film, and the superconducting shield layer 4 is formed of a Bi-based superconducting tape wire 21 (see FIG. 4).

超電導導体層2を形成する超電導薄膜線材11として、例えば図7に示すような、Ho系超電導体またはY系超電導体を主体とするRE系超電導薄膜14を金属基板12上に形成したRE系超電導薄膜線材を用いることができる。このようなRE系超電導薄膜線材11は、曲げ剛性が比較的に低く、圧縮応力に対する強度、つまり座屈耐力がやや低いという難点があるが、厚みを薄く形成することができ、金属基板12の存在によって引張力に対して優れた強度を有し、比較的に大きな許容伸びを備えている。一方、超電導シールド層4を形成するBi系超電導テープ線材21は、引張力に対する強度がやや低いが、曲げ剛性に優れ、圧縮応力に対する強度、つまり座屈耐力に優れている。即ち、超電導線材のヤング率をE、断面二次モーメントをIとした場合の曲げ剛性を表すEI値が比較的に高い。本超電導ケーブルでは、このような強度特性の異なるRE系超電導薄膜線材11とBi系超電導テープ線材21を、上述のように、超電導導体層2と超電導シールド層4とに、適切に使い分けるようにしている。   As the superconducting thin film wire 11 for forming the superconducting conductor layer 2, for example, as shown in FIG. 7, an RE-based superconducting film in which an RE-based superconducting thin film 14 mainly composed of a Ho-based superconductor or a Y-based superconductor is formed on a metal substrate 12. A thin film wire can be used. Such a RE-based superconducting thin film wire 11 has the disadvantages that the bending rigidity is relatively low and the strength against compressive stress, that is, the buckling strength is somewhat low, but the thickness can be reduced. Due to its presence, it has excellent strength against tensile force and has a relatively large allowable elongation. On the other hand, the Bi-based superconducting tape wire 21 forming the superconducting shield layer 4 is slightly low in strength against tensile force, but has excellent bending rigidity and excellent strength against compressive stress, that is, buckling strength. That is, the EI value representing the bending rigidity when the Young's modulus of the superconducting wire is E and the secondary moment is I is relatively high. In this superconducting cable, the RE superconducting thin film wire 11 and the Bi superconducting tape wire 21 having different strength characteristics are properly used for the superconducting conductor layer 2 and the superconducting shield layer 4 as described above. Yes.

まず、超電導シールド層4については、図6を参照して説明したように、3本のケーブルコア9に引張力を作用させつつ互いに撚り合わせる工程において、特に、ケーブルコア9,9同士の接触点では、コア同士が互いに局部的に強制的に曲げられるため、ケーブルコア9の外側に配設されている超電導シールド層4に座屈が発生しやすくなる。この点に鑑みて、本発明では、その超電導シールド層4に、曲げ剛性に優れたBi系超電導テープ線材21を用いているため、座屈等の損傷が発生しにくくなる。また、ケーブル製作後の取り扱い段階では、超電導ケーブルをドラムに巻回する際や現地で敷設する際等に、ケーブルが曲げられると、径の大きい超電導シールド層4には、曲げの外側部分に大きな引張力が作用し内側部分には大きな圧縮力が作用するため、歪みが大きくなるが、その超電導シールド層4を、EI値の大きいBi系超電導テープ線材21で構成しているので、座屈が発生しにくくなる。   First, regarding the superconducting shield layer 4, as described with reference to FIG. 6, in the step of twisting each other while applying the tensile force to the three cable cores 9, particularly the contact points between the cable cores 9 and 9 Then, since the cores are locally forcedly bent, the superconducting shield layer 4 disposed outside the cable core 9 is likely to buckle. In view of this point, in the present invention, since the Bi-based superconducting tape wire 21 having excellent bending rigidity is used for the superconducting shield layer 4, damage such as buckling is unlikely to occur. Further, in the handling stage after the cable is manufactured, when the cable is bent when the superconducting cable is wound around a drum or laid on the site, the superconducting shield layer 4 having a large diameter has a large outer portion of the bending. Since the tensile force acts and a large compressive force acts on the inner portion, the strain increases. However, since the superconducting shield layer 4 is composed of the Bi-based superconducting tape wire 21 having a large EI value, buckling is caused. Less likely to occur.

次いで、超電導導体層2では、フォーマ1の外周に比較的に薄い層間絶縁24を介して超電導線材が巻回されている。そのため、使用段階において、ケーブルコア9が冷媒の流通によって冷却されると、超電導線材が収縮するが、層間絶縁24が薄いため、収縮代があまりなく、破断等のトラブルが発生しやすくなる。この点に鑑みて、本実施の形態では、超電導導体層2に、許容伸びと引張強度に優れたRE系超電導薄膜線材11を用いているため、充分な耐力を発揮することができ、破断等のトラブルが発生しにくくなる。   Next, in the superconducting conductor layer 2, a superconducting wire is wound around the outer periphery of the former 1 via a relatively thin interlayer insulation 24. For this reason, when the cable core 9 is cooled by the circulation of the refrigerant in the use stage, the superconducting wire contracts, but since the interlayer insulation 24 is thin, there is not much shrinkage and troubles such as breakage are likely to occur. In view of this point, in the present embodiment, since the RE-based superconducting thin film wire 11 having excellent allowable elongation and tensile strength is used for the superconducting conductor layer 2, sufficient proof stress can be exerted, such as fracture. Trouble is less likely to occur.

上述のように、本発明では、機械的な強度特性の異なる超電導薄膜線材(RE系超電導薄膜線材)11とBi系超電導テープ線材21を、超電導導体層2と超電導シールド層4とに、適切に使い分けているため、例えば従来必要とされたケーブルコア9の撚り合わせ時に緩みをもたせたり、超電導線材を巻回する際の張力を調整するような配慮が大幅に緩和されるようになった。これにより、製作段階では、RE系超電導薄膜線材11に適切な張力を作用させて巻き崩れのない超電導導体層2を形成しやすくなった。また、3本のケーブルコア9同士を緩みなく撚り合わせても超電導シールド層4に座屈が発生するようなトラブルが少なくなり、ケーブル製作時の作業能率を格段に向上できるようになった。さらには、超電導ケーブルをドラムに巻回する際や現地で敷設する際等に、ケーブルが曲げられても、超電導シールド層4に座屈が発生しにくくなった。   As described above, in the present invention, the superconducting thin film wire (RE-based superconducting thin film wire) 11 and the Bi-based superconducting tape wire 21 having different mechanical strength characteristics are appropriately applied to the superconducting conductor layer 2 and the superconducting shield layer 4. Since they are used properly, for example, considerations such as providing a looseness when twisting the cable core 9 required in the past and adjusting the tension when winding the superconducting wire are greatly eased. As a result, in the manufacturing stage, it is easy to form the superconducting conductor layer 2 that does not collapse by applying an appropriate tension to the RE-based superconducting thin film wire 11. Further, even if the three cable cores 9 are twisted together without loosening, the trouble that buckling occurs in the superconducting shield layer 4 is reduced, and the work efficiency at the time of cable production can be remarkably improved. Furthermore, buckling of the superconducting shield layer 4 is less likely to occur even when the cable is bent when the superconducting cable is wound around a drum or laid on site.

〔超電導線材の強度特性についての検討〕
超電導ケーブルの超電導層に使用される超電導線材に求められる機械的な強度特性として、(1)引張力に対する耐力、(2)伸びの許容度:伸びδ(許容伸び)、(3)圧縮応力に対する耐力(曲げ剛性EI:E;縦弾性係数(ヤング率),I;断面二次モーメント)等が挙げられる。これらの機械的な強度特性に関し、Bi系超電導テープ線材と、超電導薄膜線材(Y系超電導体)について行った数値検討の結果を表1に示す。
[Examination of strength characteristics of superconducting wire]
The mechanical strength characteristics required for the superconducting wire used in the superconducting layer of the superconducting cable are as follows: (1) Yield strength against tensile force, (2) Elongation tolerance: Elongation δ (allowable elongation), (3) Compressive stress Yield strength (flexural rigidity EI: E; longitudinal elastic modulus (Young's modulus), I: secondary moment of section) and the like. Table 1 shows the results of numerical studies conducted on the Bi-based superconducting tape wire and the superconducting thin film wire (Y-based superconductor) with respect to these mechanical strength characteristics.

Figure 2009076401
Figure 2009076401

尚、1)線材の厚さは、矩形状の断面における断面二次モーメントを与える式bh3/12におけるhに相当する。2)ヤング率E(GPa)は、絶対温度77K時〜常温時の値を示す。3)伸びδ(%)は、δ={(l’−l)/l}×100で表され、破断前後における標点間距離の差の割合を示し、表中、常温時の値を示す。4)断面二次モーメントIは、線材の幅b=1mmとした場合の値に換算している。5)線材の幅b=1mmに換算したEI値(使用状態時)につき、好ましくは、EI≧150×10-4GPa・mm4であることが確認されている。従って、超電導薄膜線材中のBとCの間に許容されるべき境界が存在する。 Incidentally, 1 thickness) wire corresponds to the term h bh 3/12 to give the second moment of the rectangular cross-section. 2) Young's modulus E (GPa) indicates a value at an absolute temperature of 77 K to normal temperature. 3) Elongation δ (%) is represented by δ = {(l′−l) / l} × 100, and indicates the ratio of the difference in distance between the gauge points before and after fracture, and the value at room temperature in the table. . 4) The cross-sectional secondary moment I is converted to a value when the wire width b = 1 mm. 5) It is confirmed that EI ≧ 150 × 10 −4 GPa · mm 4 is preferably satisfied with respect to the EI value (in use) converted to the wire width b = 1 mm. Therefore, there is a boundary to be allowed between B and C in the superconducting thin film wire.

表1から、Bi系超電導テープ線材は曲げ剛性EIに優れているが、伸びδは低いことが判る。一方、超電導薄膜線材(Y系超電導体)は伸びδは大であるが、曲げ剛性EIは低いことが判る。このようなことから、大きな伸びδが求められる部位、即ち、超電導導体層2には超電導薄膜線材(Y系超電導体)11を充当し、大きな曲げ剛性が求められる部位、即ち、超電導シールド層4にはBi系超電導テープ線材を充当するのが好ましい。   From Table 1, it can be seen that the Bi-based superconducting tape wire is excellent in bending rigidity EI but has low elongation δ. On the other hand, it can be seen that the superconducting thin film wire (Y-based superconductor) has a large elongation δ but a low bending rigidity EI. For this reason, the superconducting thin film wire (Y-based superconductor) 11 is applied to the portion where a large elongation δ is required, that is, the superconducting conductor layer 2, and the portion where a large bending rigidity is required, that is, the superconducting shield layer 4 It is preferable to use a Bi-based superconducting tape wire.

また、外側超電導層4の超電導線材として、EI値(ケーブル使用状態時)が、超電導線材の幅b=1mmに換算した場合に、EI≧150×10-4GPa・mm4の条件を満たすRE系超電導薄膜11(表1参照)を選択することもできる。この程度の曲げ剛性を有していれば、ケーブルコア9同士を撚り合わせる際やドラムに巻回する際等にも、座屈の発生を回避することができる。従って、この場合は、内側超電導層2と外側超電導層4を共にRE系超電導薄膜11で形成することができる。 Also, as the superconducting wire of the outer superconducting layer 4, when the EI value (when the cable is in use) is converted to the superconducting wire width b = 1 mm, RE satisfying the condition of EI ≧ 150 × 10 −4 GPa · mm 4 A superconducting thin film 11 (see Table 1) can also be selected. If it has such a bending rigidity, the occurrence of buckling can be avoided even when the cable cores 9 are twisted together or wound around a drum. Therefore, in this case, both the inner superconducting layer 2 and the outer superconducting layer 4 can be formed of the RE superconducting thin film 11.

そして、超電導線材のヤング率をE、断面二次モーメントをIとした場合、超電導層の径に略比例して該超電導層を形成する超電導線材のEI値が選択されるようにしてもよい。即ち、径の大きい外側超電導層4には、その径に比例したEI値の大きい超電導線材を選択することによって、必要な曲げ剛性を確保することができるため、超電導ケーブルの取り扱い時等におけるケーブルの曲げに対して超電導層が座屈しにくくなる。このような対応は、超電導線材の素材の如何に関わらず適用することができる。また、同一超電導層内においても、巻回される超電導線材の径に略比例して該超電導層を形成する超電導線材のEI値が選択されるようにしてもよい。さらに、最外層に巻回される超電導線材ついては、必要に応じて、上述のような比例関係に拘束されることなく、適切なEI値が選択されるようにしてもよい。   When the Young's modulus of the superconducting wire is E and the cross-sectional secondary moment is I, the EI value of the superconducting wire forming the superconducting layer may be selected approximately in proportion to the diameter of the superconducting layer. That is, for the outer superconducting layer 4 having a large diameter, the necessary bending rigidity can be ensured by selecting a superconducting wire having a large EI value proportional to the diameter. The superconducting layer is less likely to buckle against bending. Such correspondence can be applied regardless of the material of the superconducting wire. Further, even in the same superconducting layer, the EI value of the superconducting wire forming the superconducting layer may be selected in proportion to the diameter of the wound superconducting wire. Furthermore, for the superconducting wire wound around the outermost layer, an appropriate EI value may be selected as needed without being restricted by the proportional relationship as described above.

あるいは、内側超電導層4を構成する超電導線材として、例えば伸びδ(常温時)が0.2%以上、好ましくは0.3%以上の超電導線材、例えば超電導薄膜線材(又はBi系超電導テープ線材)(表1参照)を選択すれば、使用時にケーブルコア9が冷媒の流通によって冷却される際の収縮に対して伸びることによって追従できるため、収縮代が不足して破断したり破損するようなトラブルの発生を回避することができる。   Alternatively, as a superconducting wire constituting the inner superconducting layer 4, for example, a superconducting wire having an elongation δ (at room temperature) of 0.2% or more, preferably 0.3% or more, such as a superconducting thin film wire (or Bi-based superconducting tape wire) (see Table 1). ), The cable core 9 can follow the contraction when it is cooled by the circulation of the refrigerant during use, thereby avoiding troubles such as breakage or breakage due to insufficient contraction allowance. can do.

尚、本発明は、実施の形態に限定されることなく、発明の要旨を逸脱しない限りにおいて、適宜、必要に応じて改良、変更等は自由である。本発明の超電導ケーブルは、3心一括型に限定されることなく、心線の本数は適宜に選択されてよい。また、交流用に限らず、直流用の超電導ケーブルやその他の交流用の超電導ケーブルにも本発明の構成を適用することができる。即ち、超電導導体層と超電導シールド層を備えた単心交流型の超電導ケーブル、内側超電導層と外側超電導層とで往路と帰路を構成する単心直流型の超電導ケーブルにも適用することができる。あるいは、超電導導体層の各相が絶縁層を介して同軸状に配列され、さらに絶縁層を介して超電導シールド層が配列された3相交流型の超電導ケーブルにも適用することができる。これらの場合にも、超電導層の径の大小に略比例して、その超電導層を形成する超電導線材のEI値を選択することによって、ケーブルの曲げ等に起因する座屈の発生を効果的に抑制することができる。   It should be noted that the present invention is not limited to the embodiment, and can be freely improved, changed, etc. as necessary without departing from the gist of the invention. The superconducting cable of the present invention is not limited to the three-core package type, and the number of core wires may be selected as appropriate. Further, the configuration of the present invention can be applied not only to alternating current but also to direct current superconducting cables and other alternating current superconducting cables. That is, the present invention can be applied to a single-core AC superconducting cable having a superconducting conductor layer and a superconducting shield layer, and a single-core DC superconducting cable in which the inner superconducting layer and the outer superconducting layer constitute the forward path and the return path. Alternatively, the present invention can also be applied to a three-phase AC type superconducting cable in which each phase of the superconducting conductor layer is arranged coaxially through an insulating layer, and further a superconducting shield layer is arranged through an insulating layer. Also in these cases, by selecting the EI value of the superconducting wire that forms the superconducting layer approximately in proportion to the diameter of the superconducting layer, the occurrence of buckling due to cable bending or the like is effectively prevented. Can be suppressed.

本発明の超電導ケーブルは、超電導ケーブルの製作段階や取り扱い時等に発生するケーブルが曲げられても、超電導層が座屈しにくくなるので、高い信頼性が要求される送電用ケーブル等に好適に適用することができる。   The superconducting cable of the present invention is suitably applied to a power transmission cable or the like that requires high reliability because the superconducting layer is less likely to buckle even if the cable generated during the manufacturing stage or handling of the superconducting cable is bent. can do.

本発明の実施の形態に係る3心一括型の超電導ケーブルの構成を示す断面図である。It is sectional drawing which shows the structure of the 3 core collective type superconducting cable which concerns on embodiment of this invention. 同ケーブルコアの部分破断斜視図である。It is a partially broken perspective view of the cable core. 従来の3心一括型の超電導ケーブルの断面図である。It is sectional drawing of the conventional 3 core lump type superconducting cable. 同Bi系超電導テープ線材の断面図である。It is sectional drawing of the same Bi type superconducting tape wire. 同ケーブルコアの部分破断斜視図である。It is a partially broken perspective view of the cable core. 同ケーブルコアの撚り合わせ状態を示す説明図である。It is explanatory drawing which shows the twisted state of the cable core. 同超電導薄膜線材の部分破断斜視図である。It is a partially broken perspective view of the same superconducting thin film wire.

符号の説明Explanation of symbols

1 フォーマ 2 超電導導体層(内側超電導導体層) 3 絶縁層
4 超電導シールド層(外側超電導導体層) 6 内管 7 外管 8防食層
9 ケーブルコア 11 超電導薄膜線材(RE系超電導薄膜線材)
21 Bi系超電導テープ線材 21a 金属シース
21b 超電導フィラメント 24 層間絶縁 25 常電導金属層
26 保護層
DESCRIPTION OF SYMBOLS 1 Former 2 Superconducting conductor layer (inner superconducting conductor layer) 3 Insulating layer 4 Superconducting shield layer (outer superconducting conductor layer) 6 Inner tube 7 Outer tube 8 Anticorrosion layer 9 Cable core 11 Superconducting thin film wire (RE-based superconducting thin film wire)
21 Bi-based superconducting tape wire 21a Metal sheath 21b Superconducting filament 24 Interlayer insulation 25 Normal conducting metal layer 26 Protective layer

Claims (6)

超電導線材で形成される超電導層を複数層備えた超電導ケーブルであって、
超電導線材のヤング率をE、断面二次モーメントをIとした場合、外側に形成される外側超電導層は、内側に形成される内側超電導層を構成する超電導線材よりもEI値の大きな超電導線材を備えていることを特徴とする超電導ケーブル。
A superconducting cable comprising a plurality of superconducting layers formed of a superconducting wire,
When the Young's modulus of the superconducting wire is E and the secondary moment of inertia is I, the outer superconducting layer formed on the outside is a superconducting wire having a larger EI value than the superconducting wire constituting the inner superconducting layer formed on the inside. A superconducting cable characterized by comprising.
前記超電導層の径に略比例して該超電導層を構成する超電導線材のEI値が選択されることを特徴とする請求項1に記載の超電導ケーブル。   2. The superconducting cable according to claim 1, wherein the EI value of the superconducting wire constituting the superconducting layer is selected approximately in proportion to the diameter of the superconducting layer. 前記超電導ケーブルは3心一括型であることを特徴とする請求項1又は2に記載の超電導ケーブル。   The superconducting cable according to claim 1 or 2, wherein the superconducting cable is a three-core package type. 前記外側超電導層に用いられる超電導線材は、Bi系酸化物超電導体を金属安定化材で覆って形成されることを特徴とする請求項2又は3に記載の超電導ケーブル。   The superconducting cable according to claim 2 or 3, wherein the superconducting wire used for the outer superconducting layer is formed by covering a Bi-based oxide superconductor with a metal stabilizing material. 前記外側超電導層に用いられる超電導線材は、金属基板の少なくとも片面側にRE系超電導薄膜が形成されてなることを特徴とする請求項2又は3に記載の超電導ケーブル。   The superconducting cable according to claim 2 or 3, wherein the superconducting wire used for the outer superconducting layer has an RE-based superconducting thin film formed on at least one side of a metal substrate. 前記RE系超電導薄膜が、Ho系超電導体またはY系超電導体を主体とすることを特徴とする請求項5に記載の超電導ケーブル。   The superconducting cable according to claim 5, wherein the RE-based superconducting thin film is mainly composed of a Ho-based superconductor or a Y-based superconductor.
JP2007246218A 2007-09-21 2007-09-21 Superconducting cable Expired - Fee Related JP4978397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007246218A JP4978397B2 (en) 2007-09-21 2007-09-21 Superconducting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246218A JP4978397B2 (en) 2007-09-21 2007-09-21 Superconducting cable

Publications (2)

Publication Number Publication Date
JP2009076401A true JP2009076401A (en) 2009-04-09
JP4978397B2 JP4978397B2 (en) 2012-07-18

Family

ID=40611173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246218A Expired - Fee Related JP4978397B2 (en) 2007-09-21 2007-09-21 Superconducting cable

Country Status (1)

Country Link
JP (1) JP4978397B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124810A1 (en) * 2011-03-17 2012-09-20 古河電気工業株式会社 Superconductor cable anchoring structure and superconductor cable line anchoring structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250908A (en) * 1985-04-26 1986-11-08 株式会社神戸製鋼所 Superconductor
JPH0887921A (en) * 1994-09-20 1996-04-02 Hitachi Ltd Superconducting multicore cable
JP2001291438A (en) * 2000-04-07 2001-10-19 Toshiba Corp Oxide high-temperature superconductive cable
JP2005268189A (en) * 2004-03-22 2005-09-29 Mitsubishi Electric Corp Superconductor apparatus and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250908A (en) * 1985-04-26 1986-11-08 株式会社神戸製鋼所 Superconductor
JPH0887921A (en) * 1994-09-20 1996-04-02 Hitachi Ltd Superconducting multicore cable
JP2001291438A (en) * 2000-04-07 2001-10-19 Toshiba Corp Oxide high-temperature superconductive cable
JP2005268189A (en) * 2004-03-22 2005-09-29 Mitsubishi Electric Corp Superconductor apparatus and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124810A1 (en) * 2011-03-17 2012-09-20 古河電気工業株式会社 Superconductor cable anchoring structure and superconductor cable line anchoring structure
US9070494B2 (en) 2011-03-17 2015-06-30 Furukawa Electric Co., Ltd. Fixation structure of superconducting cable and fixation structure of superconducting cable line

Also Published As

Publication number Publication date
JP4978397B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP2007287388A (en) Superconductive cable core, and superconductive cable
JP2005251570A (en) Intermediate connection part of superconducting cable
JP2004319093A (en) Superconductive cable
JP4380916B2 (en) Superconducting tape
WO2007080794A1 (en) Superconducting cable
JP4671111B2 (en) Superconducting cable
WO2007122670A1 (en) Superconducting cable
JP5390297B2 (en) Superconducting cable connection and superconducting cable line using the same
JP4978397B2 (en) Superconducting cable
JP4986291B2 (en) Superconducting cable
US6794579B1 (en) High temperature superconducting cable
WO2008013043A1 (en) Superconducting wire, superconducting conductor and superconducting cable
JP5910996B2 (en) Superconducting cable and method of manufacturing superconducting cable
JP4609842B2 (en) Superconducting conductor and manufacturing method thereof
JP4716160B2 (en) Superconducting cable
JP3877057B2 (en) High temperature superconducting cable
US20220115168A1 (en) Compound superconducting twisted wire and rewinding method for compound superconducting twisted wire
JP4662203B2 (en) Superconducting cable
EP1000428B1 (en) High temperature superconducting cable and process for manufacturing the same
JP5273572B2 (en) Laying the superconducting cable
JP2009048793A (en) Superconducting compound wire rod and superconducting cable
JP5164815B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire
JP4566576B2 (en) Dislocation segment conductor
JP3724128B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
JP4883379B2 (en) Superconducting cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4978397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees