JP2005268189A - Superconductor apparatus and its manufacturing method - Google Patents

Superconductor apparatus and its manufacturing method Download PDF

Info

Publication number
JP2005268189A
JP2005268189A JP2004083128A JP2004083128A JP2005268189A JP 2005268189 A JP2005268189 A JP 2005268189A JP 2004083128 A JP2004083128 A JP 2004083128A JP 2004083128 A JP2004083128 A JP 2004083128A JP 2005268189 A JP2005268189 A JP 2005268189A
Authority
JP
Japan
Prior art keywords
superconducting
superconducting conductor
solder
copper plate
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004083128A
Other languages
Japanese (ja)
Other versions
JP4354856B2 (en
Inventor
Sunao Ichihara
直 市原
Shoichiro Nishitani
昌一郎 西谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004083128A priority Critical patent/JP4354856B2/en
Publication of JP2005268189A publication Critical patent/JP2005268189A/en
Application granted granted Critical
Publication of JP4354856B2 publication Critical patent/JP4354856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconductor apparatus possible to be joined under the condition of stable construction. <P>SOLUTION: This superconductor apparatus comprises a forced cooling type superconductors 1a and 1b having superconductor twisted wires 2a and 2b and conduits 3a and 3b enclosing the superconductor twisted wires 2a and 2b to form a cooling passage, wherein the the superconductors 1a and 1b connected have end portions facing to each other in the longitudinal direction and truncated in almost right angle to the longitudinal direction of the superconductors 1a and 1b, a copper plate 9 is inserted between the truncated superconductors 1a and 1b, and the superconductors 1a and 1b and the copper plate 9 are abutted and soldered. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、超電導導体装置およびその製造方法に関し、特にその接続構造と接続方法に係わるものである。例えば、コンジットを有する強制冷却型超電導導体に使用するものである。   The present invention relates to a superconducting conductor device and a manufacturing method thereof, and particularly relates to a connection structure and a connection method thereof. For example, it is used for a forced cooling superconducting conductor having a conduit.

従来の超電導導体の突合せ導体接続装置においては、超電導導体端部間に低抵抗金属を間挿してろう付けする構造であった(特許文献1参照。)。   The conventional superconducting conductor butt conductor connecting device has a structure in which a low-resistance metal is inserted and brazed between ends of the superconducting conductor (see Patent Document 1).

特許第3104823号公報(実施例3、図3)Japanese Patent No. 3104823 (Example 3, FIG. 3)

従来のコンジットを有する強制冷却型超電導導体の突合せ導体接続装置では、超電導導体の接続にろう付けを適用していた。ろう付けを適用する場合、超電導導体端部の接続部を、例えば600°C以上の高温に加熱してろう材を溶融させ、超電導導体端部同士又は間挿材を冶金的に接合する必要がある。超電導導体は、現在商業的に実用化されているNbTi/銅複合超電導線では、400°C以上に加熱すると、その超電導状態で通電可能な電流容量、即ち超電導特性が著しく劣化して、はなはだしい場合は、全く超電導状態にならないこともあるので、このタイプの超電導導体には従来技術を適用できないという問題があった。   In the conventional butt conductor connecting device for forced cooling type superconducting conductors having a conduit, brazing is applied to the connection of the superconducting conductors. When applying brazing, it is necessary to melt the brazing material by heating the connecting portion of the superconducting conductor end to a high temperature of, for example, 600 ° C. or more, and to metallurgically bond the superconducting conductor end portions or the interposition material. is there. Superconducting conductors are NbTi / copper composite superconducting wires that are currently in commercial use. When heated to 400 ° C or higher, the current capacity that can be conducted in the superconducting state, that is, the superconducting characteristics, is significantly deteriorated. However, there is a problem that the conventional technology cannot be applied to this type of superconducting conductor.

また他の実用化されているNbSn/銅複合超電導線では、数分程度の短時間であれば700°C程度まで加熱しても超電導特性が劣化せず、理論的には従来技術が適用可能であるが、短時間に狭い温度範囲で加熱するように温度制御をすることは困難であり、やはり工業的には従来技術を適用することは難しいという問題があった。 Further, in other practical Nb 3 Sn / copper composite superconducting wires, the superconducting characteristics are not deteriorated even if heated to about 700 ° C. for a short time of about several minutes. Although applicable, it is difficult to control the temperature so that it is heated in a narrow temperature range in a short time, and there is also a problem that it is difficult to apply the conventional technique industrially.

この発明は上記のような問題を解決するためになされたものであり、安定な施工条件下で、接合可能な超電導導体装置を得ることを目的とする。また、この装置に適した製造方法を提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to obtain a superconducting conductor device that can be joined under stable construction conditions. Moreover, it aims at providing the manufacturing method suitable for this apparatus.

この発明に係わる超電導導体装置は、超電導撚線と上記超電導撚線を囲み冷媒流路を形成するコンジットを有する強制冷却型超電導導体であって、接続される上記超電導導体同志の長手方向の対向する端部が上記超電導導体の長手方向に対して略直角に切断され、切断された上記超電導導体端部間に銅板を介在させ、上記両超電導導体端部と上記銅板間が半田で突合わせ接合されたものである。   A superconducting conductor device according to the present invention is a forced cooling superconducting conductor having a superconducting stranded wire and a conduit surrounding the superconducting stranded wire to form a refrigerant flow path, and the superconducting conductors to be connected are opposed to each other in the longitudinal direction. Ends are cut at substantially right angles to the longitudinal direction of the superconducting conductor, a copper plate is interposed between the cut ends of the superconducting conductor, and both the superconducting conductor ends and the copper plate are butt-joined with solder. It is a thing.

また、この発明に係わる超電導導体装置の製造方法は、超電導撚線と上記超電導撚線を囲み冷媒流路を形成するコンジットを有する強制冷却型超電導導体であって、接続される上記超電導導体同志の長手方向の対向する端部が上記超電導導体の長手方向に対して略直角に切断され、切断された上記超電導導体端部間に銅板を介在させ、水素を含む不活性ガス雰囲気で上記両超電導導体端部と上記銅板間が半田で突合わせ接合されるものである。   Further, a method of manufacturing a superconducting conductor device according to the present invention is a forced cooling superconducting conductor having a superconducting stranded wire and a conduit surrounding the superconducting stranded wire to form a refrigerant flow path. Opposite ends in the longitudinal direction are cut at a substantially right angle to the longitudinal direction of the superconducting conductor, a copper plate is interposed between the cut superconducting conductor ends, and both the superconducting conductors in an inert gas atmosphere containing hydrogen The end and the copper plate are butt-joined with solder.

また、超電導撚線と上記超電導撚線を囲み冷媒流路を形成するコンジットを有する強制冷却型超電導導体であって、接続される上記超電導導体同志の長手方向の対向する端部が上記超電導導体の長手方向に対して略直角に切断され、切断された上記超電導導体端部間に銅板を介在させ、半田で接合される部分又は全体を所定の温度に所定時間保持した後に、上記両超電導導体端部と上記銅板間が半田で突合わせ接合されるものである。   Further, a forced cooling superconducting conductor having a superconducting stranded wire and a conduit surrounding the superconducting stranded wire to form a refrigerant flow path, the opposing ends of the superconducting conductors connected in the longitudinal direction of the superconducting conductor are A copper plate is interposed between the cut ends of the superconducting conductor and cut at a substantially right angle with respect to the longitudinal direction. The part and the copper plate are butt-joined with solder.

さらに、超電導撚線と上記超電導撚線を囲み冷媒流路を形成するコンジットを有する強制冷却型超電導導体であって、接続される上記超電導導体同志の長手方向の対向する端部が上記超電導導体の長手方向に対して略直角に切断され、切断された上記超電導導体端部間に銅板を介在させ、糸状半田を半田で接合される部分の外周から供給して、上記両超電導導体端部と上記銅板間が半田で突合わせ接合されるものである。   Further, a forced cooling type superconducting conductor having a superconducting stranded wire and a conduit surrounding the superconducting stranded wire to form a refrigerant flow path, the opposing ends of the superconducting conductors connected in the longitudinal direction of the superconducting conductor are A copper plate is interposed between the cut ends of the superconducting conductor, cut at a substantially right angle with respect to the longitudinal direction, and thread-like solder is supplied from the outer periphery of the portion to be joined by soldering. The copper plates are butt-joined with solder.

この発明の超電導導体装置によれば、接合面への半田の浸透性を確保でき、超電導導体に対して過大な温度に加熱することなしに超電導導体の接合が可能なので、安定した高い品質の超電導導体装置を得ることができる。   According to the superconducting conductor device of the present invention, it is possible to ensure the permeability of the solder to the joining surface, and the superconducting conductor can be joined without heating the superconducting conductor to an excessive temperature. A conductor device can be obtained.

また、この発明の超電導導体装置の製造方法によれば、半田付けを水素を含む不活性ガス雰囲気でしたので、半田と銅板の間の接触角が大きく減少し、その結果として接合のための半田の界面への浸透が良好で、電気抵抗が少なく、均一な接合をもつ高い接合性能と品質の超電導導体装置を得ることができる。   Further, according to the method of manufacturing a superconducting conductor device of the present invention, since the soldering was performed in an inert gas atmosphere containing hydrogen, the contact angle between the solder and the copper plate was greatly reduced, and as a result, the solder for joining It is possible to obtain a superconducting conductor device having good bonding performance and quality with good penetration into the interface, low electrical resistance and uniform bonding.

実施の形態1.
図1はこの発明の実施の形態1における超電導導体装置を示す縦断面図で、図2は図1のA−A線横断面図、図3は図1のB−B線横断面図である。超電導導体装置は、巻線の1ユニットの超電導導体1aと、この超電導導体1aと接続される他方の1ユニットの超電導導体1bを有し、図ではそれらの超電導導体1a,1bの端部を示している。超電導導体1aには、超電導撚線2aと、この超電導撚線2aを囲み閉じ込めて液体ヘリウムなどの冷媒流路を形成する角形コンジット3aと、超電導導体1aの端部に被せられコンジツト3a端に溶接固定され接続部(接合部)側が縮径された円形端子管4aと、縮径部21aと、冷媒出口管7aとを有している。
Embodiment 1 FIG.
1 is a longitudinal sectional view showing a superconducting conductor device according to Embodiment 1 of the present invention, FIG. 2 is a transverse sectional view taken along line AA in FIG. 1, and FIG. 3 is a transverse sectional view taken along line BB in FIG. . The superconducting conductor device has a superconducting conductor 1a of one unit of winding and another superconducting conductor 1b connected to the superconducting conductor 1a. In the figure, end portions of the superconducting conductors 1a and 1b are shown. ing. The superconducting conductor 1a is covered with a superconducting stranded wire 2a, a rectangular conduit 3a surrounding and confining the superconducting stranded wire 2a to form a refrigerant flow path such as liquid helium, and the end of the superconducting conductor 1a being welded to the end of the conduit 3a. It has a circular terminal tube 4a that is fixed and has a reduced diameter on the connecting part (joining part) side, a reduced diameter part 21a, and a refrigerant outlet pipe 7a.

同様に、超電導導体1bには、超電導撚線2bと、この超電導撚線2bを囲み閉じ込めて液体ヘリウムなどの冷媒流路を形成する角形コンジット3bと、超電導導体1bの端部に被せられコンジツト3b端に溶接固定され接続部(接合部)側が縮径された円形端子管4bと、縮径部21bと、冷媒出口管7bとを有している。10は超電導導体1a,1bの端部と端部が接続された接合部である。   Similarly, the superconducting conductor 1b is covered with a superconducting stranded wire 2b, a rectangular conduit 3b surrounding and confining the superconducting stranded wire 2b to form a refrigerant flow path such as liquid helium, and a conduit 3b covering the end of the superconducting conductor 1b. It has a circular terminal tube 4b which is welded and fixed to the end and whose connecting portion (joining portion) side is reduced in diameter, a reduced diameter portion 21b, and a refrigerant outlet tube 7b. Reference numeral 10 denotes a joint where the end portions of the superconducting conductors 1a and 1b are connected.

超電導導体1a,1bでは、接続される超電導導体同志の長手方向の対向する端部が超電導導体の長手方向に対して略直角に切断され、接合される面が平坦に加工されている。銅板9がそれら接合面の間に介在(間挿)されており.超電導導体1aの端部の接合面と銅板9の間及び超電導導体1bの端部の接合面と銅板9の間は半田で接合されている。A−A断面を示す図2で、超電導撚線2aが角形断面のコンジツト3a内に収納され、全体として角形断面超電導導体1aを構成している。図3に示す超電導導体1aのB―B断面では、コンジット3a外周が角形であったものが、端子管4a外周が円形に加工されている。   In superconducting conductors 1a and 1b, opposite ends in the longitudinal direction of the superconducting conductors to be connected are cut at substantially right angles to the longitudinal direction of the superconducting conductors, and the surfaces to be joined are processed flat. A copper plate 9 is interposed between these joint surfaces. The joint surface at the end of the superconducting conductor 1a and the copper plate 9 and the joint surface at the end of the superconducting conductor 1b and the copper plate 9 are joined by solder. In FIG. 2 showing an AA cross section, a superconducting stranded wire 2a is accommodated in a prismatic cross-section conduit 3a to constitute a square cross-sectional superconductor 1a as a whole. In the BB cross section of the superconducting conductor 1a shown in FIG. 3, the outer periphery of the conduit 3a is square, but the outer periphery of the terminal tube 4a is processed into a circle.

図4は超電導導体装置の主要部の斜視図である。図lで、超電導撚線2a,2bは、直径が0.7mm程度の超電導素線が多数撚り合されているものである。コンジット3a,3bは金属製で、超電導コイルを運転する温度4K程度の極低温で強度が高く、靭性が高く、溶接可能で気密性が高いものである必要があり、ステンレス鋼,チタン等が通常使用される。超電導導体1a,1bの端部の縮径加工は、接合端面を精度よく加工するために、超電導撚線2a,2bの空隙率を低くして機械的剛性を増す必要があるためであり、ダイス絞り加工等のかしめ加工により成形される。   FIG. 4 is a perspective view of the main part of the superconducting conductor device. In FIG. 1, the superconducting stranded wires 2a and 2b are formed by twisting many superconducting strands having a diameter of about 0.7 mm. The conduits 3a and 3b are made of metal and must have high strength, high toughness, high toughness, high weldability and high airtightness, such as stainless steel and titanium. used. The diameter reduction processing of the end portions of the superconducting conductors 1a and 1b is because it is necessary to reduce the porosity of the superconducting stranded wires 2a and 2b and increase the mechanical rigidity in order to accurately process the joining end faces. It is formed by caulking such as drawing.

次に動作について説明する。実施の形態lの超電導導体装置では、コンジット3a,3b内の超電導撚線2a,2bの隙間は占積率で30〜40%あり、超電導導体装置は、この隙間に冷媒である超臨界ヘリウム(SHE)が、図1の矢印8で示すように流れることによりコイルの運転温度である約4Kの温度に冷却保持される。冷却された超電導導体1a,1bにはその端子部に電流が通電され、超電導導体1a,1bには接合部10の微小な抵抗を介して電流が流れる。この微小な抵抗により、微小な発熱があるが、この発熱は超電導導体装置に存在する冷媒により冷却され、コイルは超電導状態が保持される。   Next, the operation will be described. In the superconducting conductor device of the embodiment 1, the gap between the superconducting stranded wires 2a and 2b in the conduits 3a and 3b is 30 to 40% in terms of space factor, and the superconducting conductor device has supercritical helium (refrigerant) as a refrigerant in this gap. SHE) is cooled and held at a temperature of about 4K, which is the operating temperature of the coil, by flowing as indicated by arrow 8 in FIG. Current is applied to the terminal portions of the cooled superconducting conductors 1 a and 1 b, and current flows through the superconducting conductors 1 a and 1 b through the minute resistance of the junction 10. Due to this minute resistance, there is minute heat generation, but this heat generation is cooled by the refrigerant present in the superconducting conductor device, and the coil is maintained in the superconducting state.

超電導導体1a,1bの端部の接続部において、半田接合する際に、接続部近傍を半田溶融温度より僅かに高い温度、例えば250°Cに加熱しておき、半田を外周から接続部に供給する。超電導導体1a,1bの接続端は縮径加工されているので、超電導撚線2a,2bの一般部より少ない20%程度の空隙があり、もし銅板9が無いと半田が浸透する方向に沿って散在する空隙のために半田の良好な浸透が阻害され、接合面積率の低い半田接合となる。   When soldering at the connecting portions at the ends of the superconducting conductors 1a and 1b, the vicinity of the connecting portions is heated to a temperature slightly higher than the solder melting temperature, for example, 250 ° C., and the solder is supplied from the outer periphery to the connecting portions. To do. Since the connection ends of the superconducting conductors 1a and 1b are reduced in diameter, there is a gap of about 20% which is smaller than the general part of the superconducting stranded wires 2a and 2b, and if the copper plate 9 is not present, the solder penetrates along the direction. Due to the scattered voids, good penetration of the solder is hindered, resulting in a solder joint with a low joint area ratio.

半田接合率が低いと接合面の電気抵抗が高く、発熱が大きくなり、超電導導体の通電容量を低下させ、はなはだしい場合には所定の電流に達する前に超電導破壊をしてしまうという問題が内在する。しかしこの発明では、超電導導体1a,1bの端部間に平滑な銅板9が存在するために、接合しようとする界面への半田の浸透が極めて良好になり、極めて高い接合面積率を得ることができる。接合界面に銅板を介在させることは極めて容易であり、高い接合性能と品質をもつ超電導導体装置およびこの超電導導体装置を使用した超電導コイル装置を得ることができる。   If the solder joint rate is low, the electrical resistance of the joint surface is high, the heat generation is large, the current carrying capacity of the superconducting conductor is reduced, and in the worst case, there is a problem of superconducting breakdown before reaching the predetermined current. . However, in the present invention, since the smooth copper plate 9 exists between the end portions of the superconducting conductors 1a and 1b, the penetration of solder into the interface to be joined becomes extremely good, and an extremely high joining area ratio can be obtained. it can. It is very easy to interpose a copper plate at the joining interface, and a superconducting conductor device having high joining performance and quality and a superconducting coil device using this superconducting conductor device can be obtained.

実施の形態2.
超電導導体1a,1bの端部間に介在させる銅板9の厚さについて、説明する。銅板9は厚い程、板の剛性が増し、接続部の組立作業が容易となる。例えば、銅板9が極度に薄いと銅板を間挿する作業中に、銅板9が超電導導体1a,1bの端部から受ける僅かな摩擦力のために座屈してしまい、銅板9の間挿作業が困難となるので、ある程度の厚さが必要である。しかし、一方銅板9が厚くなると常電導金属である銅の電気抵抗のために、超電導導体1a,1bの接続部の電気抵抗が増加する不都合があり、両者のバランスを取ったところで、銅板9の厚さを設定する必要がある。
Embodiment 2. FIG.
The thickness of the copper plate 9 interposed between the ends of the superconducting conductors 1a and 1b will be described. The thicker the copper plate 9 is, the more rigid the plate is and the easier it is to assemble the connecting portion. For example, when the copper plate 9 is extremely thin, the copper plate 9 is buckled during the work of inserting the copper plate due to a slight frictional force received from the ends of the superconducting conductors 1a and 1b. A certain amount of thickness is necessary because it becomes difficult. However, when the copper plate 9 becomes thicker, there is a disadvantage that the electrical resistance of the connecting portion of the superconducting conductors 1a and 1b increases due to the electrical resistance of copper, which is a normal conducting metal. It is necessary to set the thickness.

例えば、超電導導体1a,1bの端部の直径が40mmの大形導体では、銅板9の座屈荷重は式(1)で表される。間挿する銅板9の寸法として直径40mm、厚さT(mm)としてみる。式(1)において、
Wcrは座屈荷重(N)、
Ecuは銅板9のヤング率で、約100(GPa)、
Iは銅板の曲げの断面二次モーメントで、T/0.3(mm)、
Dは銅板の直径40(mm)である。
Wcr=兀EcuI/(4D) ------------式(1)
For example, in the case of a large conductor having a diameter of 40 mm at the ends of the superconducting conductors 1a and 1b, the buckling load of the copper plate 9 is expressed by Expression (1). As the dimensions of the copper plate 9 to be inserted, the diameter is 40 mm and the thickness is T (mm). In equation (1),
Wcr is the buckling load (N),
Ecu is the Young's modulus of the copper plate 9, about 100 (GPa),
I is the cross-sectional second moment of bending of the copper plate, T 3 /0.3 (mm 4 ),
D is the diameter of the copper plate 40 (mm).
Wcr = 兀2 EcuI / (4D 2 ) ---------------------------------

一方、銅板9の電気抵抗は式(2)で表される。式(2)において、
Rcuは超電導導体1a,1bの接続部に間挿する銅板9の電気抵抗(Ω)、
ρcuは使用温度即ち温度4K付近での銅の電気抵抗率で約1.7×10―10(Ωm)、
Tは銅板の厚さ(m)、
Sは銅板の面積で1.26×10−3(m)lO-3(m)である。
Rcu=ρcu T/S ----------------式(2)
On the other hand, the electrical resistance of the copper plate 9 is expressed by Expression (2). In equation (2),
Rcu is the electrical resistance (Ω) of the copper plate 9 to be inserted into the connection part of the superconducting conductors 1a and 1b,
ρcu is the electrical resistivity of copper at the operating temperature, that is, around 4K, about 1.7 × 10 −10 (Ωm),
T is the thickness of the copper plate (m),
S is an area of the copper plate 1.26 × 10 -3 (m 2) lO -3 (m 2).
Rcu = ρcu T / S ---------------- Equation (2)

図5に、式(1)の計算結果と式(2)の計算結果を示す。同図に示すように、銅板9の座屈荷重は銅板9の厚さの増加と共に急激に増加する。発明者らが超電導導体1a,1bの端部接続部製作の実験をした結果、銅板9の厚さの下限は50μm程度であり、これ以下では銅板9が座屈や曲ることが多く、使用が困難なことが判った。直径が40mmの大形導体での導体接続部の電気抵抗は、1〜5nΩ程度が実現可能でかつ発熱上許容し得る。銅板を設置することにより必然的に超電導導体1a,1bの電気抵抗が僅かとは言え増加するが、その増加は極力少ないことが必要である。具体的には銅板無しで実現できている超電導導体1a,1bの接続部の電気抵抗値の1〜2%であれば問題が無いといえる。   In FIG. 5, the calculation result of Formula (1) and the calculation result of Formula (2) are shown. As shown in the figure, the buckling load of the copper plate 9 increases rapidly as the thickness of the copper plate 9 increases. As a result of experiments conducted by the inventors to manufacture the end connection portions of the superconducting conductors 1a and 1b, the lower limit of the thickness of the copper plate 9 is about 50 μm, and below this, the copper plate 9 is often buckled and bent. It turned out to be difficult. The electrical resistance of the conductor connecting portion of a large conductor having a diameter of 40 mm can be about 1 to 5 nΩ and can be allowed for heat generation. Although the electrical resistance of the superconducting conductors 1a and 1b is inevitably increased by installing the copper plate, the increase is required to be as small as possible. Specifically, it can be said that there is no problem if it is 1 to 2% of the electrical resistance value of the connection portion of the superconducting conductors 1a and 1b that can be realized without a copper plate.

図5で判るように、銅板の厚さ800μmを上限とすれば、銅板の電気抵抗は略10nΩ以下であり、この条件を満足できる。超電導導体1a,1bの接続部に間挿する銅板9の厚さを50μm以上800μm以下とすれば、組立性が良好でかつ性能が良好な超電導導体装置およびこの超電導導体装置を使用した超電導コイル装置を得ることができる効果がある。   As can be seen from FIG. 5, if the upper limit of the thickness of the copper plate is 800 μm, the electrical resistance of the copper plate is approximately 10 nΩ or less, and this condition can be satisfied. If the thickness of the copper plate 9 inserted between the connecting portions of the superconducting conductors 1a and 1b is 50 μm or more and 800 μm or less, the superconducting conductor device having good assemblability and good performance and the superconducting coil device using this superconducting conductor device There is an effect that can be obtained.

実施の形態3.
超電導導体1a,1bの接続部に間挿する銅板9の大きさについて、説明する。銅板の大きさを超電導導体1a,1bの端部の直径より10mm程度以上大きくすると、供給する半田の浸透が良好になる。図6は実施の形態3における超電導導体装置を示す縦断面図である。同図で超電導導体1a,1bの接続部はヒータ14により半田溶融温度より高い温度に加熱され、半田が銅板9と超電導導体1a,1bの端部の界面に供給される。ここで銅板9の直径は超電導導体1a,1bの端部の外周端より5mm程度以上出っ張っている。このため溶融した半田は銅板9に沿って接合したい界面である銅板9と超電導導体1a,1bの端面の間に良好に浸透する。
Embodiment 3 FIG.
The magnitude | size of the copper plate 9 inserted in the connection part of the superconducting conductors 1a and 1b is demonstrated. When the size of the copper plate is made about 10 mm or more larger than the diameter of the end portions of the superconducting conductors 1a and 1b, the penetration of the supplied solder becomes good. FIG. 6 is a longitudinal sectional view showing the superconducting conductor device in the third embodiment. In the figure, the connecting portion of the superconducting conductors 1a and 1b is heated to a temperature higher than the solder melting temperature by the heater 14, and the solder is supplied to the interface between the copper plate 9 and the end portions of the superconducting conductors 1a and 1b. Here, the diameter of the copper plate 9 protrudes by about 5 mm or more from the outer peripheral ends of the end portions of the superconducting conductors 1a and 1b. Therefore, the molten solder penetrates well between the copper plate 9 which is an interface to be joined along the copper plate 9 and the end faces of the superconducting conductors 1a and 1b.

もし銅板の直径が超電導導体1a,1bの端部と同じ直径であると、溶融半田が界面に浸透する掛りがなく、半田は超電導導体1a,1bの端部の外周端を流れ落ち、界面には浸透せず、接合が不十分となり、このため接続部の電気抵抗が高く、発熱が大きくなり、通電容量が不足する。以上のように実施の形態3では、銅板の直径を超電導導体1a,1bの端部の直径より大きくしたので、接合のための半田の界面への浸透が良好で、電気抵抗が少なく、均一な接合である高い接合性能と品質を持つ超電導導体装置およびこの超電導導体装置を使用した超電導コイル装置を得ることができる効果がある。   If the copper plate has the same diameter as the ends of the superconducting conductors 1a and 1b, the molten solder will not penetrate into the interface, and the solder will flow down the outer peripheral edge of the ends of the superconducting conductors 1a and 1b. It does not penetrate and bonding becomes insufficient. For this reason, the electrical resistance of the connecting portion is high, heat generation is increased, and current carrying capacity is insufficient. As described above, in the third embodiment, since the diameter of the copper plate is larger than the diameter of the end portions of the superconducting conductors 1a and 1b, the penetration into the solder interface for bonding is good, the electric resistance is small, and the uniform There is an effect that it is possible to obtain a superconducting conductor device having high joining performance and quality as a joining and a superconducting coil device using this superconducting conductor device.

実施の形態4.
銅板9の表面処理について、説明する。銅板9の表面に金メッキを施すと、供給する半田の浸透が良好になると共に、空隙の少ない半田接合面を得ることができる。半田の浸透性の指標として、金属面上の半田粒を加熱溶融させたときの半田粒の外周部が、金属面と成す角度であるところの接触角がある。接触角が小さい程、即ち溶融粒が扁平な程、半田の浸透性は良好である。発明者らは、PbSn半田を裸銅および金メッキ銅板上に置き、水素添加窒素ガス雰囲気中で300°Cに加熱したときの接触角を測定した。その結果を表1に示す。
Embodiment 4 FIG.
The surface treatment of the copper plate 9 will be described. When the surface of the copper plate 9 is plated with gold, the penetration of the supplied solder becomes good and a solder joint surface with few voids can be obtained. As an index of solder permeability, there is a contact angle that is an angle formed by the outer periphery of the solder grain when the solder grain on the metal surface is heated and melted with the metal surface. The smaller the contact angle, that is, the flatter the molten particles, the better the solder permeability. The inventors placed PbSn solder on bare copper and a gold-plated copper plate, and measured the contact angle when heated to 300 ° C. in a hydrogenated nitrogen gas atmosphere. The results are shown in Table 1.

Figure 2005268189
Figure 2005268189

表1によれば、銅板が素材表面のまま場合の接触角が90度以上であったのに対し、金メッキを施した銅板の場合の接触角は1度以下と接触角が劇的に減少した。以上のように実施の形態4では、銅板の表面に金メッキを施したので、半田と銅板9の間の接触角が著しく減少し、その結果として接合のための半田の界面への浸透が良好で、電気抵抗が少なく、均一な接合をもつ高い接合性能と品質の超電導導体装置およびこの超電導導体装置を使用した超電導コイル装置を得ることができる効果がある。   According to Table 1, the contact angle when the copper plate remained as the material surface was 90 degrees or more, whereas the contact angle for the gold-plated copper plate was 1 degree or less, and the contact angle decreased dramatically. . As described above, in Embodiment 4, since the surface of the copper plate is gold-plated, the contact angle between the solder and the copper plate 9 is remarkably reduced, and as a result, the penetration into the solder interface for bonding is good. In addition, there is an effect that a superconducting conductor device having low electric resistance and uniform joining and high joining performance and quality and a superconducting coil device using the superconducting conductor device can be obtained.

実施の形態5.
半田の材質について、説明する。半田の材質を高純度スズSnとすると、半田の浸透性を損わずに装置が使用される極低温での電気抵抗が小さくなる。PbSn半田と高純度Sn(95%以上)半田の、温度4.2Kでの無磁場および磁場印加状態での電気抵抗率を測定した結果を図7に示す。
Embodiment 5 FIG.
The material of the solder will be described. When the material of the solder is high-purity tin Sn, the electrical resistance at the cryogenic temperature at which the apparatus is used is reduced without impairing the permeability of the solder. FIG. 7 shows the results of measuring the electrical resistivity of the PbSn solder and the high-purity Sn (95% or more) solder in the absence of a magnetic field at a temperature of 4.2 K and in a magnetic field application state.

両者の電気抵抗率を比較すると、無磁場ではPbSn半田の方が小さいが、磁束密度1T以上ではSn半田の方が小さく、通常導体接続部がさらされる磁場、例えば磁束密度1Tでは、Sn半田の電気抵抗率はPbSn半田のそれの1/5ある。以上のように実施の形態5では、高純度Snを半田材としたので、半田の浸透性が良好でかつ電気抵抗が少ない高い接合性能と品質の超電導導体装置およびこの超電導導体装置を使用した超電導コイル装置を得ることができる効果がある。   Comparing the electrical resistivity of both, the PbSn solder is smaller in the absence of a magnetic field, but the Sn solder is smaller at a magnetic flux density of 1T or higher, and the magnetic field to which the conductor connection part is normally exposed, for example, the magnetic flux density of 1T, the Sn solder is smaller. The electrical resistivity is 1/5 that of PbSn solder. As described above, since the high purity Sn is used as the solder material in the fifth embodiment, the superconducting conductor device having high bonding performance and quality with good solder permeability and low electrical resistance, and superconductivity using this superconducting conductor device There is an effect that a coil device can be obtained.

実施の形態6.
半田に燐Pを含有させると、供給する半田の浸透が良好になると共に、空隙の少ない半田接合面を得ることができる。半田の浸透性の指標として先に示した接触角で比較する。発明者らは、PbSn半田とP含有Pbフリー半田を裸銅板上に置き、窒素ガス雰囲気中で350°Cに加熱したときの接触角を測定した。その結果を表2に示す。
Embodiment 6 FIG.
When phosphorus P is contained in the solder, the penetration of the supplied solder can be improved and a solder joint surface with few voids can be obtained. The contact angle shown above is compared as an index of solder permeability. The inventors measured the contact angle when PbSn solder and P-containing Pb-free solder were placed on a bare copper plate and heated to 350 ° C. in a nitrogen gas atmosphere. The results are shown in Table 2.

Figure 2005268189
Figure 2005268189

表2によれば、半田材がPbSn半田の場合の接触角が90以上あったのに対し、Pを含めた半田の場合の接触角は45度と接触角が大きく減少した。以上のように、実施の形態6では、半田にPを含有させたので、半田と銅板の間の接触角が大きく減少し、その結果として接合のための半田の界面への浸透が良好で、電気抵抗が少なく、均一な接合をもつ高い接合性能と品質の超電導導体装置およびこの超電導導体装置を使用した超電導コイル装置を得ることができる効果がある。   According to Table 2, the contact angle was 90 or more when the solder material was PbSn solder, whereas the contact angle was 45 degrees when the solder containing P was 45 °, and the contact angle was greatly reduced. As described above, in the sixth embodiment, since P is contained in the solder, the contact angle between the solder and the copper plate is greatly reduced, and as a result, the penetration into the solder interface for bonding is good. There is an effect that it is possible to obtain a superconducting conductor device having a low electric resistance and uniform joining and having a high joining performance and quality, and a superconducting coil device using the superconducting conductor device.

実施の形態7.
半田付けを施工する雰囲気について説明する。半田付けを水素添加窒素雰囲気中で実施すると、供給する半田の浸透が良好になると共に空隙の少ない半田接合面を得ることができる。半田の浸透性の指標として先に示した接触角で比較する。発明者らは、PbSn半田を裸銅板上に置き、窒素ガスおよび水素添加窒素雰囲気中で、300°Cに加熱したときの接触角を測定した。その結果を表3に示す。
Embodiment 7 FIG.
The atmosphere for soldering will be described. When the soldering is performed in a hydrogenated nitrogen atmosphere, the penetration of the supplied solder can be improved and a solder joint surface with few voids can be obtained. The contact angle shown above is compared as an index of solder permeability. The inventors placed PbSn solder on a bare copper plate and measured the contact angle when heated to 300 ° C. in a nitrogen gas and hydrogenated nitrogen atmosphere. The results are shown in Table 3.

Figure 2005268189
Figure 2005268189

表3によれば、半田付け雰囲気が窒素の場合の接触角が90度以上であったのに対し、水素添加窒素の場合の接触角は30度と接触角が大きく減少した。以上のように実施の形態7では、半田付け雰囲気を水素添加窒素としたので、半田と銅板の間の接触角が大きく減少し、その結果として接合のための半田の界面への浸透が良好で、電気抵抗が少なく、均一な接合をもつ高い接合性能と品質の超電導導体装置およびこの超電導導体装置を使用した超電導コイル装置を得ることができる効果がある。なお、半田付け雰囲気は水素添加窒素に換えて、水素添加不活性ガスを使用しても良い。   According to Table 3, the contact angle when the soldering atmosphere was nitrogen was 90 degrees or more, whereas the contact angle when hydrogenated nitrogen was 30 degrees, the contact angle was greatly reduced. As described above, in the seventh embodiment, since the soldering atmosphere is hydrogenated nitrogen, the contact angle between the solder and the copper plate is greatly reduced, and as a result, the penetration into the solder interface for bonding is good. In addition, there is an effect that a superconducting conductor device having low electric resistance and uniform joining and high joining performance and quality and a superconducting coil device using the superconducting conductor device can be obtained. The soldering atmosphere may use hydrogenated inert gas instead of hydrogenated nitrogen.

実施の形態8.
上述の各実施の形態では、超電導導体1a,1bの端部内部に半田付けに際して、ガスを流さない場合について述べたが、半田付け施工時に水素を含む不活性ガスを超電導導体1a,1bの端部内部に流すと、半田の濡れが良好となる。図8は実施の形態8における超電導導体装置の製造方法を示す縦断面図である。超電導導体1a,1bの接続しようとする端部と、反対側の端部は水素添加窒素ガス容器20に接続され、半田付けする端部と間挿する銅板9の隙間から水素添加窒素ガスが大気に放出される。
Embodiment 8 FIG.
In each of the above-described embodiments, the case where no gas is allowed to flow inside the ends of the superconducting conductors 1a and 1b has been described. However, an inert gas containing hydrogen is applied to the ends of the superconducting conductors 1a and 1b during soldering. When it flows inside the part, the solder wets well. FIG. 8 is a longitudinal sectional view showing a method of manufacturing the superconducting conductor device in the eighth embodiment. The ends to be connected to the superconducting conductors 1a and 1b and the opposite ends are connected to the hydrogenated nitrogen gas container 20, and hydrogenated nitrogen gas is introduced into the atmosphere from the gap between the copper plate 9 inserted between the soldered ends. To be released.

この結果、超電導導体1a,1b内部とその端部内部が水素添加窒素ガス雰囲気となる。この状態のままヒータ14により接続される端部を半田溶融温度以上の温度に加熱すると、水素の還元作用により、超電導撚線2a,2bの接続する端面と間挿する銅板の表面の酸化膜が除去される。半田浸透のために上記ガスを停止し、その直後に半田を接合界面に供給することにより、接合界面への半田材の浸透が良く、良好な半田付けが得られる。このように実施の形態8では、超電導導体1a,1bの端部接続部の半田施工において、水素を含む不活性ガスを超電導導体1a,1b内部とその端部内部に流すようにしたので、良好な半田付けが得られ、電気抵抗が少なく、均一な接合をもつ高い接合性能と品質の超電導導体装置およびこの超電導導体装置を使用した超電導コイル装置を得ることができる効果がある。   As a result, the inside of the superconducting conductors 1a and 1b and the inside of the end portions are in a hydrogenated nitrogen gas atmosphere. When the end connected by the heater 14 is heated to a temperature equal to or higher than the solder melting temperature in this state, an oxide film on the surface of the copper plate inserted between the end surfaces to which the superconducting stranded wires 2a and 2b are connected is reduced by the reduction action of hydrogen. Removed. The gas is stopped for solder penetration, and immediately after that, the solder is supplied to the joint interface, so that the solder material penetrates into the joint interface and good soldering is obtained. As described above, in the eighth embodiment, in the soldering of the end connecting portions of the superconducting conductors 1a and 1b, the inert gas containing hydrogen is caused to flow in the superconducting conductors 1a and 1b and in the end portions. Therefore, it is possible to obtain a superconducting conductor device with high joining performance and quality having a uniform joining, and a superconducting coil device using this superconducting conductor device.

実施の形態9.
超電導導体1a,1bの端部接続部の半田接続施工時の加熱条件について説明する。半田接続施工時の加熱条件を、所定温度到達後、所定時間保持した後に半田を供給施工すると、半田の濡れと浸透が良好となる。図9は実施の形態9における半田接続施工時の加熱条件を説明する図である。超電導導体1a,1b内部とその端部内部に水素添加窒素ガスを流すことは、実施の形態8と同様である。超電導導体1a,1b内部とその端部内部を所定のガス雰囲気にした後、図9に加熱条件を示すように端部を加熱する。この加熱温度を保持することにより銅表面の酸化膜を除去できる。この加熱温度保持過程で、水素の還元作用により、超電導撚線の接続する端面と間挿する銅板の表面の酸化膜が除去され.半田供給作業をすることにより、接合面への半田材の浸透が良く、良好な半田付けができる。
Embodiment 9 FIG.
The heating conditions at the time of solder connection construction of the end connection portions of the superconducting conductors 1a and 1b will be described. If solder is supplied and applied after the heating conditions at the time of solder connection construction are maintained for a predetermined time after reaching a predetermined temperature, wetting and penetration of the solder is improved. FIG. 9 is a diagram for explaining the heating conditions at the time of solder connection construction in the ninth embodiment. The flow of hydrogenated nitrogen gas into the superconducting conductors 1a and 1b and inside the end portions is the same as in the eighth embodiment. After making the inside of superconducting conductors 1a and 1b and the inside of the end thereof into a predetermined gas atmosphere, the end is heated as shown in FIG. By holding this heating temperature, the oxide film on the copper surface can be removed. During this heating temperature holding process, the oxide film on the surface of the copper plate inserted between the end face where the superconducting stranded wire is connected is removed by the reduction action of hydrogen. By performing the solder supply operation, the penetration of the solder material to the joint surface is good and good soldering can be performed.

このように実施の形態9では、超電導導体1a,1bの端部接続部の半田施工において、水素を含む不活性ガス雰囲気中、または超電導導体1a,1b内部とその端部内部に水素添加窒素ガスを流しつつ、所定の温度に保持した後半田付けするようにしたので、半田の浸透を阻害する酸化膜が除去され、半田の浸透性が向上し、結果として半田付け品質が向上し、高い品質の超電導導体装置およびこの超電導導体装置を使用した超電導コイル装置を得ることができる効果がある。   As described above, in the ninth embodiment, in the soldering of the end connecting portions of the superconducting conductors 1a and 1b, hydrogenated nitrogen gas is contained in an inert gas atmosphere containing hydrogen, or inside and inside the superconducting conductors 1a and 1b. Since the soldering is performed after the temperature is maintained at a predetermined temperature, the oxide film that obstructs the penetration of the solder is removed, the permeability of the solder is improved, and as a result, the soldering quality is improved and the quality is improved. The superconducting conductor device and a superconducting coil device using this superconducting conductor device can be obtained.

実施の形態10.
半田接続施工時の加熱温度条件を、300°C到達後30秒保持した後に半田さし施工すると、半田の濡れと浸透が良好となる。表4で実施の形態10における加熱温度条件を説明する。半田の浸透性の指標として先に示した接触角で比較する。発明者らは、PbSn半田を金メッキ銅板上に置き、水素添加窒素雰囲気中で250°C及び300°Cに加熱したときの接触角を測定した。その結果を表4に示す。
Embodiment 10 FIG.
When soldering is performed after the heating temperature condition at the time of solder connection construction is maintained for 30 seconds after reaching 300 ° C., solder wetting and penetration are improved. Table 4 explains heating temperature conditions in the tenth embodiment. The contact angle shown above is compared as an index of solder permeability. The inventors measured the contact angle when the PbSn solder was placed on a gold-plated copper plate and heated to 250 ° C. and 300 ° C. in a hydrogenated nitrogen atmosphere. The results are shown in Table 4.

Figure 2005268189
Figure 2005268189

表4によれば、半田付け温度が250°Cの場合の接触角が90度以上であったのに対し、半田付け温度が300°Cの場合の接触角は1度以下と接触角が劇的に減少した。半田付け温度が300°Cはそれ以上でも良い。   According to Table 4, when the soldering temperature is 250 ° C., the contact angle is 90 degrees or more, whereas when the soldering temperature is 300 ° C., the contact angle is 1 degree or less, and the contact angle is dramatic. Decreased. The soldering temperature may be 300 ° C or higher.

このように実施の形態10では、超電導導体1a,1b端部接続部の半田施工において、水素を含む不活性ガス雰囲気中または超電導導体1a,1b内部とその端部内部に水素添加窒素ガスを流しつつ、所定の温度に保持した後、半田付けする条件として300°C加熱を30秒保持するようにしたので、半田の浸透を阻害する酸化膜が除去され、半田の浸透性が向上し、結果として半田付け品質が向上し、均一な接合をもつ高い接合性能と品質の超電導導体装置およびこの超電導導体装置を使用した超電導コイル装置を得ることができる効果がある。   As described above, in the tenth embodiment, in soldering the superconducting conductors 1a and 1b at the end connecting portions, hydrogenated nitrogen gas is allowed to flow in an inert gas atmosphere containing hydrogen or inside the superconducting conductors 1a and 1b and inside the end portions. However, after maintaining at a predetermined temperature, 300 ° C. heating was maintained for 30 seconds as a condition for soldering, so that the oxide film that hinders solder penetration was removed, and the solder permeability was improved. As a result, the soldering quality is improved, and there is an effect that a superconducting conductor device having high joining performance and quality with uniform joining and a superconducting coil device using this superconducting conductor device can be obtained.

実施の形態11.
接続部界面への半田供給方法について説明する。接続部界面の外周から、間挿する銅板に沿って半田を供給する、いわゆる差し半田をすると、半田の浸透が良好となる。図10は実施の形態11における超電導導体装置の製造方法を示す縦断面図である。加熱された超電導導体1a,1bの端部接続部に間挿する銅板9の外周から、糸状の半田11を差すことにより、溶融した半田が界面に浸透する。界面にあらかじめ半田を置いておくいわゆる置き半田と比較すると、置き半田では半田表面積が大きく、半田が流動しないので酸化膜が接合したい界面にあることになり、半田のぬれ性が良くない。これに対し実施の形態11の差し半田では表面積が少なくかつ溶融して表面の酸化膜が破られた新鮮な表面をもつ部分が流動して浸透するので半田の浸透性が良い。
Embodiment 11 FIG.
A method for supplying solder to the interface of the connecting portion will be described. When the solder is supplied from the outer periphery of the interface of the connecting portion along the copper plate to be inserted, so-called soldering, the penetration of the solder is improved. FIG. 10 is a longitudinal sectional view showing a method of manufacturing the superconducting conductor device in the eleventh embodiment. By inserting the thread-like solder 11 from the outer periphery of the copper plate 9 inserted between the end connection portions of the heated superconducting conductors 1a and 1b, the molten solder permeates the interface. Compared with so-called place solder in which solder is placed in advance at the interface, the surface area of the solder is large and the solder does not flow, so the oxide film is at the interface where it is desired to join, and the wettability of the solder is not good. On the other hand, the solder of the eleventh embodiment has a small surface area and melts and the portion having a fresh surface where the oxide film on the surface is broken flows and penetrates, so that the solder has good permeability.

このように実施の形態11では、超電導導体1a,1bの端部接続部の半田施工において、導体接続部外周から半田を供給するようにしたので、半田の浸透を阻害する酸化膜が除去され、半田の浸透性が向上し、結果として半田付け品質が向上し、電気抵抗が少なく、均一な接合をもつ高い接合性能と品質の超電導導体装置およびこの超電導導体装置を使用した超電導コイル装置を得ることができる効巣がある。   Thus, in the eleventh embodiment, since solder is supplied from the outer periphery of the conductor connecting portion in the soldering of the end connecting portion of the superconducting conductors 1a and 1b, the oxide film that hinders the penetration of the solder is removed, Improved solder penetration, resulting in improved soldering quality, low electrical resistance, uniform bonding with high bonding performance and quality, and a superconducting coil device using this superconducting device There is an effect that can.

実施の形態12.
接続部界面へ間挿する銅板9が接合部より外周に突出する部分の処理について説明する。この突出部分を半田接合後切除すると、半田付け後の組立作業がしやすくなる。図11は実施の形態12における超電導導体装置の製造方法を示す縦断面図である。導体接続部に
は接合界面の機械的な補強と接合界面のコイル外部真空に対する気密のために外管6を設置する。外管6は導体接続部の端子管4a,4bの外周に密着させる構造とすると機械構造的に強固となる。
Embodiment 12 FIG.
The process of the part which the copper plate 9 inserted in a connection part interface protrudes to an outer periphery from a junction part is demonstrated. If this projecting part is cut off after soldering, the assembly work after soldering becomes easy. FIG. 11 is a longitudinal sectional view showing a method of manufacturing the superconducting conductor device in the twelfth embodiment. An outer tube 6 is installed in the conductor connection portion for mechanical reinforcement of the joining interface and airtightness against the coil external vacuum at the joining interface. If the outer tube 6 is structured to be in close contact with the outer periphery of the terminal tubes 4a and 4b of the conductor connection portion, the mechanical structure becomes strong.

導体接続部接合面の間挿銅板9の外周を切除すると、外管6の内面が導体接続部端子管4a,4b外面を直接機械的に支持し、強固な外管6取付構造を得ることができる。このように実施の形態12では、超電導導体接続部の問挿銅板の接合部の外周端からの突出部を切除するようにしたので、導体接続部の機械的強度の信頼性、真空気密の信頼性が向上し、品質の高い超電導導体装置が得られる効果がある。   When the outer periphery of the interposer copper plate 9 is cut off between the conductor connection portion joint surfaces, the inner surface of the outer tube 6 directly mechanically supports the outer surfaces of the conductor connection portion terminal tubes 4a and 4b, thereby obtaining a strong outer tube 6 mounting structure. it can. As described above, in the twelfth embodiment, since the protruding portion from the outer peripheral end of the joining portion of the intercalated copper plate of the superconducting conductor connecting portion is cut out, the reliability of the mechanical strength of the conductor connecting portion and the reliability of the vacuum airtightness are obtained. As a result, there is an effect that a high-quality superconducting conductor device is obtained.

実施の形態13.
超電導体の種類について説明する。超電導体が例えばNbSnのような超電導コイルの巻線形状成形後に高温の超電導体生成のための熱処理が必要なものに適用する場合は、半田の濡れが向上する効果がある。NbSn超電導体を使用した超電導コイルのNbSn生成熱処理は、600〜700°Cの高温で100〜500時間もの長時間熱処理である。この熱処理過程で、超電導導体の金属管内を炉内雰囲気と隔離した気密構造とし、金属管内部に清浄な不活性ガス、たとえばArガスを流通させると、超電導撚線の撚線製造工程で不可避的に付着している有機物が、ベーキング効果によりほぼ完全に除去できる。
Embodiment 13 FIG.
The type of superconductor will be described. When the superconductor is applied to a material that requires heat treatment for producing a high-temperature superconductor after forming a winding shape of a superconducting coil such as Nb 3 Sn, for example, there is an effect of improving the wettability of the solder. Nb 3 Sn generation heat treatment of a superconducting coil using Nb 3 Sn superconductors are prolonged heat treatment even 100-500 hours at a high temperature of 600 to 700 ° C. In this heat treatment process, if the inside of the metal tube of the superconducting conductor is isolated from the atmosphere inside the furnace, and a clean inert gas, for example, Ar gas, is circulated inside the metal tube, it is inevitable in the process of manufacturing a superconducting stranded wire. Organic matter adhering to the surface can be almost completely removed by the baking effect.

超電導撚線表面に付着している有機物は半田の超電導撚線表面に対する濡れ性を阻害するが、この除去処理により濡れ性低下を防止することができる。表5はNbSn生成熱処理中に有機物除去処理をしたNbSn超電導線と、生成熱処理を経験しないNbSn超電導線の表面に付着している油脂の量の測定結果例を示す。 Although the organic substance adhering to the surface of the superconducting stranded wire inhibits the wettability of the solder to the surface of the superconducting stranded wire, this removal treatment can prevent a decrease in the wettability. Table 5 shows an example of measurement results of the amount of oil and fat adhering to the surfaces of the Nb 3 Sn superconducting wire subjected to the organic substance removal treatment during the Nb 3 Sn generating heat treatment and the Nb 3 Sn superconducting wire not experiencing the generating heat treatment.

Figure 2005268189
Figure 2005268189

表5に示すようにNbSn生成熱処理と組合された有機物除去処理の効果は著しく、有機物はほぼ完全に除去される。従って半田の導体長手方向の浸透効果が高くなる。このように実施の形態13では、NbSn等高温により超電導体生成熱処理をコイル成形後に実施する超電導コイルの導体接続部の接合に半田付けを適用するようにしたので、半田濡れを阻害する有機物が除去され、半田がより確実に広い範囲に浸透し、結果として半田付け品質が向上する効果がある。 As shown in Table 5, the effect of the organic substance removal treatment combined with the Nb 3 Sn generation heat treatment is remarkable, and the organic substance is almost completely removed. Accordingly, the penetration effect of the solder in the longitudinal direction of the conductor is increased. As described above, in the thirteenth embodiment, since soldering is applied to the junction of the conductor connection portion of the superconducting coil that is subjected to the superconductor generation heat treatment at a high temperature such as Nb 3 Sn after coil forming, an organic substance that inhibits solder wetting As a result, the solder penetrates more reliably over a wide range, and as a result, the soldering quality is improved.

実施の形態14.
実施の形態1では、超電導撚線が金属管内に収納された内部強制冷却型超電導導体を使用する場合について述べたが、超電導撚線が剥き出しであり金属管が無い形式の超電導導体に適用しても、冷却性に優れた超電導導体装置にできる効果がある。金属管を使用する超電導導体は通常、高い強度と高い耐電圧性能が必要な超電導コイル装置に適用されるが、一方で液体ヘリウム等貯液された静止液体冷媒に直接露出された超電導コイル装置と比較すると、冷却性能が不十分である。冷却性能をより重視し撚線が冷媒液に直接露出する形式の超電導コイル装置の導体接続部に実施する場合を説明する。
Embodiment 14 FIG.
In the first embodiment, the case where the internal forced cooling type superconducting conductor in which the superconducting stranded wire is housed in the metal tube is used has been described. However, the superconducting stranded wire is exposed and applied to a superconducting conductor having no metal tube. However, there is an effect that a superconducting conductor device having excellent cooling performance can be obtained. Superconducting conductors that use metal tubes are usually applied to superconducting coil devices that require high strength and high voltage resistance performance, while superconducting coil devices that are directly exposed to a stationary liquid refrigerant such as liquid helium. In comparison, the cooling performance is insufficient. A case will be described in which the cooling performance is more emphasized and applied to the conductor connection part of the superconducting coil device in which the stranded wire is directly exposed to the refrigerant liquid.

図12は実施の形態14における超電導導体装置の主要部を示す斜視図である。超電導撚線端部を端子管4で被覆する。端子管と超電導撚線の端部の構成と半田の接合の形態は
実施の形態1と同様である。このように実施の形態14では、撚線のみからなる超電導導体を使用する超電導コイルの導体接続部において、銅板を介在させた半田付けを施工するようにしたので、よりコイルの冷却性能が高く性能の高い超電導導体装置が得られる効果がある。
FIG. 12 is a perspective view showing a main part of the superconducting conductor device according to the fourteenth embodiment. The end of the superconducting stranded wire is covered with the terminal tube 4. The configuration of the end portions of the terminal tube and the superconducting stranded wire and the form of solder bonding are the same as in the first embodiment. As described above, in the fourteenth embodiment, since the soldering with the copper plate interposed is applied in the conductor connecting portion of the superconducting coil using the superconducting conductor composed only of the stranded wire, the coil cooling performance is higher and the performance is increased. There is an effect that a superconducting conductor device having a high level can be obtained.

この発明の実施の形態1における超電導導体装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the superconducting conductor apparatus in Embodiment 1 of this invention. 図1のA−A線横断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 1. 図1のB−B線横断面図である。It is the BB line cross-sectional view of FIG. 実施の形態1における超電導導体装置の主要部の斜視図である。FIG. 3 is a perspective view of a main part of the superconducting conductor device in the first embodiment. 銅板厚さに対する銅板座屈荷重と銅板電気抵抗を示す特性図である。It is a characteristic view which shows the copper plate buckling load with respect to copper plate thickness, and a copper plate electrical resistance. 実施の形態3における超電導導体装置を示す縦断面図である。FIG. 5 is a longitudinal sectional view showing a superconducting conductor device in a third embodiment. 半田の種類に対する印加磁束密度と電気抵抗率との関係を示す特性図である。It is a characteristic view which shows the relationship between the applied magnetic flux density with respect to the kind of solder, and an electrical resistivity. 実施の形態8における超電導導体装置の製造方法を示す縦断面図である。It is a longitudinal cross-sectional view which shows the manufacturing method of the superconducting conductor apparatus in Embodiment 8. 実施の形態9における半田接続施工時の加熱条件を説明する図である。It is a figure explaining the heating conditions at the time of the solder connection construction in Embodiment 9. FIG. 実施の形態11における超電導導体装置の製造方法を示す縦断面図である。It is a longitudinal cross-sectional view which shows the manufacturing method of the superconducting conductor apparatus in Embodiment 11. 実施の形態12における超電導導体装置の製造方法を示す縦断面図である。 この発明の実施の形態12を示す縦断面図である。It is a longitudinal cross-sectional view which shows the manufacturing method of the superconducting conductor apparatus in Embodiment 12. It is a longitudinal cross-sectional view which shows Embodiment 12 of this invention. 実施の形態14における超電導導体装置の主要部を示す斜視図である。It is a perspective view which shows the principal part of the superconducting conductor apparatus in Embodiment 14. FIG.

符号の説明Explanation of symbols

1a,1b 超電導導体 2a,2b 超電導撚線
3a,3b コンジット 4a,4b 円形端子管
6 外管 7a,7b 冷媒出口管
8 矢印 9 銅板
10 接合部 11 糸状半田
14 ヒータ 20 水素添加窒素ガス容器
21a,21b 縮径部。
1a, 1b Superconducting conductor 2a, 2b Superconducting stranded wire 3a, 3b Conduit 4a, 4b Circular terminal tube 6 Outer tube 7a, 7b Refrigerant outlet tube 8 Arrow 9 Copper plate 10 Junction 11 Threaded solder 14 Heater 20 Hydrogenated nitrogen gas container 21a, 21b Reduced diameter portion.

Claims (14)

超電導撚線と上記超電導撚線を囲み冷媒流路を形成するコンジットを有する強制冷却型超電導導体であって、接続される上記超電導導体同志の長手方向の対向する端部が上記超電導導体の長手方向に対して略直角に切断され、切断された上記超電導導体端部間に銅板を介在させ、上記両超電導導体端部と上記銅板間が半田で突合わせ接合された超電導導体装置。   A forced-cooling type superconducting conductor having a superconducting stranded wire and a conduit surrounding the superconducting stranded wire to form a refrigerant flow path, wherein opposite ends of the superconducting conductors connected in the longitudinal direction are in the longitudinal direction of the superconducting conductor A superconducting conductor device in which a copper plate is interposed between the cut end portions of the superconducting conductor, and both the end portions of the superconducting conductor and the copper plate are butt-joined with solder. 上記銅板は板厚50μm以上300μm以下である請求項1記載の超電導導体装置。   The superconducting conductor device according to claim 1, wherein the copper plate has a thickness of 50 μm to 300 μm. 上記銅板の大きさは、接続される上記超電導導体同志の対向する端部が円形であるときは、上記超電導導体の対向端部の直径より大であり、
上記超電導導体の対向端部が非円形であるときは、上記超電導導体の対向端部の最大差し渡し寸法より大である請求項1又は請求項2記載の超電導導体装置。
The size of the copper plate is larger than the diameter of the opposing end portion of the superconducting conductor when the opposing end portions of the superconducting conductors to be connected are circular,
3. The superconducting conductor device according to claim 1, wherein when the opposing end portion of the superconducting conductor is non-circular, the superconducting conductor device is larger than a maximum passing dimension of the opposing end portion of the superconducting conductor.
上記銅板には、金メッキが施されている請求項1〜請求項3のいずれか1項に記載の超電導導体装置。   The superconducting conductor device according to any one of claims 1 to 3, wherein the copper plate is plated with gold. 上記半田の材料は、Snを95wt%以上含有するものである請求項1〜請求項4のいずれか1項に記載の超電導導体装置。   The superconducting conductor device according to any one of claims 1 to 4, wherein the solder material contains 95 wt% or more of Sn. 上記半田の材料は、Pを含有するものである請求項1〜請求項4のいずれか1項に記載の超電導導体装置。   The superconducting conductor device according to any one of claims 1 to 4, wherein the solder material contains P. 超電導撚線を有する超電導導体であって、接続される上記超電導導体同志の長手方向の対向する端部が上記超電導導体の長手方向に対して略直角に切断され、切断された上記超電導導体端部間に銅板を介在させ、上記両超電導導体端部と上記銅板間が半田で突合わせ接合された超電導導体装置。   A superconducting conductor having a superconducting stranded wire, the opposite ends of the superconducting conductors connected in the longitudinal direction being cut at substantially right angles to the longitudinal direction of the superconducting conductor, and the superconducting conductor ends cut. A superconducting conductor device in which a copper plate is interposed between the ends of the superconducting conductors and the copper plate. 超電導撚線と上記超電導撚線を囲み冷媒流路を形成するコンジットを有する強制冷却型超電導導体であって、接続される上記超電導導体同志の長手方向の対向する端部が上記超電導導体の長手方向に対して略直角に切断され、切断された上記超電導導体端部間に銅板を介在させ、水素を含む不活性ガス雰囲気で上記両超電導導体端部と上記銅板間が半田で突合わせ接合される超電導導体装置の製造方法。   A forced-cooling type superconducting conductor having a superconducting stranded wire and a conduit surrounding the superconducting stranded wire to form a refrigerant flow path, wherein opposite ends of the superconducting conductors connected in the longitudinal direction are in the longitudinal direction of the superconducting conductor A copper plate is interposed between the cut end portions of the superconducting conductor, and both the end portions of the superconducting conductor and the copper plate are butt-joined with solder in an inert gas atmosphere containing hydrogen. A method of manufacturing a superconducting conductor device. 水素を含む不活性ガスを上記超電導導体のコンジット内部に流して上記両超電導導体端部と上記銅板間が半田で突合わせ接合される請求項8記載の超電導導体装置の製造方法。   9. The method of manufacturing a superconducting conductor device according to claim 8, wherein an inert gas containing hydrogen is caused to flow inside the conduit of the superconducting conductor and the ends of the superconducting conductors and the copper plate are butt-joined by solder. 超電導撚線と上記超電導撚線を囲み冷媒流路を形成するコンジットを有する強制冷却型超電導導体であって、接続される上記超電導導体同志の長手方向の対向する端部が上記超電導導体の長手方向に対して略直角に切断され、切断された上記超電導導体端部間に銅板を介在させ、半田で接合される部分又は全体を所定の温度に所定時間保持した後に、上記両超電導導体端部と上記銅板間が半田で突合わせ接合される超電導導体装置の製造方法。   A forced-cooling type superconducting conductor having a superconducting stranded wire and a conduit surrounding the superconducting stranded wire to form a refrigerant flow path, wherein opposite ends of the superconducting conductors connected in the longitudinal direction are in the longitudinal direction of the superconducting conductor The superconducting conductor ends are cut at a substantially right angle, a copper plate is interposed between the cut ends of the superconducting conductors, and after holding a part or the whole to be joined with solder at a predetermined temperature for a predetermined time, A method of manufacturing a superconducting conductor device in which the copper plates are butt-joined with solder. 半田で接合される部分を300°C以上の温度にする請求項10記載の超電導導体装置の製造方法。   The method for manufacturing a superconducting conductor device according to claim 10, wherein the temperature of the portion to be joined with solder is set to 300 ° C. or higher. 超電導撚線と上記超電導撚線を囲み冷媒流路を形成するコンジットを有する強制冷却型超電導導体であって、接続される上記超電導導体同志の長手方向の対向する端部が上記超電導導体の長手方向に対して略直角に切断され、切断された上記超電導導体端部間に銅板を介在させ、糸状半田を半田で接合される部分の外周から供給して、上記両超電導導体端部と上記銅板間が半田で突合わせ接合される超電導導体装置の製造方法。   A forced-cooling type superconducting conductor having a superconducting stranded wire and a conduit surrounding the superconducting stranded wire to form a refrigerant flow path, wherein opposite ends of the superconducting conductors connected in the longitudinal direction are in the longitudinal direction of the superconducting conductor A copper plate is interposed between the cut ends of the superconducting conductor, and a thread-like solder is supplied from the outer periphery of the portion to be joined with the solder, between the ends of both the superconducting conductors and the copper plate. Of manufacturing a superconducting conductor device in which butt is joined with solder. 半田で接合後に上記超電導導体端部の接合部からはみ出した部分を削除する請求項8〜請求項12のいずれか1項に記載の超電導導体装置の製造方法。   The method for manufacturing a superconducting conductor device according to any one of claims 8 to 12, wherein a portion protruding from the joining portion of the end portion of the superconducting conductor after joining with solder is deleted. 上記超電導導体の超電導物質の高温における超電導物質生成熱処理中に、上記超電導撚線表面の付着有機物を熱分解して除去するようにした請求項8〜請求項13のいずれか1項に記載の超電導導体装置の製造方法。   The superconducting device according to any one of claims 8 to 13, wherein organic substances adhering to the surface of the superconducting stranded wire are thermally decomposed and removed during heat treatment for generating a superconducting material at a high temperature of the superconducting material of the superconducting conductor. A method for manufacturing a conductor device.
JP2004083128A 2004-03-22 2004-03-22 Superconducting conductor device and manufacturing method thereof Expired - Fee Related JP4354856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004083128A JP4354856B2 (en) 2004-03-22 2004-03-22 Superconducting conductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004083128A JP4354856B2 (en) 2004-03-22 2004-03-22 Superconducting conductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005268189A true JP2005268189A (en) 2005-09-29
JP4354856B2 JP4354856B2 (en) 2009-10-28

Family

ID=35092494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004083128A Expired - Fee Related JP4354856B2 (en) 2004-03-22 2004-03-22 Superconducting conductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4354856B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076401A (en) * 2007-09-21 2009-04-09 Sumitomo Electric Ind Ltd Superconductive cable
JP2015118802A (en) * 2013-12-18 2015-06-25 昭和電線ケーブルシステム株式会社 Method of manufacturing terminal structure of superconducting cable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076401A (en) * 2007-09-21 2009-04-09 Sumitomo Electric Ind Ltd Superconductive cable
JP2015118802A (en) * 2013-12-18 2015-06-25 昭和電線ケーブルシステム株式会社 Method of manufacturing terminal structure of superconducting cable

Also Published As

Publication number Publication date
JP4354856B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
US7152302B2 (en) Superconductor connection structure
JP4568894B2 (en) Composite conductor and superconducting equipment system
JP5197092B2 (en) Superconducting cable connection structure and connection method
WO2017154228A1 (en) Superconducting wire and method for manufacturing same
JP5118990B2 (en) Superconducting tape wire and defect repair method
US4673774A (en) Superconductor
US20200164452A1 (en) Method of joining a niobium titanium alloy by using an active solder
JP4354856B2 (en) Superconducting conductor device and manufacturing method thereof
JP5268805B2 (en) Superconducting wire connection structure and superconducting coil device
EP0469894A2 (en) Method of forming a joint between superconducting tapes
JP6818578B2 (en) Superconducting cable connection
JP6086852B2 (en) Oxide superconducting wire, connecting structure of oxide superconducting wire, connecting structure of oxide superconducting wire and electrode terminal, superconducting device including the same, and manufacturing method thereof
JP5778064B2 (en) Superconducting current lead and superconducting magnet device using the superconducting current lead
JP3104823B2 (en) Superconducting conductor connection device
JP4857436B2 (en) Oxide superconducting current lead, superconducting system, and method for connecting metal conductor to metal superconducting conductor
JP2018137146A (en) Conductive wire having terminal
JPH1050217A (en) Deflection yoke device and manufacture thereof
JP4368600B2 (en) Superconducting coil device and manufacturing method thereof
JPH08138820A (en) Joining method of compound superconductive wire and conductor
KR100396606B1 (en) Soldering Method of lower Solderability Metal Rods
JPH08190945A (en) Connection method for superconductor
JP6347111B2 (en) Oxide superconductor energization element and manufacturing method thereof
JP2010033821A (en) Superconducting wire material and its manufacturing method
JPH03245506A (en) Manufacture of superconducting complex with electrode
JPH03194866A (en) Connection method for complex superconductive wire and connection structure therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090730

R151 Written notification of patent or utility model registration

Ref document number: 4354856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees